Fall 2022 | Lecture 16
Reinforcement Learning
Ariel Procaccia | Harvard University



REINFORCEMENT LEARNING

* Reinforcement refers to getting feedback
through rewards

* Markov decision processes also have
rewards, but the environment is known

* Today we focus on learning to act in an
unknown environment, which is
represented as an MDP with unknown
transitions and rewards



RL DIMENSIONS

10—

Passive Active

=0

Model-Based Model-Free

H&




PASSIVE RL

Fixed policy




RL DIMENSIONS

1 00—

S ———

Passive

= —0—

Model-Based




MONTE CARLO EVALUATION

Goal: learn an estimate U(s) of the utility
U™ (s) of each state s for the fixed policy ©

We observe the reward R(s) when we visit
state s

We estimate P(s’| s, m(s)) by observing how
many times s’ was reached when taking action
m(s) in s and normalizing

We can now compute U by solving the
following equalities for all s € S:

0(s) = Rs)+y ) P(s"[5,m(s)) - U(S)

s'es



MONTE CARLO: EXAMPLE

Sampled trajectories




MONTE CARLO: EXAMPLE

Fixed policy

Poll 1: Suppose trajectories starting at (1,1)
are sampled. Is it the case that for every state
(i, /), U(i,j) converges to U™ (i, j)?



RL DIMENSIONS

1 00—

S ———

Passive

.
00— 1

Model-Free




TEMPORAL-DIFFERENCE LEARNING

* Each time a transition from s to s’ is encountered,
update U(s) via

Us)«(1-a)U()+a (R(S) + yﬁ(s’))

* The learning rate « = a(k;) depends on the
number of times state s was visited, kg

» If @ decreases appropriately as k; increases then U
will converge to U™



TD LEARNING: EXAMPLE

Uis) =« (1-a)U(s) + (R(s) + yﬁ(s’))
Estimated U fora = 0.5,y = 1,R(s) = —0.1




RL DIMENSIONS

—O—

H&

)

Active

= —0—

Model-Based



MONTE CARLO REDUX

Our goal is to learn an approximately optimal
policy

Instead of following a fixed policy @, we take a
random action at each step (for now)

We estimate P(s’| s, a) by observing how many
times s’ was reached when taking action a in s
and normalizing

We can now solve the Bellman equations for all
s € S and derive an optimal policy:

U(s) = R(s) + Y max Z P(s'|s,a)-U(s"
s’'es



LEARNING THE MODEL: EXAMPLE

Random actions and transitions

P
o

(1,1) (1,2) (2,1) (2,3) (3,1) (3,2) (3,3)

-
oo

-
-

Transition ol el el
Sl =[==]=]=]=

table for

(1,3) dlloj1loj1|lo]o0]oO

) " <:|_______




MONTE CARLO: EXAMPLE

Random exploration

Poll 2: Suppose trajectories starting at (1,1)
are sampled. Is it the case that for every state
(i,/), U(i,)) converges to U(i, j)?



RL DIMENSIONS

@ f

Active

.
00— 1

Model-Free




TD-LEARNING REDUX

* Model-based passive RL extends to the
active case: does the model-free TD
algorithm extend too?

» TD learning simply estimates the utilities U

 This doesn’t extend to a model-free active
RL algorithm because the learned
parameters don't contain enough
information to choose actions




Q-LEARNING

* [dea: If we had an estimate Q(s, a) for each state-
action pair then we could choose, for all s € §,

n(s) € argmax Q(s,a)
a€Ag

* In equilibrium the optimal Q values satisfy
Bellman-like equations for all s € S,a € A;:

Q(s,a) =R(s) +vy z P(s'| s,a) max Q(s',a")

a'EAS/
s'es



Q-LEARNING

 Instead of following a fixed policy m, we take a random
action at each step (for now)

e Each time a transition from s to s’ via action a is
encountered, update Q(s, a) via

Q(s,a) « (1—a)Q(s,a) + (R(S) + y max Q(s’, a’))

* Asbefore, a = a(kg,) is the learning rate which now
depends on the number of times action a was taken in
state s



EXPLORATION VS. EXPLOITATION

Exploitation Exploration

Obtain reward from a Risk reward to seek a
familiar option better option



THE COST OF GREED

What would happen if a Q-learning agent

always selected the action argmax Q(s, a)?
a

%

ey




HOW TO EXPLORE

* Theorem: If all state action pairs are visited
infinitely often, and a(k,,) goes to 0 at an
appropriate rate, then Q-learning converges
to an optimal policy

* To satisfy the exploration requirement:

o e-exploration: Use argmax, Q(s, a) with
probability 1 — € and a random action with
probability €

o Softmax: Choose each action with probability

eQ(s,a)/6

Yarea, €254/




APPLICATION: ROBOT CONTROL

X X 0 |
The cart-pole balancing problem

BOXES (1968) is a reinforcement learning algorithm that
discretizes the parameter space into boxes and gives
negative reward for failure. The action space is “jerk left” or
“jerk right.”



APPLICATION: ROBOT CONTROL

| ’
Pf;‘

https://www.youtube.com/watch?v=meMWfva-Jio




APPLICATION: ROBOT CONTROL

InvertediTailiSlide

https://www.youtube.com/watch?v=VCdxgn@fcnE




APPLICATION: ROBOT CONTROL

Finger pivoting Sliding Finger gaiting

|Open Al et al., 2018]



	Slide Number 1
	Reinforcement learning
	RL Dimensions
	Passive RL
	RL Dimensions
	Monte Carlo evaluation
	Monte carlo: example
	Monte Carlo: example
	RL Dimensions
	Temporal-difference learning
	TD learning: example
	RL Dimensions
	Monte carlo redux
	Learning the model: example
	Monte Carlo: example
	RL Dimensions
	TD-learning redux
	Q-Learning
	Q-learning
	Exploration vs. exploitation
	The cost of greed
	How to explore
	Application: robot control
	Application: robot control
	Application: robot control
	Application: robot control

