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REINFORCEMENT LEARNING

• Reinforcement refers to getting feedback 
through rewards

• Markov decision processes also have 
rewards, but the environment is known

• Today we focus on learning to act in an 
unknown environment, which is 
represented as an MDP with unknown 
transitions and rewards
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MONTE CARLO EVALUATION

• Goal: learn an estimate �𝑈𝑈(𝑠𝑠) of the utility 
𝑈𝑈𝜋𝜋(𝑠𝑠) of each state 𝑠𝑠 for the fixed policy 𝜋𝜋

• We observe the reward 𝑅𝑅(𝑠𝑠) when we visit 
state 𝑠𝑠

• We estimate �𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝜋𝜋(𝑠𝑠)) by observing how 
many times 𝑠𝑠𝑠 was reached when taking action
𝜋𝜋 𝑠𝑠 in 𝑠𝑠 and normalizing

• We can now compute �𝑈𝑈 by solving the 
following equalities for all 𝑠𝑠 ∈ 𝑆𝑆:

�𝑈𝑈 𝑠𝑠 = 𝑅𝑅 𝑠𝑠 + 𝛾𝛾 �
𝑠𝑠′∈𝑆𝑆

�𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝜋𝜋(𝑠𝑠)) ⋅ �𝑈𝑈(𝑠𝑠𝑠)



MONTE CARLO: EXAMPLE
Sampled trajectories
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MONTE CARLO: EXAMPLE

Poll 1: Suppose trajectories starting at (1,1) 
are sampled. Is it the case that for every state 
𝑖𝑖, 𝑗𝑗 , �𝑈𝑈(𝑖𝑖, 𝑗𝑗) converges to 𝑈𝑈𝜋𝜋 𝑖𝑖, 𝑗𝑗 ?
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TEMPORAL-DIFFERENCE LEARNING

• Each time a transition from 𝑠𝑠 to 𝑠𝑠𝑠 is encountered, 
update �𝑈𝑈 𝑠𝑠 via
�𝑈𝑈 𝑠𝑠 ← 1 − 𝛼𝛼 �𝑈𝑈 𝑠𝑠 + 𝛼𝛼 𝑅𝑅 𝑠𝑠 + 𝛾𝛾�𝑈𝑈 𝑠𝑠′

• The learning rate 𝛼𝛼 = 𝛼𝛼 𝑘𝑘𝑠𝑠 depends on the 
number of times state 𝑠𝑠 was visited, 𝑘𝑘𝑠𝑠

• If 𝛼𝛼 decreases appropriately as 𝑘𝑘𝑠𝑠 increases then �𝑈𝑈
will converge to 𝑈𝑈𝜋𝜋



TD LEARNING: EXAMPLE

0 0 0 0

0 0 0

0 0 0 0

�𝑈𝑈 𝑠𝑠 ← 1 − 𝛼𝛼 �𝑈𝑈 𝑠𝑠 + 𝛼𝛼 𝑅𝑅 𝑠𝑠 + 𝛾𝛾�𝑈𝑈 𝑠𝑠′

Estimated �𝑈𝑈 for 𝛼𝛼 = 0.5, 𝛾𝛾 = 1,𝑅𝑅 𝑠𝑠 = −0.1
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MONTE CARLO REDUX

• Our goal is to learn an approximately optimal 
policy

• Instead of following a fixed policy 𝜋𝜋, we take a 
random action at each step (for now)

• We estimate �𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎) by observing how many 
times 𝑠𝑠𝑠 was reached when taking action 𝑎𝑎 in 𝑠𝑠
and normalizing

• We can now solve the Bellman equations for all 
𝑠𝑠 ∈ 𝑆𝑆 and derive an optimal policy:

�𝑈𝑈 𝑠𝑠 = 𝑅𝑅 𝑠𝑠 + 𝛾𝛾 max
𝑎𝑎∈𝐴𝐴(𝑠𝑠)

�
𝑠𝑠′∈𝑆𝑆

�𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎) ⋅ �𝑈𝑈(𝑠𝑠𝑠)



LEARNING THE MODEL: EXAMPLE
Random actions and transitions

(1,1) (1,2)

— —

— —

(2,1) (2,3)

— —

— —

(3,1)

—

—

(3,2) (3,3)

— —

— —

0 1 0 1 0 0 0
— — — — — — —

Transition 
table for 
(1,3):



MONTE CARLO: EXAMPLE

Poll 2: Suppose trajectories starting at (1,1) 
are sampled. Is it the case that for every state 
𝑖𝑖, 𝑗𝑗 , �𝑈𝑈(𝑖𝑖, 𝑗𝑗) converges to 𝑈𝑈 𝑖𝑖, 𝑗𝑗 ?
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TD-LEARNING REDUX

• Model-based passive RL extends to the 
active case; does the model-free TD 
algorithm extend too?

• TD learning simply estimates the utilities �𝑈𝑈
• This doesn’t extend to a model-free active 

RL algorithm because the learned 
parameters don’t contain enough 
information to choose actions 



Q-LEARNING

• Idea: If we had an estimate 𝑄𝑄(𝑠𝑠,𝑎𝑎) for each state-
action pair then we could choose, for all 𝑠𝑠 ∈ 𝑆𝑆, 

𝜋𝜋 𝑠𝑠 ∈ argmax
𝑎𝑎∈𝐴𝐴𝑠𝑠

𝑄𝑄 𝑠𝑠,𝑎𝑎

• In equilibrium the optimal Q values satisfy 
Bellman-like equations for all 𝑠𝑠 ∈ 𝑆𝑆, 𝑎𝑎 ∈ 𝐴𝐴𝑠𝑠:

𝑄𝑄 𝑠𝑠, 𝑎𝑎 = 𝑅𝑅 𝑠𝑠 + 𝛾𝛾 �
𝑠𝑠′∈𝑆𝑆

𝑃𝑃 𝑠𝑠′ 𝑠𝑠, 𝑎𝑎) max
𝑎𝑎′∈𝐴𝐴𝑠𝑠′

𝑄𝑄(𝑠𝑠′,𝑎𝑎′)



Q-LEARNING

• Instead of following a fixed policy 𝜋𝜋, we take a random 
action at each step (for now)

• Each time a transition from 𝑠𝑠 to 𝑠𝑠𝑠 via action 𝑎𝑎 is 
encountered, update 𝑄𝑄(𝑠𝑠, 𝑎𝑎) via
𝑄𝑄(𝑠𝑠, 𝑎𝑎) ← 1 − 𝛼𝛼 𝑄𝑄(𝑠𝑠, 𝑎𝑎) + 𝛼𝛼 𝑅𝑅 𝑠𝑠 + 𝛾𝛾max

𝑎𝑎′
𝑄𝑄(𝑠𝑠′, 𝑎𝑎′)

• As before, 𝛼𝛼 = 𝛼𝛼 𝑘𝑘𝑠𝑠𝑠𝑠 is the learning rate which now 
depends on the number of times action 𝑎𝑎 was taken in 
state 𝑠𝑠



EXPLORATION VS. EXPLOITATION

←←
Exploitation

Obtain reward from a 
familiar option

Exploration
Risk reward to seek a 

better option



THE COST OF GREED

What would happen if a Q-learning agent 
always selected the action argmax

𝑎𝑎
𝑄𝑄 𝑠𝑠,𝑎𝑎 ?
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HOW TO EXPLORE

• Theorem: If all state action pairs are visited 
infinitely often, and 𝛼𝛼 𝑘𝑘𝑠𝑠𝑠𝑠 goes to 0 at an 
appropriate rate, then 𝑄𝑄-learning converges 
to an optimal policy

• To satisfy the exploration requirement:
◦ 𝜖𝜖-exploration: Use argmax𝑎𝑎 𝑄𝑄(𝑠𝑠, 𝑎𝑎) with 

probability 1 − 𝜖𝜖 and a random action with 
probability 𝜖𝜖

◦ Softmax: Choose each action with probability
𝑒𝑒𝑄𝑄 𝑠𝑠,𝑎𝑎 /𝜃𝜃

∑𝑎𝑎′∈𝐴𝐴𝑠𝑠 𝑒𝑒
𝑄𝑄(𝑠𝑠,𝑎𝑎′)/𝜃𝜃



APPLICATION: ROBOT CONTROL

The cart-pole balancing problem
BOXES (1968) is a reinforcement learning algorithm that 
discretizes the parameter space into boxes and gives 
negative reward for failure. The action space is “jerk left” or 
“jerk right.”

𝜃𝜃𝑥𝑥



APPLICATION: ROBOT CONTROL

https://www.youtube.com/watch?v=meMWfva-Jio



APPLICATION: ROBOT CONTROL

https://www.youtube.com/watch?v=VCdxqn0fcnE



APPLICATION: ROBOT CONTROL

Finger pivoting Sliding Finger gaiting

[Open AI et al., 2018]
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