

Fall 2022 | Lecture 16 Reinforcement Learning Ariel Procaccia | Harvard University

REINFORCEMENT LEARNING

- Reinforcement refers to getting feedback through rewards
- Markov decision processes also have rewards, but the environment is known
- Today we focus on learning to act in an unknown environment, which is represented as an MDP with unknown transitions and rewards

RL DIMENSIONS

Model-Based

Model-Free

PASSIVE RL

Fixed policy π

Sampled trajectories

0	0 0	0	0
0 0		° •	•
0	0	•	0

RL DIMENSIONS

Model-Based

Model-Free

MONTE CARLO EVALUATION

- Goal: learn an estimate $\widehat{U}(s)$ of the utility $U^{\pi}(s)$ of each state s for the fixed policy π
- We observe the reward R(s) when we visit state s
- We estimate $\hat{P}(s'|s,\pi(s))$ by observing how many times s' was reached when taking action $\pi(s)$ in s and normalizing
- We can now compute \widehat{U} by solving the following equalities for all $s \in S$:

$$\widehat{U}(s) = R(s) + \gamma \sum_{s' \in S} \widehat{P}(s' \mid s, \pi(s)) \cdot \widehat{U}(s')$$

MONTE CARLO: EXAMPLE

Sampled trajectories

Estimated \hat{P}

MONTE CARLO: EXAMPLE

Fixed policy π

Poll 1: Suppose trajectories starting at (1,1) are sampled. Is it the case that for every state (i,j), $\widehat{U}(i,j)$ converges to $U^{\pi}(i,j)$?

RL DIMENSIONS

Model-Based

Model-Free

TEMPORAL-DIFFERENCE LEARNING

• Each time a transition from s to s' is encountered, update $\widehat{U}(s)$ via

$$\widehat{U}(s) \leftarrow (1 - \alpha)\widehat{U}(s) + \alpha \left(R(s) + \gamma \widehat{U}(s')\right)$$

- The learning rate $\alpha = \alpha(k_s)$ depends on the number of times state s was visited, k_s
- If α decreases appropriately as k_s increases then \widehat{U} will converge to U^π

TD LEARNING: EXAMPLE

$$\widehat{U}(s) \leftarrow (1 - \alpha)\widehat{U}(s) + \alpha \left(R(s) + \gamma \widehat{U}(s')\right)$$

Estimated \widehat{U} for $\alpha = 0.5, \gamma = 1, R(s) = -0.1$

0	0	0	0
0		0	0
-0.05	0	0	0

0	0	0	0
-0.05		0	0
-0.05	0	0	0

-0.07	0	0	0
-0.05		0	0
-0.05	0	0	0

-0.07	0	0	0
-0.11		0	0
-0.05	0	0	0

-0.08	0	0	0
-0.11		0	0
-0.05	0	0	0

-0.08	-0.05	0	0
-0.11		0	0
-0.05	0	0	0

-0.08	-0.05	-0.05	0
-0.11		0	0
-0.05	0	0	0

-0.08	-0.05	-0.05	0.5
-0.11		0	0
-0.05	0	0	0

RL DIMENSIONS

Model-Based

Model-Free

MONTE CARLO REDUX

- Our goal is to learn an approximately optimal policy
- Instead of following a fixed policy π , we take a random action at each step (for now)
- We estimate $\hat{P}(s'|s,a)$ by observing how many times s' was reached when taking action a in s and normalizing
- We can now solve the Bellman equations for all $s \in S$ and derive an optimal policy:

$$\widehat{U}(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s' \in S} \widehat{P}(s' \mid s, a) \cdot \widehat{U}(s')$$

LEARNING THE MODEL: EXAMPLE

Random actions and transitions

Transition table for (1,3):

MONTE CARLO: EXAMPLE

Random exploration

Poll 2: Suppose trajectories starting at (1,1) are sampled. Is it the case that for every state (i,j), $\widehat{U}(i,j)$ converges to U(i,j)?

RL DIMENSIONS

Model-Based

Model-Free

TD-LEARNING REDUX

- Model-based passive RL extends to the active case; does the model-free TD algorithm extend too?
- TD learning simply estimates the utilities \widehat{U}
- This doesn't extend to a model-free active RL algorithm because the learned parameters don't contain enough information to choose actions

Q-LEARNING

• Idea: If we had an estimate Q(s, a) for each stateaction pair then we could choose, for all $s \in S$,

$$\pi(s) \in \operatorname*{argmax} Q(s, a)$$
 $a \in A_s$

• In equilibrium the optimal Q values satisfy Bellman-like equations for all $s \in S$, $a \in A_s$:

$$Q(s,a) = R(s) + \gamma \sum_{s' \in S} P(s'|s,a) \max_{a' \in A_{s'}} Q(s',a')$$

Q-LEARNING

- Instead of following a fixed policy π , we take a random action at each step (for now)
- Each time a transition from s to s' via action a is encountered, update Q(s,a) via $Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha \left(R(s) + \gamma \max_{a'} Q(s',a')\right)$
- As before, $\alpha = \alpha(k_{sa})$ is the learning rate which now depends on the number of times action a was taken in state s

EXPLORATION VS. EXPLOITATION

Exploitation

Obtain reward from a familiar option

Exploration

Risk reward to seek a better option

THE COST OF GREED

What would happen if a Q-learning agent always selected the action $\underset{a}{\text{argmax}} Q(s, a)$?

HOW TO EXPLORE

- Theorem: If all state action pairs are visited infinitely often, and $\alpha(k_{sa})$ goes to 0 at an appropriate rate, then Q-learning converges to an optimal policy
- To satisfy the exploration requirement:
 - ϵ -exploration: Use $\arg\max_a Q(s,a)$ with probability $1-\epsilon$ and a random action with probability ϵ
 - Softmax: Choose each action with probability

$$\frac{e^{Q(s,a)/\theta}}{\sum_{a'\in A_S} e^{Q(s,a')/\theta}}$$

The cart-pole balancing problem

BOXES (1968) is a reinforcement learning algorithm that discretizes the parameter space into boxes and gives negative reward for failure. The action space is "jerk left" or "jerk right."

https://www.youtube.com/watch?v=meMWfva-Jio

https://www.youtube.com/watch?v=VCdxqn0fcnE

Finger pivoting

Sliding

Finger gaiting

[Open AI et al., 2018]