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SEQUENTIAL DECISIONS: EXAMPLE

• We control a robot that can move in a grid 
world environment

• The robot gets a reward of +1 or −1 if it 
ends up in one of two special cells

• It’s clear what the solution is
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SEQUENTIAL DECISIONS: EXAMPLE

• To spice things up, assume that the robot only 
moves in the intended direction with 
probability 0.8 and with probability 0.2 moves 
at a right angle (collision leads to no 
movement) 

• Reward of -0.04 in every cell except terminal 
ones
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MARKOV DECISION PROCESSES

• A Markov Decision Process (MDP) consists 
of:
◦ A set of states 𝑆𝑆 with an initial state 𝑠𝑠0
◦ A set 𝐴𝐴(𝑠𝑠) of actions for each 𝑠𝑠 ∈ 𝑆𝑆
◦ A transition model 𝑃𝑃 𝑠𝑠′ 𝑠𝑠, 𝑎𝑎) that gives the 

probability of reaching 𝑠𝑠𝑠 if action 𝑎𝑎 is taken in 
state 𝑠𝑠 (transitions are Markovian)

◦ A reward function 𝑅𝑅 𝑠𝑠 that specifies the 
reward of state 𝑠𝑠

• Assume for now that the agent’s utility is 
the sum of rewards



Next

EXAMPLE: TETRIS

• Each state consists of the 
current piece, the next piece, 
and a bit matrix indicating 
which cells are filled

• Actions correspond to 
positions where the current 
piece can be placed, and only 
affect filled cells

• The only source of 
randomness in the 
transitions is the choice of 
the next piece



POLICIES

• A policy 𝜋𝜋 specifies an action 𝜋𝜋 𝑠𝑠 ∈ 𝐴𝐴(𝑠𝑠)
for each 𝑠𝑠 ∈ 𝑆𝑆

• With a fixed policy, an MDP induces a 
Markov chain
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OPTIMAL POLICIES

• We are interested in the expected utility 
yielded by a policy

• The optimal policy 𝜋𝜋⋆ maximizes expected 
utility
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OPTIMAL POLICIES: EXAMPLE
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DISCOUNTED UTILITIES

• We assume that there’s an infinite horizon
• We also assume that there’s a discount 

factor 𝛾𝛾 ∈ [0,1] such that the utility for a 
sequence of states 𝑠𝑠0, 𝑠𝑠1, 𝑠𝑠2, … is 𝑅𝑅 𝑠𝑠0 +
𝛾𝛾𝛾𝛾 𝑠𝑠1 + 𝛾𝛾2𝑅𝑅 𝑠𝑠2 + ⋯

• Let 𝑅𝑅 𝑠𝑠 ≤ 𝑟𝑟⋆ for all 𝑠𝑠 ∈ 𝑆𝑆
• If 𝛾𝛾 < 1 then the utility is bounded by 

�
𝑡𝑡=0

∞

𝛾𝛾𝑡𝑡𝑟𝑟⋆ =
𝑟𝑟⋆

1 − 𝛾𝛾



   
   

DISCOUNTED UTILITIES

• Poll 1: Assume 𝑅𝑅 𝑠𝑠 = 0. What is the 
optimal policy at the question mark for 𝛾𝛾 =
0.99 and 𝛾𝛾 = 0.01?
◦ Left and right
◦ Right and left
◦ Right and right
◦ Left and left
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BELLMAN EQUATIONS

• The utility of the optimal policy 𝑈𝑈(𝑠𝑠) at each 
state 𝑠𝑠 is given by the Bellman equations:

𝑈𝑈 𝑠𝑠 = 𝑅𝑅 𝑠𝑠 + 𝛾𝛾 max
𝑎𝑎∈𝐴𝐴 𝑠𝑠

�
𝑠𝑠′
𝑃𝑃 𝑠𝑠′ 𝑠𝑠, 𝑎𝑎) ⋅ 𝑈𝑈(𝑠𝑠′)

• Once we have the value of 𝑈𝑈(𝑠𝑠) for each 
𝑠𝑠 ∈ 𝑆𝑆 we can derive the optimal policy by 
taking

𝜋𝜋⋆ 𝑠𝑠 ∈ argmax
𝑎𝑎∈𝐴𝐴 𝑠𝑠

�
𝑠𝑠′
𝑃𝑃 𝑠𝑠′ 𝑠𝑠, 𝑎𝑎) ⋅ 𝑈𝑈(𝑠𝑠′)



BELLMAN EQUATIONS: EXAMPLE

𝑈𝑈 1,1 = −0.04 + max{0.8𝑈𝑈 1,2 + 0.1𝑈𝑈 2,1 + 0.1𝑈𝑈(1,1)
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𝛾𝛾 = 1,𝑅𝑅 𝑠𝑠 = −0.04
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0.9𝑈𝑈 1,1 + 0.1𝑈𝑈(1,2)
0.9𝑈𝑈 1,1 + 0.1𝑈𝑈(2,1)
0.8𝑈𝑈 2,1 + 0.1𝑈𝑈 1,2 + 0.1𝑈𝑈(1,1)}



VALUE ITERATION

• Iteratively update utility estimates 𝑈𝑈𝑖𝑖 𝑠𝑠 via

𝑈𝑈𝑖𝑖+1 𝑠𝑠 ← 𝑅𝑅 𝑠𝑠 + 𝛾𝛾 max
𝑎𝑎∈𝐴𝐴 𝑠𝑠

�
𝑠𝑠′
𝑃𝑃 𝑠𝑠′ 𝑠𝑠, 𝑎𝑎)𝑈𝑈𝑖𝑖(𝑠𝑠′)

• Stopping condition: for a given 𝜖𝜖 > 0,

max
𝑠𝑠∈𝑆𝑆

𝑈𝑈𝑖𝑖+1 𝑠𝑠 − 𝑈𝑈𝑖𝑖(𝑠𝑠) <
𝜖𝜖 1 − 𝛾𝛾

𝛾𝛾
• Theorem: If 𝛾𝛾 < 1 then the algorithm terminates 

with utility estimates 𝑈𝑈𝑡𝑡 such that for all 𝑠𝑠 ∈ 𝑆𝑆, 
𝑈𝑈 𝑠𝑠 − 𝑈𝑈𝑡𝑡 𝑠𝑠 < 𝜖𝜖



VALUE ITERATION: EXAMPLE

• Poll 2: Assume 𝑅𝑅 𝑠𝑠 = 0. How many nonzero 
values are there (excluding the forest and the 
volcano) after one iteration of value iteration?
◦ 0
◦ 1
◦ 2
◦ 3
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VALUE ITERATION: EXAMPLE
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POLICY ITERATION

• Alternate between two steps, beginning at an 
initial policy 𝜋𝜋0

• Step 1 (policy evaluation): given a policy 𝜋𝜋𝑖𝑖 , 
calculate its utility 𝑈𝑈𝑖𝑖 via
𝑈𝑈𝑖𝑖 𝑠𝑠 = 𝑅𝑅 𝑠𝑠 + 𝛾𝛾�

𝑠𝑠′
𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝜋𝜋𝑖𝑖(𝑠𝑠)) ⋅ 𝑈𝑈𝑖𝑖(𝑠𝑠′)

• Step 2 (policy improvement): calculate a new 
policy 𝜋𝜋𝑖𝑖+1 based on 𝑈𝑈𝑖𝑖 via
𝜋𝜋𝑖𝑖+1 𝑠𝑠 ∈ argmax

𝑎𝑎∈𝐴𝐴 𝑠𝑠
�
𝑠𝑠′
𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎) ⋅ 𝑈𝑈𝑖𝑖(𝑠𝑠′)

• Terminate on bounded change in utilities



POLICY EVALUATION: EXAMPLE
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𝛾𝛾 = 1,𝑅𝑅 𝑠𝑠 = −0.04
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𝑈𝑈𝑖𝑖 1,1 = −0.04 + 0.8𝑈𝑈𝑖𝑖 1,2 + 0.1𝑈𝑈𝑖𝑖 2,1 + 0.1𝑈𝑈𝑖𝑖 1,1

𝑈𝑈𝑖𝑖 1,2 = −0.04 + 0.8𝑈𝑈𝑖𝑖 1,3 + 0.2𝑈𝑈𝑖𝑖(1,2)

𝑈𝑈𝑖𝑖 1,3 = −0.04 + 0.8𝑈𝑈𝑖𝑖 2,3 + 0.1𝑈𝑈𝑖𝑖 1,2 + 0.1𝑈𝑈𝑖𝑖(1,3)



LINEAR PROGRAMMING

The optimal utility function 𝑈𝑈 can be also be 
computed by a linear program with variables 
𝑈𝑈(𝑠𝑠) for all 𝑠𝑠 ∈ 𝑆𝑆:

min�
𝑠𝑠∈𝑆𝑆

𝑈𝑈(𝑠𝑠)

s.t ∀𝑠𝑠 ∈ 𝑆𝑆,𝑎𝑎 ∈ 𝐴𝐴(𝑠𝑠),𝑈𝑈 𝑠𝑠 ≥ 𝑅𝑅 𝑠𝑠 + 𝛾𝛾�
𝑠𝑠′
𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎) ⋅ 𝑈𝑈(𝑠𝑠′)
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