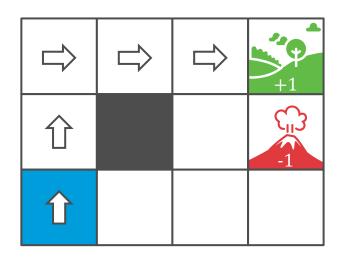


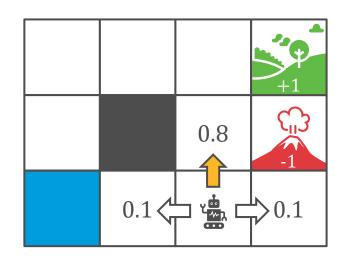
Fall 2022 | Lecture 15 Markov Decision Processes Ariel Procaccia | Harvard University

SEQUENTIAL DECISIONS: EXAMPLE



- We control a robot that can move in a grid world environment
- The robot gets a reward of +1 or -1 if it ends up in one of two special cells
- It's clear what the solution is

SEQUENTIAL DECISIONS: EXAMPLE



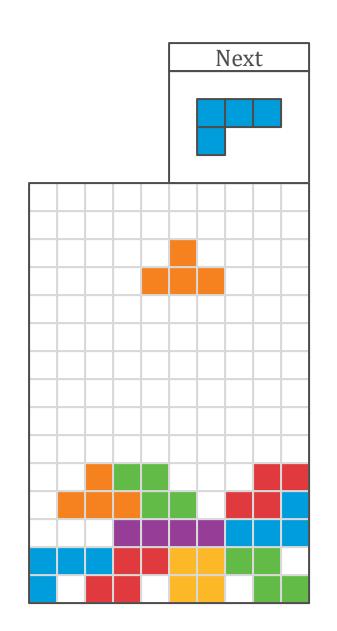
- To spice things up, assume that the robot only moves in the intended direction with probability 0.8 and with probability 0.2 moves at a right angle (collision leads to no movement)
- Reward of -0.04 in every cell except terminal ones

MARKOV DECISION PROCESSES

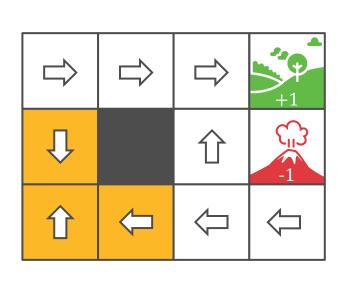
- A Markov Decision Process (MDP) consists of:
 - \circ A set of states S with an initial state s_0
 - A set A(s) of actions for each $s \in S$
 - A transition model P(s' | s, a) that gives the probability of reaching s' if action a is taken in state s (transitions are Markovian)
 - A reward function R(s) that specifies the reward of state s
- Assume for now that the agent's utility is the sum of rewards

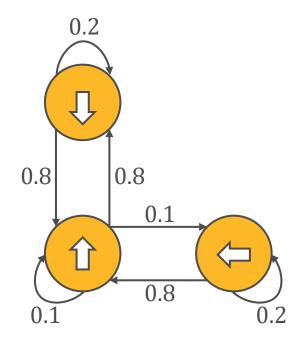
EXAMPLE: TETRIS

- Each state consists of the current piece, the next piece, and a bit matrix indicating which cells are filled
- Actions correspond to positions where the current piece can be placed, and only affect filled cells
- The only source of randomness in the transitions is the choice of the next piece



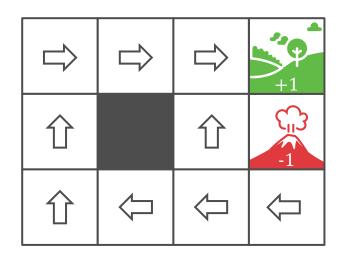
POLICIES





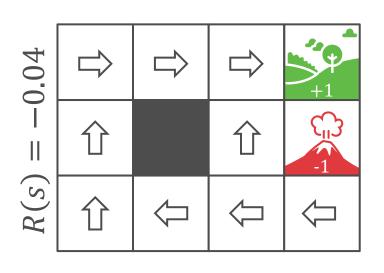
- A policy π specifies an action $\pi(s) \in A(s)$ for each $s \in S$
- With a fixed policy, an MDP induces a Markov chain

OPTIMAL POLICIES



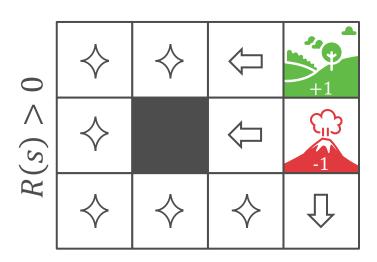
- We are interested in the expected utility yielded by a policy
- The optimal policy π^* maximizes expected utility

OPTIMAL POLICIES: EXAMPLE



-2	\Rightarrow	\Rightarrow	\Rightarrow	+1
S = -	仓		\Diamond	-1
R(s)	介	\Rightarrow	\Rightarrow	企

0.01	\Box	\Box	\Diamond	+1
	企		Ų	C= (-1
R(s)	Û	Į.	Į.	Û

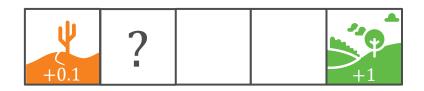


DISCOUNTED UTILITIES

- We assume that there's an infinite horizon
- We also assume that there's a discount factor $\gamma \in [0,1]$ such that the utility for a sequence of states $s_0, s_1, s_2, ...$ is $R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \cdots$
- Let $R(s) \le r^*$ for all $s \in S$
- If γ < 1 then the utility is bounded by

$$\sum_{t=0}^{\infty} \gamma^t r^* = \frac{r^*}{1 - \gamma}$$

DISCOUNTED UTILITIES



- Poll 1: Assume R(s) = 0. What is the optimal policy at the question mark for $\gamma = 0.99$ and $\gamma = 0.01$?
 - Left and right
 - Right and left
 - Right and right
 - Left and left

BELLMAN EQUATIONS

• The utility of the optimal policy U(s) at each state s is given by the Bellman equations:

$$U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s' \mid s, a) \cdot U(s')$$

• Once we have the value of U(s) for each $s \in S$ we can derive the optimal policy by taking

$$\pi^*(s) \in \underset{a \in A(s)}{\operatorname{argmax}} \sum_{s'} P(s' \mid s, a) \cdot U(s')$$

BELLMAN EQUATIONS: EXAMPLE

$$U(1,1) = -0.04 + \max\{0.8U(1,2) + 0.1U(2,1) + 0.1U(1,1)$$
 \bigcirc

$$0.9U(1,1) + 0.1U(1,2)$$
 \bigcirc

$$0.9U(1,1) + 0.1U(2,1)$$
 \bigcirc

$$0.8U(2,1) + 0.1U(1,2) + 0.1U(1,1)\}$$

VALUE ITERATION

• Iteratively update utility estimates $U_i(s)$ via

$$U_{i+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s' \mid s, a) U_i(s')$$

• Stopping condition: for a given $\epsilon > 0$,

$$\max_{s \in S} |U_{i+1}(s) - U_i(s)| < \frac{\epsilon(1 - \gamma)}{\gamma}$$

• Theorem: If $\gamma < 1$ then the algorithm terminates with utility estimates U_t such that for all $s \in S$, $|U(s) - U_t(s)| < \epsilon$

VALUE ITERATION: EXAMPLE

6. = 7	0.00	0.00	0.00	+1
Iteration 0, 1	0.00		0.00	C=(-1
Iterat	0.00	0.00	0.00	0.00

- Poll 2: Assume R(s) = 0. How many nonzero values are there (excluding the forest and the volcano) after one iteration of value iteration?
 - · 0
 - 1
 - · 2
 - · 3

VALUE ITERATION: EXAMPLE

6 Iteration $0, \gamma$

	0.00	0.00	0.00	+1
,	0.00		0.00	-1
	0.00	0.00	0.00	0.00

 $\overline{}$

6' = /	0.00	0.00	0.72	+1
ion 1, 1	0.00		0.00	C3(1)
Iteration	0.00	0.00	0.00	0.00

6 0.52 0.78 0.00 Iteration 2, γ 0.00 0.43 0.00 0.00 0.00

0.00

٧: = ١	0.37	0.66	0.83	+1
10n 3, 1	0.00		0.51	C=(1-
Iteration	0.00	0.00	0.31	0.00

POLICY ITERATION

- Alternate between two steps, beginning at an initial policy π_0
- Step 1 (policy evaluation): given a policy π_i , calculate its utility U_i via

$$U_i(s) = R(s) + \gamma \sum_{s'} P(s' \mid s, \pi_i(s)) \cdot U_i(s')$$

• Step 2 (policy improvement): calculate a new policy π_{i+1} based on U_i via

$$\pi_{i+1}(s) \in \underset{a \in A(s)}{\operatorname{argmax}} \sum_{s'}^{t} P(s' \mid s, a) \cdot U_i(s')$$

Terminate on bounded change in utilities

POLICY EVALUATION: EXAMPLE

$$\gamma = 1, R(s) = -0.04$$

$$3 \Rightarrow \Rightarrow \Rightarrow \Rightarrow$$

$$2 \Rightarrow \Rightarrow \Rightarrow$$

$$1 \Rightarrow \Rightarrow \Rightarrow$$

$$1 \Rightarrow \Rightarrow \Rightarrow$$

$$2 \Rightarrow \Rightarrow \Rightarrow$$

$$2 \Rightarrow \Rightarrow$$

$$1 \Rightarrow \Rightarrow \Rightarrow$$

$$2 \Rightarrow \Rightarrow$$

$$3 \Rightarrow \Rightarrow$$

$$2 \Rightarrow \Rightarrow$$

$$3 \Rightarrow \Rightarrow$$

$$4 \Rightarrow$$

$$4$$

$$U_i(1,1) = -0.04 + 0.8U_i(1,2) + 0.1U_i(2,1) + 0.1U_i(1,1)$$

$$U_i(1,2) = -0.04 + 0.8U_i(1,3) + 0.2U_i(1,2)$$

$$U_i(1,3) = -0.04 + 0.8U_i(2,3) + 0.1U_i(1,2) + 0.1U_i(1,3)$$

LINEAR PROGRAMMING

The optimal utility function U can be also be computed by a linear program with variables U(s) for all $s \in S$:

$$\min \sum_{s \in S} U(s)$$
s.t $\forall s \in S, a \in A(s), U(s) \ge R(s) + \gamma \sum_{s'} P(s' \mid s, a) \cdot U(s')$