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MARKOV CHAINS

Day 0 Day 1 Day 2 Day 3

𝑋𝑋0 𝑋𝑋1 𝑋𝑋2 𝑋𝑋3
𝑷𝑷[𝑋𝑋0]

0.5

𝑋𝑋0 𝑷𝑷[𝑋𝑋1]

𝑡𝑡 .9

𝑓𝑓 .3

𝑋𝑋1 𝑷𝑷[𝑋𝑋2]

𝑡𝑡 .9

𝑓𝑓 .3

𝑋𝑋2 𝑷𝑷[𝑋𝑋3]

𝑡𝑡 .9

𝑓𝑓 .3

Suppose the weather evolves according to the 
following Bayes net (with 𝑡𝑡 = 𝑠𝑠𝑠𝑠𝑠𝑠):



ASSUMPTIONS

• We will think of infinite processes described 
by random variables 𝑋𝑋0,𝑋𝑋1, …

• We use 𝑿𝑿0:𝑡𝑡 to denote 𝑋𝑋0, … ,𝑋𝑋𝑡𝑡
• Our simple Bayes net is assumed to satisfy:

◦ Markov assumption:
𝑷𝑷 𝑋𝑋𝑡𝑡 𝑿𝑿0:𝑡𝑡−1] = 𝑷𝑷 𝑋𝑋𝑡𝑡 𝑋𝑋𝑡𝑡−1]

◦ Stationarity assumption: for all 𝑡𝑡, 𝑡𝑡′,
𝑷𝑷 𝑋𝑋𝑡𝑡 𝑋𝑋𝑡𝑡−1] = 𝑷𝑷 𝑋𝑋𝑡𝑡′ 𝑋𝑋𝑡𝑡′−1]



PREDICTING THE WEATHER

𝑋𝑋0

0.5

0.5

𝑋𝑋1
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.4

𝑋𝑋2

.66

.34

𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

0.1

0.3

0.70.9

0.5 0.9
0.1 + 0.5 0.3

0.7 0.6 0.9
0.1 + 0.4 0.3

0.7



HIDDEN MARKOV MODELS

• Sometimes we can’t directly observe the state 
of the world, but rather only observe evidence

• We are given 𝑷𝑷 𝐸𝐸𝑡𝑡 𝑿𝑿0:𝑡𝑡,𝑬𝑬0:𝑡𝑡−1]
• A hidden Markov model satisfies the same 

assumptions as before, plus the Markov sensor 
assumption:

𝑷𝑷 𝐸𝐸𝑡𝑡 𝑿𝑿0:𝑡𝑡 ,𝑬𝑬0:𝑡𝑡−1] = 𝑷𝑷 𝐸𝐸𝑡𝑡 𝑋𝑋𝑡𝑡]

𝑋𝑋0 𝑋𝑋1 𝑋𝑋2 𝑋𝑋3 …

𝐸𝐸1 𝐸𝐸2 𝐸𝐸3



Day 3Day 2Day 1

HIDDEN MARKOV MODELS: EXAMPLE

𝑋𝑋0

𝑷𝑷[𝑋𝑋0]
0.5

𝑋𝑋0 𝑷𝑷[𝑋𝑋1]
𝑡𝑡 .9
𝑓𝑓 .3

𝑋𝑋1 𝑷𝑷[𝑋𝑋2]
𝑡𝑡 .9
𝑓𝑓 .3

𝑋𝑋2 𝑷𝑷[𝑋𝑋3]
𝑡𝑡 .9
𝑓𝑓 .3

𝐸𝐸1 𝐸𝐸2 𝐸𝐸3

Day 0
    

   
    

   
    

   
    

       
   

    
   

𝑋𝑋1 𝑷𝑷[𝐸𝐸1]
𝑡𝑡 .2
𝑓𝑓 .9

𝑋𝑋2 𝑷𝑷[𝐸𝐸2]
𝑡𝑡 .2
𝑓𝑓 .9

𝑋𝑋3 𝑷𝑷[𝐸𝐸3]
𝑡𝑡 .2
𝑓𝑓 .9

𝑋𝑋1 𝑋𝑋2 𝑋𝑋3



INFERENCE

  
   

  
   

   
   

    
   

Filtering
𝑷𝑷 𝑋𝑋𝑡𝑡 𝒆𝒆1:𝑡𝑡]

Prediction
𝑷𝑷 𝑋𝑋𝑡𝑡+𝑘𝑘 𝒆𝒆1:𝑡𝑡]

Smoothing
𝑷𝑷 𝑋𝑋𝑘𝑘 𝒆𝒆1:𝑡𝑡],𝑘𝑘 < 𝑡𝑡

Max likelihood
argmax𝒙𝒙0:𝑡𝑡 Pr 𝒙𝒙0:𝑡𝑡 𝒆𝒆1:𝑡𝑡]

Discuss
Follows 
from 
filtering

Skip Discuss



FILTERING

• We want an iterative algorithm that would 
compute 𝑷𝑷 𝑋𝑋𝑡𝑡+1 𝒆𝒆1:𝑡𝑡+1] given 𝑒𝑒𝑡𝑡+1 and our 
previous calculation of 𝑷𝑷 𝑋𝑋𝑡𝑡 𝒆𝒆1:𝑡𝑡]

• Given 𝒆𝒆1:𝑡𝑡 we will first compute 𝑷𝑷 𝑋𝑋1 𝑒𝑒1], 
use that estimate to compute 𝑷𝑷 𝑋𝑋2 𝒆𝒆1:2]
based on 𝑒𝑒2, and so on



FILTERING
𝑷𝑷 𝑋𝑋𝑡𝑡+1 𝒆𝒆1:𝑡𝑡+1] = 𝑷𝑷 𝑋𝑋𝑡𝑡+1 𝒆𝒆1:𝑡𝑡 , 𝑒𝑒𝑡𝑡+1]

∝ 𝑷𝑷 𝑒𝑒𝑡𝑡+1 𝑋𝑋𝑡𝑡+1, 𝒆𝒆1:𝑡𝑡] ⋅ 𝑷𝑷[𝑋𝑋𝑡𝑡+1 | 𝒆𝒆1:𝑡𝑡]

= 𝑷𝑷 𝑒𝑒𝑡𝑡+1 𝑋𝑋𝑡𝑡+1] ⋅ 𝑷𝑷[𝑋𝑋𝑡𝑡+1 | 𝒆𝒆1:𝑡𝑡]

= 𝑷𝑷 𝑒𝑒𝑡𝑡+1 𝑋𝑋𝑡𝑡+1] ⋅�
𝑥𝑥𝑡𝑡

Pr 𝑥𝑥𝑡𝑡 𝒆𝒆1:𝑡𝑡] ⋅ 𝑷𝑷[𝑋𝑋𝑡𝑡+1 | 𝑥𝑥𝑡𝑡 , 𝒆𝒆1:𝑡𝑡]

= 𝑷𝑷 𝑒𝑒𝑡𝑡+1 𝑋𝑋𝑡𝑡+1] ⋅�
𝑥𝑥𝑡𝑡

Pr 𝑥𝑥𝑡𝑡 𝒆𝒆1:𝑡𝑡] ⋅ 𝑷𝑷 𝑋𝑋𝑡𝑡+1 𝑥𝑥𝑡𝑡]

Bayes’ Rule

Conditional independence

Condition on 𝑥𝑥𝑡𝑡

Conditional independence

Given Previously computed Given



FILTERING: EXAMPLE

𝑷𝑷 𝑋𝑋𝑡𝑡+1 𝒆𝒆1:𝑡𝑡+1] ∝ 𝑷𝑷 𝑒𝑒𝑡𝑡+1 𝑋𝑋𝑡𝑡+1] ⋅�
𝑥𝑥𝑡𝑡

Pr 𝑥𝑥𝑡𝑡 𝒆𝒆1:𝑡𝑡] ⋅ 𝑷𝑷 𝑋𝑋𝑡𝑡+1 𝑥𝑥𝑡𝑡]

In our weather example:

Suppose the piece of evidence on Day 1 is that the director is 
carrying an umbrella 𝐸𝐸1 = 𝑡𝑡 then

𝑷𝑷 𝑋𝑋1 = 𝑡𝑡 𝐸𝐸1 = 𝑡𝑡] ∝ 0.2 ⋅ 0.5 ⋅ 0.9 + 0.5 ⋅ 0.3 = 0.12
𝑷𝑷 𝑋𝑋1 = 𝑓𝑓 𝐸𝐸1 = 𝑡𝑡] ∝ 0.9 ⋅ 0.5 ⋅ 0.1 + 0.5 ⋅ 0.7 = 0.36

By normalizing we get a prediction of (0.25,0.75)

𝑷𝑷[𝑋𝑋0]
0.5

𝑋𝑋0 𝑷𝑷[𝑋𝑋1]
𝑡𝑡 .9
𝑓𝑓 .3

𝑋𝑋1 𝑷𝑷[𝐸𝐸1]
𝑡𝑡 .2
𝑓𝑓 .9



FILTERING: RUNNING TIME

• Poll 1: What is the running time of 
computing 𝑷𝑷 𝑋𝑋𝑡𝑡 𝑒𝑒1:𝑡𝑡] as a function of 𝑡𝑡?
◦ Θ(1)
◦ Θ 𝑡𝑡
◦ Θ 𝑡𝑡2

◦ Θ(𝑡𝑡3)

𝑷𝑷 𝑋𝑋𝑡𝑡+1 𝒆𝒆1:𝑡𝑡+1] ∝ 𝑷𝑷 𝑒𝑒𝑡𝑡+1 𝑋𝑋𝑡𝑡+1] ⋅�
𝑥𝑥𝑡𝑡

Pr 𝑥𝑥𝑡𝑡 𝒆𝒆1:𝑡𝑡] ⋅ 𝑷𝑷 𝑋𝑋𝑡𝑡+1 𝑥𝑥𝑡𝑡]



ROBOT LOCALIZATION AS HMM

• State 𝑋𝑋𝑡𝑡 is position of robot on grid
• In each step the robot moves in a random 

unblocked direction
• The robot starts in a random cell
• 𝐸𝐸𝑡𝑡 consists of a string of four bits that indicate 

obstacles in N, E, S, W
• The sensor error rate for each bit is 0.2



ROBOT LOCALIZATION AS HMM

Posterior distribution over robot location after 𝐸𝐸1 = 1011

Posterior distribution over robot location after 𝐸𝐸1 = 1011,𝐸𝐸2 = 1010



LOCALIZATION IN THE REAL WORLD

[Liu et al., 2019]

Estimation Odometry Ground truth



MAXIMUM LIKELIHOOD

• We want an iterative algorithm to compute 
argmax𝒙𝒙0:𝑡𝑡𝑷𝑷 𝒙𝒙0:𝑡𝑡 ,𝑋𝑋𝑡𝑡+1 𝒆𝒆1:𝑡𝑡+1]

given 𝑒𝑒𝑡𝑡+1 and our previous computation of  
argmax𝒙𝒙0:𝑡𝑡−1𝑷𝑷 𝒙𝒙0:𝑡𝑡−1,𝑋𝑋𝑡𝑡 𝒆𝒆1:𝑡𝑡]

• By a calculation similar to the one we did for filtering, 
we can show that 
max𝒙𝒙0:𝑡𝑡𝑷𝑷 𝒙𝒙0:𝑡𝑡 ,𝑋𝑋𝑡𝑡+1 𝒆𝒆1:𝑡𝑡+1]
∝ 𝑷𝑷 𝑒𝑒𝑡𝑡+1 𝑋𝑋𝑡𝑡+1] max

𝑥𝑥𝑡𝑡
𝑷𝑷 𝑋𝑋𝑡𝑡+1 𝑥𝑥𝑡𝑡] max

𝒙𝒙0:𝑡𝑡−1
Pr 𝒙𝒙0:𝑡𝑡 𝒆𝒆1:𝑡𝑡]

• Andrew Viterbi showed in 1967 how to compute this 
efficiently



Evidence:

VITERBI: EXAMPLE

    
   

    
   

    
       

   

Day 0 Day 1 Day 2 Day 3

    
       

   

0.18 0.72 0.18

0.63 0.07 0.63

0.5

0.5

0.09 0.076

0.022

0.0136

0.01380.315

max𝒙𝒙0:𝑡𝑡𝑷𝑷 𝒙𝒙0:𝑡𝑡,𝑋𝑋𝑡𝑡+1 𝒆𝒆1:𝑡𝑡+1] ∝ 𝑷𝑷 𝑒𝑒𝑡𝑡+1 𝑋𝑋𝑡𝑡+1] max
𝑥𝑥𝑡𝑡

𝑷𝑷 𝑋𝑋𝑡𝑡+1 𝑥𝑥𝑡𝑡] max
𝒙𝒙0:𝑡𝑡−1

Pr 𝒙𝒙0:𝑡𝑡 𝒆𝒆1:𝑡𝑡]

The weight on each edge is Pr 𝑒𝑒𝑡𝑡+1 𝑥𝑥𝑡𝑡+1 ⋅ Pr 𝑥𝑥𝑡𝑡+1 𝑥𝑥𝑡𝑡]

Previously computed



VITERBI: RUNNING TIME

• Poll 2: What is the running time of the 
Viterbi Algorithm as a function of 𝑡𝑡?
◦ Θ(1)
◦ Θ 𝑡𝑡
◦ Θ 𝑡𝑡2

◦ Θ(𝑡𝑡3)



APPLICATION: POS TAGGING

Artificial intelligence is us

ADJ NN VRB PRN
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