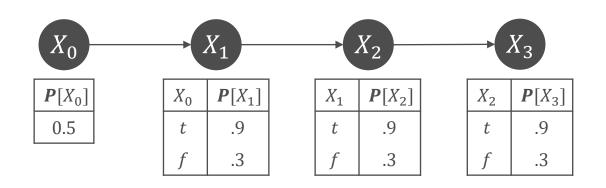


Fall 2022 | Lecture 14 Hidden Markov Models Ariel Procaccia | Harvard University

MARKOV CHAINS

Suppose the weather evolves according to the following Bayes net (with t = sun):



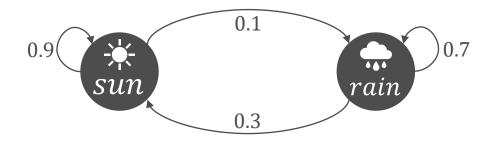
ASSUMPTIONS

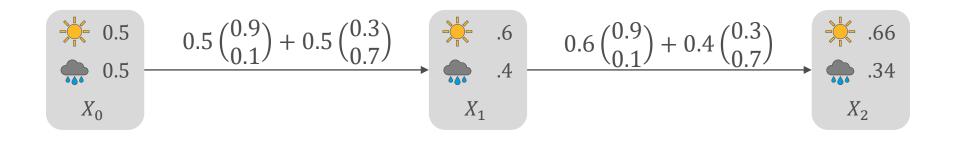
- We will think of infinite processes described by random variables $X_0, X_1, ...$
- We use $X_{0:t}$ to denote $X_0, ..., X_t$
- Our simple Bayes net is assumed to satisfy:
 - Markov assumption:

$$P[X_t | X_{0:t-1}] = P[X_t | X_{t-1}]$$

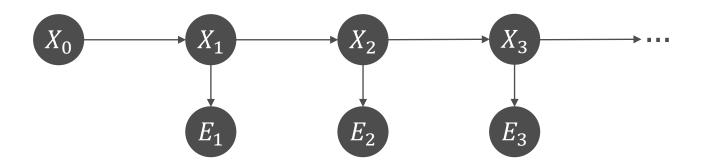
• Stationarity assumption: for all t, t', $P[X_t \mid X_{t-1}] = P[X_{t'} \mid X_{t'-1}]$

PREDICTING THE WEATHER





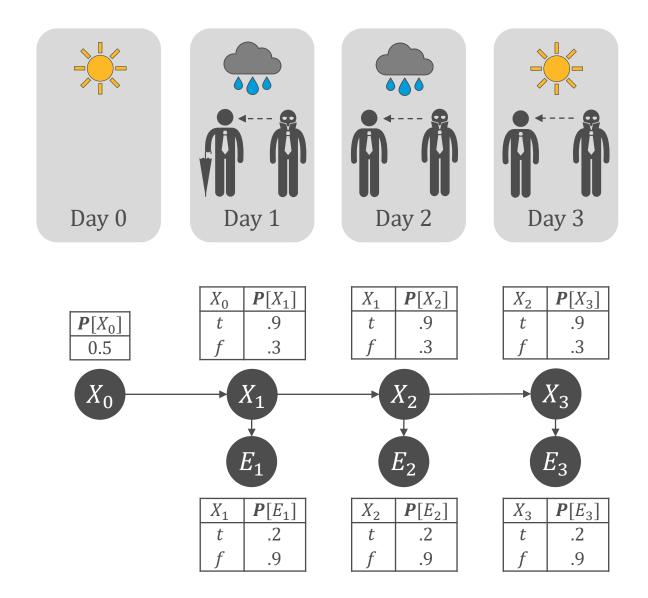
HIDDEN MARKOV MODELS



- Sometimes we can't directly observe the state of the world, but rather only observe evidence
- We are given $P[E_t \mid X_{0:t}, E_{0:t-1}]$
- A hidden Markov model satisfies the same assumptions as before, plus the Markov sensor assumption:

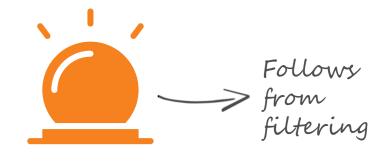
$$P[E_t | X_{0:t}, E_{0:t-1}] = P[E_t | X_t]$$

HIDDEN MARKOV MODELS: EXAMPLE



INFERENCE

Filtering $P[X_t | e_{1:t}]$



Prediction $P[X_{t+k} | e_{1:t}]$

Smoothing $P[X_k \mid e_{1:t}], k < t$

FILTERING

- We want an iterative algorithm that would compute $P[X_{t+1} | e_{1:t+1}]$ given e_{t+1} and our previous calculation of $P[X_t | e_{1:t}]$
- Given $e_{1:t}$ we will first compute $P[X_1 | e_1]$, use that estimate to compute $P[X_2 | e_{1:2}]$ based on e_2 , and so on

FILTERING

$$P[X_{t+1} | e_{1:t+1}] = P[X_{t+1} | e_{1:t}, e_{t+1}]$$

Bayes' Rule

$$\propto P[e_{t+1} | X_{t+1}, e_{1:t}] \cdot P[X_{t+1} | e_{1:t}]$$

Conditional independence

=
$$P[e_{t+1} | X_{t+1}] \cdot P[X_{t+1} | e_{1:t}]$$

Condition on x_t

$$= P[e_{t+1} | X_{t+1}] \cdot \sum_{x_t} \Pr[x_t | e_{1:t}] \cdot P[X_{t+1} | x_t, e_{1:t}]$$

Conditional independence

$$= \mathbf{P}[e_{t+1} \mid X_{t+1}] \cdot \sum_{x_t} \Pr[x_t \mid \mathbf{e}_{1:t}] \cdot \mathbf{P}[X_{t+1} \mid x_t]$$
Given

Previously computed Given

FILTERING: EXAMPLE

$$P[X_{t+1} | e_{1:t+1}] \propto P[e_{t+1} | X_{t+1}] \cdot \sum_{x_t} \Pr[x_t | e_{1:t}] \cdot P[X_{t+1} | x_t]$$

In our weather example:

I	$P[X_0]$	
	0.5	

X_0	$P[X_1]$
t	.9
$\int f$.3

X_1	$P[E_1]$
t	.2
f	.9

Suppose the piece of evidence on Day 1 is that the director is carrying an umbrella ($E_1 = t$) then

$$P[X_1 = t \mid E_1 = t] \propto 0.2 \cdot (0.5 \cdot 0.9 + 0.5 \cdot 0.3) = 0.12$$

 $P[X_1 = f \mid E_1 = t] \propto 0.9 \cdot (0.5 \cdot 0.1 + 0.5 \cdot 0.7) = 0.36$

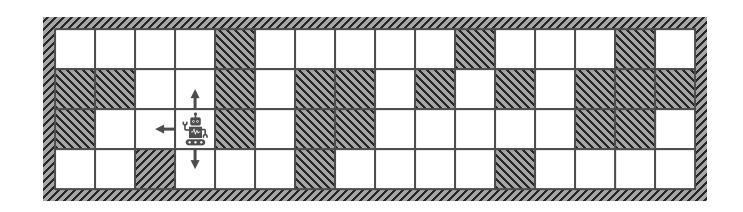
By normalizing we get a prediction of (0.25,0.75)

FILTERING: RUNNING TIME

$$P[X_{t+1} | e_{1:t+1}] \propto P[e_{t+1} | X_{t+1}] \cdot \sum_{x_t} \Pr[x_t | e_{1:t}] \cdot P[X_{t+1} | x_t]$$

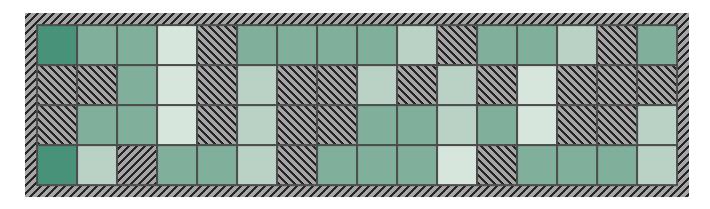
- Poll 1: What is the running time of computing $P[X_t \mid e_{1:t}]$ as a function of t?
 - $\circ \Theta(1)$
 - $\circ \Theta(t)$
 - $\circ \Theta(t^2)$
 - $\circ \ \Theta(t^3)$

ROBOT LOCALIZATION AS HMM

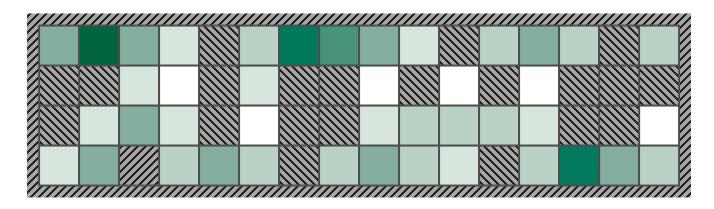


- State X_t is position of robot on grid
- In each step the robot moves in a random unblocked direction
- The robot starts in a random cell
- E_t consists of a string of four bits that indicate obstacles in N, E, S, W
- The sensor error rate for each bit is 0.2

ROBOT LOCALIZATION AS HMM

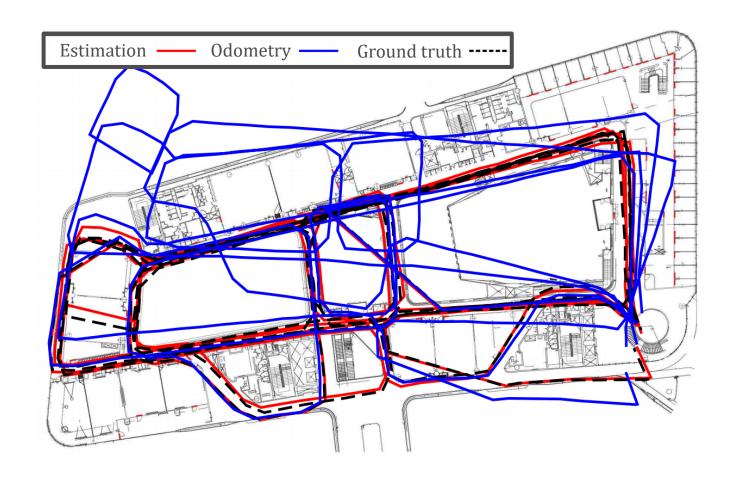


Posterior distribution over robot location after $E_1 = 1011$



Posterior distribution over robot location after $E_1 = 1011$, $E_2 = 1010$

LOCALIZATION IN THE REAL WORLD



[Liu et al., 2019]

MAXIMUM LIKELIHOOD

We want an iterative algorithm to compute

$$\underset{\text{argmax}_{\boldsymbol{x}_{0:t}}\boldsymbol{P}[\boldsymbol{x}_{0:t}, X_{t+1} \mid \boldsymbol{e}_{1:t+1}]}{\text{given } \boldsymbol{e}_{t+1} \text{ and our previous computation of }}$$

$$\underset{\text{argmax}_{\boldsymbol{x}_{0:t-1}}\boldsymbol{P}[\boldsymbol{x}_{0:t-1}, X_t \mid \boldsymbol{e}_{1:t}]}{\text{e}_{1:t}}$$

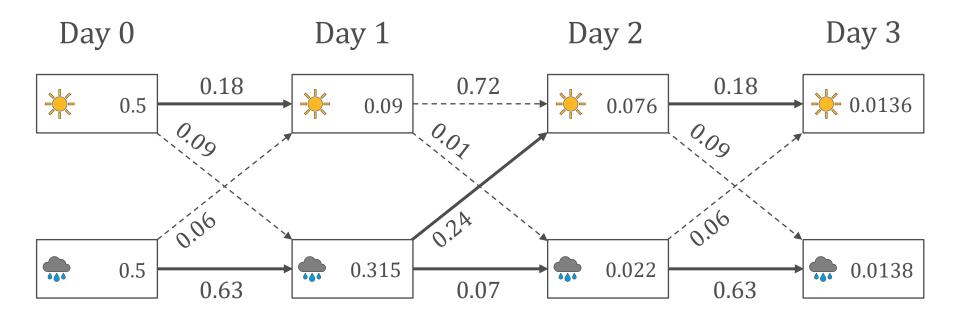
 By a calculation similar to the one we did for filtering, we can show that

$$\max_{\boldsymbol{x}_{0:t}} \boldsymbol{P}[\boldsymbol{x}_{0:t}, X_{t+1} \mid \boldsymbol{e}_{1:t+1}] \\ \propto \boldsymbol{P}[e_{t+1} \mid X_{t+1}] \max_{\boldsymbol{x}_{t}} \boldsymbol{P}[X_{t+1} \mid \boldsymbol{x}_{t}] \max_{\boldsymbol{x}_{0:t-1}} \Pr[\boldsymbol{x}_{0:t} \mid \boldsymbol{e}_{1:t}]$$

Andrew Viterbi showed in 1967 how to compute this efficiently

VITERBI: EXAMPLE

 $\max_{\boldsymbol{x}_{0:t}} \boldsymbol{P}[\boldsymbol{x}_{0:t}, \boldsymbol{X}_{t+1} \mid \boldsymbol{e}_{1:t+1}] \propto \boldsymbol{P}[\boldsymbol{e}_{t+1} \mid \boldsymbol{X}_{t+1}] \max_{\boldsymbol{x}_{t}} \boldsymbol{P}[\boldsymbol{X}_{t+1} \mid \boldsymbol{x}_{t}] \max_{\boldsymbol{x}_{0:t-1}} \Pr[\boldsymbol{x}_{0:t} \mid \boldsymbol{e}_{1:t}]$ The weight on each edge is $\Pr[\boldsymbol{e}_{t+1} \mid \boldsymbol{x}_{t+1}] \cdot \Pr[\boldsymbol{x}_{t+1} \mid \boldsymbol{x}_{t}]$



Evidence:

VITERBI: RUNNING TIME

• Poll 2: What is the running time of the Viterbi Algorithm as a function of *t*?

- $\circ \Theta(1)$
- $\circ \Theta(t)$
- $\circ \Theta(t^2)$
- $\circ \ \Theta(t^3)$

APPLICATION: POS TAGGING

