
CS182 Fall 2021
Final Exam

Name:

Harvard ID:

Question 1: Comprehension [30 pts]

1. [5 pts] The graph-coloring problem is the following: Given a set C of colors and a
graph G with vertices V and edges E, how can we color every vertex such that no two
vertices joined by an edge have the same color, if possible? Formulate this problem as
an integer program.
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2. [5 pts] Given the task of searching a graph for a goal state from a start state, what is
one reason why we might prefer to use a BFS over a DFS?

3. [5 pts] In a normal game of rock-paper-scissors between Alice and Bob, there is a
payoff matrix in which each player wins +1 if they win the round and -1 if they lose,
with both player getting 0 if they tie. Now consider a modified unfair game of rock-
paper-scissors where Alice earns −2 utility if she plays rock or paper, no matter what
Bob does. Find all the Nash equilibria (including mixed) in this modified game.
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4. [5 pts] Recall the softmax layer from lecture: softmax(z)i = ezi∑d
j=1 e

zj
. A common

technique is to add a temperature parameter T ∈ (0,∞) to the softmax to alter the

confidence of the model’s predictions: softmax(z, T )i = ezi/T∑d
j=1 e

zj/T
. A less confident

model will predict closer to the uniform distribution and a more confident model will
make more spiked predictions (i.e. higher probability of a 1 or a few classes). How
does the parameter T affect model confidence?

5. [5 pts] Fill the nodes of the game tree below with the values assigned by the minimax
algorithm.
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6. [5 pts] The following table gives the group membership G, the true label Y , and the
predicted label Ŷ of 4 individuals.

G Y Ŷ

0 0 0

0 1 1

1 0 1

1 1 0

Does this classifier satisfy demographic parity? Does it satisfy equalized odds?

4



Name:

Question 2: Decision Trees [20 pts]

1. [5 pts] Can a feature ever appear twice in a decision tree (i.e. the decision tree splits
on the same feature in two different nodes of the tree) under the Learn-DT algorithm
with entropy as the importance function? Explain why or why not. (Specific examples
are not needed.)
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2. [10 pts] Suppose that the training data is completely separable on the features, i.e.
no two examples have the same feature values but different labels. Prove that the
Learn-DT algorithm will return a decision tree with 0% training error, i.e., one that
labels the entire training set correctly.
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3. [5 pts] If the data is completely separable on the features, what are the potential
pitfalls of a decision tree with 0% training error?
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Question 3: MDP [20 pts]

T A B T

8 0 0

2

Consider the above MDP with states {A, B, T} and actions {left, right}. The two T
states are terminal and the agent gets no more actions (and no more reward). In states A
and B, the agent can take either action, and with probability p the action gets executed and
probability 1-p the other action gets executed. The rewards associated with moving from
state to state are denoted by the numbers on the arrows (they are independent of the actions
taken). The discount factor γ is 1.

Let π∗
p be the optimal policy as a function of the probability p, let Uπ∗

p(s) be the utility

(sum of “discounted” rewards) of π∗
p at state s, and let Qπ∗

p(s, a) be the utility when taking
action a at state s and then following the policy π∗

p.

1. [5 pts] If p = 1, then what is π∗
p? Select one by circling your answer. Add a brief (1

sentence) explanation.

(a) π∗
p(A) = left, π∗

p(B) = left

(b) π∗
p(A) = left, π∗

p(B) = right

(c) π∗
p(A) = right, π∗

p(B) = left

(d) π∗
p(A) = right, π∗

p(B) = right
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2. [10 pts] If π∗
p(A) = left, which of the following statements must be true? Select all

that apply by circling your answers. Add a brief (1-3 sentences) explanation for each
group of 3.

(a) Qπ∗
p(A, left) ≤ Qπ∗

p(A, right)

(b) Qπ∗
p(A, left) ≥ Qπ∗

p(A, right)

(c) Qπ∗
p(A, left) = Qπ∗

p(A, right)

(d) Uπ∗
p(A) ≤ Uπ∗

p(B)

(e) Uπ∗
p(A) ≥ Uπ∗

p(B)

(f) Uπ∗
p(A) = Uπ∗

p(B)

(g) Uπ∗
p(A) ≤ Qπ∗

p(A, left)

(h) Uπ∗
p(A) ≥ Qπ∗

p(A, left)

(i) Uπ∗
p(A) = Qπ∗

p(A, left)

(j) Uπ∗
p(A) ≤ Qπ∗

p(A, right)

(k) Uπ∗
p(A) ≥ Qπ∗

p(A, right)

(l) Uπ∗
p(A) = Qπ∗

p(A, right)
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3. [5 pts] Assume p ≥ 0.5: Uπ∗
p(B) = α ∗ Uπ∗

p(A) + β. Find α and β in terms of p.

Hint: Think of the optimal policy under this p and of the Bellman equations for A
and B.
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Question 4: Social Choice [15 pts]

We say that a voting rule f is unanimous if, whenever it is given a preference profile (con-
sisting of n rankings, one for each voter) where all voters rank the same alternative x at the
top, the voting rule selects x as the winner.

1. [5 pts] Show that unanimity does not imply Condorcet consistency by giving an ex-
ample of a voting rule that is unanimous but not Condorcet consistent.

2. [10 pts] Prove that any Condorcet consistent voting rule is unanimous.

Hint: This can/should be done in 2-3 lines.
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Question 5: Convex Optimization [15 pts]

Recall that in a minimization problem, a point x ∈ Rn is globally optimal if x ∈ F and for
all y ∈ F , f(x) ≤ f(y); and it is locally optimal if x ∈ F and there exists R > 0 such that
for all y ∈ F with ∥x− y∥2 ≤ R, f(x) ≤ f(y).

Prove that in a convex optimization problem, all locally optimal points are globally
optimal.

Hint: Even if you do not remember the proof from class, you should be able to establish
it directly using the following guidance and an understanding of the definitions. Suppose x
is locally optimal within radius R, but not globally optimal, then there is y ∈ F such that
f(y) < f(x). Define z = (1− θ)x + θy for θ = R

2∥x−y∥2 . Derive a contradiction to the local
optimality of x.
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