
CS 182, PROBLEM SET 3

Due: November 1, 2021 11:59pm

This problem set covers Lectures 8, 9, 10, 11. The topics include game theory, AI game

playing, Stackelberg security games, and social choice theory.

1. (15 points) Comprehension.

(1) (5 points) Game Theory. The following payoff matrix shows a game between Paul

and Fiona. There are three cards on a table: a red card, a green card, and a blue

card. Each player picks one card, and both players pick their card without knowing

the other player’s choice. Both players also know the entire payoff matrix.

Paul: red Paul: green Paul: blue

Fiona: red F = 7, P = 1 F = 9, P = 2 F = 6, P = 3

Fiona: green F = 8, P = 10 F = 7, P = 5 F = 7, P = 1

Fiona: blue F = 7, P = 2 F = 8, P = 2 F = 8, P = -3

Find a pure Nash equilibrium for this game, and then find a mixed-strategy Nash

equilibrium where both players have strictly positive probability of playing each ac-

tion.

(2) (5 points) AI-game Playing. Paul and Fiona decide to play one final game, in which

Paul is attempting to maximize his score, while Fiona attempts to minimize Paul’s

score. Both Paul and Fiona play optimally, and the game tree is shown in the

following figure. Perform the minimax algorithm with alpha-beta pruning to find the

alpha and beta values passed to each node when the node is first called. Include

an image with the alpha beta values at each node, as well as an indication of which

branches are pruned. Assume that the algorithm visits each child from left to right.

What are the actions that each player takes?

Date: October 18, 2021.

1

Figure 1. Game Tree for Problem 1.3

(3) (5 points) Social Choice Theory. Paul and Fiona are joined by Marissa, and each of

them desire to run for student body president. Construct an example of a preference

profile with 3 alternatives A = {Paul, Fiona, Marissa} in which the plurality voting

rule and the STV voting rule winner is Paul but the Borda count voting rule winner

is Fiona.

2

2. (30 points) Alice and Bob are playing a sequential, turn-based game on a tree. The game

starts with some initial tree T . The two players alternate turns, with Alice making the first

move. On each turn, a player selects a node of the tree and removes that node, along with

the subtree rooted at that node. See 2 for an example.

Figure 2. Example turn of the subtree-pruning game. Here, the player re-

moves node 3.

The game ends when the root node is taken, and the player who was forced to take that

node loses. This is a zero-sum game, so payoffs are (+1,−1) if Alice wins and (−1,+1) if

Bob wins.

(1) (10 points) The perfect binary tree of order k, denoted Bk, is the tree defined recur-

sively as follows:

• If k = 1, then Bk is a single node.

• If k ≥ 2, then Bk consists of a root node, with two copies of Bk−1 as children.

Suppose that Alice and Bob are playing the tree-pruning game on T = Bk, for some

k ≥ 1. Assuming perfect play (i.e., subgame-perfect Nash equilibrium), show that

Bob always wins the game, and describe a winning strategy.

(2) (10 points) The perfect ternary tree of order k, denoted Ck, is also defined recursively:

• If k = 1, then Ck is a single node.

• If k ≥ 2, then Ck consists of a root node, with three copies of Ck−1 as children.

This time, Alice and Bob are playing the pruning game on T = Ck for some k ≥ 1.

For each possible value of k, which player wins the game, assuming perfect play?

Describe a winning strategy in each case.

(3) (10 points) Generalize the game from binary (2-ary) and ternary (3-ary) trees to

perfect n-ary trees, for some positive integer n. For each value of n ≥ 2 and k ≥ 1,

who wins, and why?

3

3. (20 points) Recall that a voting rule is Condorcet consistent if the rule selects an alter-

native that is a Condorcet winner whenever there exists a Condorcet winner in the given

preference profile. As in class we denote the set of voters by N = {1, . . . , n} and the set of

alternatives by A, where |A| = m.

(1) (10 points) The minimax voting rule (not to be confused with the minimax algorithm)

picks an alternative that minimizes the maximum number of voters by which another

alternative beats this one, i.e.,

argmin
x∈A

max
y∈A\{x}

Score(y, x),

where Score(y, x) =
∑n

i=1 1[y �i x] counts the number of voters who prefer y over x,

with �i denoting preference according to the ranking of voter i. For example, in the

profile on slide 5 of Lecture 11, Score(b, c) = 4, as there are 4 voters who prefer b to

c. The minimax rule would choose b, as maxy∈A\{b} Score(y, b) = Score(a, b) = 2.

Show that the minimax rule is Condorcet consistent. You may assume that the

number of voters n is odd.

(2) (10 points) A positional scoring rule using a score vector (s1, . . . , sm), where s1 ≥
· · · ≥ sm, is one that determines a winner by picking an alternative with maximum

score, where scores are determined as follows:

• Each voter i gives sj points to the alternative that is the jth highest on their

ranking (e.g., the highest alternative in σi receives s1 points and the lowest

alternative σi receives sm points).

• Each alternative’s score is the sum of the points given over all voters.

Answer the following questions about positional scoring rules.

(a) (4 points) Explain why both Plurality voting and Borda voting are examples of

positional scoring rules.

(b) (6 points) Under the assumption that s1 > s2 > · · · > sm, prove that no posi-

tional scoring rule is Condorcet consistent.

Hint: Construct a preference profile with three alternatives and a smallish num-

ber of voters such that there is a Condorcet winner but any positional scoring

rule with s1 > s2 > s3 would select a different alternative.

4

4. (35 points) AI Game playing in Ghost. In this problem, you will solve the game of Ghost1

using alpha-beta pruning. This game is played with two players, as follows. The first player

chooses an English letter, the second player adds another letter to the end of the first player’s

letter, the first player then adds another letter to the end of that, and so on. The key is that,

at any given point in time, the growing string must have the ability to form a word, but

the first player who is forced to make the string into a word loses. For example, an example

game might play out as follows:

First Player: W // Growing string: “W”

Second Player: A // Growing string: “WA”

First Player: T // Growing string: “WAT”

Second Player: E // Growing string: “WATE”

First Player: R // Game ends, “WATER” forms a word

Note that the first player played an R at the end, so since “WATER” is a word, the first

player loses.

We have modified the game in the following way: the value of a player’s is the reciprocal of

the length of the word in the terminal state, flipped with the appropriate sign depending on

which player’s turn it is. This has the effect that players aren’t merely interested in winning,

but they are also interested in winning quickly whenever they can guarantee their victory,

and they want to make the game last as long as possible if their opponent can guarantee

victory instead,

The code file is located in pset3.py. We have included a text file of English words in

dictionary.txt. Note that you only have to implement the alpha-beta pruning agent, and

not any of the Ghost game details. Our autograder will run your agent against ours and check

that your agent wins in all the situations in which it should win. Note that the Gradescope

Autograder corresponds to the point values in parts (1), (2), and (4) of this problem.

(1) (5 points) Implement the MinimaxAgent.

(2) (10 points) Implement the AlphaBetaAgent. You should find that the number of

calls to getSuccessor is smaller than before (which would indicate that pruning has

improved our search).

(3) (5 points) Recall that the minimax algorithm helps you find the optimal value against

an opponent who is also playing optimally. Now suppose that you know that your

opponent is not necessarily playing smart; instead, your opponent simply just picks a

1The authors of this problem are unclear whether this is the universal name for this game, but we shall

go with it.
5

random letter that is a valid move. Describe the strategy that maximizes or minimizes

(depending on whether you are the max or the min agent) the expected value of the

terminal game state.

(4) (10 points) Implement the agent in part (3) in OptimizedAgainstRandomAgent. You

should implement both cases, whether the agent wants to maximize or minimize the

terminal value of the game, depending on the agent’s index.

(5) (5 points) In simulate versus random, we compare the performance of the agent

from part (4) against a random agent with the performance of a minimax agent

against a random agent. We take the random agent to be the minimizer. We compute

the average value that each agent wins over k=10000 trials. By about how much does

your agent from (4) beat the minimax agent on the initial game state prefixes [beh,

feb, gw]? Explain your intuition for why the OptimizedAgainstRandomAgent beats

the MinimaxAgent on average against a random agent (there is more than one possible

answer to this question).

6

