

Fall 2021 | Lecture 8 Game Theory Ariel Procaccia | Harvard University

NORMAL-FORM GAME

- A game in normal form consists of:
 - ∘ Set of players $N = \{1, ..., n\}$
 - Strategy set S
 - For each $i \in N$, utility function $u_i: S^n \to \mathbb{R}$, which gives the utility of player $i, u_i(s_1, ..., s_n)$, when each $j \in N$ plays the strategy $s_j \in S$
- Next example created by taking screenshots of http://youtu.be/jILgxeNBK_8

THE ICE CREAM WARS

THE ICE CREAM WARS

•
$$N = \{1,2\}$$

• $S = [0,1]$
$$\begin{cases} \frac{s_i + s_j}{2}, & s_i < s_j \\ 1 - \frac{s_i + s_j}{2}, & s_i > s_j \\ \frac{1}{2}, & s_i = s_j \end{cases}$$

To be continued...

THE PRISONER'S DILEMMA

- Two men are charged with a crime
- They are told that:
 - If one rats out and the other does not, the rat will be freed, other jailed for nine years
 - If both rat out, both will be jailed for six years
- They also know that if neither rats out, both will be jailed for one year

THE PRISONER'S DILEMMA

What would you do?

UNDERSTANDING THE DILEMMA

- Defection is a dominant strategy
- But the players can do much better by cooperating
- Related to the tragedy of the commons

THE PROFESSOR'S DILEMMA

Dominant strategies?

John Forbes Nash

1928-2015

Mathematician and Nobel laureate in economics. Also remembered as the protagonist in "A Beautiful Mind."

NASH EQUILIBRIUM

- In a Nash equilibrium, no player wants to unilaterally deviate
- Each player's strategy is a best response to strategies of others
- Formally, a Nash equilibrium is a vector of strategies $\mathbf{s} = (s_1 \dots, s_n) \in S^n$ such that for all $i \in N, s'_i \in S$, $u_i(\mathbf{s}) \geq u_i(s_1, \dots, s_{i-1}, s'_i, s_{i+1}, \dots, s_n)$

THE PROFESSOR'S DILEMMA

Nash equilibria?

END OF THE ICE CREAM WARS

NASH IN REAL LIFE

Washington Street, Newton

ROCK-PAPER-SCISSORS

Nash equilibria?

MIXED STRATEGIES

- A mixed strategy is a probability distribution over (pure) strategies
- The mixed strategy of player $i \in N$ is x_i , where

$$x_i(s_i) = \Pr[i \text{ plays } s_i]$$

• The utility of player $i \in N$ is

$$u_i(x_1, ..., x_n) = \sum_{(s_1, ..., s_n) \in S^n} u_i(s_1, ..., s_n) \cdot \prod_{j=1}^n x_j(s_j)$$

EXERCISE: MIXED NE

- Exercise: player 1 plays $\left(\frac{1}{2}, \frac{1}{2}, 0\right)$, player 2 plays $\left(0, \frac{1}{2}, \frac{1}{2}\right)$. What is u_1 ?
- Exercise: Both players play $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$. What is u_1 ?

EXERCISE: MIXED

Poll 1: Which is a NE?

$$1.\left(\left(\frac{1}{2},\frac{1}{2},0\right),\left(\frac{1}{2},\frac{1}{2},0\right)\right)$$

$$2.\left(\left(\frac{1}{2},\frac{1}{2},0\right),\left(\frac{1}{2},0,\frac{1}{2}\right)\right)$$

3.
$$\left(\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right), \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)\right)$$

$$4.\left(\left(\frac{1}{3},\frac{2}{3},0\right),\left(\frac{2}{3},0,\frac{1}{3}\right)\right)$$

Theorem [Nash, 1950]: In any (finite) game there exists at least one (possibly mixed) Nash equilibrium

DOES NE MAKE SENSE?

- Two players, strategies are {2, ..., 100}
- If both choose the same number, that is what they get
- If one chooses s, the other t, and s < t, the former player gets s + 2, and the latter gets s 2
- Poll 2: What would you choose?

COMMITMENT

http://youtu.be/S0qjK3TWZE8

STACKELBERG GAMES

- Playing up is a dominant strategy for row player
- So column player would play left
- Therefore, (1,1) is the only Nash equilibrium outcome

STACKELBERG GAMES

- A Stackelberg game is played as follows:
 - Row player (the leader)
 commits to playing a row
 - Column player (the follower) observes the commitment and chooses column
- The leader can commit to playing down!

STACKELBERG GAMES

 Poll 3: What reward can the leader get by committing to a mixed strategy? (Assume the follower breaks ties in favor of the leader)

- 1
- · 1.5
- 2
- 2.5 ✓

