

# Fall 2021 | Lecture 4 Motion Planning Ariel Procaccia | Harvard University

#### MOTION PLANNING

- Navigating between two points while avoiding obstacles
- A first approach: define a discrete grid
- Mark cells that intersect obstacles as blocked
- Find path through centers of remaining cells





# **CELL DECOMPOSITION**

- Distinguish between
  - Cells that are contained in obstacles
  - Cells that intersect obstacles
- If no path found, subdivide the mixed cells





# IS IT COMPLETE NOW?

- An algorithm is resolution complete when:
  - a. If a path exists, it finds it in finite time
  - b. If a path does not exist, it returns in finite time
- Assume that there's a finite number of obstacles, each of which is a closed set
- Poll 1: Cell decomposition satisfies:
  - 1. a but not b  $\checkmark$
  - 2. b but not a
  - 3. Both a and b
  - 4. Neither a nor b

# **CELL DECOMPOSITION**



Shortest paths through cell centers

**---** Shortest path

# **SOLUTION 1: A\* SMOOTHING**

- Allows connection to farther states than neighbors on the grid
- Key observation:
  - $\circ$  If  $x_1, ..., x_n$  is valid path
  - And  $x_k$  is visible from  $x_j$
  - Then  $x_1, ..., x_i, x_k, ..., x_n$  is a valid path



# **SMOOTHING WORKS!**



- Shortest paths through cell centers
- **---** Shortest path

# **SMOOTHING DOESN'T WORK!**



- Shortest paths through cell centers
- **---** Shortest path

# **SOLUTION 2: THETA\***

- Allow parents that are non-neighbors in the grid to be used during search
- Standard A\*

$$\circ g(y) = g(x) + c(x, y)$$

Insert y with estimate

$$f(y) = g(x) + c(x,y) + h(y)$$

- Theta\*
  - If parent(x) is visible from y, insert y with estimate

$$f(y) = g(parent(x)) + c(parent(x), y) + h(y)$$

# THETA\* WORKS!



——— Theta\* path, I think ☺

**---** Shortest path

# THETA\* WORKS!





[Nash, AIGameDev 2010]

#### THE OPTIMAL PATH

- Polygonal path: sequence of connected straight lines
- Inner vertex of polygonal path: vertex that is not beginning or end
- Theorem: assuming open polygonal obstacles, shortest path is a polygonal path whose inner vertices are vertices of (the closure of) obstacles



#### PROOF OF THEOREM

- Suppose for contradiction that shortest path is not polygonal
- Obstacles are polygonal ⇒
   ∃point p in interior of free
   space such that "path through
   p is curved"
- $\exists$ disc of free space around p
- Path through disc can be shortened by connecting points of entry and exit



#### PROOF OF THEOREM

- Path is polygonal!
- Vertex cannot lie in interior of free space, otherwise we can do the same trick
- Vertex cannot lie on the interior of an edge, otherwise we can do the same trick ■



#### VISIBILITY GRAPH



Vertices = vertices of polygons and s, tEdges = all (x, y) such that y is visible from x

#### VISIBILITY GRAPH

• Poll 2: Let *n* be the total number of vertices of all polygons. How many edges will the optimal path in the visibility graph traverse in the worst case?

- 1.  $\Theta(\sqrt{n})$
- 2.  $\Theta(n)$
- 3.  $\Theta(n^2)$
- 4.  $\Theta(n^3)$

# **CONFIGURATION SPACE**



Physical space



Configuration space

#### **CONFIGURATION SPACE**



Physical space

Configuration space

The configuration space can be high dimensional!

#### PROBABILISTIC ROADMAP

- Find *M* milestones by randomly sampling points in the configuration space and discarding the ones that are blocked
- Form edges by checking for collision-free lines between milestones
- Edges are checked between each milestone and its *k* nearest neighbors or in a ball of a given radius
- If there is a path from *s* to *t* in the resulting graph then terminate, otherwise add *M* more milestones

# PROBABILISTIC ROADMAP



#### RAPIDLY-EXPLORING RANDOM TREES

- Incrementally build two trees with s and t as roots
- Every time a new milestone is added, connect it to the closest visible point in each tree
- If the new milestone connects to both trees then we're done

# RAPIDLY-EXPLORING RANDOM TREES



#### RAPIDLY-EXPLORING RANDOM TREES



[Image from Lavalle]

In practice there's also a length parameter  $\delta$ such that the new edge is cut after a distance of at most  $\delta$