
Fall 2021 | Lecture 3 Informed Search Ariel Procaccia | Harvard University

UNINFORMED VS. INFORMED

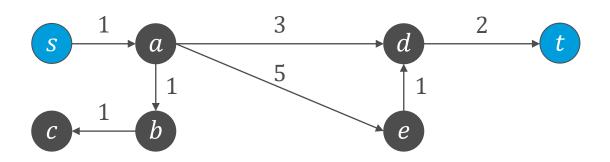
Uninformed

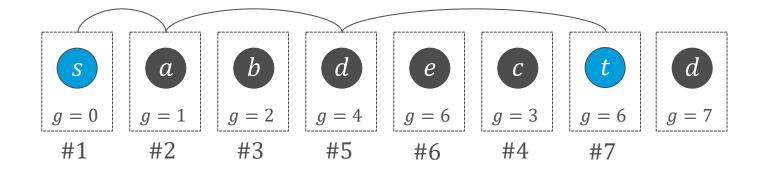
Can only generate successors and distinguish goals from non-goals

Informed

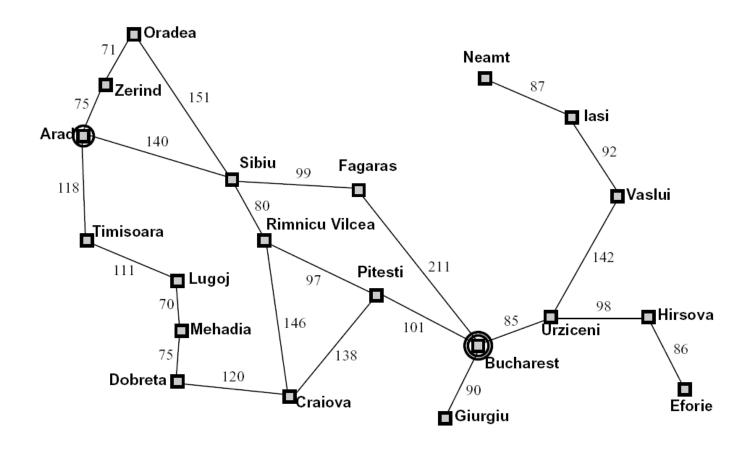
Strategies that know whether one non-goal is more promising than another

REMINDER: TREE SEARCH

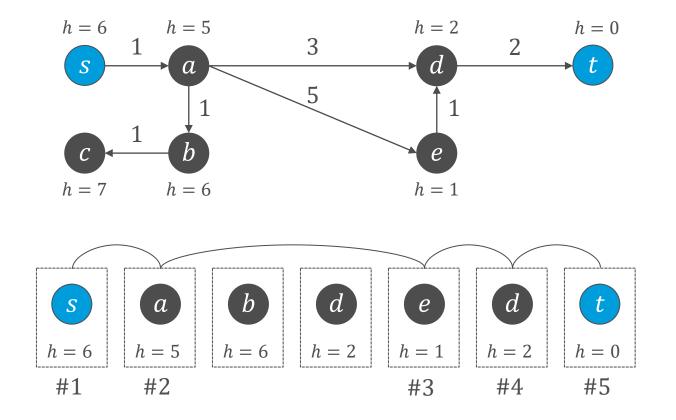

function TREE-SEARCH(problem, strategy)
set of frontier nodes contains the start state
of problem


loop

- if there are no frontier nodes then return failure
- choose a frontier node for expansion using strategy
- if the node contains a goal then return the corresponding solution
- else expand the node and add the resulting nodes to the set of frontier nodes


UNIFORM COST SEARCH

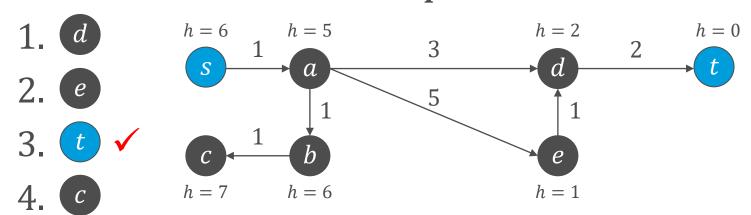
• Strategy: Expand by g(x) = work done so far


EXAMPLE: HEURISTIC

City	Arad	Sibiu	RV	Fagaras	Pitesi
Aerial distance from Bucharest	366	253	193	176	100

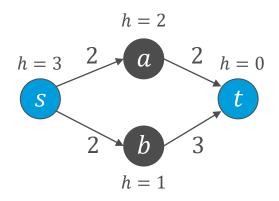
GREEDY SEARCH

• Strategy: Expand by h(x) = heuristic evaluation of cost from x to goal


Shakey the Robot

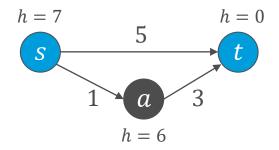
1966-1972

First mobile robot equipped with automated planning capabilities. Its pathfinding algorithm was A*.


A* SEARCH

- Strategy: Expand by f(x) = h(x) + g(x)
- Poll 1: Which node is expanded fourth?

A* SEARCH


Should we stop when we discover a goal?

No: Only stop when we expand a goal

A* SEARCH

• Is A* optimal?

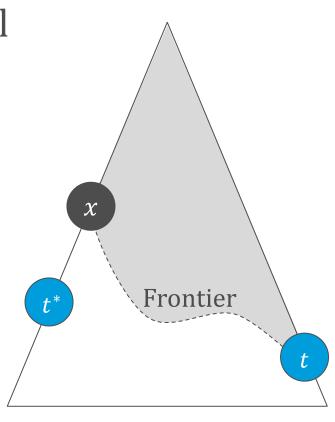
- Good path has pessimistic estimate
- Circumvent this issue by being optimistic!

ADMISSIBLE HEURISTICS

- h is admissible if for all nodes x, $h(x) \le h^*(x),$ where h^* is the cost of the optimal path to a goal
- Example: Aerial distance in the pathfinding example
- Example: $h \equiv 0$
- Theorem: A* tree search with an admissible heuristic returns an optimal solution

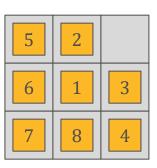
PROOF OF THEOREM

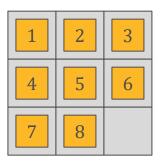
- Assume suboptimal goal t is expanded before optimal goal t^*
- There is a node x on the optimal path to t* that has been discovered but not expanded


•
$$f(x) = g(x) + h(x)$$

$$\leq g(x) + h^*(x)$$

$$= g(t^*) < g(t)$$

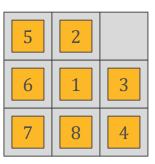

$$= f(t)$$



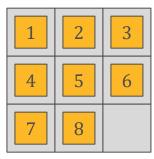
8-PUZZLE HEURISTICS

- h_1 : #tiles in wrong position
- h_2 : sum of Manhattan distances of tiles from goal
- Poll 2: Which heuristic is admissible?
 - 1. Only h_1
 - 2. Only h_2
 - 3. Both h_1 and $h_2 \checkmark$
 - 4. Neither one

Example state


Goal state

8-PUZZLE HEURISTICS

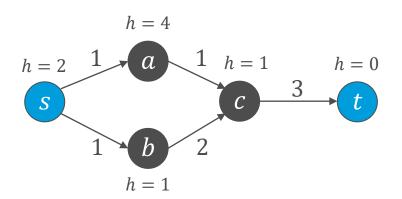

- h_1 : #tiles in wrong position
- h_2 : sum of Manhattan distances of tiles from goal
- h dominates h' iff $\forall x, h(x) \ge h'(x)$

- 1. h_1 dominates h_2
- 2. h_2 dominates $h_1 \checkmark$
- 3. h_1 and h_2 are incomparable

Example state

Goal state

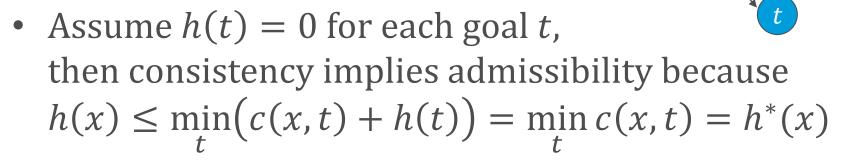
8-PUZZLE HEURISTICS


 The following table gives the number of nodes expanded by BFS and A* with the two heuristics, averaged over random 8-puzzles, for various solution lengths

Length	BFS	$A^*(h_1)$	$A^*(h_2)$
16	17270	1683	364
18	41558	4102	751
20	91493	9905	1318
22	175921	22955	2548
24	290082	53039	5733

Moral: Good heuristics are crucial!

A* GRAPH SEARCH

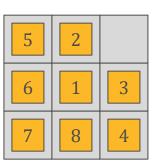

- Recall: Graph search is the same as tree search, but never expand a node twice
- Is optimality of A* under admissible heuristics preserved? No!

CONSISTENT HEURISTICS

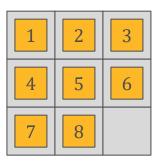
C(x, y)

- c(x, y) = cost of cheapest pathbetween x and y
- h is consistent if for every two nodes x, y, $h(x) \le c(x, y) + h(y)$

• Theorem: A* graph search with a consistent heuristic returns an optimal solution


8-PUZZLE HEURISTICS, REVISITED

- h_1 : #tiles in wrong position
- h_2 : sum of Manhattan distances of tiles from goal



- 2. Only h_2
- 3. Both h_1 and $h_2 \checkmark$
- 4. Neither one

Example state

Goal state