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THE THREE LAWS OF ROBOTICS
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ETHICAL ROBOTS

Experiments performed by Winfield et al. [2014]

Environment includes a robot (A for “Asimov”), a
human (H), and a hole which can be sensed by the
robot but not the human

Robot can simulate the consequences of possible
actions

IF for all robot actions, the human is equally safe
THEN (* default safe actions *)
output safe actions
ELSE (* ethical action *)
output action(s) for least unsafe human outcome(s)

Compare with Asimov’s first law of robotics: “A robot
may not injure a human being or, through inaction,
allow a human being to come to harm.”



ETHICAL ROBOTS

https://youtu.be/-e2MrWYRUF8?t=27m43s
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ETHICAL ROBOTS

https://youtu.be/-e2MrWYRUF8?t=31m36s

The robot’s dilemma: What should I do if there are two
humans in danger?
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THE TROLLEY PROBLEM
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THE SOCIAL DILEMMA OF AVS

People think an
autonomous vehicle
should be programmed
to minimize the number
of casualties, but were
less certain that AVs
would be programmed
that way [Bonnefon et

al. 2016]
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THE SOCIAL DILEMMA OF AVS

B Will AVs sacrifice? B Should AVs sacrifice?

Approval for

sacrificing a single
passenger increases 075-

with the number of E.

pedestrians saved by
|Bonnefon et al. -
2016] |
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THE SOCIAL DILEMMA OF AVS

Even though people
agree sacrificing few
passengers to save
many pedestrians is
more moral, they
prefer a car that
would protect them
|Bonnefon et al.
2016]
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THE SOCIAL DILEMMA OF AVS
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MORAL MACHINE
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What should the self-driving car do?
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|[Awad et al. 2018]

b Preference in favour of sparing characters
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DECISION MAKING FRAMEWORK

e Learning e

1y

Data collection Aggregation

The rest of the lecture based on:
Noothigattu et al. 2018, Kahng et al. 2019, Lee et al. 2019



FOOD RESCUE
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STEP 1: DATA COLLECTION

Employees Donors Rec1p1ents Volunteers




STEP 1: DATA COLLECTION
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What should 412 Food Rescue do?




STEP 2: LEARNING

The Thurstone-Mosteller Model



STEP 3: AGGREGATION

True Profile Noisy profile

Voting rule should be robust to noise:
[ts output ranking from the true profile should
coincide with the output ranking from the noisy profile



STEP 3: AGGREGATION

The Mallows Model is an unusually
good fit with our setting!



STEP 3: AGGREGATION

| WL
5‘ '0
4 \
W |
= @ -
| W
p .

Borda count

For any true profile, it is unlikely
that two alternatives would be
ranked differently when Borda
count is applied to the true
profile and the noisy profile

| WL |
ot %

D 4 \
W g
- £ -
- N

\ D 4

PMC Rules

There exists a true profile where,
for any PMC rule f, it is likely that
two alternatives would be ranked
differently when f is applied to the
true profile and the noisy profile



PERFORMANCE ON HISTORICAL DATA
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INTERFACE

Designed as a decision support tool
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PARTICIPANT FEEDBACK

Seeing how the algorithm's “No matter what group or
construction was broken individuals we're feeding,
down “into steps [...] and [we] have the same regard
just taking each one at a for the food and the
time” made it attainable. individuals we're serving.”

“Certainly more fair than
somebody sitting at a desk
trying to figure it out on
their own. [...] it should be
the most fair you could get.”

“This seems quite [a bit]
better. If organizations are
literally getting forgot[ten]

about [...] this is huge.”
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