

Fall 2021 | Lecture 2 Uninformed Search Ariel Procaccia | Harvard University

SEARCH PROBLEMS

- A search problem consists of
 - States (configurations)
 - Start state and goal states
 - Successor function: maps states to (action,state,cost) triples
- This is a powerful and flexible representation that captures a wide variety of concrete problems

EXAMPLE: PANCAKES

Discrete Mathematics 27 (1979) 47-57. © North-Holland Pullishing Company

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES

Microsoft, Albuquerque, New Mexico

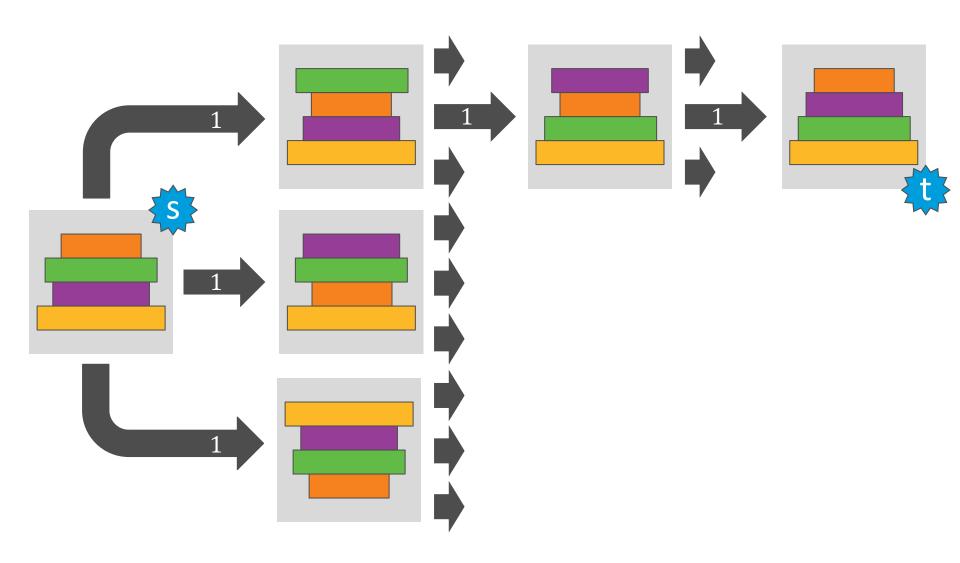
Christos H. PAPADIMITRIOU*†

Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

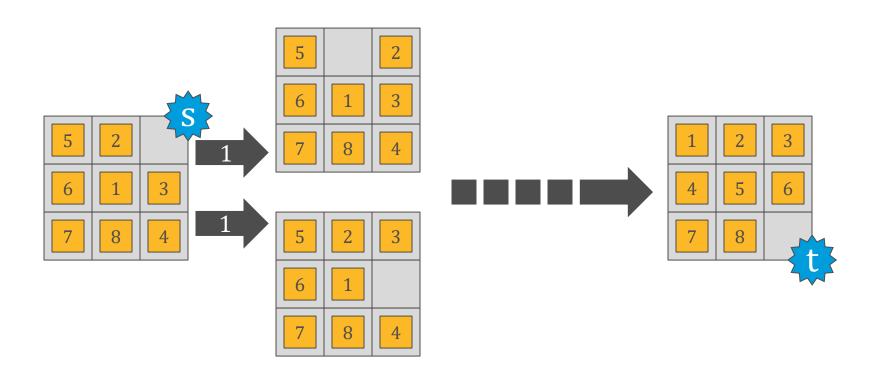
Received 18 January 1978 Revised 28 August 1978

For a permutation σ of the integers from 1 to n, let $f(\sigma)$ be the smallest number of prefix reversals that will transform σ to the identity permutation, and let f(n) be the largest such $f(\sigma)$ for all σ in (the symmetric group) S_n . We show that $f(n) \le (5n+5)/3$, and that $f(n) \ge 17n/16$ for n a multiple of 16. If, furthermore, each integer is required to participate in an even number of reversed prefixes, the corresponding function g(n) is shown to obey $3n/2 - 1 \le g(n) \le 2n + 3$.

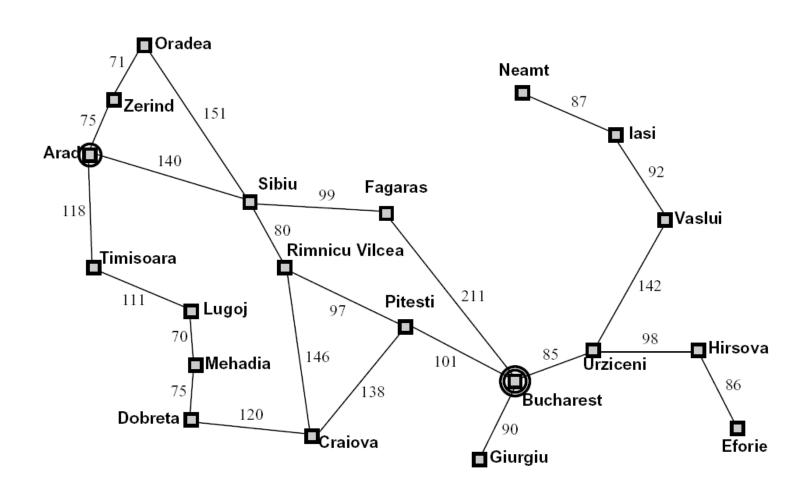
EXAMPLE: PANCAKES



EXAMPLE: 8-PUZZLE



EXAMPLE: PATHFINDING



TREE SEARCH

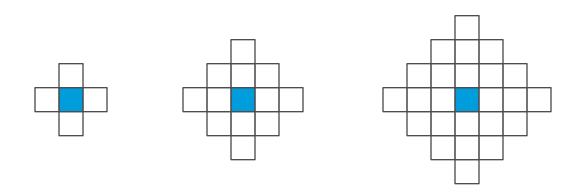
function TREE-SEARCH(problem, strategy) set of frontier nodes contains the start state of problem

loop

- if there are no frontier nodes then return failure
- choose a frontier node for expansion using strategy
- if the node contains a goal then return the corresponding solution
- else expand the node and add the resulting nodes to the set of frontier nodes

TREE SEARCH

Algorithms that forget their history are doomed to repeat it!



In a rectangular grid, search tree of depth d has 4^d leaves, but there are only 4d states within d steps of any given state

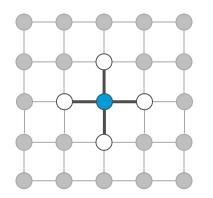
GRAPH SEARCH

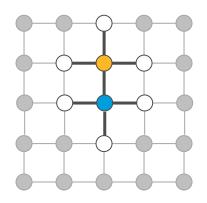
function GRAPH-SEARCH(problem, strategy) set of frontier nodes contains the start state of problem

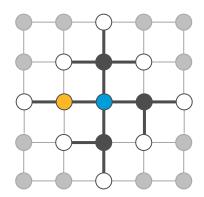
loop

- if there are no frontier nodes then return failure
- choose a frontier node for expansion using strategy, and add it to the explored set
- if the node contains a goal then return the corresponding solution
- else expand the node and add the resulting nodes to the set of frontier nodes, only if not in the explored set

GRAPH SEARCH ILLUSTRATED

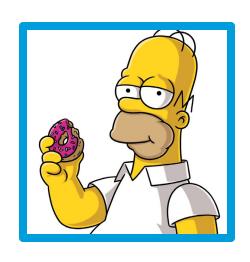






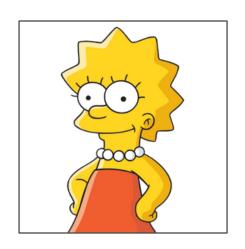
Separation property: Every path from initial state to an unexplored state has to pass through the frontier

UNINFORMED VS. INFORMED



Uninformed

Can only generate successors and distinguish goals from non-goals



Informed

Strategies that know whether one non-goal is more promising than another

MEASURING PERFORMANCE

Completeness

Guaranteed to find a solution when there is one?

Optimality

Finds the cheapest solution?

Time

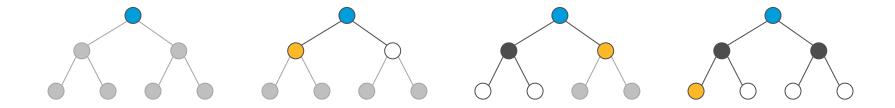
How long does it take to find a solution?

Space

How much memory is needed to perform the search?

BREADTH-FIRST SEARCH

- Strategy: Expand shallowest frontier node
- Can be implemented by using a FIFO queue for the frontier



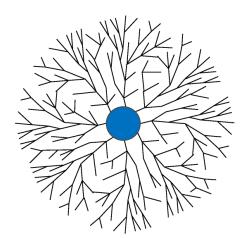
BREADTH-FIRST SEARCH

Algorithm	Complete?	Optimal?	Time	Space
BFS	Yes	Not really	$\Theta(b^d)$	$\Theta(b^d)$

- Optimality: If the path cost is a nondecreasing function of the depth (e.g., all actions have the same cost)
- Time complexity: Imagine each node has $b \ge 2$ successors, and solution is at depth d, then generate $\sum_{i=1}^{d} b^i = \Theta(b^d)$ nodes
- Space complexity: The frontier is almost as large as the entire search tree

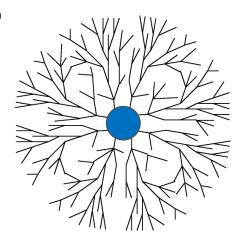
BIDIRECTIONAL SEARCH

 Idea: Possibly improve the running time of BFS by running two simultaneous searches, forward from the initial state and backward from the goal



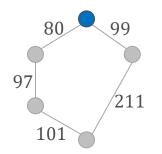
• Poll 1: What is the worst-case running time of BIDRECTIONAL SEARCH?

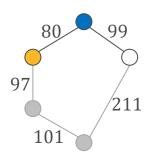
- $1.\Theta(b \cdot d)$
- $2.\Theta((b/2)^d)$
- $3.\Theta(b^{d/2})$
- $4.\Theta(b^d)$

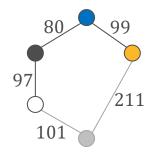


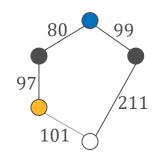
UNIFORM-COST SEARCH

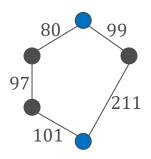
- Strategy: Expand frontier node n with lowest path $\cos g(n)$
- Can be implemented by using a priority queue ordered by g(n) for the frontier
- Other changes from BFS:
 - Goal test applied when node is selected for expansion
 - Need to update cost of nodes on frontier









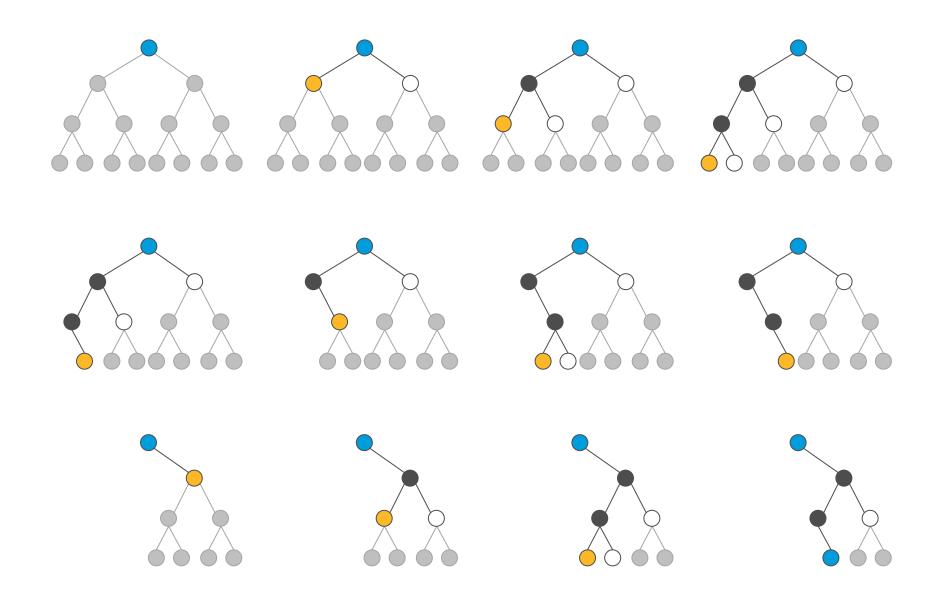


UNIFORM-COST SEARCH

Algorithm	Complete?	Optimal?	Time	Space
UCS	Sorta	Yes	$\Theta(b^{C^*/\epsilon})$	$\Theta(b^{C^*/\epsilon})$

- Optimality: Yes, but requires proof
- Completeness: If the cost of every action exceeds some $\epsilon > 0$
- Time and space complexity: If C^* is the cost of the optimal solution and ϵ is a lower bound on the action cost, the depth of the search tree is roughly C^*/ϵ in the worst case

- Strategy: Expand deepest unexpanded node
- Can be implemented by using a stack for the frontier
- Recursive implementation is also common



Algorithm	Complete?	Optimal?	Time	Space	
DFS	No	No	$\Theta(b^m)$	$\Theta(b \cdot m)$	

- Completeness: Clearly not in general
- Poll 2: In a finite state space, which version of DFS is complete?
 - 1. Tree Search
 - 2.GRAPH SEARCH ✓
 - 3.Both
 - 4. Neither

Algorithm	Complete?	Optimal?	Time	Space
DFS	No	No	$\Theta(b^m)$	$\Theta(b \cdot m)$

- Time complexity: $\Theta(b^m)$, where m is the maximum depth of the search tree
- Space complexity: DFS tree search needs to store only a single path from the root to a leaf, along with frontier sibling nodes for each node on the path
- Consequently, depth-first tree search is the workhorse of many areas of AI (including CSPs and SAT solving)

ITERATIVE DEEPENING SEARCH

Algorithm	Complete?	Optimal?	Time	Space
IDS	Yes	No	$\Theta(b^d)$	$\Theta(b \cdot d)$

- Run DFS with depth limit $\ell = 1, 2, ...$
- Combines the best properties of BFS and DFS
- Completeness: Yes, for the same reason BFS is complete
- Time complexity: Seems wasteful but most of the nodes are at the bottom level; total

$$d \cdot b + (d-1)b^2 + \dots + 1 \cdot b^d = \Theta(b^d)$$

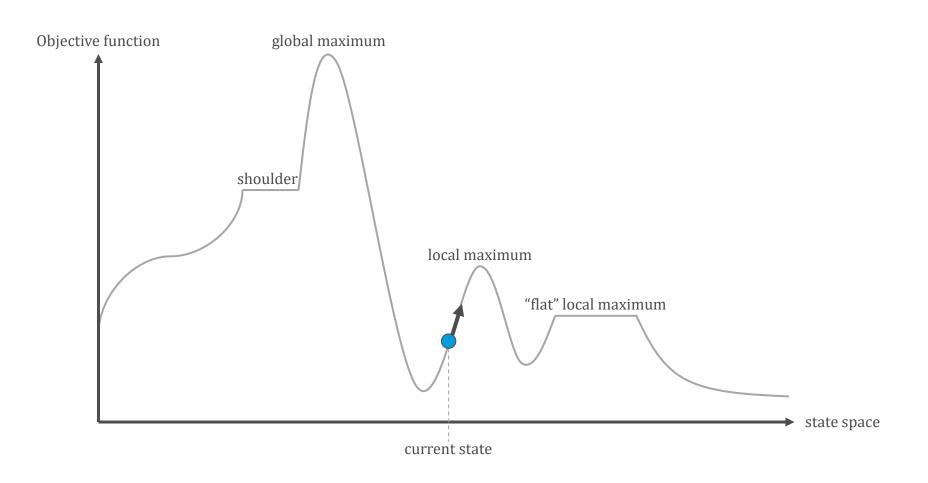
SUMMARY OF ALGORITHMS

Algorithm	Complete?	Optimal?	Time	Space	
BFS	Yes	Not really	$\Theta(b^d)$	$\Theta(b^d)$	
UCS	Sorta	Yes	$\Theta(b^{C^*/\epsilon})$	$\Theta(b^{C^*/\epsilon})$	
DFS	No	No	$\Theta(b^m)$	$\Theta(b \cdot m)$	
IDS	Yes	No	$\Theta(b^d)$	$\Theta(b \cdot d)$	

OPTIMIZATION AND LOCAL SEARCH

- The algorithms we discussed so far are designed to find a path to the solution
- If the path doesn't matter, can use local search algorithms that consider a single current node, and move to one of its neighbors in the next step
- Local search algorithms are useful for optimization problems, where the goal is to find the best state according to an objective function

STATE SPACE LANDSCAPE



HILL-CLIMBING SEARCH

- Move in the direction of increasing value (up the hill)
- Terminate when no neighbor has higher value

HILL-CLIMBING SEARCH

18	12	14	13	13	12	14	14
14	16	13	15	12	14	12	16
14	12	18	13	15	12	14	14
15	14	14	***	13	16	13	16
W	14	17	15	**	14	16	16
17	**	16	18	15	**	15	\\\\
18	14		15	15	14	***	16
14	14	13	17	12	14	12	18

W W

State with 17 conflicts, showing the #conflicts by moving a queen within its column, with best moves in red

Local optimum: state that has only one conflict, but every move leads to larger #conflicts

HILL-CLIMBING SEARCH

8 queens statistics:

- State space of size ≈17 million
- Starting from random state, steepest-ascent hill climbing solves 14% of problem instances
- It takes 4 steps on average when it succeeds and 3 when it gets stuck
- When "sideways" moves are allowed, solves 94% of instances, but with 21 steps for success and 64 for failure

• Variants:

- Stochastic hill climbing: Chooses at random among uphill moves, with the probability depending on the improvement
- Random-restart hill climbing: Conducts a series of hillclimbing searches from random states; obviously complete, and expected number of iterations is roughly 7, with roughly 22 steps overall