
Fall 2021 | Lecture 2
Uninformed Search

Ariel Procaccia | Harvard University

A I I S

US



SEARCH PROBLEMS

• A search problem consists of
◦ States (configurations)
◦ Start state and goal states
◦ Successor function: maps states to 

(action,state,cost) triples
• This is a powerful and flexible 

representation that captures a wide variety 
of concrete problems



EXAMPLE: PANCAKES



EXAMPLE: PANCAKES

1

1

1

1 1

s t



EXAMPLE: 8-PUZZLE

5

4

6 1

87

3

2

54 6

1

87

32

5

4

6 1

87

3

2

5

4

6 1

87

32

1

1

s

t



EXAMPLE: PATHFINDING



TREE SEARCH
function TREE-SEARCH(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
set of frontier nodes contains the start state 
of 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
loop 
• if there are no frontier nodes then return 

failure
• choose a frontier node for expansion using 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

• if the node contains a goal then return the 
corresponding solution

• else expand the node and add the resulting 
nodes to the set of frontier nodes



TREE SEARCH

Algorithms that forget their history 
are doomed to repeat it!

In a rectangular grid, search tree of depth 𝑑𝑑 has 4𝑑𝑑 leaves, but 
there are only 4𝑑𝑑 states within 𝑑𝑑 steps of any given state



GRAPH SEARCH
function GRAPH-SEARCH(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)
set of frontier nodes contains the start state 
of 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
loop 
• if there are no frontier nodes then return 

failure
• choose a frontier node for expansion using 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, and add it to the explored set

• if the node contains a goal then return the 
corresponding solution

• else expand the node and add the resulting 
nodes to the set of frontier nodes, only if 
not in the explored set



GRAPH SEARCH ILLUSTRATED

Separation property: Every path from initial 
state to an unexplored state has to pass through 
the frontier



UNINFORMED VS. INFORMED

Uninformed Informed
Can only generate 
successors and 
distinguish goals from 
non-goals

Strategies that know 
whether one non-goal is 
more promising than 
another



MEASURING PERFORMANCE

Completeness Optimality Time Space
Guaranteed to 
find a solution 
when there is 
one?

Finds the 
cheapest 
solution?

How long does 
it take to find a 
solution?

How much 
memory is 
needed to 
perform the 
search?



BREADTH-FIRST SEARCH

• Strategy: Expand shallowest frontier node 
• Can be implemented by using a FIFO queue 

for the frontier



BREADTH-FIRST SEARCH

• Optimality: If the path cost is a nondecreasing
function of the depth (e.g., all actions have the 
same cost)

• Time complexity: Imagine each node has 𝑏𝑏 ≥ 2
successors, and solution is at depth 𝑑𝑑, then 
generate ∑𝑖𝑖=1𝑑𝑑 𝑏𝑏𝑖𝑖 = Θ 𝑏𝑏𝑑𝑑 nodes 

• Space complexity: The frontier is almost as large 
as the entire search tree

Complete? Optimal? Time Space
Yes Not really Θ 𝑏𝑏𝑑𝑑 Θ 𝑏𝑏𝑑𝑑

Algorithm
BFS



BIDIRECTIONAL SEARCH

• Idea: Possibly improve the running 
time of BFS by running two 
simultaneous searches, forward from 
the initial state and backward from 
the goal

• Poll 1: What is the worst-case 
running time of BIDRECTIONAL SEARCH?
1.Θ(𝑏𝑏 ⋅ 𝑑𝑑)
2.Θ((𝑏𝑏/2)𝑑𝑑)
3.Θ(𝑏𝑏𝑑𝑑/2)
4.Θ(𝑏𝑏𝑑𝑑)



UNIFORM-COST SEARCH

• Strategy: Expand frontier node 𝑛𝑛 with lowest path 
cost 𝑔𝑔(𝑛𝑛)

• Can be implemented by using a priority queue 
ordered by 𝑔𝑔(𝑛𝑛) for the frontier

• Other changes from BFS:
◦ Goal test applied when node is selected for expansion
◦ Need to update cost of nodes on frontier 

99

211

80

97

101

99

211

80

97

101

99

211

80

97

101

99

211

80

97

101

99

211

80

97

101



UNIFORM-COST SEARCH

• Optimality: Yes, but requires proof
• Completeness: If the cost of every action exceeds 

some 𝜖𝜖 > 0
• Time and space complexity: If 𝐶𝐶∗ is the cost of the 

optimal solution and 𝜖𝜖 is a lower bound on the 
action cost, the depth of the search tree is roughly 
𝐶𝐶∗/𝜖𝜖 in the worst case

Complete? Optimal? Time Space
Sorta Yes Θ 𝑏𝑏𝐶𝐶∗/𝜖𝜖 Θ 𝑏𝑏𝐶𝐶∗/𝜖𝜖

Algorithm
UCS



DEPTH-FIRST SEARCH

• Strategy: Expand deepest unexpanded node 
• Can be implemented by using a stack for the 

frontier
• Recursive implementation is also common



DEPTH-FIRST SEARCH



DEPTH-FIRST SEARCH

• Completeness: Clearly not in general
• Poll 2: In a finite state space, which version 

of DFS is complete?
1.TREE SEARCH

2.GRAPH SEARCH

3.Both
4.Neither

Complete? Optimal? Time Space
No No Θ 𝑏𝑏𝑚𝑚 Θ 𝑏𝑏 ⋅ 𝑚𝑚

Algorithm
DFS



DEPTH-FIRST SEARCH

• Time complexity: Θ 𝑏𝑏𝑚𝑚 , where 𝑚𝑚 is the maximum 
depth of the search tree

• Space complexity: DFS tree search needs to store 
only a single path from the root to a leaf, along 
with frontier sibling nodes for each node on the 
path

• Consequently, depth-first tree search is the 
workhorse of many areas of AI (including CSPs 
and SAT solving)

Complete? Optimal? Time Space
No No Θ 𝑏𝑏𝑚𝑚 Θ 𝑏𝑏 ⋅ 𝑚𝑚

Algorithm
DFS



ITERATIVE DEEPENING SEARCH

• Run DFS with depth limit ℓ = 1,2, …
• Combines the best properties of BFS and DFS
• Completeness: Yes, for the same reason BFS is 

complete
• Time complexity: Seems wasteful but most of the 

nodes are at the bottom level; total 
𝑑𝑑 ⋅ 𝑏𝑏 + 𝑑𝑑 − 1 𝑏𝑏2 + ⋯+ 1 ⋅ 𝑏𝑏𝑑𝑑 = Θ 𝑏𝑏𝑑𝑑

Complete? Optimal? Time Space
Yes No Θ 𝑏𝑏𝑑𝑑 Θ 𝑏𝑏 ⋅ 𝑑𝑑

Algorithm
IDS



BFS

SUMMARY OF ALGORITHMS

Complete? Optimal? Time Space
Yes Not really Θ 𝑏𝑏𝑑𝑑 Θ 𝑏𝑏𝑑𝑑

Algorithm

Sorta Yes Θ 𝑏𝑏𝐶𝐶∗/𝜖𝜖 Θ 𝑏𝑏𝐶𝐶∗/𝜖𝜖UCS
No No Θ 𝑏𝑏𝑚𝑚 Θ 𝑏𝑏 ⋅ 𝑚𝑚DFS
Yes No Θ 𝑏𝑏𝑑𝑑 Θ 𝑏𝑏 ⋅ 𝑑𝑑IDS



OPTIMIZATION AND LOCAL SEARCH

• The algorithms we discussed so far are 
designed to find a path to the solution

• If the path doesn’t matter, can use local 
search algorithms that consider a single 
current node, and move to one of its 
neighbors in the next step

• Local search algorithms are useful for 
optimization problems, where the goal is to 
find the best state according to an objective 
function



STATE SPACE LANDSCAPE

state space

Objective function global maximum

shoulder

local maximum

“flat” local maximum

current state



HILL-CLIMBING SEARCH

• Move in the direction of increasing value 
(up the hill)

• Terminate when no neighbor has higher 
value



HILL-CLIMBING SEARCH

18 14 13 13 14 14

14 16 13 15 14 16

14 18 13 15 14 14

15 14 14 13 16 13 16

14 17 15 14 16 16

17 16 18 15 15

18 14 15 15 14 16

14 14 13 17 14 18

12 12

12 12

12 12

12 12

State with 17 conflicts, showing the 
#conflicts by moving a queen within its 
column, with best moves in red

Local optimum: state that has only one 
conflict, but every move leads to larger 
#conflicts



HILL-CLIMBING SEARCH
• 8 queens statistics:

◦ State space of size ≈17 million
◦ Starting from random state, steepest-ascent hill climbing 

solves 14% of problem instances
◦ It takes 4 steps on average when it succeeds and 3 when it 

gets stuck
◦ When “sideways” moves are allowed, solves 94% of 

instances, but with 21 steps for success and 64 for failure
• Variants:

◦ Stochastic hill climbing: Chooses at random among uphill 
moves, with the probability depending on the 
improvement

◦ Random-restart hill climbing: Conducts a series of hill-
climbing searches from random states; obviously 
complete, and expected number of iterations is roughly 7, 
with roughly 22 steps overall


	Slide Number 1
	Search Problems
	Example: Pancakes
	Example: Pancakes
	Example: 8-Puzzle
	Example: Pathfinding
	Tree Search
	Tree Search
	Graph Search
	Graph Search Illustrated
	Uninformed vs. Informed
	Measuring performance
	Breadth-First Search
	Breadth-First Search
	Bidirectional Search
	Uniform-Cost Search
	Uniform-Cost Search
	Depth-First Search
	Depth-First Search
	Depth-First Search
	Depth-First Search
	Iterative Deepening Search
	Summary of Algorithms
	Optimization and local search
	State space landscape
	Hill-Climbing Search
	Hill-Climbing Search
	Hill-Climbing Search

