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» So far: data has been assumed to be vectors:

» fixed dimension

» continuous
° ° ° k
» What if the input is a sentence? Or a document?
» Key questions:
» how to represent text data while preserving its meaning

» how to process it /compute with it efficiently
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Speech and Language Processing
Human Language Technologies
Natural Language Processing
Natural Language Unaderstanaing

Computational Linguistics
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PROBLEMS

Machine translation
Summarization

Text classification
Parsing

Language Modeling

DIMENSIONS OF NLP

ASPECTS

Semantics
Syntax

Morphology

Phonology

Pragmatics

METHODS

Probabilistic

Symbolic

Bayesian
Kernel-Based

Deep Learning




INTRODUCTION

LINGUISTICS CHEAT SHEET



INTRODUCTION

LINGUISTICS CHEAT SHEET

» Semantics: pertaining to the meaning of a word, phrase,

o Seman-tics

/se'man(t)iks/

° meaning of a word, phrase, sentence, or text.

| noun: semantics

sentence, or text



INTRODUCTION

LINGUISTICS CHEAT SHEET

» Semantics: pertaining to the meaning of a word, phrase,

o Se‘man-tics

/sa'man(t)iks/

S e n t e n Ce J O r t eXt 'F')slltjjz:ar: zzrbnb:I;Zn(‘)?/::i::mantics may seem petty stuff"
S
/\
» Syntax: arrangement of words and phrases to create /NP\ /VP\
wellformed sentences 5 N V NP

|
the dog ate D N
|

the bone



INTRODUCTION

LINGUISTICS CHEAT SHEET |

» Semantics: pertaining to the meaning of a word, phrase,

e the meaning of a word, phrase, sentence, or text.
plural noun: semantics

/se'man(t)iks/

S e n t e n Ce J O r teXt "such quibbling over semantics may seem petty stuff"
S
/\
» Syntax: arrangement of words and phrases to create /NP\ /VP\

wellformed sentences D N V NP

I I BN

the dog ate D N

|
the bone

» Morphology: pertaining to the structure or form of
base |mOPph| T 0 +| ]'cl)g| N y\

‘Form, structure’ l

Greek popope, ‘form’ connector "Da,se
Speech, word, account, reas

Greek Aoyoo

words, e.qg., their parts

suffix



INTRODUCTION

LINGUISTICS CHEAT SHEET |
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» Morphology: pertaining to the structure or form of
base |mOPph| T 0 +| ]'cl)g| N y\

‘Form, structure’ < l

Greek popope, ‘form’ connector "Da,se
Speech, word, account, reas

» Corpus: a collection of text data (plural: corpora) Greek A0Y00

words, e.qg., their parts

suffix
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OUTLINE FOR TODAY

» Goal: overview of the main ideas and concepts behind modern NLP

» Part I: how do we encode meaning from text data (representation)

» deep dive into word2vec for word embedding

» Part ll: how do we use encoded text to solve NLP tasks? (prediction)

» deep dive into recurrent neural nets (vanilla and LSTM)

» Partlll: (time permitting) very large neural language models
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WORD VECTOR REPRESENTATION: FIRST IDEA

cach dimension

: corresponds to a word Two crucial issues:
Word representation: /
Vector size: # words in vocabulary
house =0 0O O 1 O O0...] .
(potentially huge)
apartment =[]0 O 1 O O O ...]
nice =[1 0 0 0 0 0...] All word vectors

are orthogonal! house

. no notion of
Sentence/Document representation:

word ‘similarity’
“the house is nice, the apartment is nice”

=2 01 1 0 0..]

apartment
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WORD VECTOR REPRESENTATION

What we really want: Vector size: fixed, not too large
house =023 —1.52 322 0.01 245 —-1.32 ...]
apartment =[—1.32 0.78 1.34 034 —-1.11 532 ...]

nice =[098 0.32 —-334 823 101 =268 ...}

\_

12) (3 house
| N :
How to turn E into o || 1.5 |that carry meaning?
3.3 || 7.8

~

How do we achieve this? apartment

o ®
nice o
) amazing
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THE DISTRIBUTIONAL RYPOTHESIS

What
at does "A bottle of tezguino is on the table.”

tezguino mean?

"Everybody likes tezgtino.”

Tesguino is an e o

artisanal corn beer “Don’t have tezguino before you drive.”

produced by several

Yuto-Aztec people. “We make tezguino out of corn.”

The Tarahumara
people regard the
beer as sacred, and
it forms a significant
part of their society.

‘example from Lin (1998) via Eisenstein (2018)
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THE DISTRIBUTIONAL HYPOTHESIS

ldea: vectors of words appearing in similar contexts should be similar

... central bank announced it will maintain interest rates fixed despite inflation fears in the economy ...

Xinflation < *price

... Interest rates continued increasing, along with the consumer price index, while the US leconomy...
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ALGORITHMS FOR ENCODING CO-OCCURRENCE INFORMATION

" APPROACH 2: PREDICT |
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GloVe
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T
Likelihood H H Pw,; | w;0)
(ot entire document) (=] —-m<j<m
J#0
S : 1 <&
Objective Function L Z log P(w,.. | w: 0)
t+j | Weo

(negative log-likelihood) I

(=1 —-m<j<m
J#0

We want to minimize NLL (i.e., maximize likelihood)

(an instance of Maximum Likelihood Estimation)
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Modeling word-to-word Probability

Each word gets two vectors:
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Modeling word-to-word Probability

Each word gets two vectors:

context center

~ v, when w is a center word,

u,, when it is a context wora

Uu

T
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v.: high if vectors point in the same direction

(i.e., a notion of similarity)
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Modeling word-to-word Probability

Each word gets two vectors: . - o -
u,v.: high it vectors point in the same direction

~ v, when w is a center word, v

. (i.e., a notion of similarity)
u,, when it is a context wora '

context center
word  word

| ] exp(u, v, -
P(o|c; )= 5 - = softmax(U'(V1)) -1,
l I WEV@XP(MWVC), Vixd dx|V||V]x]1
0 stands for all the |

model parameters: -
normalizing term,

0= 1{(u,,)} cVocab makes P add up to 1
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Modeling Document Likelihood

Loss(U, V) = Z Z log P(w,,; | ws; 0)
t=1 —-m< j<m
1 & - exp(u.) v
- log O C
T tzzl . <Zj< . ZW L EXp(it,; v,
1 T J#0
—— Z Z logu, v.+ log Z exp(u, v,
Tt—l —m=< j<m wevV
j#0

Optimization: Stochastic Gradient Descent one update for every t
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Algorithmic Considerations

| L
Loss(U, V) = T Z Z log u, v, + log Z exp(u,, V)

t=1 —-m<j<m | wevV
j#0 |
What's wrong with this objective? This an O(| V|) sum! Potentially huge

Two Solutions:
1. Negative sampling (solves a slightly different objective)

2. Hierarchical softmax (computes softmax via binary tree)
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Two Flavors of Prediction

5 Output layer

(@)
oXeXe]
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Visualizing Word2Vec Embeddings

(DEMO): https://projector.tensorflow.org/



https://projector.tensorflow.org/
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» Mikolov et al. (2013): Geometry of word2vec space is linear
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: — il
*king ~— *man T XYwoman ~ Xqueen

Male-Female

Source: tensorflow.org/tutorials
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» Mikolov et al. (2013): Geometry of word2vec space is linear
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» Arora etal.(2015): "It is a direct consequence of using co-occurrence statistics.”
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» Hashimoto et al. (2016): “This has been observed in cog. sci. much earlier!
Conjecture: word2vec recovers metric of an implicit cognitive-semantic vector space”
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» Hashimoto et al. (2016): “This has been observed in cog. sci. much earlier!

Conjecture: word2vec recovers metric of an implicit cognitive-semantic vector space”
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GloVe: Global Vectors for Word Representation
Efficient Estimation of Word Representations in

Vector Space Jeffrey Pennington, Richard Socher, Christopher D. Manning
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Tomas Mikolov Kai Chen
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Neural Word Embedding
as Implicit Matrix Factorization

Omer Levy Yoav Goldberg
Department of Computer Science Department of Computer Science
Bar-Ilan University Bar-Ilan University
omerlevy@gmail.com yoav.goldberg@gmail.com

Abstract

We analyze skip-gram with negative-sampling (SGNS), a word embedding
method introduced by Mikolov et al., and show that it is implicitly factorizing
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ADVERSARIAL TRAINING
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FROM WORDS TO SENTENCES: REPRESENTATION

A car leaves its shed. . Same vectorl

B B B B X | A tree shed its leaves. ]
B HERNEENES
_Xm_ _Xm_ _Xm_ _Xm_ _Xm_

Vthe house ... 'the Yhouse Vis Vgreen

Only he told his wife that he loved her.

"The house is green .. ! He only told his wife that he loved her.
He told only his wife that he loved her.

| |

l He told his only wife that he loved her.
How do we represent He told his wife only that he loved her.
an entire sentence? He told his wife that only he loved her.

He told his wife that he only loved her.
He told his wife that he loved only her.
He told his wife that he loved her only.
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A car leaves its shed. . Same vectorl

B B B B X | A tree shed its leaves. ]
; Aol I Il T ) T
_xm_ _Xm_ _Xm_ _Xm_ _Xm_

Vthe house ... "Vthe Yhouse Vis Vgreen i

Only he told his wife that he loved her.

"The house is green .. ! He only told his wife that he loved her.
He told only his wife that he loved her.

| |

l He told his only wife that he loved her.
How do we represent He told his wife only that he loved her. — Same vector!
an entire sentence? He told his wife that only he loved her.

He told his wife that he only loved her.
He told his wife that he loved only her.

He told his wife that he loved her only.
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FROM WORDS TO SENTENCES: LANGUAGE MODELING

Language Model: a system that assigns probability to a piece of text

T
POWys -ccowp) = p(w) X pwy | wp) X -+ X pwy | wr_ys ccowp) = | [ pOw, [ wi_ys.cowy)
=1

The house is green, and it ... (p=0.1)
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FROM WORDS TO SENTENCES: LANGUAGE MODELING

Language modeling in the wild....

Untitled - Message (HTML)

i =

ile sage nsert ions ormat lex eview u want to do
okla: WO Ghin 2R (el ® ot L 5% i
{“-7 B CenturyGothic ~/11 ~ A A =vi=~- & |" :]. :‘)‘@) mj Q j__g " Follow Up
S b ty = B T il Al M Siimie) | 19 miothine
aste aty . A . == == e ress la ach Signature
i WromatPaner B 1 M A-E== 2"

""" Book Names File~ Item * v ¥ Low Importance
Clipboard e Basic Text o Names Include Tags
- e . . .
the meaning of life is
“the meaning of life is 42
the meaning of life is 43
Dear S

the meaning of life is that it ends

the meaning of life is to give life meaning

the meaning of life is to give life meaning quote
the meaning of life is to live it

the meaning of life is to live

the meaning of life is that it stops

the meaning of life is to find your gift

the meaning of life is what you make it

Google Search | I'm Feeling Lucky

Source: www. lightkey.io

% Enter message

© 160/160

Hey The D
ajwlelrfT]vjulo]r
Als|ofFlGiH]J]K|L

2z [x]c]v[e]n[u]a
2ol = [T

Source: reddit.com/user/wardetbestanee/
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LANGUAGE MODELING: N-GRAM MODELS

The classic (pre-neural) approach: learning n-gram probabilities
~a sequence of n consecutive words

Unigrams: [“The”, “house”, “is”, “green”]

B , , | Bigrams: [“The house”, “house is”, “is green”]
The house is green

Trigrams: [“The house is”, “house is green”]

' 4-grams: [“The house is green”]

Main idea: estimate next word probability using n-gram counts

P(Wt+1 ‘ We oo Wl) — p(wt+1 | We oo Wt—n+2) (Markov assumption)

P Wit 1s Wes - s Wi_p40)
— (def. of conditional prob.)
PWps ooy Wi_py2)

counts(w,, , w,, ..., Ww,_, )

(approximate probs via counts,
Counts(wt, s Wt—n+2) estimated from large corpus)

ny/
mny/
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LANGUAGE MODELING: N-GRAM MODELS

The classic (pre-neural) approach: learning n-gram probabilities

Main idea: estimate next word probability using n-gram counts
counts(w,, (, Wy, ..., W,_,.»)

p(wl‘+1 ‘ wl" *0t Wl) — p(wt+1 ‘ Wta JCRR Wt—n+2) ~
counts(w,, ..., w,_,..»)

Example: estimate next-word probability for “The house is " using trigrams

p(green | is, house, the) = p(green | is, house)

(no. of times "house is green” occurs in corpus)

(no. of times “house is” occurs in corpus)

N-gram models with small n are “miopic”, what about large n?
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LANGUAGE MODELING: RECURRENT NEURAL NETWORKS

[Rumelhart, 1986; Hopfield, 1982]

For every t: Word Embeddlng

/ (e.g. Word2Vec)
: h(0)

A non-linear

€ = Ex% ctivation function

ht — U(Weet -+ Whht—l -+ bl)

oy

9 = softmax(Uh, + b,) € R

\ Predicted class

(in this case, next word)

the
2 (1)

oooo]g[oo_oo

EL

students opened their

2(2)

2(3)

(4)
Credit: Stanford CS224n
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LANGUAGE MODELING: RECURRENT NEURAL NETWORKS
[Rumelhart, 1986; Hopfield, 1982]

A: h=cWe+Wh_,+b)

h)
| | tlj Note: same weights

g} applied every time

The house is green
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(h) (hy
o L
& &

How do we train it?

&>~
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9 = softmax(Uh, + b,) € R

hl‘ — U(Weet + Whhl‘—l + bl) ‘

I S
L
o

(hy
T
e, = Ex, A
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Error(yy, ¥o)  Error(y,,y,) Error(y,,,) Error(y, J,)
9 = softmax(Uh, + b,) € R ? ? ? ?
hl‘ — U(Weet + Whht—l + bl) ‘ @

&>~

!
6

|
e, = Ex, A
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Error(y,,y,)  Error(y;,y,) Error(y,,3,) Error(y, y,)

9 = softmax(Uh, + b,) € RV ? ? ?

h =oc(W,e +Wh,_,+ b)) @ @ @
r 1 1 |
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e, = LXx,
&  ® . &
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RECURRENT NEURAL NETS: TRAINING

Error(y,,y,)  Error(y;,y,) Error(y,,3,) Error(y, y,)

9 = softmax(Uh, + b,) € RV ? ? ?

h =oc(W,e +Wh,_,+ b)) C? G% C?D
A rMH— AMH— A— A
e, = LXx,
& & . &
ok, oE, oE, oE,
00 00 90 E

Back-Propagation Through Time (BPTT)
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l

—>

®
l

—

®
l

—

& & .

Language Modeling (LM)

D
l
b
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house red

. @ @

3 é; é;
he house s

Language Modeling (LM)
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RECURRENT NEURAL NETS: EXAMPLE TEXT GENERATION

[Sutskever et al, 2011]

Training data: Wikipedia
Input: “The meaning of life is “

Generated Text:

The meaning of life 1s the tradition of the ancient human repro-
duction: it is less favorable to the good boy for when to remove
her bigger. In the show’s agreement unanimously resurfaced. The
wild pasteured with consistent street forests were incorporated
by the 15th century BE. In 1996 the primary rapford undergoes
an effort that the reserve conditioning, written into Jewish cities,
sleepers to incorporate the .St Eurasia that activates the popula-
tion. Mar??a Nationale, Kell1, Zedlat-Dukastoe, Florendon, Ptu’s
thought 1s. To adapt in most parts of North America, the dynamic
fairy Dan please believes, the free speech are much related to the

Training data: NYT
Input: “[space]”
Generated Text:

while he was giving attention to the second advantage of school
building a 2-for-2 stool killed by the Cultures saddled with a half-
suit defending the Bharatiya Fernall ’s office . Ms . Claire Parters
will also have a history temple for him to raise jobs until naked
Prodiena to paint baseball partners , provided people to ride both
of Manhattan in 1978 , but what was largely directed to China in
1946 , focusing on the trademark period is the sailboat yesterday
and comments on whom they obtain overheard within the 120th
anniversary , where many civil rights defined , officials said early
that forms , ” said Bernard J. Marco Jr. of Pennsylvania , was
monitoring New York
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RECURRENT NEURAL NETS: EXAMPLE TEXT GENERATION

Example Source: medium.com/@samim/

Training data: Obama’s Speeches
Input: "YES WE CAN"

Generated Text:

Good morning. And as we mark the fact that they can stand with
their companies that are consistent to the state of Pakistan and
the United States of America.

With the financial system we can do that. And the people of the
United States will not be able to continue to support the people
of the greatest problem of the American people to stay in the

White House. And that's why [ ...]

Thank you very much. God bless you. God bless you. God bless
you. God bless you.

Example Source: http://karpathy.github.io/

Training data: Shakespeare

1m n

Input:

Generated Text:

PANDARUS:

Alas, | think he shall be come approached and the day
When little srain would be attain'd into being never fed,
And who is but a chain and subjects of his death,
| should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when | perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that. [...]
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Part-of-Speech Tagging (P0S)
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T h h)
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6 & ¢
The

Part-of-Speech Tagging (P0S)
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ART NOUN

0 @ hy h)
! !

—> —» A ——» A

3 é; LR

he house

Part-of-Speech Tagging (P0S)
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ART NOUN VERB

. @ @ @TD
A

— — —

3 ép é 6

he house IS

Part-of-Speech Tagging (P0S)
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Sentence Classification
(e.g. sentiment analysis)
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<positive>

(b

|

R
o S

| love this recommended!

Sentence Classification
(e.g. sentiment analysis)
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RECURRENT NEURAL NETS: PROS AND CONS

PROS CONS

e Computation can be very

e Can take inputs of variable (and

slow

potentially infinite) length T
A

* Information degrades in

hy) h)
1 1
- - every time step
& . &

e Can model long-range

A
dependencies ‘ g}
e Fixed model size regardless of @ * Exploding and vanishing

input size gradients
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RECURRENT NEURAL NETS: VANISHING GRADIENT PROBLEM

Analysis for simplified case (o = identity). General case follows similar proof.

(Whiteboard)
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LSTM: LONG SHORT-TERM MEMORY NETWORK
[Schmidhuber et al. 1992]

Addresses the gradient problems by using ‘gates’ to control information flow

forget gate-

nput gate-

output gate:

Source: colah github.io
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LSTM: LONG SHORT-TERM MEMORY NETWORK
[Schmidhuber et al. 1992]

Addresses the gradient problems by using ‘gates’ to control information flow

) = g(th(f—l) + UfX(f) +b) forget gate- @
i — G(Wih(t_l) 4 UiX(t) +b) nput gate-
0 =o(Wh'"V+UxP+b,) ouiou ot

Source: colah github.io

Neural Network Pointwise Vector
@ Layer Operation Transfer Concatenate Copy
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LSTM: LONG SHORT-TERM MEMORY NETWORK
[Schmidhuber et al. 1992]

Addresses the gradient problems by using ‘gates’ to control information flow

) = g(th(f—l) + fo(f) +b) forget gate- @
i — G(Wih(t—l) 4 UiX(t) +b) nput gate-
0 =o(Wh'"V+UxP+b,) ouiou ot

¢ = tanh(W h"D + U x + b )
e = £0 5 =D 1 jO 4 g0

Source: colah github.io

(1) — ) (1)
h'Y =0 otanhc¢ @ 5 - v
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LSTM: LONG SHORT-TERM MEMORY NETWORK
[Schmidhuber et al. 1992]

Addresses the gradient problems by using ‘gates’ to control information flow

£ — G(th(t—l) 4 UfX(t) + b)) forget gate-
i — G(Wih(t—l) 4 UiX(t) +b) nput gate-
0 =o(Wh'"V+UxP+b,) ouiou ot

¢® = tanh(W h"=D + U x® + b ) o/l iocie

¢ = Do =D 4 j0 o ¢ cell state

) [ [ .
h®) = 0! o tanh ¢ hidden state
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LSTM: LONG SHORT-TERM MEMORY NETWORK
[Schmidhuber et al. 1992]




PART 2: RECURRENT NEURAL NETWORKS

SEQ2SEQ: SEQUENCE TO SEQUENCE MODEL
[Sutskever et al. 2014]

2 RNN'’s: encoder (processes input sentence) and decoder (generates output)

{
) ) : )

o _ N _ N — N\ p = B I R . p I N (e I N 7 I N
—o— [ o—— g o—0—=a | —D——— o O— Do O— D - O—H———

1 T (a ]nh ) ‘ T tanh tanh> 1 tanh [ T (a n h \ T (ta an_ft { T 1l.f.t_aTr\h_‘fi [ T ta Tnh"ﬁ:

X X X X) X) X) X X X) X) X) X) X

| (9 IﬁL (9 ﬁL Ll | (] (—'L (9 ﬁL ‘ rlﬂL ‘ (9 T

CG||C||tanh | |O G/ |C||tanh | |O - C||C||tanh | |O C|(|C||tanh | |O C||C||(tanh || O G| |C||tanh | |O G| |G|/ tanh | |C

. 1T 1 _ J L 1T 1 _J | [ J ‘FTJ—I—T LIJLIJ J T*H' L _J TTij
" W, _ J \ J . J \ y, \ y, \

| | | I . . )

<START>



PART 2: RECURRENT NEURAL NETWORKS

SEQ2SEQ: SEQUENCE TO SEQUENCE MODEL
[Sutskever et al. 2014]

2 RNN'’s: encoder (processes input sentence) and decoder (generates output)

{
) ) : )

o _ N _ N — N\ p = B I R . p I N (e I N 7 I N
—o— [ o—— g o—0—=a | —D——— o O— Do O— D - O—H———

1 T (a ]nh ) ‘ T tanh tanh> 1 tanh [ T (a n h \ T (ta an_ft { T 1l.f.t_aTr\h_‘fi [ T ta Tnh"ﬁ:

X X X X) X) X) X X X) X) X) X) X

| (9 IﬁL (9 ﬁL Ll | (] (—'L (9 ﬁL ‘ rlﬂL ‘ (9 T

CG||C||tanh | |O G/ |C||tanh | |O - C||C||tanh | |O C|(|C||tanh | |O C||C||(tanh || O G| |C||tanh | |O G| |G|/ tanh | |C

. 1T 1 _ J L 1T 1 _J | [ J ‘FTJ—I—T LIJLIJ J T*H' L _J TTij
" W, _ J \ J . J \ y, \ y, \

| | | I . . )

<START>

La casa es
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SEQ2SEQ: SEQUENCE TO SEQUENCE MODEL
[Sutskever et al. 2014}

2 RNN'’s: encoder (processes input sentence) and decoder (generates output)

ENCODER DECODER
AR N AR PPOE JRRDR I R ] 1 |1
poemy ||| soeme | || eosms || gomms [ poeps ||| ggmae | ||| soesy [ ||| o
I | | I I J . J
La casa es roja —  ©UARD
l

No prediction during encoding
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SEQ2SEQ: SEQUENCE TO SEQUENCE MODEL
[Sutskever et al. 2014}

2 RNN'’s: encoder (processes input sentence) and decoder (generates output)

ENCODER DECODER
— — - \ |
I P ]

14 2] gi?:‘*”i P PR
¥‘57 T tar[\h‘j Lj kL]'L]* tahhfj‘_ Lj : gllam] o y k(lj’[' ? JJ L) ’[TJ I'J' L, IL[J I”J' Lj i ILF I ’J LJ \?%ta?h'S' |
I I I I | I

La casa es roja —  ©MRD
No prediction during encoding Decoder takes encoder’s |last state +

a special <start> token as inputs
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SEQ2SEQ: SEQUENCE TO SEQUENCE MODEL
[Sutskever et al. 2014}

2 RNN'’s: encoder (processes input sentence) and decoder (generates output)

ENCODER DECODER
The _house_ is . red

S S SN I S IR D I P
T4 2 JTﬁ; 14 % PR 1R 1 N (1
gy ||| eeeps ||| eeEme || g | s | ||| geeme (||| o ||| gpes

I | I I I _ ) ) .

La casa es roja —  ©MRD

| |
No prediction during encoding Decoder takes encoder’s |last state +

a special <start> token as inputs
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BIDIRECTIONAL RNNS

‘_ }— Concatenate hidden states

-
PR
@ @ @ @ Source: colah.github.io

The house S red

‘ Backward RNN
r Forward RNN

Advantage: prediction can rely on both left and right context

Note: not applicable to Language Modeling! (Why?)



PART 2: RECURRENT NEURAL NETWORKS

DEEP / STACKED / MULTI-LAYER RNNS

W (hy

1 1 1 1

* [nputs to i-th RNN are hidden A AT A A
states of (i-1)-th RNN @1:) é C*TD
1 1 1 1

A — A — A I— A

) ) ) )

W (hy

1 1 1 1

A — A — AI— A

® ® - ®

The house IS green.
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DEEP / STACKED / MULTI-LAYER RNNS

) (hy

1 1 1 1

* [nputs to i-th RNN are hidden A AT A — A
states of (i-1)-th RNN C:D CfT) C*TD
e Allows RNN to learn more T T T T
. A — A — A — A

complex representations 5 5 5 5
b (hy

1 1 1 1

A — A — A ——— A

® ® . ®

The house IS green.
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DEEP / STACKED / MULTI-LAYER RNNS

AR
* Inputs to i-th RNN are hidden A A > A A
states of (i-1)-th RNN C:D CfT} C*TD
e Allows RNN to learn more T T T T
, A — A — A — A
complex representations 5 5 5 5
e Typically: lower RNNs learn C?D C? C?D
local/simpler teatures, higher rea NN y
RNNSs learning global/abstract
features g) g} g)

The house IS green.
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ATTENTION

Motivation: entire meaning of source sentence encoded in one vector! (the ‘bottleneck problem’)

The house IS red
by b N OB C NN O I
N R IR A | ] |
I I I I 2 I _ _ ]
La casa es roja —  ©ARP

ENCODER DECODER



PART 2: RECURRENT NEURAL NETWORKS

ATTENTION

Motivation: entire meaning of source sentence encoded in one vector! (the ‘bottleneck problem’)

e, = [St : hla s S, hN] S, is sometimes called the ‘query’

The house S red
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ATTENTION

Motivation: entire meaning of source sentence encoded in one vector! (the ‘bottleneck problem’)
e, = [St : hla s S, hN] S, is sometimes called the ‘query’

a, = softmax(e,)

The house S red
® ¢ & & .0 © o
v e A8 A ' \y
I I I I £ I _ ) ) )
— <START>

La casa es roja
ENCODER DECODER
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ATTENTION

Motivation: entire meaning of source sentence encoded in one vector! (the ‘bottleneck problem’)

e, = [St : hla s S, hN] S, is sometimes called the ‘query’

a, = s]cvnctmax(et) @
d; = Z a, h,
i=1 The house S red
RECEON
v gL L 1 | |
0
- . I, X
- e S S B ]
— <START>

La casa es roja
ENCODER DECODER
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ATTENTION

Motivation: entire meaning of source sentence encoded in one vector! (the ‘bottleneck problem’)

e, = [St : hla s S, hN] S, is sometimes called the ‘query’

a, = softmax(e,) D

N
d; = Z a, h,
=1

The house S red

\g
©
J

©
®

s I I I I

O LN LN LN

z

R I -

£ I ) ) )
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ATTENTION

Motivation: entire meaning of source sentence encoded in one vector! (the ‘bottleneck problem’)

e, = [St : hla s S, hN] S, is sometimes called the ‘query’

a, = softmax(et) @ '
decoder ‘attends’ to all inputs tokens!

N
d; = Z a, h,
=1

The house S red

\g
©
J

©

s I I I I

O Y LN LN LN

.

R L -

< I _ ) _J _J
La casa es roja [—_  ©TARD

ENCODER DECODER
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ATTENTION

...for machine translation:

@ 0 &
| | J

Source: trungtran.io

Cela

va
changer
mon
avenir
avec
ma
famille
"

a
dit

I
homme

<end>

Bahdanau et al, 2015]
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ATTENTION

..for machine translation:  for summarization:

@ G
| | |

trungtran.io

- S
O > O
; Y {\\{c;o ) 2 & 'x&& ‘60& @Q@\Q . <©
[ ] <s>
russian
defense
minister
Cela Ivanov
va ] called
changer sunday
mon IIIII for
avenir the
avec .
ha creation
famille of
; a
' ] joint
a - front
dit 0 for
I ] combating
homme global
B terrorism

<end>

‘Bahdanau et al., 2015] Rush etal, 2015]
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ATTENTION

..for machine translation:  for summarization:

@ G
| | |

trungtran.io

- S
O > O
; s {\\’c’% 0’3&% o 'x(.’\'& ‘60& fo&& $ <
[ ] <s>
russian
defense
minister
Cela Ivanov
va ] called
changer sunday
mon Illli—___-\ for
avenir the
avec .
ha creation
famille of
; a
' ] joint
. -— front
dit 0 for
I ] combating
homme global
B terrorism

<end>

‘Bahdanau et al., 2015] Rush etal, 2015]
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ATTENTION

.for machine translation: ... for summarization: ... for Question Answering:

P9

Source: trungtran.io

- <S> QA with Attention Visualization

A
No)
c o = russian
© = = . ,
- 8 S/) defense I8lit possible to geguethealth insurance from
" mlnlster Transparency  Sensitivity (0.5): O Threshold (0.5): O
Cela Ivanov
SELECTED ANSWER
e - called o
0.25 9819336
changer
g Sunday that is a great question ! there are circumstances that will allow you to deductyourheathiinsSurance
premiums on your taxes . being self employed , medical payments that are a S|gn|f|cant~pomon of your
mon for
. income , being a couple . with any about taxes , | strongly encourage you to seek the advice of
avenir the a tax professional who can give you the right advice for you you for asking !
aveC —\ Creation Compare weights... v
ma | f
: O
famille OTHER TOP-RANKED CANDIDATES
" a
- jo lnt in some situations you are allowed to deducthealthinsSurance premiums on your tax return . the most
' common method is for those with self employed income hey file a schedule ¢ . there is a place on
a front the form to enter your health insurance premiums and deduct them from your self employed income .
d |t - for Compare weights... v
I -
| ] combating

homme

<end>

Rush etal, 2015]

Bahdanau et al, 2015]

Ruckeetal, 201/
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LARGE LANGUAGE MODELS:

SELF-AITENTION, TRANSFORMERS, PRETRAINING



PART 3: LARGE LANGUAGE MODELS

FROM RNN TO ATTENTION-BASED MODELS



PART 3: LARGE LANGUAGE MODELS

FROM RNN TO ATTENTION-BASED MODELS

» RNNs (even LSTMs) struggle with very long-range dependencies



PART 3: LARGE LANGUAGE MODELS

FROM RNN TO ATTENTION-BASED MODELS

» RNNs (even LSTMs) struggle with very long-range dependencies

» So far: linear interaction between individual words. Language isn't linear!



PART 3: LARGE LANGUAGE MODELS

FROM RNN TO ATTENTION-BASED MODELS

» RNNs (even LSTMs) struggle with very long-range dependencies
» So far: linear interaction between individual words. Language isn't linear!

» Starting in 2017, new increasingly larger models have taken over NLP



PART 3: LARGE LANGUAGE MODELS

FROM RNN TO ATTENTION-BASED MODELS

» RNNs (even LSTMs) struggle with very long-range dependencies
» So far: linear interaction between individual words. Language isn't linear!
» Starting in 2017, new increasingly larger models have taken over NLP

» Almost human-quality text generation, state-of-the-art in many tasks



PART 3: LARGE LANGUAGE MODELS

FROM RNN TO ATTENTION-BASED MODELS

» RNNs (even LSTMs) struggle with very long-range dependencies

» So far: linear interaction between individual words. Language isn't linear!
» Starting in 2017, new increasingly larger models have taken over NLP

» Almost human-quality text generation, state-of-the-art in many tasks

» Two key ideas behind them: attention-based architectures and pre-training
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Source: jalammar.github.io/illustrated-transtformer/
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X =

WK K
X =

WV \'}

Source: jalammar.github.io/illustrated-transtformer/



PART 3: LARGE LANGUAGE MODELS

SELF-ATTENTION

» We saw how attention helps in seg2seq models (decoder attends to encoder input)

» But we can also use it for a model to ‘attend’ to its own input
X wa Q

HEEN

I . -

/

word X WK K
embedding . _
ERnE -
vectors
\ X WV Vv
T, _
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SELF-ATTENTION

» We saw how attention helps in seg2seq models (decoder attends to encoder input)

» But we can also use it for a model to ‘attend’ to its own input
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embedding . _
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» We saw how attention helps in seg2seq models (decoder attends to encoder input)

» But we can also use it for a model to ‘attend’ to its own input
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word X WK K
m N oy
embedding . _ cey
vectors
\ X WV Vv
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SELF-ATTENTION

» We saw how attention helps in seg2seq models (decoder attends to encoder input)

» But we can also use it for a model to ‘attend’ to its own input

X wa Q
%%%% X _ query
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m N oy
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\ X WV Vv
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Source: jalammar.github.io/illustrated-transtformer/



PART 3: LARGE LANGUAGE MODELS

SELF-ATTENTION

» We saw how attention helps in seg2seq models (decoder attends to encoder input)

» But we can also use it for a model to ‘attend’ to its own input

X wa Q
x - query’
WOTIQ X WK K
embedding ) _ Ley
vectors
\ X WV Vv
x - 'value'
model
Oarameters

Source: jalammar.github.io/illustrated-transtformer/
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SELF-ATTENTION

» We saw how attention helps in seg2seq models (decoder attends to encoder input)

» But we can also use it for a model to ‘attend’ to its own input

X wo Q Q KT
| V
X = query y
/ = softmax( ) =
WOTrO X WK K Jdx
embedding ) ) ey’
vectors [ [T ]
\ X WV V
x = value'
model
Oarameters

Source: jalammar.github.io/illustrated-transtformer/
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SELF-ATTENTION

» We saw how attention helps in seg2seq models (decoder attends to encoder input)

» But we can also use it for a model to ‘attend’ to its own input

X we Q
x - query’
WOro X WK K
embedding ) _ Ley
vectors [ [ T]

\ X WV \'}

value'

X
I

model
Oarameters

Source: jalammar.github.io/illustrated-transtformer/

= softmax(

Q KT

X
S
I

Vi attention

matrix
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SELF-ATTENTION

» We saw how attention helps in seg2seq models (decoder attends to encoder input)

» But we can also use it for a model to ‘attend’ to its own input

T
/ /
Y - query
( x )
X WK K -
WOTIQ Vdy attention
: / / :
embedding ) _ ey Matrix
VeCTtors
\ X WV V The FBI is chasing a criminal on the run .
The FBI is chasing a criminal on the run .
« B / ’ / The BBI is chasing a criminal on the run .
B value The FBI i§ chasing a criminal on the run .
The FBI is chasing a criminal on the run.
The FBI 18 chasing a criminal on the run.
MO d o ‘ The FBI is chasing a criminal on the run.
The FBI # chasing a criminal @ therun.
0ars meters The BBI is chasing @ criminal em the run.
The FBI is chasing a criminal on the mun .

Source: jalammar.github.io/illustrated-transtformer/
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MULTI-HEADED SELF-ATTENTION

» Multiple stacked attention layers, model can attend to various aspects of the input at once

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention  5) Concatenate the resulting ~ matrices,
input sentence* each word* We multiply X or using the resulting then multiply with weight matrix W* to
R with weight matrices  Q/K/V matrices produce the output of the layer
Wo@
K
Thinking _-'—.-'—.—l—,WO . Qo
Machines g Wo === Ko
iy Vo WO
W@
* In all encoders other than #0, e 1W1 K 01

we don't need embedding.
We start directly with the output
of the encoder right below this one

L1 1 1
| I =
S
<
X
-‘<_L

R

1 -
T\ Q;

[T 11

CT T 1

<

N

<

A\

<\l
ﬂ

Source: jalammar.github.io/illustrated-transtformer/
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TRANSFORMERS crobabies

[Vaswani et al. 2017]
Linear
» An architecture built around the concept of attention, revolutionized NLP
Feed
. Forward
» SOTA in many tasks, soon became backbone of most subsequent models
Scaled Dot-Product Attention Multi-Head Attention Multi-Head
B - Feedrd Attention \
orwa - X
_
e o e
Multi-Head Multi-Head
Attention Attention
Scale U 1
# Positional Posilional
. : CSHona
Q K vV _ Encoding e ¥ e e Encoding

Input Output
Embedding Embedding

INpuis Outpuls
(shifted right)

» Other tricks: residual connections, layer norm., positional encodings
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» Most large modern NLP models involve pretraining a language model

Pre-Training Stage Language

(huge architecture)

(lots of

A

model training

ElENR 4

(general-purpose

generic text data) ore-trained mode]

Fine-Tuning Stage
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results!
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THE POWER OF LARGE MODELS + PRETRAINING

» Most large modern NLP models involve pretraining a language model

Pre-Training Stage Language Fine-Tuning Stage

model training

BIlE :/
—([= 0

| — | ||= (data |
(huge architecture) - s M— (general-purpose

(lots of generic text data)

e

—~

rom actual

task of interest)
ore-trained model

-

TASK-
SPECIFIC

~

TRAINING
N )

Great
results!

» Language models are the backbone of many other NLP systems (Q&A, MT, etc)
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THE POWER OF LARGE MODELS + PRETRAINING

» Most large modern NLP models involve pretraining a language model

Pre-Training Stage

(huge architecture)

(lots of

generic text data)

Language
model training

-
<~

(general-purpose

ore-trained model

Fine-Tuning Stage

e

(data 1
task of interest)

rom actual

-

TASK-
SPECIFIC

~

TRAINING
N )

Great
results!

» Language models are the backbone of many other NLP systems (Q&A, MT, etc)

» GPT: Generative Pretrained Transtormer [Radford et al., 2018]

» Transformer architecture (12 layers, 768dim hidden state, ~3000dim FF hidden layers)

» Trained on BooksCorpus: >7000 books
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THE POWER OF LARGE MODELS + PRETRAINING

» Most large modern NLP models involve pretraining a language model

Pre-Training Stage Language Fine-Tuning Stage

model training

A | 3

N é E| (data from actual
(huge architecture) - | — (general-purpose

(lots of generic text data)

ore-trained model

s \
TASK- Great

—|— SPECIFIC | ==
| TRAINING results!

task of interest)

» Language models are the backbone of many other NLP systems (Q&A, MT, etc)

» GPT: Generative Pretrained Transtormer [Radford et al., 2018]
» Transformer architecture (12 layers, 768dim hidden state, ~3000dim FF hidden layers)
» Trained on BooksCorpus: >7000 books

» BERT: Bidirectional E

—ncoder Representations from Transformers |

Devlin et al., 2018]
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A family of modern LM types ....

Semi-supervised Sequence Learning

context2Vec
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Multi ‘lm gual Transformer
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UDily i1 DNN SAARS
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(Tsinghua)
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Pre-trained seq2seq

GPT

W

Larger model
More data

s

0

GP1-2

VideoBERT
CBT
ViLBERT
VisualBERT
B212

4

Defense

*» Grover

ERNIE (Baidu)
BERT-wwm

Unicoder-VL

LXMERT

VL-BERT

KnowBert

UNITER

By Xiaozhi Wang & Zhengyan Zhang @THUNLP
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A family of modern LM types ....

. with ever increasing model size
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(553

+Knowlgdge Graph GPT-2 (1.5B)

UDily i1 DNN

Model Size (in billions of parameters)

MASS Permutation LM
Knowledge |distillation UniLM o nt:er-XL ... o - S R BERT-Large (340M)
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E.RN;E V‘“:‘gfm ERNIE (Baidu) 0.01
XN (Isinghua) 2018 2019 2020 2021 2022
et . BERT-wwm
SpanBERT S Neuralfentity linker Unicoder-VL
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APl interface to OpenAl’'s GPT-3 model:

@OpenAI Documentation  Playground Examples  Resources

Playg rou nd O JA 10} gy <> Text to command

Enter text and submit (Ctrl+Enter or 3 +Enter) to get a completion.

@OpenAI Documentation  Playground Examples  Resources

Playground © A @ & < | Loadapreset.

Enter text and submit (Ctrl+Enter or 38 +Enter) to get a completion.

Examples from: https://herbertlui.net/
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HAVE LARGE LANGUAGE MODELS ‘SOLVED" NLP?

» LLMs rely on extremely large datasets

» most languages don’t have so much data available!
» How and why models transfer well in some settings in still not fully understood
» How far can linguistics-free models go towards true language understanding?

» Plus, the ugly side ....
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On the Dangers of Stochastic Parrots:
Can Language Models Be Too Big? §

Emily M. Bender”

ebender@uw.edu
University of Washington
Seattle, WA, USA

Angelina McMillan-Major

aymm@uw.edu
University of Washington
Seattle, WA, USA

ABSTRACT

The past 3 years of work in NLP have been characterized by the
development and deployment of ever larger language models, es-
pecially for English. BERT, its variants, GPT-2/3, and others, most
recently Switch-C, have pushed the boundaries of the possible both
through architectural innovations and through sheer size. Using
these pretrained models and the methodology of fine-tuning them
for specific tasks, researchers have extended the state of the art
on a wide array of tasks as measured by leaderboards on specific
benchmarks for English. In this paper, we take a step back and ask:
How big is too big? What are the possible risks associated with this
technology and what paths are available for mitigating those risks?
We provide recommendations including weighing the environmen-
tal and financial costs first, investing resources into curating and
carefully documenting datasets rather than ingesting everything on
the web, carrying out pre-development exercises evaluating how
the planned approach fits into research and development goals and
supports stakeholder values, and encouraging research directions
beyond ever larger language models.

Timnit Gebru®
timnit@blackinai.org
Black in Al
Palo Alto, CA, USA

Shmargaret Shmitchell
shmargaret.shmitchell@gmail.com
The Aether

alone, we have seen the emergence of BERT and its variants [39,
70, 74, 113, 146], GPT-2 [106], T-NLG [112], GPT-3 [25], and most
recently Switch-C [43], with institutions seemingly competing to
produce ever larger LMs. While investigating properties of LMs and
how they change with size holds scientific interest, and large LMs
have shown improvements on various tasks (§2), we ask whether
enough thought has been put into the potential risks associated
with developing them and strategies to mitigate these risks.

We first consider environmental risks. Echoing a line of recent
work outlining the environmental and financial costs of deep learn-
ing systems [129], we encourage the research community to priori-
tize these impacts. One way this can be done is by reporting costs
and evaluating works based on the amount of resources they con-
sume [57]. As we outline in §3, increasing the environmental and
financial costs of these models doubly punishes marginalized com-
munities that are least likely to benefit from the progress achieved
by large LMs and most likely to be harmed by negative environ-
mental consequences of its resource consumption. At the scale we
are discussing (outlined in §2), the first consideration should be the
environmental cost.
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2. GPT-2 can be fine-tuned for misuse. Our partners at the Middlebury
Institute of International Studies’ Center on Terrorism, Extremism, and
Counterterrorism (CTEC) found that extremist groups can use GPT-2 for
misuse, specifically by fine-tuning GPT-2 models on four ideological
positions: white supremacy, Marxism, jihadist Islamism, and anarchism.
CTEC demonstrated that it’s possible to create models that can generate
synthetic propaganda for these ideologies. They also show that, despite
having low detection accuracy on synthetic outputs, ML-based detection
methods can give experts reasonable suspicion that an actor is generating
synthetic text.

Facebook translates 'good morning' into
"attack them', leading to arrest

Palestinian man questioned by Israeli police after embarrassing

mistranslation of caption under photo of him leaning against
bulldozer

REALTOXICITYPROMPTS:
Evaluating Neural Toxic Degeneration in Language Models

Samuel Gehman® Suchin Gururangan®® Maarten Sap® Yejin Choi°" Noah A. Smith®?
°Paul G. Allen School of Computer Science & Engineering, University of Washington
fAllen Institute for Artificial Intelligence
Seattle, USA
{sgehman, sg01,msap,yejin, nasmith}@cs.washington.edu

Abstract RealToxicityPrompts LM generations
() 9%
Pretrained neural language models (LMs) are T So, I'm starting to | D0
prone to generating racist, sexist, or otherwise think she’s full ... \ caltle,, / X
toxic language which hinders their safe deploy- ) 1 ;f:‘f}g‘:': .
ment. We investigate the extent to which pre- (&10% . S
. . I’'m 99 percent sure it onlilote N
trained LMs can be prompted to generate toxic . ~ s S
) was someone being an ... deiisel” N O

language, and the effectiveness of controllable el
text generation algorithms at preventing such @269 7
toxic degeneration. We create and release RE- The men started swearing | -ssiites<)(@
ALTOXICITYPROMPTS, a dataset of 100K nat- at me, called me ... v X
urally occurring, sentence-level prompts de- — o aifole |

. . (0,) 46% — ::}:(::
rived f.rom a. large. gorpus of Enghsh. web T / s \ T
text, paired with toxicity scores from a widely- a woman by the ... | I &

used toxicity classifier. Using REALTOXICI-

B B T e | ~ 1. t..AY WK
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Energy and Policy Considerations for Deep Learning in NLP

Emma Strubell

Ananya Ganesh

Andrew McCallum

College of Information and Computer Sciences
University of Massachusetts Amherst
{strubell, aganesh, mccallum}@cs.umass.edu

Abstract

Recent progress in hardware and methodol-
ogy for training neural networks has ushered
in a new generation of large networks trained
on abundant data. These models have ob-
tained notable gains in accuracy across many
NLP tasks. However, these accuracy improve-
ments depend on the availability of exception-
ally large computational resources that neces-
sitate similarly substantial energy consump-
tion. As a result these models are costly to
train and develop, both financially, due to the
cost of hardware and electricity or cloud com-
pute time, and environmentally, due to the car-
bon footprint required to fuel modern tensor

wwunnnnnin~s hawdocrrawa Tewn thhin cancmnaw vvra i~

Consumption COse (Ibs)
Air travel, 1 passenger, NY <+>SF 1984
Human life, avg, 1 year 11,023
American life, avg, 1 year 36,156
Car, avg incl. fuel, 1 lifetime 126,000
Training one model (GPU)
NLP pipeline (parsing, SRL) 39
w/ tuning & experimentation 78,468
Transformer (big) 192
w/ neural architecture search 626,155

Table 1: Estimated CO; emissions from training com-
mon NLP models, compared to familiar consumption.’
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Man is to Computer Programmer as Woman is to Homemaker?
Debiasing Word Embeddings

Tolga Bolukbasi®, Kai-Wei Changz, James Zouz, Venkatesh Saligramal’z, Adam Kalai?

1 Boston University, 8 Saint Mary’s Street, Boston, MA B amn o
2 Microsoft Research New England, 1 Memorial Drive, Cambridge, MA | N a=:

tolgab@bu.edu, kw@kwchang.net, jamesyzou@gmail.com, srv@bu.edu, adam.kalai@microsoft.com

Translate Turn off instant translation
\ \

\ 7 7/
man — woman & computer programmer — homemaker.

Bengali English Hungarian Detectlanguage -~ L,  English Spanish Hungarian ~

0 egy apolo. X  she's a nurse.
Ext h £ 0 egy tudos. he is a scientist.
Xtreme sne occupations G egy meémak. he is an engineer.
1. homemaker 2. nurse 3. receptionist 0 egy FEK; ﬁh%'s atb‘dkﬁf-
. . . 1. : & egy tanar. e is a teacher.
7. nanny 8. bookkeeper 9. stylist 0 egy vezerigazgatoja. he's a CEOQ.
10. housekeeper 11. interior designer 12. guidance counselor wi0Do <
) BE§ ~ 110/5000
Extreme he occupations
1. maestro 2. skipper 3. protege Source: Prates el al. 2018
4. philosopher 5. captain 6. architect
7. financier 8. warrior 9. broadcaster

10. magician 11. figher pilot 12. boss
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» Continuous (rather than discrete) representations: better for computation
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» Model sequential data with recurrent neural networks: challenges and solutions
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» Language models: the backbone of most modern NLP systems
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Continuous

recurrent neural networks

Language models



WRAP-UP

KEY IDEAS WE'VE SEEN TODAY

» NLP is not (just) a research field anymore, it's a commodity: high societal impact
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FURTHER TOPICS: INTERPRETABILITY

RATIONALIZING NEURAL PREDICTIONS

[Lei et al. 2016]

Force model to use a small subset of the original input - interpretation as cooperative game

input x

this beer pours ridiculously clear with tons of
carbonation that forms a rather impressive
rocky head that settles slowly into a fairly
dense layer of foam. this is a real good lookin’
beer, unfortunately it gets worse from here ...

Generator gen(x)

Encoder enc(z)

distribution over possible rationales P(z| x)

this beer pours ridiculously clear with tons of
carbonation that forms a rather impressive
rocky head that settles slowly into a fairly
dense layer of foam. this is a real good lookin®
beer, unfortunately it gets worse from here ...

this beer pours ridiculously clear with tons of
carbonation that forms a rather impressive
rocky head that settles slowly into a fairly
dense layer of foam. this is a real good lookin'
beer, unfortunately it gets worse from here ...

this beer pours ridiculously clear with tons of
carbonation that forms a rather impressive
rocky head that settles slowly into a fairly
dense layer of foam. this is a real good lookin'
beer, unfortunately it gets worse from here ...

0.8

this beer pours ridiculously clear with tons of
carbonation that forms a rather impressive
rocky head that settles slowly into a fairly
dense layer of foam. this is a real good lookin’
beer, unfortunately it gets worse from here ...

0.02

this beer pours ridiculously clear with tons of
carbonation that forms a rather impressive
rocky head that settles slowly into a fairly
dense layer of foam. this is a real good lookin'
beer, unfortunately it gets worse from here ...

0.05

0.01

0.1

ously clear with tons of

nat form a rather impressive

ocky head that settles

slowly into a fairly r
a real gooc ki

e layer of foam. th

s worse from here

Generator gen(x)

Encoder enc(z) |<

generator specifies the distribution of rationales

-

this beer pours ridiculously clear with tons of
carbonation that forms a rather impressive
rocky head that settles slowly into a fairly
dense layer of foam. this is a real good lookin
beer, unfortunately it gets worse from here ...

0.8

this beer pours ridiculously clear with tons of
carbonation that forms a rather impressive
rocky head that settles slowly into a fairly
dense layer of foam. this is a real good lookin’
beer, unfortunately it gets worse from here ...

0.05 V4

this beer pours ridiculously clear with tons of
carbonation that forms a rather impressive
rocky head that settles slowly into a fairly
dense layer of foam. this is a real good lookin'
beer, unfortunately it gets worse from here ...

0.02

this beer pours ridiculously clear with tons of
carbonation that forms a rather impressive
rocky head that settles slowly into a fairly
dense layer of foam. this is a real good lookin'
beer, unfortunately it gets worse from here ...

0.01

this beer pours ridiculously clear with tons of
carbonation that forms a rather impressive
rocky head that settles slowly into a fairly
dense layer of foam. this is a real good lookin'
beer, unfortunately it gets worse from here ...

0.1

negative  neutral positive

prediction y

encoder makes prediction given rationale




FURTHER TOPICS: INTERPRETABILITY

RATIONALIZING NEURAL PREDICTIONS

[Lei et al. 2016]

Force model to use a small subset of the original input - interpretation as cooperative game

Task: predict ratings and rationales for each aspect

this beer pours ridiculously clear with tons of carbonation that
forms a rather impressive rocky head that settles slowly into a
fairly dense layer of foam. this is a real good lookin® beer,
unfortunately it gets worse from here ... first, the aroma is kind
of bubblegum-like and grainy. next, the taste is sweet and
grainy with an unpleasant bitterness in the finish. ... ... overall,
the fat weasel is good for a fairly cheap buzz, but only if you like
your beer grainy and bitter .

Ratings
Look: 5 stars

Aroma: 2 stars

Examples and precisions of rationales

Evaluation: Parsing Pathology Report

Cat egory: Accession Number <unk> Report Status Final
Type Surgical Pathology ... Pathology Report:

LEFT BREAST ULTRASOUND GUIDED CORE NEEDLE BIOPSIES ...
INVASIVE DUCTAL CARCINOMA poorly differentiated modified
IDC Bloom Richardson grade Il [l measuring at least 0 7cm in this limited
specimen Central hyalinization is present within the tumor mass but no
necrosis is noted No lymphovascular invasion is identified No in situ
carcinoma is present Special studies were performed at an outside
institution with the following results not reviewed ESTROGEN RECEPTOR
NEGATIVE PROGESTERONE RECEPTOR NEGATIVE ...

F-score:

98%

a beer that is not sold in my neck of the woods , but managed to
get while on a roadtrip . poured into an imperial pint glass with
a generous head that sustained life throughout . nothing out of
the ordinary here , but a good brew still . body was kind of
heavy, but not thick . the hop smell was excellent and enticing
. very drinkable

poured into a snifter . produces a small coffee head that reduces
quickly . black as night . pretty typical imp . roasted malts hit on
the nose . a little sweet chocolate follows . big toasty character
on the taste . in between i 'm getting plenty of dark chocolate and
some bitter espresso . it finishes with hop bitterness . nice smooth
mouthfeel with perfect carbonation for the style . overall a nice
stout i would love to have again , maybe with some age on it .

Look Aroma Palate
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e \What it the model is already trained? And we have no access to its parameters etc...

* |dea (Ribeiro et al. 2016): fit a simple interpretable model around a given query, using
perturbations of the input

e But this assumes input is continuous, output is a single value. Can we extend this to text data?
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* |dea (Ribeiro et al. 2016): fit a simple interpretable model around a given query, using
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e But this assumes input is continuous, output is a single value. Can we extend this to text data?
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INTERPRETABILITY VIA LOCAL APPROXIMATION
|[AM & Jaakkola, 2018]

e \Weighted bipartite graph summarizes local behavior of the model.

Input: (51,52.....Sn) @@ @

0.1 \0.5 0.2 weight =
" influence
\ 4
Output: (T1,72,...,Tn)
Might need to
1 k } 0.1 0.5 e
— . 0.2 partition if
Ew—)y {G Yt G dense

(locally) .

e Explanation:
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1.Encode input to vector representation z
2.Generate samples around z

3.Decode samples into sequences
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- Using perturbations, infer dependencies
between original input/output tokens
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1.Encode input to vector representation z

2.Generate samples around z

3.Decode samples into sequences

4 .Map perturbed sequences using decoder

Causal
Inference

(

between original input/output tokens

- Account for uncertainty: Bayesian LR

\

Explanation

. gk K_ 0
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J

- Using perturbations, infer dependencies

- Simplest approach: logistic regression

v

S1 S92

AN

- For large inputs/outputs, dense
graph might not be interpretable

- Cast as k-cut graph partitioning

- Graph partitioning with uncertainty
[Fan et al. 2012]
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INTERPRETABILITY VIA LOCAL APPROXIMATION
[AM & Jaakkola, 2018]

Application: explaining biases in machine translation systems

Model: Azure MT service (via API), English to French

Inputs: Sentences containing bias-prone words

Findings: Model exhibits strong unexplained grammatical gender preferences.

- Chooses masculine in sentences containing doctor, professor, smart, talented

- Chooses feminine in sentences containing dancer, nurse, charming, compassionate
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Application: explaining biases in MT systems
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INTERPRETABILITY VIA LOCAL APPROXIMATION
[AM & Jaakkola, 2018]

Application: explaining biases in MT systems Application: flaw detection in dialogue systems

seqgZseq with attention

- . : Are you the son ,
Output: ‘ d e C ux Input Prediction

’Q / Input Prediction
Input: This\j, dancer | is  very charmi\r})g @ doctor | very t@d What do you mean it doesn’t matter? | don’t know
- - - Perhaps have we met before? | don'’t think so

Can | get you two a cocktail? No, thanks.
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/
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INTERPRETABILITY VIA LOCAL APPROXIMATION
[AM & Jaakkola, 2018]

Application: explaining biases in MT systems Application: flaw detection in dialogue systems

seqgZseq with attention

- . : Are you the son ,
Output: ‘ d

ux Input Prediction

Input Prediction
Input: This\j, | s very charmi\r})g @ doctor | very t@d What do you mean it doesn’t matter? | don’t know
- | - Perhaps have we met before? | don’t think so

Can | get you two a cocktail? No, thanks.

do 0.75

| 200
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INTERPRETABILITY VIA LOCAL APPROXIMATION
[AM & Jaakkola, 2018]

Application: explaining biases in MT systems Application: flaw detection in dialogue systems

seqgZseq with attention

- . : Are you the son ,
feminine conjugation (o f Vito Corleone?] q M q [ Yes, sir. ]

Output @n & Uux Input Prediction
A | o
‘< B nput Prediction
Input: This  dancer is ~very charming \/yl/ﬁThis doctor  is very\ té/lented What do you mean it doesn’t matter? | don’t know
Can | get you two a cocktail? No, thanks.

do 0.75

A
personnes b S
! N
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! B I don's know. . ‘\a\Ne Yor 0.60
R - 20 de\ \S mean
‘ | «\0 it 0.45
These/ people are ‘;“very - odd S 1“6 doesn
| P17/ R - P 0.30
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?
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FURTHER TOPICS: STRUCTURED NEURAL NLP MODELS

WHAT ABOUT STRUCTURE?

» Language is non-linear. It has structure and compositionality [e.g. Chomsky]

g Recursive Matrix-Vector Model

/\ - vector

(@ O)
NP f(Ba, Ab)= s e /\ .
| - matrix
/\ /\ Ba=

(0 0)

0O
00

The man picked oo °9°
o tab] . Very good movie
e vegetables (a, A (b, B (¢, C
CIDEY: CID Y @® ooi
OO0 (O N 00

Source: socher.org
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BORTUSER TOPICS: STRUCTURED NEURAL NLP MODELS

RECURSIVE NEURAL NETS
[Socher et al., 2011]

Recursive Matrix-Vector Model

@)
Q - vector

eo|. i
© 0 matrix

Source: socher.org
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BORLISER TOPICS: STRUCTURED NEURAL NLP MODELS

RECURSIVE NEURAL NETS
[Socher et al., 2011]

Recursive Matrix-Vector Model

o0
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- vector

- matrix

Source: socher.org
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BORTUSER TOPICS: STRUCTURED NEURAL NLP MODELS

RECURSIVE NEURAL NETS ALLOWS ENCODING OF STRUCTURE

[Socher et al., 2011] OBJECTS. WHAT ABOUT DECODING?

Recursive Matrix-Vector Model

@)
Q - vector )

:: - matrix (o) (o) ©)
This film_ -
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Source: socher.org
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TREE TO TREE: STRUCTURED ENCODING AND DECODING
[Dong & Lapata, 2016; AM & Jaakkola, 2017]
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FURTHER TOPICS: STRUCTURED NEURAL NLP MODELS

TREE TO TREE: STRUCTURED ENCODING AND DECODING
[Dong & Lapata, 2016; AM & Jaakkola, 2017]

APPLICATION: GENERATING
EXECUTABLE PROGRAMS FROM

NATURAL LANGUAGE DESCRIPTIONS

Recipe “Save photos you're tagged in on Facebook to Dropbox”
I Root
IF (TRIGGER) < — THEN (ACTION)
(a) Channels Facebook Dropbox
(b) Functions You_are_tagged _in_a_photo Add_file_from _URL
[ File_URL File_name Dropbox_Folder_Path ]
(c) Argum .

l “{{CreafedAt}}} l

(b) Parameters [ {{imageSource} }} - {{From}}} - {{Facebook}}} |
{{Caption}}”




