
CS 182 GUEST LECTURE: 

LANGUAGE MODELS AND NLP

DAVID ALVAREZ-MELIS, MICROSOFT RESEARCH



INTRODUCTION

THE CHALLENGE WITH LANGUAGE

▸ So far: data has been assumed to be vectors: 


▸ fixed dimension


▸ continuous

1.2

0.7



INTRODUCTION

THE CHALLENGE WITH LANGUAGE

▸ So far: data has been assumed to be vectors: 


▸ fixed dimension


▸ continuous

▸ What if the input is a sentence? Or a document? 

1.2

0.7



INTRODUCTION

THE CHALLENGE WITH LANGUAGE

▸ So far: data has been assumed to be vectors: 


▸ fixed dimension


▸ continuous

▸ What if the input is a sentence? Or a document? 

▸ Key questions: 


▸ how to represent text data while preserving its meaning 


▸ how to process it /compute with it efficiently
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ASPECTS


Semantics


Syntax


Morphology 


Phonology


Pragmatics

PROBLEMS


Machine translation


Summarization


Text classification
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Language Modeling

METHODS
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LINGUISTICS CHEAT SHEET
▸ Semantics: pertaining to the meaning of a word, phrase, 

sentence, or text

▸ Syntax: arrangement of words and phrases to create 
wellformed sentences

▸ Morphology: pertaining to the structure or form of 
words, e.g., their parts 

▸ Corpus: a collection of text data (plural: corpora)

morph + o + log + y
base


‘Form, structure’

Greek μορφε, ‘form’ base


‘Speech, word, account, reason’

Greek λογοσ

suffix
connector
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INTRODUCTION

OUTLINE FOR TODAY
▸ Goal: overview of the main ideas and concepts behind modern NLP

▸ Part I: how do we encode meaning from text data (representation)
▸ deep dive into word2vec for word embedding

▸ Part II: how do we use encoded text to solve NLP tasks? (prediction)
▸ deep dive into recurrent neural nets (vanilla and LSTM)

▸ Part III: (time permitting) very large neural language models
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WORD VECTOR REPRESENTATION: FIRST IDEA

Vector size: # words in vocabulary

 (potentially huge)

house

apartment

nice

Word representation:


house           
apartment   
nice             


= [0 0 0 1 0 0 …]
= [0 0 1 0 0 0 …]
= [1 0 0 0 0 0 …]

Sentence/Document representation:


“the house is nice, the apartment is nice”                     
= [2 0 1 1 0 0 …]

All word vectors 
are orthogonal!

no notion of 
word ‘similarity’ 
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each dimension 
corresponds to a word Two crucial issues:
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WORD VECTOR REPRESENTATION

What we really want:


house           
apartment   
nice             


= [0.23 − 1.52 3.22 0.01 2.45 − 1.32 …]
= [−1.32 0.78 1.34 0.34 − 1.11 5.32 …]
= [0.98 0.32 − 3.34 8.23 1.01 − 2.68 …]

Related words are 
closer together in 

vector space

Vector size: fixed, not too large

red

amazing

blue

nice

apartment

house

PART 1: WORD EMBEDDINGS

The meaning of each word is 
‘distributed’ across many 

dimensions

How do we achieve this?


How to turn              into                   that carry meaning? 
1.2
0.7
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THE DISTRIBUTIONAL HYPOTHESIS

“YOU SHALL KNOW A WORD 

BY THE COMPANY IT KEEPS” John R Firth 


(1957)

“WORDS OCCURRING IN 

(LINGUISTICALLY) SIMILAR CONTEXTS 
TEND TO BE SEMANTICALLY SIMILAR”

Zellig S 

Harris 
(1954)
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THE DISTRIBUTIONAL HYPOTHESIS

“A bottle of tezgüino is on the table.”


“Everybody likes tezgüino.”


“Don’t have tezgüino before you drive.”


“We make tezgüino out of corn.”

What does 


 tezgüino mean?

[example from Lin (1998) via Eisenstein (2018)]

Tesgüino is an 
artisanal corn beer 
produced by several 
Yuto-Aztec people. 
The Tarahumara 
people regard the 
beer as sacred, and 
it forms a significant 
part of their society.
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THE DISTRIBUTIONAL HYPOTHESIS

… central bank announced it will maintain interest rates fixed despite inflation fears in the economy …

xinflation ↔ xprice

Idea: vectors of words appearing in similar contexts should be similar

… interest rates continued increasing, along with the consumer price index, while the US economy…
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WORD2VEC

▸ Model probability of context given center word

▸ Parametrize as neural network

▸ Train via maximum likelihood objective 

▸ Efficient training via SGD + Negative Sampling

▸ Fascinating linear relationships in vector space

[Mikolov et al., 2013; 2014] 

>50K combined citations!
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Naive Bayes assumption
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WORD2VEC [Mikolov et al., 2013] 

T

∏
t=1

∏
−m ≤ j ≤ m

j ≠ 0

P(wt+j ∣ wt; θ)

    −
1
T

T

∑
t=1

∑
−m ≤ j ≤ m

j ≠ 0

log P(wt+j ∣ wt; θ)

Likelihood

(of entire document)

Objective Function

(negative log-likelihood)

We want to minimize NLL (i.e., maximize likelihood)
(an instance of Maximum Likelihood Estimation)
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WORD2VEC [Mikolov et al., 2013] 

Algorithmic Considerations

     Loss(U, V) = −
1
T

T

∑
t=1

∑
−m ≤ j ≤ m

j ≠ 0

log u⊤
o vc + log ∑

w∈V

exp(u⊤
wvc)

This an  sum! Potentially hugeO( |V | )What’s wrong with this objective?

Two Solutions: 

1. Negative sampling (solves a slightly different objective)

2. Hierarchical softmax (computes softmax via binary tree)
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Two Flavors of Prediction

predict context from center

Skip-Gram Context Bag of Words 
(CBOW)

predict center from context
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(DEMO): https://projector.tensorflow.org/


Visualizing Word2Vec Embeddings

https://projector.tensorflow.org/
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ALL VECTORS LEAD TO ROME

THEY ARE ALL 
(ESSENTIALLY) EQUIVALENT


 [HASHIMOTO, AM & JAAKKOLA, 2015]

PART 1: WORD EMBEDDINGS



BONUS: AUTOMATIC TRANSLATION USING EMBEDDINGS
[Conneau et al 2018]: 

PART 1: WORD EMBEDDINGS



BONUS: AUTOMATIC TRANSLATION USING EMBEDDINGS
[Conneau et al 2018]: 

PART 1: WORD EMBEDDINGS



BONUS: AUTOMATIC TRANSLATION USING EMBEDDINGS
[Conneau et al 2018]: 

PART 1: WORD EMBEDDINGS



BONUS: AUTOMATIC TRANSLATION USING EMBEDDINGS
[Conneau et al 2018]: 

PART 1: WORD EMBEDDINGS



BONUS: AUTOMATIC TRANSLATION USING EMBEDDINGS
[Conneau et al 2018]: 

SOLUTION FOUND THROUGH 
ADVERSARIAL TRAINING

PART 1: WORD EMBEDDINGS



BONUS: AUTOMATIC TRANSLATION USING EMBEDDINGS
[Conneau et al 2018]: 

[AM & Jaakkola 2018]: 

SOLUTION FOUND THROUGH 
ADVERSARIAL TRAINING

PART 1: WORD EMBEDDINGS



BONUS: AUTOMATIC TRANSLATION USING EMBEDDINGS
[Conneau et al 2018]: 

[AM & Jaakkola 2018]: 

SOLUTION FOUND THROUGH 
ADVERSARIAL TRAINING

PART 1: WORD EMBEDDINGS



BONUS: AUTOMATIC TRANSLATION USING EMBEDDINGS
[Conneau et al 2018]: 

[AM & Jaakkola 2018]: 

SOLUTION FOUND THROUGH 
ADVERSARIAL TRAINING

ALLOWS FOR EMBEDDING SPACES 
OF DIFFERENT DIMENSION


PART 1: WORD EMBEDDINGS



BONUS: AUTOMATIC TRANSLATION USING EMBEDDINGS
[Conneau et al 2018]: 

[AM & Jaakkola 2018]: 

SOLUTION FOUND THROUGH 
ADVERSARIAL TRAINING

ALLOWS FOR EMBEDDING SPACES 
OF DIFFERENT DIMENSION


PROBLEM SOLVED THROUGH 
EXPLICIT OPTIMIZATION    

(GROMOV-WASSERSTEIN)
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≈
counts(wt+1, wt, …, wt−n+2)

counts(wt, …, wt−n+2)
(approximate probs via counts, 
estimated from large corpus)
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LANGUAGE MODELING: N-GRAM MODELS 
The classic (pre-neural) approach: learning n-gram probabilities

Main idea: estimate next word probability using n-gram counts

p(wt+1 ∣ wt, …, w1) = p(wt+1 ∣ wt, …, wt−n+2) ≈
counts(wt+1, wt, …, wt−n+2)

counts(wt, …, wt−n+2)

Example: estimate next-word probability for “The house is _____” using trigrams

p(green ∣ is, house, the) = p(green ∣ is, house)

= (no. of times “house is green” occurs in corpus)
(no. of times “house is” occurs in corpus)

N-gram models with small n are “miopic”, what about large n?
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For every t: Word Embedding 
(e.g. Word2Vec)

A non-linear 
activation function
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[Rumelhart, 1986; Hopfield, 1982]

̂yt = softmax(Uht + b2) ∈ R|V|

A : ht = σ(Weet + Whht−1 + b1)

et = Ext

For every t: 

Credit: Stanford CS224n

Word Embedding 
(e.g. Word2Vec)

A non-linear 
activation function

Predicted class 

(in this case, next word)
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[Rumelhart, 1986; Hopfield, 1982]

A : ht = σ(Weet + Whht−1 + b1)
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The house is green

0.9
1.2

0.3

[Rumelhart, 1986; Hopfield, 1982]

A : ht = σ(Weet + Whht−1 + b1)
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The house is green

1.5
0.0

1.2


[Rumelhart, 1986; Hopfield, 1982]

A : ht = σ(Weet + Whht−1 + b1)
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The house is green

0.3
1.1

0.8


[Rumelhart, 1986; Hopfield, 1982]

A : ht = σ(Weet + Whht−1 + b1)
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The house is green

2.3

0.5

1.9


[Rumelhart, 1986; Hopfield, 1982]

A : ht = σ(Weet + Whht−1 + b1)
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The house is green

2.3

0.5

1.9


[Rumelhart, 1986; Hopfield, 1982]

A : ht = σ(Weet + Whht−1 + b1)
Note: same weights 
applied every time
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RECURRENT NEURAL NETS: TRAINING

Error(yt, ̂yt)Error(y2, ̂y2)Error(y1, ̂y1)Error(y0, ̂y0)

∂Et

∂θ
∂E2

∂θ
∂E1

∂θ
∂E0

∂θ

̂y0 ̂y1 ̂y2 ̂yt̂yt = softmax(Uht + b2) ∈ R|V|

ht = σ(Weet + Whht−1 + b1)

et = Ext
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RECURRENT NEURAL NETS: TRAINING

Error(yt, ̂yt)Error(y2, ̂y2)Error(y1, ̂y1)Error(y0, ̂y0)

∂Et

∂θ
∂E2

∂θ
∂E1

∂θ
∂E0

∂θ

Back-Propagation Through Time (BPTT)

̂y0 ̂y1 ̂y2 ̂yt̂yt = softmax(Uht + b2) ∈ R|V|

ht = σ(Weet + Whht−1 + b1)

et = Ext
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Language Modeling (LM)

house is
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RECURRENT NEURAL NETS: EXAMPLE TEXT GENERATION

Training data: Wikipedia

Input: “The meaning of life is “

Generated Text:

[Sutskever et al,  2011]
Training data: NYT

Input: “[space]”

Generated Text:
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RECURRENT NEURAL NETS: EXAMPLE TEXT GENERATION

Training data: Obama’s Speeches

Input: “YES WE CAN”

Generated Text: 


Good morning. And as we mark the fact that they can stand with 
their companies that are consistent to the state of Pakistan and 
the United States of America.


With the financial system we can do that. And the people of the 
United States will not be able to continue to support the people 
of the greatest problem of the American people to stay in the 
White House. And that’s why [ …]


Thank you very much. God bless you. God bless you. God bless 
you. God bless you.


Training data: Shakespeare

Input: “ ”

Generated Text: 

PANDARUS:

Alas, I think he shall be come approached and the day

When little srain would be attain'd into being never fed,

And who is but a chain and subjects of his death,

I should not sleep.


Second Senator:

They are away this miseries, produced upon my soul,

Breaking and strongly should be buried, when I perish

The earth and thoughts of many states.


DUKE VINCENTIO:

Well, your wit is in the care of side and that. […]

Example Source: medium.com/@samim/ Example Source: http://karpathy.github.io/
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RECURRENT NEURAL NETS: APPLICATIONS

The

Part-of-Speech Tagging (POS) 

house

ART NOUN
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RECURRENT NEURAL NETS: APPLICATIONS

The

Part-of-Speech Tagging (POS) 

house is

VERBART NOUN
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RECURRENT NEURAL NETS: APPLICATIONS

Sentence Classification

(e.g. sentiment analysis)
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RECURRENT NEURAL NETS: APPLICATIONS

I

Sentence Classification

(e.g. sentiment analysis)

love this

<positive>

recommended!
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RECURRENT NEURAL NETS: PROS AND CONS

PROS
• Can take inputs of variable (and 

potentially infinite) length 

• Can model long-range 
dependencies

• Fixed model size regardless of 
input size

CONS
• Computation can be very 

slow

• Information degrades in 
every time step

• Exploding and vanishing 
gradients
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RECURRENT NEURAL NETS: VANISHING GRADIENT PROBLEM

(Whiteboard)

Analysis for simplified case ( identity). General case follows similar proof.σ =
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LSTM: LONG SHORT-TERM MEMORY NETWORK
[Schmidhuber et al. 1992] 

Source: colah.github.io

Addresses the gradient problems by using ‘gates’ to control information flow
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LSTM: LONG SHORT-TERM MEMORY NETWORK
[Schmidhuber et al. 1992] 

Source: colah.github.io

Addresses the gradient problems by using ‘gates’ to control information flow

f(t) = σ(Wf h(t−1) + Uf x(t) + bf)

i(t) = σ(Wih(t−1) + Uix(t) + bi)
o(t) = σ(Wf h(t−1) + Uox(t) + bo)

c̃(t) = tanh(Wch(t−1) + Ucx(t) + bc)
c(t) = f(t) ∘ c(t−1) + i(t) ∘ c̃(t)

h(t) = o(t) ∘ tanh c(t)

forget gate


input gate


output gate ct−1
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LSTM: LONG SHORT-TERM MEMORY NETWORK
[Schmidhuber et al. 1992] 

Source: colah.github.io

Addresses the gradient problems by using ‘gates’ to control information flow

f(t) = σ(Wf h(t−1) + Uf x(t) + bf)

i(t) = σ(Wih(t−1) + Uix(t) + bi)
o(t) = σ(Wf h(t−1) + Uox(t) + bo)

c̃(t) = tanh(Wch(t−1) + Ucx(t) + bc)
c(t) = f(t) ∘ c(t−1) + i(t) ∘ c̃(t)

h(t) = o(t) ∘ tanh c(t)

forget gate


input gate


output gate

cell update


cell state


hidden state

ct−1
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LSTM: LONG SHORT-TERM MEMORY NETWORK

Source: colah.github.io

[Schmidhuber et al. 1992] 
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SEQ2SEQ: SEQUENCE TO SEQUENCE MODEL

 La        casa       es        roja

ENCODER DECODER

[Sutskever et al. 2014] 

The    house        is        red

No prediction during encoding

2 RNN’s: encoder (processes input sentence) and decoder (generates output)

Decoder takes encoder’s last state +

a special <start> token as inputs



BIDIRECTIONAL RNNS

The    house        is        red

Source: colah.github.io

Forward RNN
Backward RNN

Concatenate hidden states

Advantage: prediction can rely on both left and right context
Note: not applicable to Language Modeling!  (Why?)
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DEEP / STACKED / MULTI-LAYER RNNS

• Inputs to i-th RNN are hidden 
states of (i-1)-th RNN

• Allows RNN to learn more 
complex representations

• Typically: lower RNNs learn 
local/simpler features, higher 
RNNs learning global/abstract 
features

The house is green.
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ATTENTION
Motivation: entire meaning of source sentence encoded in one vector! (the ‘bottleneck problem’)

 La        casa       es        roja
ENCODER DECODER

The    house        is        red
h1 h2 h3 h4

αt,1 αt,2 αt,3
αt,4

⊕ at

s1 s2 s3 s4

αt = softmax(et)

et = [st ⋅ h1, …, st ⋅ hN]

at =
N

∑
i=1

αt,ihi

 is sometimes called the ‘query’st

PART 2: RECURRENT NEURAL NETWORKS

decoder ’attends’ to all inputs tokens!
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So

ur
ce

: t
ru

ng
tra

n.
io

[Bahdanau et al., 2015]

… for summarization:

[Rush et al., 2015]

… for Question Answering:

[Rucke et al., 2017]



LARGE LANGUAGE MODELS:         
SELF-ATTENTION, TRANSFORMERS, PRETRAINING

PART 3:
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FROM RNN TO ATTENTION-BASED MODELS

▸ RNNs (even LSTMs) struggle with very long-range dependencies

▸ So far: linear interaction between individual words. Language isn’t linear!

▸ Starting in 2017, new increasingly larger models have taken over NLP

▸ Almost human-quality text generation, state-of-the-art in many tasks

▸ Two key ideas behind them: attention-based architectures and pre-training 



SELF-ATTENTION
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MULTI-HEADED SELF-ATTENTION

▸ Multiple stacked attention layers, model can attend to various aspects of the input at once

Source: jalammar.github.io/illustrated-transformer/
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TRANSFORMERS
[Vaswani et al. 2017]
▸ An architecture built around the concept of attention, revolutionized NLP


▸ SOTA in many tasks, soon became backbone of most subsequent models


▸ Other tricks: residual connections, layer norm., positional encodings
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▸ Most large modern NLP models involve pretraining a language model

▸ Language models are the backbone of many other NLP systems (Q&A, MT, etc)

▸ GPT: Generative Pretrained Transformer [Radford et al., 2018]

▸ Transformer architecture (12 layers, 768dim hidden state, ~3000dim FF hidden layers)

▸ Trained on BooksCorpus: >7000 books

▸ BERT: Bidirectional Encoder Representations from Transformers [Devlin et al., 2018]
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A family of modern LM types ….
… with ever increasing model size
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HAVE LARGE LANGUAGE MODELS ‘SOLVED’ NLP?

▸ LLMs rely on extremely large datasets

▸ most languages don’t have so much data available!

▸ How and why models transfer well in some settings in still not fully understood

▸ How far can linguistics-free models go towards true language understanding?

▸ Plus, the ugly side …. 

PART 3: LARGE LANGUAGE MODELS
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THE UGLY SIDE: AMPLIFYING DATA BIASES
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Source: Prates el al. 2018
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KEY IDEAS WE’VE SEEN TODAY 

▸ Continuous (rather than discrete) representations: better for computation

▸ Model sequential data with recurrent neural networks: challenges and solutions 

▸ Language models: the backbone of most modern NLP systems

▸ NLP is not (just) a research field anymore, it’s a commodity: high societal impact
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WRAP-UP

RECOMMENDED READINGS

Classic text-books; great reference for 
foundations and pre-neural NLP

self-contained intro to 
neural NLP

Hands-on!



FURTHER TOPICS
BONUS:



“EVERY TIME I FIRE A 
LINGUIST, THE PERFORMANCE 
OF THE SPEECH RECOGNIZER 
GOES UP”

Fred Jelinek,

NLP + ASR pioneer
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INTERPRETABILITY IN NLP
Modern NLP models have [mi|bi|tri]-llions of parameters — essentially black boxes! 

How can we interpret their predictions?

FURTHER TOPICS: INTERPRETABILITY

[Rush et al., 2015]

Via Attention?

Attention is dense! Not very 
interpretable, especially for 

long inputs/outputs
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Figure 3: Toy example to present intuition for LIME.

The black-box model’s complex decision function f
(unknown to LIME) is represented by the blue/pink

background, which cannot be approximated well by

a linear model. The bold red cross is the instance

being explained. LIME samples instances, gets pre-

dictions using f , and weighs them by the proximity

to the instance being explained (represented here

by size). The dashed line is the learned explanation

that is locally (but not globally) faithful.

distance function D (e.g. cosine distance for text, L2 distance
for images) with width �.

L(f, g,⇡x) =
X

z,z02Z

⇡x(z)
�
f(z)� g(z0)

�2
(2)

For text classification, we ensure that the explanation is
interpretable by letting the interpretable representation be
a bag of words, and by setting a limit K on the number of
words, i.e. ⌦(g) = 11[kwgk0 > K]. Potentially, K can be
adapted to be as big as the user can handle, or we could
have di↵erent values of K for di↵erent instances. In this
paper we use a constant value for K, leaving the exploration
of di↵erent values to future work. We use the same ⌦ for
image classification, using “super-pixels” (computed using
any standard algorithm) instead of words, such that the
interpretable representation of an image is a binary vector
where 1 indicates the original super-pixel and 0 indicates a
grayed out super-pixel. This particular choice of ⌦ makes
directly solving Eq. (1) intractable, but we approximate it by
first selecting K features with Lasso (using the regularization
path [9]) and then learning the weights via least squares (a
procedure we call K-LASSO in Algorithm 1). Since Algo-
rithm 1 produces an explanation for an individual prediction,
its complexity does not depend on the size of the dataset,
but instead on time to compute f(x) and on the number
of samples N . In practice, explaining random forests with
1000 trees using scikit-learn (http://scikit-learn.org) on a
laptop with N = 5000 takes under 3 seconds without any
optimizations such as using gpus or parallelization. Explain-
ing each prediction of the Inception network [25] for image
classification takes around 10 minutes.
Any choice of interpretable representations and G will

have some inherent drawbacks. First, while the underlying
model can be treated as a black-box, certain interpretable
representations will not be powerful enough to explain certain
behaviors. For example, a model that predicts sepia-toned
images to be retro cannot be explained by presence of absence
of super pixels. Second, our choice of G (sparse linear models)
means that if the underlying model is highly non-linear even
in the locality of the prediction, there may not be a faithful
explanation. However, we can estimate the faithfulness of

Algorithm 1 Sparse Linear Explanations using LIME

Require: Classifier f , Number of samples N
Require: Instance x, and its interpretable version x0

Require: Similarity kernel ⇡x, Length of explanation K
Z  {}
for i 2 {1, 2, 3, ..., N} do

z0i  sample around(x0)
Z  Z [ hz0i, f(zi),⇡x(zi)i

end for

w  K-Lasso(Z,K) . with z0i as features, f(z) as target
return w

the explanation on Z, and present this information to the
user. This estimate of faithfulness can also be used for
selecting an appropriate family of explanations from a set of
multiple interpretable model classes, thus adapting to the
given dataset and the classifier. We leave such exploration
for future work, as linear explanations work quite well for
multiple black-box models in our experiments.

3.5 Example 1: Text classification with SVMs
In Figure 2 (right side), we explain the predictions of a
support vector machine with RBF kernel trained on uni-
grams to di↵erentiate “Christianity” from “Atheism” (on a
subset of the 20 newsgroup dataset). Although this classifier
achieves 94% held-out accuracy, and one would be tempted
to trust it based on this, the explanation for an instance
shows that predictions are made for quite arbitrary reasons
(words “Posting”, “Host”, and “Re” have no connection to
either Christianity or Atheism). The word “Posting” appears
in 22% of examples in the training set, 99% of them in the
class “Atheism”. Even if headers are removed, proper names
of prolific posters in the original newsgroups are selected by
the classifier, which would also not generalize.
After getting such insights from explanations, it is clear

that this dataset has serious issues (which are not evident
just by studying the raw data or predictions), and that this
classifier, or held-out evaluation, cannot be trusted. It is also
clear what the problems are, and the steps that can be taken
to fix these issues and train a more trustworthy classifier.

3.6 Example 2: Deep networks for images
When using sparse linear explanations for image classifiers,
one may wish to just highlight the super-pixels with posi-
tive weight towards a specific class, as they give intuition
as to why the model would think that class may be present.
We explain the prediction of Google’s pre-trained Inception
neural network [25] in this fashion on an arbitrary image
(Figure 4a). Figures 4b, 4c, 4d show the superpixels expla-
nations for the top 3 predicted classes (with the rest of the
image grayed out), having set K = 10. What the neural
network picks up on for each of the classes is quite natural
to humans - Figure 4b in particular provides insight as to
why acoustic guitar was predicted to be electric: due to the
fretboard. This kind of explanation enhances trust in the
classifier (even if the top predicted class is wrong), as it shows
that it is not acting in an unreasonable manner.
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For text classification, we ensure that the explanation is
interpretable by letting the interpretable representation be
a bag of words, and by setting a limit K on the number of
words, i.e. ⌦(g) = 11[kwgk0 > K]. Potentially, K can be
adapted to be as big as the user can handle, or we could
have di↵erent values of K for di↵erent instances. In this
paper we use a constant value for K, leaving the exploration
of di↵erent values to future work. We use the same ⌦ for
image classification, using “super-pixels” (computed using
any standard algorithm) instead of words, such that the
interpretable representation of an image is a binary vector
where 1 indicates the original super-pixel and 0 indicates a
grayed out super-pixel. This particular choice of ⌦ makes
directly solving Eq. (1) intractable, but we approximate it by
first selecting K features with Lasso (using the regularization
path [9]) and then learning the weights via least squares (a
procedure we call K-LASSO in Algorithm 1). Since Algo-
rithm 1 produces an explanation for an individual prediction,
its complexity does not depend on the size of the dataset,
but instead on time to compute f(x) and on the number
of samples N . In practice, explaining random forests with
1000 trees using scikit-learn (http://scikit-learn.org) on a
laptop with N = 5000 takes under 3 seconds without any
optimizations such as using gpus or parallelization. Explain-
ing each prediction of the Inception network [25] for image
classification takes around 10 minutes.
Any choice of interpretable representations and G will

have some inherent drawbacks. First, while the underlying
model can be treated as a black-box, certain interpretable
representations will not be powerful enough to explain certain
behaviors. For example, a model that predicts sepia-toned
images to be retro cannot be explained by presence of absence
of super pixels. Second, our choice of G (sparse linear models)
means that if the underlying model is highly non-linear even
in the locality of the prediction, there may not be a faithful
explanation. However, we can estimate the faithfulness of
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the explanation on Z, and present this information to the
user. This estimate of faithfulness can also be used for
selecting an appropriate family of explanations from a set of
multiple interpretable model classes, thus adapting to the
given dataset and the classifier. We leave such exploration
for future work, as linear explanations work quite well for
multiple black-box models in our experiments.

3.5 Example 1: Text classification with SVMs
In Figure 2 (right side), we explain the predictions of a
support vector machine with RBF kernel trained on uni-
grams to di↵erentiate “Christianity” from “Atheism” (on a
subset of the 20 newsgroup dataset). Although this classifier
achieves 94% held-out accuracy, and one would be tempted
to trust it based on this, the explanation for an instance
shows that predictions are made for quite arbitrary reasons
(words “Posting”, “Host”, and “Re” have no connection to
either Christianity or Atheism). The word “Posting” appears
in 22% of examples in the training set, 99% of them in the
class “Atheism”. Even if headers are removed, proper names
of prolific posters in the original newsgroups are selected by
the classifier, which would also not generalize.
After getting such insights from explanations, it is clear

that this dataset has serious issues (which are not evident
just by studying the raw data or predictions), and that this
classifier, or held-out evaluation, cannot be trusted. It is also
clear what the problems are, and the steps that can be taken
to fix these issues and train a more trustworthy classifier.

3.6 Example 2: Deep networks for images
When using sparse linear explanations for image classifiers,
one may wish to just highlight the super-pixels with posi-
tive weight towards a specific class, as they give intuition
as to why the model would think that class may be present.
We explain the prediction of Google’s pre-trained Inception
neural network [25] in this fashion on an arbitrary image
(Figure 4a). Figures 4b, 4c, 4d show the superpixels expla-
nations for the top 3 predicted classes (with the rest of the
image grayed out), having set K = 10. What the neural
network picks up on for each of the classes is quite natural
to humans - Figure 4b in particular provides insight as to
why acoustic guitar was predicted to be electric: due to the
fretboard. This kind of explanation enhances trust in the
classifier (even if the top predicted class is wrong), as it shows
that it is not acting in an unreasonable manner.

(Input, Prediction)

to be explained



INTERPRETABILITY IN NLP
• What if the model is already trained? And we have no access to its parameters etc…


• Idea (Ribeiro et al. 2016): fit a simple interpretable model around a given query, using 
perturbations of the input


• But this assumes input is continuous, output is a single value. Can we extend this to text data?

FURTHER TOPICS: INTERPRETABILITY

Figure 3: Toy example to present intuition for LIME.

The black-box model’s complex decision function f
(unknown to LIME) is represented by the blue/pink

background, which cannot be approximated well by

a linear model. The bold red cross is the instance

being explained. LIME samples instances, gets pre-

dictions using f , and weighs them by the proximity

to the instance being explained (represented here

by size). The dashed line is the learned explanation

that is locally (but not globally) faithful.

distance function D (e.g. cosine distance for text, L2 distance
for images) with width �.

L(f, g,⇡x) =
X

z,z02Z

⇡x(z)
�
f(z)� g(z0)

�2
(2)

For text classification, we ensure that the explanation is
interpretable by letting the interpretable representation be
a bag of words, and by setting a limit K on the number of
words, i.e. ⌦(g) = 11[kwgk0 > K]. Potentially, K can be
adapted to be as big as the user can handle, or we could
have di↵erent values of K for di↵erent instances. In this
paper we use a constant value for K, leaving the exploration
of di↵erent values to future work. We use the same ⌦ for
image classification, using “super-pixels” (computed using
any standard algorithm) instead of words, such that the
interpretable representation of an image is a binary vector
where 1 indicates the original super-pixel and 0 indicates a
grayed out super-pixel. This particular choice of ⌦ makes
directly solving Eq. (1) intractable, but we approximate it by
first selecting K features with Lasso (using the regularization
path [9]) and then learning the weights via least squares (a
procedure we call K-LASSO in Algorithm 1). Since Algo-
rithm 1 produces an explanation for an individual prediction,
its complexity does not depend on the size of the dataset,
but instead on time to compute f(x) and on the number
of samples N . In practice, explaining random forests with
1000 trees using scikit-learn (http://scikit-learn.org) on a
laptop with N = 5000 takes under 3 seconds without any
optimizations such as using gpus or parallelization. Explain-
ing each prediction of the Inception network [25] for image
classification takes around 10 minutes.
Any choice of interpretable representations and G will

have some inherent drawbacks. First, while the underlying
model can be treated as a black-box, certain interpretable
representations will not be powerful enough to explain certain
behaviors. For example, a model that predicts sepia-toned
images to be retro cannot be explained by presence of absence
of super pixels. Second, our choice of G (sparse linear models)
means that if the underlying model is highly non-linear even
in the locality of the prediction, there may not be a faithful
explanation. However, we can estimate the faithfulness of

Algorithm 1 Sparse Linear Explanations using LIME

Require: Classifier f , Number of samples N
Require: Instance x, and its interpretable version x0

Require: Similarity kernel ⇡x, Length of explanation K
Z  {}
for i 2 {1, 2, 3, ..., N} do

z0i  sample around(x0)
Z  Z [ hz0i, f(zi),⇡x(zi)i

end for

w  K-Lasso(Z,K) . with z0i as features, f(z) as target
return w

the explanation on Z, and present this information to the
user. This estimate of faithfulness can also be used for
selecting an appropriate family of explanations from a set of
multiple interpretable model classes, thus adapting to the
given dataset and the classifier. We leave such exploration
for future work, as linear explanations work quite well for
multiple black-box models in our experiments.

3.5 Example 1: Text classification with SVMs
In Figure 2 (right side), we explain the predictions of a
support vector machine with RBF kernel trained on uni-
grams to di↵erentiate “Christianity” from “Atheism” (on a
subset of the 20 newsgroup dataset). Although this classifier
achieves 94% held-out accuracy, and one would be tempted
to trust it based on this, the explanation for an instance
shows that predictions are made for quite arbitrary reasons
(words “Posting”, “Host”, and “Re” have no connection to
either Christianity or Atheism). The word “Posting” appears
in 22% of examples in the training set, 99% of them in the
class “Atheism”. Even if headers are removed, proper names
of prolific posters in the original newsgroups are selected by
the classifier, which would also not generalize.
After getting such insights from explanations, it is clear

that this dataset has serious issues (which are not evident
just by studying the raw data or predictions), and that this
classifier, or held-out evaluation, cannot be trusted. It is also
clear what the problems are, and the steps that can be taken
to fix these issues and train a more trustworthy classifier.

3.6 Example 2: Deep networks for images
When using sparse linear explanations for image classifiers,
one may wish to just highlight the super-pixels with posi-
tive weight towards a specific class, as they give intuition
as to why the model would think that class may be present.
We explain the prediction of Google’s pre-trained Inception
neural network [25] in this fashion on an arbitrary image
(Figure 4a). Figures 4b, 4c, 4d show the superpixels expla-
nations for the top 3 predicted classes (with the rest of the
image grayed out), having set K = 10. What the neural
network picks up on for each of the classes is quite natural
to humans - Figure 4b in particular provides insight as to
why acoustic guitar was predicted to be electric: due to the
fretboard. This kind of explanation enhances trust in the
classifier (even if the top predicted class is wrong), as it shows
that it is not acting in an unreasonable manner.

Complex model's

decision boundary

(Input, Prediction)

to be explained



INTERPRETABILITY IN NLP
• What if the model is already trained? And we have no access to its parameters etc…


• Idea (Ribeiro et al. 2016): fit a simple interpretable model around a given query, using 
perturbations of the input


• But this assumes input is continuous, output is a single value. Can we extend this to text data?

FURTHER TOPICS: INTERPRETABILITY

Figure 3: Toy example to present intuition for LIME.

The black-box model’s complex decision function f
(unknown to LIME) is represented by the blue/pink

background, which cannot be approximated well by

a linear model. The bold red cross is the instance

being explained. LIME samples instances, gets pre-

dictions using f , and weighs them by the proximity

to the instance being explained (represented here

by size). The dashed line is the learned explanation

that is locally (but not globally) faithful.

distance function D (e.g. cosine distance for text, L2 distance
for images) with width �.

L(f, g,⇡x) =
X

z,z02Z

⇡x(z)
�
f(z)� g(z0)

�2
(2)

For text classification, we ensure that the explanation is
interpretable by letting the interpretable representation be
a bag of words, and by setting a limit K on the number of
words, i.e. ⌦(g) = 11[kwgk0 > K]. Potentially, K can be
adapted to be as big as the user can handle, or we could
have di↵erent values of K for di↵erent instances. In this
paper we use a constant value for K, leaving the exploration
of di↵erent values to future work. We use the same ⌦ for
image classification, using “super-pixels” (computed using
any standard algorithm) instead of words, such that the
interpretable representation of an image is a binary vector
where 1 indicates the original super-pixel and 0 indicates a
grayed out super-pixel. This particular choice of ⌦ makes
directly solving Eq. (1) intractable, but we approximate it by
first selecting K features with Lasso (using the regularization
path [9]) and then learning the weights via least squares (a
procedure we call K-LASSO in Algorithm 1). Since Algo-
rithm 1 produces an explanation for an individual prediction,
its complexity does not depend on the size of the dataset,
but instead on time to compute f(x) and on the number
of samples N . In practice, explaining random forests with
1000 trees using scikit-learn (http://scikit-learn.org) on a
laptop with N = 5000 takes under 3 seconds without any
optimizations such as using gpus or parallelization. Explain-
ing each prediction of the Inception network [25] for image
classification takes around 10 minutes.
Any choice of interpretable representations and G will

have some inherent drawbacks. First, while the underlying
model can be treated as a black-box, certain interpretable
representations will not be powerful enough to explain certain
behaviors. For example, a model that predicts sepia-toned
images to be retro cannot be explained by presence of absence
of super pixels. Second, our choice of G (sparse linear models)
means that if the underlying model is highly non-linear even
in the locality of the prediction, there may not be a faithful
explanation. However, we can estimate the faithfulness of

Algorithm 1 Sparse Linear Explanations using LIME

Require: Classifier f , Number of samples N
Require: Instance x, and its interpretable version x0

Require: Similarity kernel ⇡x, Length of explanation K
Z  {}
for i 2 {1, 2, 3, ..., N} do

z0i  sample around(x0)
Z  Z [ hz0i, f(zi),⇡x(zi)i

end for

w  K-Lasso(Z,K) . with z0i as features, f(z) as target
return w

the explanation on Z, and present this information to the
user. This estimate of faithfulness can also be used for
selecting an appropriate family of explanations from a set of
multiple interpretable model classes, thus adapting to the
given dataset and the classifier. We leave such exploration
for future work, as linear explanations work quite well for
multiple black-box models in our experiments.

3.5 Example 1: Text classification with SVMs
In Figure 2 (right side), we explain the predictions of a
support vector machine with RBF kernel trained on uni-
grams to di↵erentiate “Christianity” from “Atheism” (on a
subset of the 20 newsgroup dataset). Although this classifier
achieves 94% held-out accuracy, and one would be tempted
to trust it based on this, the explanation for an instance
shows that predictions are made for quite arbitrary reasons
(words “Posting”, “Host”, and “Re” have no connection to
either Christianity or Atheism). The word “Posting” appears
in 22% of examples in the training set, 99% of them in the
class “Atheism”. Even if headers are removed, proper names
of prolific posters in the original newsgroups are selected by
the classifier, which would also not generalize.
After getting such insights from explanations, it is clear

that this dataset has serious issues (which are not evident
just by studying the raw data or predictions), and that this
classifier, or held-out evaluation, cannot be trusted. It is also
clear what the problems are, and the steps that can be taken
to fix these issues and train a more trustworthy classifier.

3.6 Example 2: Deep networks for images
When using sparse linear explanations for image classifiers,
one may wish to just highlight the super-pixels with posi-
tive weight towards a specific class, as they give intuition
as to why the model would think that class may be present.
We explain the prediction of Google’s pre-trained Inception
neural network [25] in this fashion on an arbitrary image
(Figure 4a). Figures 4b, 4c, 4d show the superpixels expla-
nations for the top 3 predicted classes (with the rest of the
image grayed out), having set K = 10. What the neural
network picks up on for each of the classes is quite natural
to humans - Figure 4b in particular provides insight as to
why acoustic guitar was predicted to be electric: due to the
fretboard. This kind of explanation enhances trust in the
classifier (even if the top predicted class is wrong), as it shows
that it is not acting in an unreasonable manner.
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(x,y) {(x̃i, ỹi)} G(U [ V,E) {Ek
x!y}Kk=1

z

z̃1

z̃2
z̃3

z̃4

z̃5
z̃6

z̃7

z̃8 s1 s2 s3 s4

t1 t2 t3 t4 t5

s1 s2

t1 t2 t3

s1 s2

t1 t2

1.Encode input to vector representation z

2.Generate samples around z

3.Decode samples into sequences

4.Map perturbed sequences using decoder



INTERPRETABILITY VIA LOCAL APPROXIMATION

FURTHER TOPICS: INTERPRETABILITY

[AM & Jaakkola, 2018]

Perturbation
Model

Causal
Inference

Explanation
Selection
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[AM & Jaakkola, 2018]
Application: explaining biases in machine translation systems

Model: Azure MT service (via API), English to French

Inputs: Sentences containing bias-prone words

Findings: Model exhibits strong unexplained grammatical gender preferences.


    -   Chooses masculine in sentences containing doctor, professor, smart, talented

    -   Chooses feminine in sentences containing dancer, nurse,  charming, compassionate
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Application: flaw detection in dialogue systems

Background and Motivation Approach Experiments Conclusion and next steps References

A (mediocre) dialogue system

We train a simple dialogue system on the OpenSubtitle corpus
Tiedemann, 2009
⇠14M two-step movie dialogues.
Black-box: seq2seq with attention, 2 layers, dim 1000, no tuning.
Most predictions are Yes, No, UNK. /
Example “good” predictions:

Input Prediction

What do you mean it doesn’t matter? I don’t know
Perhaps have we met before? I don’t think so
Can I get you two a cocktail? No, thanks.

David Alvarez-Melis (CSAIL MIT) Seq2Seq Interpretability November 16, 2017 32 / 43

Are you the son 

of Vito Corleone? Yes, sir.

Input Prediction

Neural Net

seq2seq with attention



INTERPRETABILITY VIA LOCAL APPROXIMATION

FURTHER TOPICS: INTERPRETABILITY

[AM & Jaakkola, 2018]
Application: explaining biases in MT systems

feminine conjugation

Input:

Output:

Application: flaw detection in dialogue systems

Background and Motivation Approach Experiments Conclusion and next steps References

A (mediocre) dialogue system

We train a simple dialogue system on the OpenSubtitle corpus
Tiedemann, 2009
⇠14M two-step movie dialogues.
Black-box: seq2seq with attention, 2 layers, dim 1000, no tuning.
Most predictions are Yes, No, UNK. /
Example “good” predictions:

Input Prediction

What do you mean it doesn’t matter? I don’t know
Perhaps have we met before? I don’t think so
Can I get you two a cocktail? No, thanks.

David Alvarez-Melis (CSAIL MIT) Seq2Seq Interpretability November 16, 2017 32 / 43

Are you the son 

of Vito Corleone? Yes, sir.

Input Prediction

Neural Net

seq2seq with attention



INTERPRETABILITY VIA LOCAL APPROXIMATION

FURTHER TOPICS: INTERPRETABILITY

[AM & Jaakkola, 2018]
Application: explaining biases in MT systems

feminine conjugation

Input:

Output:

Application: flaw detection in dialogue systems

Background and Motivation Approach Experiments Conclusion and next steps References

A (mediocre) dialogue system

We train a simple dialogue system on the OpenSubtitle corpus
Tiedemann, 2009
⇠14M two-step movie dialogues.
Black-box: seq2seq with attention, 2 layers, dim 1000, no tuning.
Most predictions are Yes, No, UNK. /
Example “good” predictions:

Input Prediction

What do you mean it doesn’t matter? I don’t know
Perhaps have we met before? I don’t think so
Can I get you two a cocktail? No, thanks.
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The model is flawed!

Are you the son 

of Vito Corleone? Yes, sir.

Input Prediction

Neural Net

seq2seq with attention
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WHAT ABOUT STRUCTURE?

▸ Language is non-linear. It has structure and compositionality [e.g. Chomsky]

Source: socher.org

http://socher.org
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RECURSIVE NEURAL NETS

Source: socher.org

[Socher et al., 2011]
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BONUS

RECURSIVE NEURAL NETS

Source: socher.org

[Socher et al., 2011]
ALLOWS ENCODING OF STRUCTURE 
OBJECTS. WHAT ABOUT DECODING? 

FURTHER TOPICS: STRUCTURED NEURAL NLP MODELS

http://socher.org
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