
CS 182 GUEST LECTURE:

LANGUAGE MODELS AND NLP

DAVID ALVAREZ-MELIS, MICROSOFT RESEARCH

INTRODUCTION

THE CHALLENGE WITH LANGUAGE

▸ So far: data has been assumed to be vectors:

▸ fixed dimension

▸ continuous

1.2

0.7

INTRODUCTION

THE CHALLENGE WITH LANGUAGE

▸ So far: data has been assumed to be vectors:

▸ fixed dimension

▸ continuous

▸ What if the input is a sentence? Or a document?

1.2

0.7

INTRODUCTION

THE CHALLENGE WITH LANGUAGE

▸ So far: data has been assumed to be vectors:

▸ fixed dimension

▸ continuous

▸ What if the input is a sentence? Or a document?

▸ Key questions:

▸ how to represent text data while preserving its meaning

▸ how to process it /compute with it efficiently

1.2

0.7

INTRODUCTION

THE CHALLENGE WITH LANGUAGE

Natural Language Processing

INTRODUCTION

THE CHALLENGE WITH LANGUAGE

Natural Language Processing
i.e., not synthetic/constructed

INTRODUCTION

THE CHALLENGE WITH LANGUAGE

Natural Language Processing
i.e., not synthetic/constructed basically, “computing”

INTRODUCTION

THE CHALLENGE WITH LANGUAGE

Natural Language Processing

INTRODUCTION

THE CHALLENGE WITH LANGUAGE

Natural Language Processing
Human Language Technologies

Natural Language Understanding

Speech and Language Processing

Computational Linguistics

INTRODUCTION

NATURAL LANGUAGE PROCESSING

AI
NATURAL LANGUAGE

PROCESSING

/

COMPUTATIONAL

LINGUISTICS

INTRODUCTION

NATURAL LANGUAGE PROCESSING

AI

 MACHINE LEARNING

NATURAL LANGUAGE
PROCESSING

/

COMPUTATIONAL

LINGUISTICS

INTRODUCTION

NATURAL LANGUAGE PROCESSING

AI

 MACHINE LEARNING

LINGUISTICS

NATURAL LANGUAGE
PROCESSING

/

COMPUTATIONAL

LINGUISTICS

INTRODUCTION

NATURAL LANGUAGE PROCESSING

AI

 MACHINE LEARNING

LINGUISTICS

NATURAL LANGUAGE
PROCESSING

/

COMPUTATIONAL

LINGUISTICS

INTRODUCTION

NATURAL LANGUAGE PROCESSING

AI

 MACHINE LEARNING

LINGUISTICS

NATURAL LANGUAGE
PROCESSING

/

COMPUTATIONAL

LINGUISTICS

DEEP LEARNING

INTRODUCTION

NATURAL LANGUAGE PROCESSING

AI

 MACHINE LEARNING

LINGUISTICS

NATURAL LANGUAGE
PROCESSING

/

COMPUTATIONAL

LINGUISTICS

SPEECH
RECOGNITION

DEEP LEARNING

INTRODUCTION

NATURAL LANGUAGE PROCESSING

AI

 MACHINE LEARNING

LINGUISTICS

NATURAL LANGUAGE
PROCESSING

/

COMPUTATIONAL

LINGUISTICS

SPEECH
RECOGNITION

DEEP LEARNING

How to …. ?

INTRODUCTION

NATURAL LANGUAGE PROCESSING

AI

 MACHINE LEARNING

LINGUISTICS

NATURAL LANGUAGE
PROCESSING

/

COMPUTATIONAL

LINGUISTICS

SPEECH
RECOGNITION

DEEP LEARNING

 Why …. ?

How to …. ?

INTRODUCTION

NATURAL LANGUAGE PROCESSING
DIMENSIONS OF NLP

/

LINGÜÍSTICA COMPUTACIONAL
ASPECTS

Semantics

Syntax

Morphology

Phonology

Pragmatics

PROBLEMS

Machine translation

Summarization

Text classification

Parsing

Language Modeling

METHODS

Probabilistic

Symbolic

Bayesian

Kernel-Based

Deep Learning

INTRODUCTION

LINGUISTICS CHEAT SHEET

INTRODUCTION

LINGUISTICS CHEAT SHEET
▸ Semantics: pertaining to the meaning of a word, phrase,

sentence, or text

INTRODUCTION

LINGUISTICS CHEAT SHEET
▸ Semantics: pertaining to the meaning of a word, phrase,

sentence, or text

▸ Syntax: arrangement of words and phrases to create
wellformed sentences

INTRODUCTION

LINGUISTICS CHEAT SHEET
▸ Semantics: pertaining to the meaning of a word, phrase,

sentence, or text

▸ Syntax: arrangement of words and phrases to create
wellformed sentences

▸ Morphology: pertaining to the structure or form of
words, e.g., their parts morph + o + log + y

base

‘Form, structure’

Greek μορφε, ‘form’ base

‘Speech, word, account, reason’

Greek λογοσ

suffix
connector

INTRODUCTION

LINGUISTICS CHEAT SHEET
▸ Semantics: pertaining to the meaning of a word, phrase,

sentence, or text

▸ Syntax: arrangement of words and phrases to create
wellformed sentences

▸ Morphology: pertaining to the structure or form of
words, e.g., their parts

▸ Corpus: a collection of text data (plural: corpora)

morph + o + log + y
base

‘Form, structure’

Greek μορφε, ‘form’ base

‘Speech, word, account, reason’

Greek λογοσ

suffix
connector

INTRODUCTION

OUTLINE FOR TODAY

INTRODUCTION

OUTLINE FOR TODAY
▸ Goal: overview of the main ideas and concepts behind modern NLP

INTRODUCTION

OUTLINE FOR TODAY
▸ Goal: overview of the main ideas and concepts behind modern NLP

▸ Part I: how do we encode meaning from text data (representation)

INTRODUCTION

OUTLINE FOR TODAY
▸ Goal: overview of the main ideas and concepts behind modern NLP

▸ Part I: how do we encode meaning from text data (representation)
▸ deep dive into word2vec for word embedding

INTRODUCTION

OUTLINE FOR TODAY
▸ Goal: overview of the main ideas and concepts behind modern NLP

▸ Part I: how do we encode meaning from text data (representation)
▸ deep dive into word2vec for word embedding

▸ Part II: how do we use encoded text to solve NLP tasks? (prediction)

INTRODUCTION

OUTLINE FOR TODAY
▸ Goal: overview of the main ideas and concepts behind modern NLP

▸ Part I: how do we encode meaning from text data (representation)
▸ deep dive into word2vec for word embedding

▸ Part II: how do we use encoded text to solve NLP tasks? (prediction)
▸ deep dive into recurrent neural nets (vanilla and LSTM)

INTRODUCTION

OUTLINE FOR TODAY
▸ Goal: overview of the main ideas and concepts behind modern NLP

▸ Part I: how do we encode meaning from text data (representation)
▸ deep dive into word2vec for word embedding

▸ Part II: how do we use encoded text to solve NLP tasks? (prediction)
▸ deep dive into recurrent neural nets (vanilla and LSTM)

▸ Part III: (time permitting) very large neural language models

ENCODING MEANING

THROUGH WORD EMBEDDINGS

PART 1:

WORD VECTOR REPRESENTATION: FIRST IDEA

Word representation:

house
apartment
nice

= [0 0 0 1 0 0 …]
= [0 0 1 0 0 0 …]
= [1 0 0 0 0 0 …]

PART 1: WORD EMBEDDINGS

WORD VECTOR REPRESENTATION: FIRST IDEA

Word representation:

house
apartment
nice

= [0 0 0 1 0 0 …]
= [0 0 1 0 0 0 …]
= [1 0 0 0 0 0 …]

PART 1: WORD EMBEDDINGS

each dimension
corresponds to a word

WORD VECTOR REPRESENTATION: FIRST IDEA

Word representation:

house
apartment
nice

= [0 0 0 1 0 0 …]
= [0 0 1 0 0 0 …]
= [1 0 0 0 0 0 …]

Sentence/Document representation:

“the house is nice, the apartment is nice”
= [2 0 1 1 0 0 …]

PART 1: WORD EMBEDDINGS

each dimension
corresponds to a word

WORD VECTOR REPRESENTATION: FIRST IDEA

Word representation:

house
apartment
nice

= [0 0 0 1 0 0 …]
= [0 0 1 0 0 0 …]
= [1 0 0 0 0 0 …]

Sentence/Document representation:

“the house is nice, the apartment is nice”
= [2 0 1 1 0 0 …]

PART 1: WORD EMBEDDINGS

each dimension
corresponds to a word Two crucial issues:

WORD VECTOR REPRESENTATION: FIRST IDEA

Vector size: # words in vocabulary

 (potentially huge)

Word representation:

house
apartment
nice

= [0 0 0 1 0 0 …]
= [0 0 1 0 0 0 …]
= [1 0 0 0 0 0 …]

Sentence/Document representation:

“the house is nice, the apartment is nice”
= [2 0 1 1 0 0 …]

PART 1: WORD EMBEDDINGS

each dimension
corresponds to a word Two crucial issues:

WORD VECTOR REPRESENTATION: FIRST IDEA

Vector size: # words in vocabulary

 (potentially huge)

house

apartment

nice

Word representation:

house
apartment
nice

= [0 0 0 1 0 0 …]
= [0 0 1 0 0 0 …]
= [1 0 0 0 0 0 …]

Sentence/Document representation:

“the house is nice, the apartment is nice”
= [2 0 1 1 0 0 …]

All word vectors
are orthogonal!

no notion of
word ‘similarity’

PART 1: WORD EMBEDDINGS

each dimension
corresponds to a word Two crucial issues:

WORD VECTOR REPRESENTATION

What we really want:

house
apartment
nice

= [0.23 − 1.52 3.22 0.01 2.45 − 1.32 …]
= [−1.32 0.78 1.34 0.34 − 1.11 5.32 …]
= [0.98 0.32 − 3.34 8.23 1.01 − 2.68 …]

PART 1: WORD EMBEDDINGS

WORD VECTOR REPRESENTATION

What we really want:

house
apartment
nice

= [0.23 − 1.52 3.22 0.01 2.45 − 1.32 …]
= [−1.32 0.78 1.34 0.34 − 1.11 5.32 …]
= [0.98 0.32 − 3.34 8.23 1.01 − 2.68 …]

Vector size: fixed, not too large

PART 1: WORD EMBEDDINGS

WORD VECTOR REPRESENTATION

What we really want:

house
apartment
nice

= [0.23 − 1.52 3.22 0.01 2.45 − 1.32 …]
= [−1.32 0.78 1.34 0.34 − 1.11 5.32 …]
= [0.98 0.32 − 3.34 8.23 1.01 − 2.68 …]

Vector size: fixed, not too large

PART 1: WORD EMBEDDINGS

The meaning of each word is
‘distributed’ across many

dimensions

WORD VECTOR REPRESENTATION

What we really want:

house
apartment
nice

= [0.23 − 1.52 3.22 0.01 2.45 − 1.32 …]
= [−1.32 0.78 1.34 0.34 − 1.11 5.32 …]
= [0.98 0.32 − 3.34 8.23 1.01 − 2.68 …]

Related words are
closer together in

vector space

Vector size: fixed, not too large

red

amazing

blue

nice

apartment

house

PART 1: WORD EMBEDDINGS

The meaning of each word is
‘distributed’ across many

dimensions

WORD VECTOR REPRESENTATION

What we really want:

house
apartment
nice

= [0.23 − 1.52 3.22 0.01 2.45 − 1.32 …]
= [−1.32 0.78 1.34 0.34 − 1.11 5.32 …]
= [0.98 0.32 − 3.34 8.23 1.01 − 2.68 …]

Related words are
closer together in

vector space

Vector size: fixed, not too large

red

amazing

blue

nice

apartment

house

PART 1: WORD EMBEDDINGS

The meaning of each word is
‘distributed’ across many

dimensions

How do we achieve this?

How to turn into that carry meaning?
1.2
0.7
3.3

3.3
1.5
7.2

THE DISTRIBUTIONAL HYPOTHESIS

PART 1: WORD EMBEDDINGS

THE DISTRIBUTIONAL HYPOTHESIS

“YOU SHALL KNOW A WORD

BY THE COMPANY IT KEEPS” John R Firth

(1957)

PART 1: WORD EMBEDDINGS

THE DISTRIBUTIONAL HYPOTHESIS

“YOU SHALL KNOW A WORD

BY THE COMPANY IT KEEPS” John R Firth

(1957)

“WORDS OCCURRING IN

(LINGUISTICALLY) SIMILAR CONTEXTS
TEND TO BE SEMANTICALLY SIMILAR”

Zellig S

Harris
(1954)

PART 1: WORD EMBEDDINGS

THE DISTRIBUTIONAL HYPOTHESIS

What does

 tezgüino mean?

[example from Lin (1998) via Eisenstein (2018)]

PART 1: WORD EMBEDDINGS

THE DISTRIBUTIONAL HYPOTHESIS

“A bottle of tezgüino is on the table.”

“Everybody likes tezgüino.”

“Don’t have tezgüino before you drive.”

“We make tezgüino out of corn.”

What does

 tezgüino mean?

[example from Lin (1998) via Eisenstein (2018)]

PART 1: WORD EMBEDDINGS

THE DISTRIBUTIONAL HYPOTHESIS

“A bottle of tezgüino is on the table.”

“Everybody likes tezgüino.”

“Don’t have tezgüino before you drive.”

“We make tezgüino out of corn.”

What does

 tezgüino mean?

[example from Lin (1998) via Eisenstein (2018)]

Tesgüino is an
artisanal corn beer
produced by several
Yuto-Aztec people.
The Tarahumara
people regard the
beer as sacred, and
it forms a significant
part of their society.

PART 1: WORD EMBEDDINGS

THE DISTRIBUTIONAL HYPOTHESIS

Idea: vectors of words appearing in similar contexts should be similar

PART 1: WORD EMBEDDINGS

THE DISTRIBUTIONAL HYPOTHESIS

… central bank announced it will maintain interest rates fixed despite inflation fears in the economy …

Idea: vectors of words appearing in similar contexts should be similar

PART 1: WORD EMBEDDINGS

THE DISTRIBUTIONAL HYPOTHESIS

… central bank announced it will maintain interest rates fixed despite inflation fears in the economy …

Idea: vectors of words appearing in similar contexts should be similar

… interest rates continued increasing, along with the consumer price index, while the US economy…

PART 1: WORD EMBEDDINGS

THE DISTRIBUTIONAL HYPOTHESIS

… central bank announced it will maintain interest rates fixed despite inflation fears in the economy …

Idea: vectors of words appearing in similar contexts should be similar

… interest rates continued increasing, along with the consumer price index, while the US economy…

PART 1: WORD EMBEDDINGS

THE DISTRIBUTIONAL HYPOTHESIS

… central bank announced it will maintain interest rates fixed despite inflation fears in the economy …

xinflation ↔ xprice

Idea: vectors of words appearing in similar contexts should be similar

… interest rates continued increasing, along with the consumer price index, while the US economy…

PART 1: WORD EMBEDDINGS

ALGORITHMS FOR ENCODING CO-OCCURRENCE INFORMATION

APPROACH 1: COUNT

∑ I(w′￼ ∈ contexti(w))
APPROACH 2: PREDICT

p(w′￼ ∣ w)

PART 1: WORD EMBEDDINGS

ALGORITHMS FOR ENCODING CO-OCCURRENCE INFORMATION

APPROACH 1: COUNT

∑ I(w′￼ ∈ contexti(w))
Latent Semantic Indexing (LSI)

APPROACH 2: PREDICT
p(w′￼ ∣ w)

PART 1: WORD EMBEDDINGS

ALGORITHMS FOR ENCODING CO-OCCURRENCE INFORMATION

APPROACH 1: COUNT

∑ I(w′￼ ∈ contexti(w))
Latent Semantic Indexing (LSI)

Hyperspace Analogue to Language (HAL)

APPROACH 2: PREDICT
p(w′￼ ∣ w)

PART 1: WORD EMBEDDINGS

ALGORITHMS FOR ENCODING CO-OCCURRENCE INFORMATION

APPROACH 1: COUNT

∑ I(w′￼ ∈ contexti(w))
Latent Semantic Indexing (LSI)

Hyperspace Analogue to Language (HAL)

Pointwise Mutual Informacion (PMI)

APPROACH 2: PREDICT
p(w′￼ ∣ w)

PART 1: WORD EMBEDDINGS

ALGORITHMS FOR ENCODING CO-OCCURRENCE INFORMATION

APPROACH 1: COUNT

∑ I(w′￼ ∈ contexti(w))
Latent Semantic Indexing (LSI)

Hyperspace Analogue to Language (HAL)

Pointwise Mutual Informacion (PMI)

Canonical Correlation Analysis (CCA)

APPROACH 2: PREDICT
p(w′￼ ∣ w)

PART 1: WORD EMBEDDINGS

ALGORITHMS FOR ENCODING CO-OCCURRENCE INFORMATION

APPROACH 1: COUNT

∑ I(w′￼ ∈ contexti(w))
Latent Semantic Indexing (LSI)

Hyperspace Analogue to Language (HAL)

Pointwise Mutual Informacion (PMI)

Canonical Correlation Analysis (CCA)

APPROACH 2: PREDICT
p(w′￼ ∣ w)

Word2vec (2 flavors)

PART 1: WORD EMBEDDINGS

ALGORITHMS FOR ENCODING CO-OCCURRENCE INFORMATION

APPROACH 1: COUNT

∑ I(w′￼ ∈ contexti(w))
Latent Semantic Indexing (LSI)

Hyperspace Analogue to Language (HAL)

Pointwise Mutual Informacion (PMI)

Canonical Correlation Analysis (CCA)

APPROACH 2: PREDICT
p(w′￼ ∣ w)

Word2vec (2 flavors)

GloVe

PART 1: WORD EMBEDDINGS

ALGORITHMS FOR ENCODING CO-OCCURRENCE INFORMATION

APPROACH 1: COUNT

∑ I(w′￼ ∈ contexti(w))
Latent Semantic Indexing (LSI)

Hyperspace Analogue to Language (HAL)

Pointwise Mutual Informacion (PMI)

Canonical Correlation Analysis (CCA)

APPROACH 2: PREDICT
p(w′￼ ∣ w)

Word2vec (2 flavors)

GloVe

FastText

PART 1: WORD EMBEDDINGS

ALGORITHMS FOR ENCODING CO-OCCURRENCE INFORMATION

APPROACH 1: COUNT

∑ I(w′￼ ∈ contexti(w))
Latent Semantic Indexing (LSI)

Hyperspace Analogue to Language (HAL)

Pointwise Mutual Informacion (PMI)

Canonical Correlation Analysis (CCA)

APPROACH 2: PREDICT
p(w′￼ ∣ w)

Word2vec (2 flavors)

GloVe

FastText

...

PART 1: WORD EMBEDDINGS

ALGORITHMS FOR ENCODING CO-OCCURRENCE INFORMATION

APPROACH 1: COUNT

∑ I(w′￼ ∈ contexti(w))
Latent Semantic Indexing (LSI)

Hyperspace Analogue to Language (HAL)

Pointwise Mutual Informacion (PMI)

Canonical Correlation Analysis (CCA)

APPROACH 2: PREDICT
p(w′￼ ∣ w)

Word2vec (2 flavors)

GloVe

FastText

...

PART 1: WORD EMBEDDINGS

PART 1: WORD EMBEDDINGS

WORD2VEC [Mikolov et al., 2013; 2014]

>50K combined citations!

PART 1: WORD EMBEDDINGS

WORD2VEC

▸ Model probability of context given center word

[Mikolov et al., 2013; 2014]

>50K combined citations!

PART 1: WORD EMBEDDINGS

WORD2VEC

▸ Model probability of context given center word

▸ Parametrize as neural network

[Mikolov et al., 2013; 2014]

>50K combined citations!

PART 1: WORD EMBEDDINGS

WORD2VEC

▸ Model probability of context given center word

▸ Parametrize as neural network

▸ Train via maximum likelihood objective

[Mikolov et al., 2013; 2014]

>50K combined citations!

PART 1: WORD EMBEDDINGS

WORD2VEC

▸ Model probability of context given center word

▸ Parametrize as neural network

▸ Train via maximum likelihood objective

▸ Efficient training via SGD + Negative Sampling

[Mikolov et al., 2013; 2014]

>50K combined citations!

PART 1: WORD EMBEDDINGS

WORD2VEC

▸ Model probability of context given center word

▸ Parametrize as neural network

▸ Train via maximum likelihood objective

▸ Efficient training via SGD + Negative Sampling

▸ Fascinating linear relationships in vector space

[Mikolov et al., 2013; 2014]

>50K combined citations!

PART 1: WORD EMBEDDINGS

WORD2VEC [Mikolov et al., 2013]

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG

PART 1: WORD EMBEDDINGS

WORD2VEC [Mikolov et al., 2013]

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG

center word wt

PART 1: WORD EMBEDDINGS

WORD2VEC [Mikolov et al., 2013]

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG

context widow: size 4 context widow: size 4center word wt

PART 1: WORD EMBEDDINGS

WORD2VEC [Mikolov et al., 2013]

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG

context widow: size 4 context widow: size 4center word wt

P(wt+1 ∣ wt)

PART 1: WORD EMBEDDINGS

WORD2VEC [Mikolov et al., 2013]

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG

context widow: size 4 context widow: size 4center word wt

P(wt+1 ∣ wt)P(wt−1 ∣ wt)

PART 1: WORD EMBEDDINGS

WORD2VEC [Mikolov et al., 2013]

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG

context widow: size 4 context widow: size 4center word wt

P(wt+1 ∣ wt)

P(wt+2 ∣ wt)

P(wt−1 ∣ wt)

PART 1: WORD EMBEDDINGS

WORD2VEC [Mikolov et al., 2013]

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG

context widow: size 4 context widow: size 4center word wt

P(wt+1 ∣ wt)

P(wt+2 ∣ wt)

P(wt−1 ∣ wt)

P(wt−2 ∣ wt)

PART 1: WORD EMBEDDINGS

WORD2VEC [Mikolov et al., 2013]

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG

context widow: size 4 context widow: size 4center word wt

P(wt+1 ∣ wt)

P(wt+2 ∣ wt)

P(wt−1 ∣ wt)

P(wt−2 ∣ wt)

⋯⋯

PART 1: WORD EMBEDDINGS

WORD2VEC [Mikolov et al., 2013]

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG

context widow: size 4 context widow: size 4center word wt

P(wt+1 ∣ wt)

P(wt+2 ∣ wt)

P(wt−1 ∣ wt)

P(wt−2 ∣ wt)

⋯⋯

 Joint Probability
(of context given

center word):

p(wt−m, …, wt+m ∣ wt) = ∏
−m ≤ j ≤ m

j ≠ 0

P(wt+j ∣ wt; θ)

PART 1: WORD EMBEDDINGS

WORD2VEC [Mikolov et al., 2013]

THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG

context widow: size 4 context widow: size 4center word wt

P(wt+1 ∣ wt)

P(wt+2 ∣ wt)

P(wt−1 ∣ wt)

P(wt−2 ∣ wt)

⋯⋯

 Joint Probability
(of context given

center word):

p(wt−m, …, wt+m ∣ wt) = ∏
−m ≤ j ≤ m

j ≠ 0

P(wt+j ∣ wt; θ)

Naive Bayes assumption

PART 1: WORD EMBEDDINGS

WORD2VEC [Mikolov et al., 2013]

QUICK BROWN FOX JUMPS OVER THE LAZY DOG

context widow: size 4 context widow: size 4center word wt

 Joint Probability
(of context given

center word):

p(wt−m, …, wt+m ∣ wt) = ∏
−m ≤ j ≤ m

j ≠ 0

P(wt+j ∣ wt; θ)

THEN

PART 1: WORD EMBEDDINGS

WORD2VEC [Mikolov et al., 2013]

QUICK BROWN FOX JUMPS OVER THE LAZY DOG

context widow: size 4 context widow: size 4center word wt

 Joint Probability
(of context given

center word):

p(wt−m, …, wt+m ∣ wt) = ∏
−m ≤ j ≤ m

j ≠ 0

P(wt+j ∣ wt; θ)

THEN

PART 1: WORD EMBEDDINGS

WORD2VEC [Mikolov et al., 2013]

T

∏
t=1

∏
−m ≤ j ≤ m

j ≠ 0

P(wt+j ∣ wt; θ)Likelihood

(of entire document)

PART 1: WORD EMBEDDINGS

WORD2VEC [Mikolov et al., 2013]

T

∏
t=1

∏
−m ≤ j ≤ m

j ≠ 0

P(wt+j ∣ wt; θ)Likelihood

(of entire document)

Objective Function

(negative log-likelihood)

PART 1: WORD EMBEDDINGS

WORD2VEC [Mikolov et al., 2013]

T

∏
t=1

∏
−m ≤ j ≤ m

j ≠ 0

P(wt+j ∣ wt; θ)

 −
1
T

T

∑
t=1

∑
−m ≤ j ≤ m

j ≠ 0

log P(wt+j ∣ wt; θ)

Likelihood

(of entire document)

Objective Function

(negative log-likelihood)

PART 1: WORD EMBEDDINGS

WORD2VEC [Mikolov et al., 2013]

T

∏
t=1

∏
−m ≤ j ≤ m

j ≠ 0

P(wt+j ∣ wt; θ)

 −
1
T

T

∑
t=1

∑
−m ≤ j ≤ m

j ≠ 0

log P(wt+j ∣ wt; θ)

Likelihood

(of entire document)

Objective Function

(negative log-likelihood)

We want to minimize NLL (i.e., maximize likelihood)

PART 1: WORD EMBEDDINGS

WORD2VEC [Mikolov et al., 2013]

T

∏
t=1

∏
−m ≤ j ≤ m

j ≠ 0

P(wt+j ∣ wt; θ)

 −
1
T

T

∑
t=1

∑
−m ≤ j ≤ m

j ≠ 0

log P(wt+j ∣ wt; θ)

Likelihood

(of entire document)

Objective Function

(negative log-likelihood)

We want to minimize NLL (i.e., maximize likelihood)
(an instance of Maximum Likelihood Estimation)

PART 1: WORD EMBEDDINGS

WORD2VEC [Mikolov et al., 2013]

P(o ∣ c ; θ) =
exp(u⊤

o vc)
∑w∈V exp(u⊤

wvc)

Modeling word-to-word Probability

PART 1: WORD EMBEDDINGS

WORD2VEC [Mikolov et al., 2013]

P(o ∣ c ; θ) =
exp(u⊤

o vc)
∑w∈V exp(u⊤

wvc)

Modeling word-to-word Probability

context
word

PART 1: WORD EMBEDDINGS

WORD2VEC [Mikolov et al., 2013]

P(o ∣ c ; θ) =
exp(u⊤

o vc)
∑w∈V exp(u⊤

wvc)

Modeling word-to-word Probability

context
word

center
word

PART 1: WORD EMBEDDINGS

WORD2VEC [Mikolov et al., 2013]

P(o ∣ c ; θ) =
exp(u⊤

o vc)
∑w∈V exp(u⊤

wvc)

Modeling word-to-word Probability

context
word

center
word

 stands for all the
model parameters:
θ

θ = {(uw, vw)}w∈Vocab

PART 1: WORD EMBEDDINGS

WORD2VEC [Mikolov et al., 2013]

P(o ∣ c ; θ) =
exp(u⊤

o vc)
∑w∈V exp(u⊤

wvc)

Modeling word-to-word Probability

context
word

center
word

 stands for all the
model parameters:
θ

θ = {(uw, vw)}w∈Vocab

PART 1: WORD EMBEDDINGS

WORD2VEC [Mikolov et al., 2013]

P(o ∣ c ; θ) =
exp(u⊤

o vc)
∑w∈V exp(u⊤

wvc)

Modeling word-to-word Probability

context
word

center
word

Each word gets two vectors:
 when w is a center word,
 when it is a context word

vw
uw

 stands for all the
model parameters:
θ

θ = {(uw, vw)}w∈Vocab

PART 1: WORD EMBEDDINGS

WORD2VEC [Mikolov et al., 2013]

P(o ∣ c ; θ) =
exp(u⊤

o vc)
∑w∈V exp(u⊤

wvc)

Modeling word-to-word Probability

context
word

center
word

Each word gets two vectors:
 when w is a center word,
 when it is a context word

vw
uw

 stands for all the
model parameters:
θ

θ = {(uw, vw)}w∈Vocab
normalizing term,

makes P add up to 1

PART 1: WORD EMBEDDINGS

WORD2VEC [Mikolov et al., 2013]

P(o ∣ c ; θ) =
exp(u⊤

o vc)
∑w∈V exp(u⊤

wvc)

Modeling word-to-word Probability

context
word

center
word

Each word gets two vectors:
 when w is a center word,
 when it is a context word

vw
uw

 stands for all the
model parameters:
θ

θ = {(uw, vw)}w∈Vocab
normalizing term,

makes P add up to 1

 : high if vectors point in the same direction
(i.e., a notion of similarity)

u⊤
o vc

PART 1: WORD EMBEDDINGS

WORD2VEC [Mikolov et al., 2013]

P(o ∣ c ; θ) =
exp(u⊤

o vc)
∑w∈V exp(u⊤

wvc)

Modeling word-to-word Probability

context
word

center
word

Each word gets two vectors:
 when w is a center word,
 when it is a context word

vw
uw

 stands for all the
model parameters:
θ

θ = {(uw, vw)}w∈Vocab
normalizing term,

makes P add up to 1

 = softmax(U⊤(V1c)) ⋅ 1o
 |V | × d d × |V | |V | × 1

 : high if vectors point in the same direction
(i.e., a notion of similarity)

u⊤
o vc

PART 1: WORD EMBEDDINGS

WORD2VEC [Mikolov et al., 2013]

Modeling Document Likelihood

 =Loss(U, V) −
1
T

T

∑
t=1

∑
−m ≤ j ≤ m

j ≠ 0

log P(wt+j ∣ wt; θ)

PART 1: WORD EMBEDDINGS

WORD2VEC [Mikolov et al., 2013]

Modeling Document Likelihood

 =Loss(U, V) −
1
T

T

∑
t=1

∑
−m ≤ j ≤ m

j ≠ 0

log P(wt+j ∣ wt; θ)

= −
1
T

T

∑
t=1

∑
−m ≤ j ≤ m

j ≠ 0

log
exp(u⊤

o vc)
∑w∈V exp(u⊤

wvc)

PART 1: WORD EMBEDDINGS

WORD2VEC [Mikolov et al., 2013]

Modeling Document Likelihood

 =Loss(U, V) −
1
T

T

∑
t=1

∑
−m ≤ j ≤ m

j ≠ 0

log P(wt+j ∣ wt; θ)

= −
1
T

T

∑
t=1

∑
−m ≤ j ≤ m

j ≠ 0

log u⊤
o vc + log ∑

w∈V

exp(u⊤
wvc)

= −
1
T

T

∑
t=1

∑
−m ≤ j ≤ m

j ≠ 0

log
exp(u⊤

o vc)
∑w∈V exp(u⊤

wvc)

PART 1: WORD EMBEDDINGS

WORD2VEC [Mikolov et al., 2013]

Modeling Document Likelihood

 =Loss(U, V) −
1
T

T

∑
t=1

∑
−m ≤ j ≤ m

j ≠ 0

log P(wt+j ∣ wt; θ)

= −
1
T

T

∑
t=1

∑
−m ≤ j ≤ m

j ≠ 0

log u⊤
o vc + log ∑

w∈V

exp(u⊤
wvc)

= −
1
T

T

∑
t=1

∑
−m ≤ j ≤ m

j ≠ 0

log
exp(u⊤

o vc)
∑w∈V exp(u⊤

wvc)

Optimization: Stochastic Gradient Descent one update for every t

PART 1: WORD EMBEDDINGS

WORD2VEC [Mikolov et al., 2013]

Algorithmic Considerations

 Loss(U, V) = −
1
T

T

∑
t=1

∑
−m ≤ j ≤ m

j ≠ 0

log u⊤
o vc + log ∑

w∈V

exp(u⊤
wvc)

PART 1: WORD EMBEDDINGS

WORD2VEC [Mikolov et al., 2013]

Algorithmic Considerations

 Loss(U, V) = −
1
T

T

∑
t=1

∑
−m ≤ j ≤ m

j ≠ 0

log u⊤
o vc + log ∑

w∈V

exp(u⊤
wvc)

What’s wrong with this objective?

PART 1: WORD EMBEDDINGS

WORD2VEC [Mikolov et al., 2013]

Algorithmic Considerations

 Loss(U, V) = −
1
T

T

∑
t=1

∑
−m ≤ j ≤ m

j ≠ 0

log u⊤
o vc + log ∑

w∈V

exp(u⊤
wvc)

This an sum! Potentially hugeO(|V |)What’s wrong with this objective?

PART 1: WORD EMBEDDINGS

WORD2VEC [Mikolov et al., 2013]

Algorithmic Considerations

 Loss(U, V) = −
1
T

T

∑
t=1

∑
−m ≤ j ≤ m

j ≠ 0

log u⊤
o vc + log ∑

w∈V

exp(u⊤
wvc)

This an sum! Potentially hugeO(|V |)What’s wrong with this objective?

Two Solutions:

1. Negative sampling (solves a slightly different objective)

2. Hierarchical softmax (computes softmax via binary tree)

PART 1: WORD EMBEDDINGS

WORD2VEC [Mikolov et al., 2013]
Two Flavors of Prediction

predict context from center

Skip-Gram

PART 1: WORD EMBEDDINGS

WORD2VEC [Mikolov et al., 2013]
Two Flavors of Prediction

predict context from center

Skip-Gram Context Bag of Words
(CBOW)

predict center from context

PART 1: WORD EMBEDDINGS

WORD2VEC [Mikolov et al., 2013]

(DEMO): https://projector.tensorflow.org/

Visualizing Word2Vec Embeddings

https://projector.tensorflow.org/

PART 1: WORD EMBEDDINGS

WORD2VEC [Mikolov et al., 2013]

LINEAR ALGEBRA WITH WORDS

▸ Mikolov et al. (2013): Geometry of word2vec space is linear

PART 1: WORD EMBEDDINGS

LINEAR ALGEBRA WITH WORDS

▸ Mikolov et al. (2013): Geometry of word2vec space is linear
 xking − xman + xwoman ≈ xqueen

PART 1: WORD EMBEDDINGS

LINEAR ALGEBRA WITH WORDS

▸ Mikolov et al. (2013): Geometry of word2vec space is linear
 xking − xman + xwoman ≈ xqueen

PART 1: WORD EMBEDDINGS

LINEAR ALGEBRA WITH WORDS

▸ Mikolov et al. (2013): Geometry of word2vec space is linear
 xking − xman + xwoman ≈ xqueen !!!

PART 1: WORD EMBEDDINGS

LINEAR ALGEBRA WITH WORDS

▸ Mikolov et al. (2013): Geometry of word2vec space is linear

Source: tensorflow.org/tutorials

 xking − xman + xwoman ≈ xqueen !!!

PART 1: WORD EMBEDDINGS

http://tensorflow.org/tutorials

LINEAR ALGEBRA WITH WORDS

▸ Mikolov et al. (2013): Geometry of word2vec space is linear

Source: tensorflow.org/tutorials

 xking − xman + xwoman ≈ xqueen !!!

PART 1: WORD EMBEDDINGS

http://tensorflow.org/tutorials

LINEAR ALGEBRA WITH WORDS

▸ Mikolov et al. (2013): Geometry of word2vec space is linear

Source: tensorflow.org/tutorials

 xking − xman + xwoman ≈ xqueen !!!

PART 1: WORD EMBEDDINGS

http://tensorflow.org/tutorials

IN SEARCH OF AN EXPLANATION

PART 1: WORD EMBEDDINGS

IN SEARCH OF AN EXPLANATION

▸ Levy & Goldberg (2014): “Count-based vectors have this property too!”

PART 1: WORD EMBEDDINGS

IN SEARCH OF AN EXPLANATION

▸ Levy & Goldberg (2014): “Count-based vectors have this property too!”

▸ Arora et al. (2015): “It is a direct consequence of using co-occurrence statistics.”

PART 1: WORD EMBEDDINGS

IN SEARCH OF AN EXPLANATION

▸ Levy & Goldberg (2014): “Count-based vectors have this property too!”

▸ Arora et al. (2015): “It is a direct consequence of using co-occurrence statistics.”

▸ Hashimoto et al. (2016): “This has been observed in cog. sci. much earlier!
Conjecture: word2vec recovers metric of an implicit cognitive-semantic vector space”

PART 1: WORD EMBEDDINGS

IN SEARCH OF AN EXPLANATION

▸ Levy & Goldberg (2014): “Count-based vectors have this property too!”

▸ Arora et al. (2015): “It is a direct consequence of using co-occurrence statistics.”

▸ Hashimoto et al. (2016): “This has been observed in cog. sci. much earlier!
Conjecture: word2vec recovers metric of an implicit cognitive-semantic vector space”

PART 1: WORD EMBEDDINGS

IN SEARCH OF AN EXPLANATION

[STERNBERG & GARDNER, 1983]
BASED ON WORD ASSOCIATION TESTS

▸ Levy & Goldberg (2014): “Count-based vectors have this property too!”

▸ Arora et al. (2015): “It is a direct consequence of using co-occurrence statistics.”

▸ Hashimoto et al. (2016): “This has been observed in cog. sci. much earlier!
Conjecture: word2vec recovers metric of an implicit cognitive-semantic vector space”

PART 1: WORD EMBEDDINGS

ALL VECTORS LEAD TO ROME

PART 1: WORD EMBEDDINGS

ALL VECTORS LEAD TO ROME

THEY ARE ALL
(ESSENTIALLY) EQUIVALENT

 [HASHIMOTO, AM & JAAKKOLA, 2015]

PART 1: WORD EMBEDDINGS

BONUS: AUTOMATIC TRANSLATION USING EMBEDDINGS
[Conneau et al 2018]:

PART 1: WORD EMBEDDINGS

BONUS: AUTOMATIC TRANSLATION USING EMBEDDINGS
[Conneau et al 2018]:

PART 1: WORD EMBEDDINGS

BONUS: AUTOMATIC TRANSLATION USING EMBEDDINGS
[Conneau et al 2018]:

PART 1: WORD EMBEDDINGS

BONUS: AUTOMATIC TRANSLATION USING EMBEDDINGS
[Conneau et al 2018]:

PART 1: WORD EMBEDDINGS

BONUS: AUTOMATIC TRANSLATION USING EMBEDDINGS
[Conneau et al 2018]:

SOLUTION FOUND THROUGH
ADVERSARIAL TRAINING

PART 1: WORD EMBEDDINGS

BONUS: AUTOMATIC TRANSLATION USING EMBEDDINGS
[Conneau et al 2018]:

[AM & Jaakkola 2018]:

SOLUTION FOUND THROUGH
ADVERSARIAL TRAINING

PART 1: WORD EMBEDDINGS

BONUS: AUTOMATIC TRANSLATION USING EMBEDDINGS
[Conneau et al 2018]:

[AM & Jaakkola 2018]:

SOLUTION FOUND THROUGH
ADVERSARIAL TRAINING

PART 1: WORD EMBEDDINGS

BONUS: AUTOMATIC TRANSLATION USING EMBEDDINGS
[Conneau et al 2018]:

[AM & Jaakkola 2018]:

SOLUTION FOUND THROUGH
ADVERSARIAL TRAINING

ALLOWS FOR EMBEDDING SPACES
OF DIFFERENT DIMENSION

PART 1: WORD EMBEDDINGS

BONUS: AUTOMATIC TRANSLATION USING EMBEDDINGS
[Conneau et al 2018]:

[AM & Jaakkola 2018]:

SOLUTION FOUND THROUGH
ADVERSARIAL TRAINING

ALLOWS FOR EMBEDDING SPACES
OF DIFFERENT DIMENSION

PROBLEM SOLVED THROUGH
EXPLICIT OPTIMIZATION

(GROMOV-WASSERSTEIN)

PART 1: WORD EMBEDDINGS

PROCESSING SENTENCES

WITH RECURRENT NEURAL NETWORKS

PART 2:

PART 2: RECURRENT NEURAL NETWORKS

FROM WORDS TO SENTENCES: REPRESENTATION

“The house is green …”

PART 2: RECURRENT NEURAL NETWORKS

FROM WORDS TO SENTENCES: REPRESENTATION

“The house is green …”

How do we represent
an entire sentence?

PART 2: RECURRENT NEURAL NETWORKS

FROM WORDS TO SENTENCES: REPRESENTATION

“The house is green …”

How do we represent
an entire sentence?

x1
x2
⋮
xm

vthe

x1
x2
⋮
xm

vhouse

x1
x2
⋮
xm

vis

x1
x2
⋮
xm

vgreen

PART 2: RECURRENT NEURAL NETWORKS

FROM WORDS TO SENTENCES: REPRESENTATION

“The house is green …”

How do we represent
an entire sentence?

x1
x2
⋮
xm

vthe

x1
x2
⋮
xm

vhouse

x1
x2
⋮
xm

vis

x1
x2
⋮
xm

vgreen

x1
x2
⋮
xm

vthe house …

+ + +=

PART 2: RECURRENT NEURAL NETWORKS

FROM WORDS TO SENTENCES: REPRESENTATION

“The house is green …”

How do we represent
an entire sentence?

x1
x2
⋮
xm

vthe

x1
x2
⋮
xm

vhouse

x1
x2
⋮
xm

vis

x1
x2
⋮
xm

vgreen

x1
x2
⋮
xm

vthe house …

+ + +=

A car leaves its shed.

A tree shed its leaves.

PART 2: RECURRENT NEURAL NETWORKS

FROM WORDS TO SENTENCES: REPRESENTATION

“The house is green …”

How do we represent
an entire sentence?

x1
x2
⋮
xm

vthe

x1
x2
⋮
xm

vhouse

x1
x2
⋮
xm

vis

x1
x2
⋮
xm

vgreen

x1
x2
⋮
xm

vthe house …

+ + +=

A car leaves its shed.

A tree shed its leaves.

Same vector!

PART 2: RECURRENT NEURAL NETWORKS

FROM WORDS TO SENTENCES: REPRESENTATION

“The house is green …”

How do we represent
an entire sentence?

x1
x2
⋮
xm

vthe

x1
x2
⋮
xm

vhouse

x1
x2
⋮
xm

vis

x1
x2
⋮
xm

vgreen
Only he told his wife that he loved her.

He only told his wife that he loved her.

He told only his wife that he loved her.

He told his only wife that he loved her.

He told his wife only that he loved her.

He told his wife that only he loved her.

He told his wife that he only loved her.

He told his wife that he loved only her.

He told his wife that he loved her only.

x1
x2
⋮
xm

vthe house …

+ + +=

A car leaves its shed.

A tree shed its leaves.

Same vector!

PART 2: RECURRENT NEURAL NETWORKS

FROM WORDS TO SENTENCES: REPRESENTATION

“The house is green …”

How do we represent
an entire sentence?

x1
x2
⋮
xm

vthe

x1
x2
⋮
xm

vhouse

x1
x2
⋮
xm

vis

x1
x2
⋮
xm

vgreen
Only he told his wife that he loved her.

He only told his wife that he loved her.

He told only his wife that he loved her.

He told his only wife that he loved her.

He told his wife only that he loved her.

He told his wife that only he loved her.

He told his wife that he only loved her.

He told his wife that he loved only her.

He told his wife that he loved her only.

x1
x2
⋮
xm

vthe house …

+ + +=

Same vector!

A car leaves its shed.

A tree shed its leaves.

Same vector!

PART 2: RECURRENT NEURAL NETWORKS

FROM WORDS TO SENTENCES: LANGUAGE MODELING
Language Model: a system that assigns probability to a piece of text

p(w1, …, wT) = p(w1) × p(w2 ∣ w1) × ⋯ × p(wT ∣ wT−1, …, w1) =
T

∏
t=1

p(wt ∣ wt−1, …, w1)

PART 2: RECURRENT NEURAL NETWORKS

FROM WORDS TO SENTENCES: LANGUAGE MODELING

The house is green, and it …

Language Model: a system that assigns probability to a piece of text

p(w1, …, wT) = p(w1) × p(w2 ∣ w1) × ⋯ × p(wT ∣ wT−1, …, w1) =
T

∏
t=1

p(wt ∣ wt−1, …, w1)

PART 2: RECURRENT NEURAL NETWORKS

FROM WORDS TO SENTENCES: LANGUAGE MODELING

The house is green, and it …
car (p = 0.2)

(p = 0.7)

(p = 0.1)boat
house

Language Model: a system that assigns probability to a piece of text

p(w1, …, wT) = p(w1) × p(w2 ∣ w1) × ⋯ × p(wT ∣ wT−1, …, w1) =
T

∏
t=1

p(wt ∣ wt−1, …, w1)

PART 2: RECURRENT NEURAL NETWORKS

FROM WORDS TO SENTENCES: LANGUAGE MODELING

The house is green, and it …

Language Model: a system that assigns probability to a piece of text

p(w1, …, wT) = p(w1) × p(w2 ∣ w1) × ⋯ × p(wT ∣ wT−1, …, w1) =
T

∏
t=1

p(wt ∣ wt−1, …, w1)

PART 2: RECURRENT NEURAL NETWORKS

FROM WORDS TO SENTENCES: LANGUAGE MODELING

The house is green, and it …
was (p = 0.4)

(p = 0.4)

(p = 0.2)can
is

Language Model: a system that assigns probability to a piece of text

p(w1, …, wT) = p(w1) × p(w2 ∣ w1) × ⋯ × p(wT ∣ wT−1, …, w1) =
T

∏
t=1

p(wt ∣ wt−1, …, w1)

PART 2: RECURRENT NEURAL NETWORKS

FROM WORDS TO SENTENCES: LANGUAGE MODELING

The house is green, and it …

Language Model: a system that assigns probability to a piece of text

p(w1, …, wT) = p(w1) × p(w2 ∣ w1) × ⋯ × p(wT ∣ wT−1, …, w1) =
T

∏
t=1

p(wt ∣ wt−1, …, w1)

PART 2: RECURRENT NEURAL NETWORKS

FROM WORDS TO SENTENCES: LANGUAGE MODELING

The house is green, and it …
blue (p = 0.3)

(p = 0.4)

(p = 0.3)big
green

Language Model: a system that assigns probability to a piece of text

p(w1, …, wT) = p(w1) × p(w2 ∣ w1) × ⋯ × p(wT ∣ wT−1, …, w1) =
T

∏
t=1

p(wt ∣ wt−1, …, w1)

PART 2: RECURRENT NEURAL NETWORKS

FROM WORDS TO SENTENCES: LANGUAGE MODELING

The house is green, and it …

Language Model: a system that assigns probability to a piece of text

p(w1, …, wT) = p(w1) × p(w2 ∣ w1) × ⋯ × p(wT ∣ wT−1, …, w1) =
T

∏
t=1

p(wt ∣ wt−1, …, w1)

PART 2: RECURRENT NEURAL NETWORKS

FROM WORDS TO SENTENCES: LANGUAGE MODELING

The house is green, and it …

Language Model: a system that assigns probability to a piece of text

p(w1, …, wT) = p(w1) × p(w2 ∣ w1) × ⋯ × p(wT ∣ wT−1, …, w1) =
T

∏
t=1

p(wt ∣ wt−1, …, w1)

PART 2: RECURRENT NEURAL NETWORKS

FROM WORDS TO SENTENCES: LANGUAGE MODELING

The house is green, and it … (p = 0.1)

Language Model: a system that assigns probability to a piece of text

p(w1, …, wT) = p(w1) × p(w2 ∣ w1) × ⋯ × p(wT ∣ wT−1, …, w1) =
T

∏
t=1

p(wt ∣ wt−1, …, w1)

PART 2: RECURRENT NEURAL NETWORKS

FROM WORDS TO SENTENCES: LANGUAGE MODELING
Language modeling in the wild….

Source: reddit.com/user/wardetbestanee/Source: www.lightkey.io

PART 2: RECURRENT NEURAL NETWORKS

FROM WORDS TO SENTENCES: LANGUAGE MODELING
Language modeling in the wild….

Source: reddit.com/user/wardetbestanee/Source: www.lightkey.io

PART 2: RECURRENT NEURAL NETWORKS

LANGUAGE MODELING: N-GRAM MODELS
The classic (pre-neural) approach: learning n-gram probabilities

PART 2: RECURRENT NEURAL NETWORKS

LANGUAGE MODELING: N-GRAM MODELS
The classic (pre-neural) approach: learning n-gram probabilities

a sequence of n consecutive words

PART 2: RECURRENT NEURAL NETWORKS

LANGUAGE MODELING: N-GRAM MODELS
The classic (pre-neural) approach: learning n-gram probabilities

a sequence of n consecutive words

“The house is green”

PART 2: RECURRENT NEURAL NETWORKS

LANGUAGE MODELING: N-GRAM MODELS
The classic (pre-neural) approach: learning n-gram probabilities

a sequence of n consecutive words

“The house is green”

Unigrams: [“The”, “house”, “is”, “green”]

Bigrams: [“The house”, “house is”, “is green”]

Trigrams: [“The house is”, “house is green”]

4-grams: [“The house is green”]

PART 2: RECURRENT NEURAL NETWORKS

LANGUAGE MODELING: N-GRAM MODELS
The classic (pre-neural) approach: learning n-gram probabilities

a sequence of n consecutive words

“The house is green”

Unigrams: [“The”, “house”, “is”, “green”]

Bigrams: [“The house”, “house is”, “is green”]

Trigrams: [“The house is”, “house is green”]

4-grams: [“The house is green”]

Main idea: estimate next word probability using n-gram counts

PART 2: RECURRENT NEURAL NETWORKS

LANGUAGE MODELING: N-GRAM MODELS
The classic (pre-neural) approach: learning n-gram probabilities

a sequence of n consecutive words

“The house is green”

Unigrams: [“The”, “house”, “is”, “green”]

Bigrams: [“The house”, “house is”, “is green”]

Trigrams: [“The house is”, “house is green”]

4-grams: [“The house is green”]

Main idea: estimate next word probability using n-gram counts

p(wt+1 ∣ wt, …, w1) = p(wt+1 ∣ wt, …, wt−n+2) (Markov assumption)

PART 2: RECURRENT NEURAL NETWORKS

LANGUAGE MODELING: N-GRAM MODELS
The classic (pre-neural) approach: learning n-gram probabilities

a sequence of n consecutive words

“The house is green”

Unigrams: [“The”, “house”, “is”, “green”]

Bigrams: [“The house”, “house is”, “is green”]

Trigrams: [“The house is”, “house is green”]

4-grams: [“The house is green”]

Main idea: estimate next word probability using n-gram counts

p(wt+1 ∣ wt, …, w1) = p(wt+1 ∣ wt, …, wt−n+2)

=
p(wt+1, wt, …, wt−n+2)

p(wt, …, wt−n+2)

(Markov assumption)

(def. of conditional prob.)

PART 2: RECURRENT NEURAL NETWORKS

LANGUAGE MODELING: N-GRAM MODELS
The classic (pre-neural) approach: learning n-gram probabilities

a sequence of n consecutive words

“The house is green”

Unigrams: [“The”, “house”, “is”, “green”]

Bigrams: [“The house”, “house is”, “is green”]

Trigrams: [“The house is”, “house is green”]

4-grams: [“The house is green”]

Main idea: estimate next word probability using n-gram counts

p(wt+1 ∣ wt, …, w1) = p(wt+1 ∣ wt, …, wt−n+2)

=
p(wt+1, wt, …, wt−n+2)

p(wt, …, wt−n+2)

(Markov assumption)

(def. of conditional prob.)

≈
counts(wt+1, wt, …, wt−n+2)

counts(wt, …, wt−n+2)
(approximate probs via counts,
estimated from large corpus)

PART 2: RECURRENT NEURAL NETWORKS

LANGUAGE MODELING: N-GRAM MODELS
The classic (pre-neural) approach: learning n-gram probabilities

Main idea: estimate next word probability using n-gram counts

p(wt+1 ∣ wt, …, w1) = p(wt+1 ∣ wt, …, wt−n+2) ≈
counts(wt+1, wt, …, wt−n+2)

counts(wt, …, wt−n+2)

PART 2: RECURRENT NEURAL NETWORKS

LANGUAGE MODELING: N-GRAM MODELS
The classic (pre-neural) approach: learning n-gram probabilities

Main idea: estimate next word probability using n-gram counts

p(wt+1 ∣ wt, …, w1) = p(wt+1 ∣ wt, …, wt−n+2) ≈
counts(wt+1, wt, …, wt−n+2)

counts(wt, …, wt−n+2)

Example: estimate next-word probability for “The house is _____” using trigrams

PART 2: RECURRENT NEURAL NETWORKS

LANGUAGE MODELING: N-GRAM MODELS
The classic (pre-neural) approach: learning n-gram probabilities

Main idea: estimate next word probability using n-gram counts

p(wt+1 ∣ wt, …, w1) = p(wt+1 ∣ wt, …, wt−n+2) ≈
counts(wt+1, wt, …, wt−n+2)

counts(wt, …, wt−n+2)

Example: estimate next-word probability for “The house is _____” using trigrams

p(green ∣ is, house, the) = p(green ∣ is, house)

PART 2: RECURRENT NEURAL NETWORKS

LANGUAGE MODELING: N-GRAM MODELS
The classic (pre-neural) approach: learning n-gram probabilities

Main idea: estimate next word probability using n-gram counts

p(wt+1 ∣ wt, …, w1) = p(wt+1 ∣ wt, …, wt−n+2) ≈
counts(wt+1, wt, …, wt−n+2)

counts(wt, …, wt−n+2)

Example: estimate next-word probability for “The house is _____” using trigrams

p(green ∣ is, house, the) = p(green ∣ is, house)

= (no. of times “house is green” occurs in corpus)
(no. of times “house is” occurs in corpus)

PART 2: RECURRENT NEURAL NETWORKS

LANGUAGE MODELING: N-GRAM MODELS
The classic (pre-neural) approach: learning n-gram probabilities

Main idea: estimate next word probability using n-gram counts

p(wt+1 ∣ wt, …, w1) = p(wt+1 ∣ wt, …, wt−n+2) ≈
counts(wt+1, wt, …, wt−n+2)

counts(wt, …, wt−n+2)

Example: estimate next-word probability for “The house is _____” using trigrams

p(green ∣ is, house, the) = p(green ∣ is, house)

= (no. of times “house is green” occurs in corpus)
(no. of times “house is” occurs in corpus)

N-gram models with small n are “miopic”, what about large n?

PART 2: RECURRENT NEURAL NETWORKS

[Rumelhart, 1986; Hopfield, 1982]

For every t:

LANGUAGE MODELING: RECURRENT NEURAL NETWORKS

PART 2: RECURRENT NEURAL NETWORKS

[Rumelhart, 1986; Hopfield, 1982]

et = Ext

For every t:

LANGUAGE MODELING: RECURRENT NEURAL NETWORKS

PART 2: RECURRENT NEURAL NETWORKS

[Rumelhart, 1986; Hopfield, 1982]

et = Ext

For every t: Word Embedding
(e.g. Word2Vec)

LANGUAGE MODELING: RECURRENT NEURAL NETWORKS

PART 2: RECURRENT NEURAL NETWORKS

[Rumelhart, 1986; Hopfield, 1982]

A : ht = σ(Weet + Whht−1 + b1)

et = Ext

For every t: Word Embedding
(e.g. Word2Vec)

LANGUAGE MODELING: RECURRENT NEURAL NETWORKS

PART 2: RECURRENT NEURAL NETWORKS

[Rumelhart, 1986; Hopfield, 1982]

A : ht = σ(Weet + Whht−1 + b1)

et = Ext

For every t: Word Embedding
(e.g. Word2Vec)

A non-linear
activation function

LANGUAGE MODELING: RECURRENT NEURAL NETWORKS

PART 2: RECURRENT NEURAL NETWORKS

[Rumelhart, 1986; Hopfield, 1982]

̂yt = softmax(Uht + b2) ∈ R|V|

A : ht = σ(Weet + Whht−1 + b1)

et = Ext

For every t: Word Embedding
(e.g. Word2Vec)

A non-linear
activation function

LANGUAGE MODELING: RECURRENT NEURAL NETWORKS

PART 2: RECURRENT NEURAL NETWORKS

[Rumelhart, 1986; Hopfield, 1982]

̂yt = softmax(Uht + b2) ∈ R|V|

A : ht = σ(Weet + Whht−1 + b1)

et = Ext

For every t: Word Embedding
(e.g. Word2Vec)

A non-linear
activation function

Predicted class

(in this case, next word)

LANGUAGE MODELING: RECURRENT NEURAL NETWORKS

PART 2: RECURRENT NEURAL NETWORKS

[Rumelhart, 1986; Hopfield, 1982]

̂yt = softmax(Uht + b2) ∈ R|V|

A : ht = σ(Weet + Whht−1 + b1)

et = Ext

For every t:

Credit: Stanford CS224n

Word Embedding
(e.g. Word2Vec)

A non-linear
activation function

Predicted class

(in this case, next word)

LANGUAGE MODELING: RECURRENT NEURAL NETWORKS

PART 2: RECURRENT NEURAL NETWORKS

[Rumelhart, 1986; Hopfield, 1982]

A : ht = σ(Weet + Whht−1 + b1)

LANGUAGE MODELING: RECURRENT NEURAL NETWORKS

PART 2: RECURRENT NEURAL NETWORKS

The house is green

[Rumelhart, 1986; Hopfield, 1982]

A : ht = σ(Weet + Whht−1 + b1)

LANGUAGE MODELING: RECURRENT NEURAL NETWORKS

PART 2: RECURRENT NEURAL NETWORKS

The house is green

0.9
1.2

0.3

[Rumelhart, 1986; Hopfield, 1982]

A : ht = σ(Weet + Whht−1 + b1)

LANGUAGE MODELING: RECURRENT NEURAL NETWORKS

PART 2: RECURRENT NEURAL NETWORKS

The house is green

1.5
0.0

1.2

[Rumelhart, 1986; Hopfield, 1982]

A : ht = σ(Weet + Whht−1 + b1)

LANGUAGE MODELING: RECURRENT NEURAL NETWORKS

PART 2: RECURRENT NEURAL NETWORKS

The house is green

0.3
1.1

0.8

[Rumelhart, 1986; Hopfield, 1982]

A : ht = σ(Weet + Whht−1 + b1)

LANGUAGE MODELING: RECURRENT NEURAL NETWORKS

PART 2: RECURRENT NEURAL NETWORKS

The house is green

2.3

0.5

1.9

[Rumelhart, 1986; Hopfield, 1982]

A : ht = σ(Weet + Whht−1 + b1)

LANGUAGE MODELING: RECURRENT NEURAL NETWORKS

PART 2: RECURRENT NEURAL NETWORKS

The house is green

2.3

0.5

1.9

[Rumelhart, 1986; Hopfield, 1982]

A : ht = σ(Weet + Whht−1 + b1)
Note: same weights
applied every time

LANGUAGE MODELING: RECURRENT NEURAL NETWORKS

PART 2: RECURRENT NEURAL NETWORKS

How do we train it?

[Rumelhart, 1986; Hopfield, 1982]
LANGUAGE MODELING: RECURRENT NEURAL NETWORKS

PART 2: RECURRENT NEURAL NETWORKS

How do we train it?

[Rumelhart, 1986; Hopfield, 1982]
LANGUAGE MODELING: RECURRENT NEURAL NETWORKS

PART 2: RECURRENT NEURAL NETWORKS

RECURRENT NEURAL NETS: TRAINING

PART 2: RECURRENT NEURAL NETWORKS

RECURRENT NEURAL NETS: TRAINING

̂y0 ̂y1 ̂y2 ̂yt

PART 2: RECURRENT NEURAL NETWORKS

RECURRENT NEURAL NETS: TRAINING

̂y0 ̂y1 ̂y2 ̂yt̂yt = softmax(Uht + b2) ∈ R|V|

ht = σ(Weet + Whht−1 + b1)

et = Ext

PART 2: RECURRENT NEURAL NETWORKS

RECURRENT NEURAL NETS: TRAINING

Error(yt, ̂yt)Error(y2, ̂y2)Error(y1, ̂y1)Error(y0, ̂y0)

̂y0 ̂y1 ̂y2 ̂yt̂yt = softmax(Uht + b2) ∈ R|V|

ht = σ(Weet + Whht−1 + b1)

et = Ext

PART 2: RECURRENT NEURAL NETWORKS

RECURRENT NEURAL NETS: TRAINING

Error(yt, ̂yt)Error(y2, ̂y2)Error(y1, ̂y1)Error(y0, ̂y0)

∂Et

∂θ
∂E2

∂θ
∂E1

∂θ
∂E0

∂θ

̂y0 ̂y1 ̂y2 ̂yt̂yt = softmax(Uht + b2) ∈ R|V|

ht = σ(Weet + Whht−1 + b1)

et = Ext

PART 2: RECURRENT NEURAL NETWORKS

RECURRENT NEURAL NETS: TRAINING

Error(yt, ̂yt)Error(y2, ̂y2)Error(y1, ̂y1)Error(y0, ̂y0)

∂Et

∂θ
∂E2

∂θ
∂E1

∂θ
∂E0

∂θ

Back-Propagation Through Time (BPTT)

̂y0 ̂y1 ̂y2 ̂yt̂yt = softmax(Uht + b2) ∈ R|V|

ht = σ(Weet + Whht−1 + b1)

et = Ext

RECURRENT NEURAL NETS: APPLICATIONS

Language Modeling (LM)

PART 2: RECURRENT NEURAL NETWORKS

RECURRENT NEURAL NETS: APPLICATIONS

The

Language Modeling (LM)

house

PART 2: RECURRENT NEURAL NETWORKS

RECURRENT NEURAL NETS: APPLICATIONS

The

Language Modeling (LM)

house

house is

PART 2: RECURRENT NEURAL NETWORKS

RECURRENT NEURAL NETS: APPLICATIONS

The

Language Modeling (LM)

house is

redhouse is

PART 2: RECURRENT NEURAL NETWORKS

PART 2: RECURRENT NEURAL NETWORKS

RECURRENT NEURAL NETS: EXAMPLE TEXT GENERATION

Training data: Wikipedia

Input: “The meaning of life is “

Generated Text:

[Sutskever et al, 2011]
Training data: NYT

Input: “[space]”

Generated Text:

PART 2: RECURRENT NEURAL NETWORKS

RECURRENT NEURAL NETS: EXAMPLE TEXT GENERATION

Training data: Obama’s Speeches

Input: “YES WE CAN”

Generated Text:

Good morning. And as we mark the fact that they can stand with
their companies that are consistent to the state of Pakistan and
the United States of America.

With the financial system we can do that. And the people of the
United States will not be able to continue to support the people
of the greatest problem of the American people to stay in the
White House. And that’s why […]

Thank you very much. God bless you. God bless you. God bless
you. God bless you.

Training data: Shakespeare

Input: “ ”

Generated Text:

PANDARUS:

Alas, I think he shall be come approached and the day

When little srain would be attain'd into being never fed,

And who is but a chain and subjects of his death,

I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul,

Breaking and strongly should be buried, when I perish

The earth and thoughts of many states.

DUKE VINCENTIO:

Well, your wit is in the care of side and that. […]

Example Source: medium.com/@samim/ Example Source: http://karpathy.github.io/

PART 2: RECURRENT NEURAL NETWORKS

RECURRENT NEURAL NETS: APPLICATIONS

Part-of-Speech Tagging (POS)

PART 2: RECURRENT NEURAL NETWORKS

RECURRENT NEURAL NETS: APPLICATIONS

The

Part-of-Speech Tagging (POS)

ART

PART 2: RECURRENT NEURAL NETWORKS

RECURRENT NEURAL NETS: APPLICATIONS

The

Part-of-Speech Tagging (POS)

house

ART NOUN

PART 2: RECURRENT NEURAL NETWORKS

RECURRENT NEURAL NETS: APPLICATIONS

The

Part-of-Speech Tagging (POS)

house is

VERBART NOUN

PART 2: RECURRENT NEURAL NETWORKS

RECURRENT NEURAL NETS: APPLICATIONS

Sentence Classification

(e.g. sentiment analysis)

PART 2: RECURRENT NEURAL NETWORKS

RECURRENT NEURAL NETS: APPLICATIONS

I

Sentence Classification

(e.g. sentiment analysis)

love this

<positive>

recommended!

PART 2: RECURRENT NEURAL NETWORKS

RECURRENT NEURAL NETS: PROS AND CONS

PROS CONS

PART 2: RECURRENT NEURAL NETWORKS

RECURRENT NEURAL NETS: PROS AND CONS

PROS
• Can take inputs of variable (and

potentially infinite) length

CONS

PART 2: RECURRENT NEURAL NETWORKS

RECURRENT NEURAL NETS: PROS AND CONS

PROS
• Can take inputs of variable (and

potentially infinite) length

• Can model long-range
dependencies

CONS

PART 2: RECURRENT NEURAL NETWORKS

RECURRENT NEURAL NETS: PROS AND CONS

PROS
• Can take inputs of variable (and

potentially infinite) length

• Can model long-range
dependencies

• Fixed model size regardless of
input size

CONS

PART 2: RECURRENT NEURAL NETWORKS

RECURRENT NEURAL NETS: PROS AND CONS

PROS
• Can take inputs of variable (and

potentially infinite) length

• Can model long-range
dependencies

• Fixed model size regardless of
input size

CONS
• Computation can be very

slow

PART 2: RECURRENT NEURAL NETWORKS

RECURRENT NEURAL NETS: PROS AND CONS

PROS
• Can take inputs of variable (and

potentially infinite) length

• Can model long-range
dependencies

• Fixed model size regardless of
input size

CONS
• Computation can be very

slow

• Information degrades in
every time step

PART 2: RECURRENT NEURAL NETWORKS

RECURRENT NEURAL NETS: PROS AND CONS

PROS
• Can take inputs of variable (and

potentially infinite) length

• Can model long-range
dependencies

• Fixed model size regardless of
input size

CONS
• Computation can be very

slow

• Information degrades in
every time step

• Exploding and vanishing
gradients

PART 2: RECURRENT NEURAL NETWORKS

RECURRENT NEURAL NETS: VANISHING GRADIENT PROBLEM

(Whiteboard)

Analysis for simplified case (identity). General case follows similar proof.σ =

PART 2: RECURRENT NEURAL NETWORKS

LSTM: LONG SHORT-TERM MEMORY NETWORK
[Schmidhuber et al. 1992]

Addresses the gradient problems by using ‘gates’ to control information flow

PART 2: RECURRENT NEURAL NETWORKS

LSTM: LONG SHORT-TERM MEMORY NETWORK
[Schmidhuber et al. 1992]

Source: colah.github.io

Addresses the gradient problems by using ‘gates’ to control information flow

ct−1

PART 2: RECURRENT NEURAL NETWORKS

LSTM: LONG SHORT-TERM MEMORY NETWORK
[Schmidhuber et al. 1992]

Source: colah.github.io

Addresses the gradient problems by using ‘gates’ to control information flow

forget gate

input gate

output gate ct−1

PART 2: RECURRENT NEURAL NETWORKS

LSTM: LONG SHORT-TERM MEMORY NETWORK
[Schmidhuber et al. 1992]

Source: colah.github.io

Addresses the gradient problems by using ‘gates’ to control information flow

f(t) = σ(Wf h(t−1) + Uf x(t) + bf)

i(t) = σ(Wih(t−1) + Uix(t) + bi)
o(t) = σ(Wf h(t−1) + Uox(t) + bo)

forget gate

input gate

output gate ct−1

PART 2: RECURRENT NEURAL NETWORKS

LSTM: LONG SHORT-TERM MEMORY NETWORK
[Schmidhuber et al. 1992]

Source: colah.github.io

Addresses the gradient problems by using ‘gates’ to control information flow

f(t) = σ(Wf h(t−1) + Uf x(t) + bf)

i(t) = σ(Wih(t−1) + Uix(t) + bi)
o(t) = σ(Wf h(t−1) + Uox(t) + bo)

c̃(t) = tanh(Wch(t−1) + Ucx(t) + bc)
c(t) = f(t) ∘ c(t−1) + i(t) ∘ c̃(t)

h(t) = o(t) ∘ tanh c(t)

forget gate

input gate

output gate ct−1

PART 2: RECURRENT NEURAL NETWORKS

LSTM: LONG SHORT-TERM MEMORY NETWORK
[Schmidhuber et al. 1992]

Source: colah.github.io

Addresses the gradient problems by using ‘gates’ to control information flow

f(t) = σ(Wf h(t−1) + Uf x(t) + bf)

i(t) = σ(Wih(t−1) + Uix(t) + bi)
o(t) = σ(Wf h(t−1) + Uox(t) + bo)

c̃(t) = tanh(Wch(t−1) + Ucx(t) + bc)
c(t) = f(t) ∘ c(t−1) + i(t) ∘ c̃(t)

h(t) = o(t) ∘ tanh c(t)

forget gate

input gate

output gate

cell update

cell state

hidden state

ct−1

PART 2: RECURRENT NEURAL NETWORKS

LSTM: LONG SHORT-TERM MEMORY NETWORK

Source: colah.github.io

[Schmidhuber et al. 1992]

PART 2: RECURRENT NEURAL NETWORKS

SEQ2SEQ: SEQUENCE TO SEQUENCE MODEL

ENCODER DECODER

[Sutskever et al. 2014]

2 RNN’s: encoder (processes input sentence) and decoder (generates output)

PART 2: RECURRENT NEURAL NETWORKS

SEQ2SEQ: SEQUENCE TO SEQUENCE MODEL

 La casa es roja

ENCODER DECODER

[Sutskever et al. 2014]

2 RNN’s: encoder (processes input sentence) and decoder (generates output)

PART 2: RECURRENT NEURAL NETWORKS

SEQ2SEQ: SEQUENCE TO SEQUENCE MODEL

 La casa es roja

ENCODER DECODER

[Sutskever et al. 2014]

No prediction during encoding

2 RNN’s: encoder (processes input sentence) and decoder (generates output)

PART 2: RECURRENT NEURAL NETWORKS

SEQ2SEQ: SEQUENCE TO SEQUENCE MODEL

 La casa es roja

ENCODER DECODER

[Sutskever et al. 2014]

No prediction during encoding

2 RNN’s: encoder (processes input sentence) and decoder (generates output)

Decoder takes encoder’s last state +

a special <start> token as inputs

PART 2: RECURRENT NEURAL NETWORKS

SEQ2SEQ: SEQUENCE TO SEQUENCE MODEL

 La casa es roja

ENCODER DECODER

[Sutskever et al. 2014]

The house is red

No prediction during encoding

2 RNN’s: encoder (processes input sentence) and decoder (generates output)

Decoder takes encoder’s last state +

a special <start> token as inputs

BIDIRECTIONAL RNNS

The house is red

Source: colah.github.io

Forward RNN
Backward RNN

Concatenate hidden states

Advantage: prediction can rely on both left and right context
Note: not applicable to Language Modeling! (Why?)

PART 2: RECURRENT NEURAL NETWORKS

DEEP / STACKED / MULTI-LAYER RNNS

• Inputs to i-th RNN are hidden
states of (i-1)-th RNN

The house is green.

PART 2: RECURRENT NEURAL NETWORKS

DEEP / STACKED / MULTI-LAYER RNNS

• Inputs to i-th RNN are hidden
states of (i-1)-th RNN

• Allows RNN to learn more
complex representations

The house is green.

PART 2: RECURRENT NEURAL NETWORKS

DEEP / STACKED / MULTI-LAYER RNNS

• Inputs to i-th RNN are hidden
states of (i-1)-th RNN

• Allows RNN to learn more
complex representations

• Typically: lower RNNs learn
local/simpler features, higher
RNNs learning global/abstract
features

The house is green.

PART 2: RECURRENT NEURAL NETWORKS

ATTENTION
Motivation: entire meaning of source sentence encoded in one vector! (the ‘bottleneck problem’)

 La casa es roja
ENCODER DECODER

The house is red
h1 h2 h3 h4 s1 s2 s3 s4

PART 2: RECURRENT NEURAL NETWORKS

ATTENTION
Motivation: entire meaning of source sentence encoded in one vector! (the ‘bottleneck problem’)

 La casa es roja
ENCODER DECODER

The house is red
h1 h2 h3 h4 s1 s2 s3 s4

et = [st ⋅ h1, …, st ⋅ hN] is sometimes called the ‘query’st

PART 2: RECURRENT NEURAL NETWORKS

ATTENTION
Motivation: entire meaning of source sentence encoded in one vector! (the ‘bottleneck problem’)

 La casa es roja
ENCODER DECODER

The house is red
h1 h2 h3 h4 s1 s2 s3 s4

αt = softmax(et)

et = [st ⋅ h1, …, st ⋅ hN] is sometimes called the ‘query’st

PART 2: RECURRENT NEURAL NETWORKS

ATTENTION
Motivation: entire meaning of source sentence encoded in one vector! (the ‘bottleneck problem’)

 La casa es roja
ENCODER DECODER

The house is red
h1 h2 h3 h4

αt,1 αt,2 αt,3
αt,4

⊕ at

s1 s2 s3 s4

αt = softmax(et)

et = [st ⋅ h1, …, st ⋅ hN]

at =
N

∑
i=1

αt,ihi

 is sometimes called the ‘query’st

PART 2: RECURRENT NEURAL NETWORKS

ATTENTION
Motivation: entire meaning of source sentence encoded in one vector! (the ‘bottleneck problem’)

 La casa es roja
ENCODER DECODER

The house is red
h1 h2 h3 h4

αt,1 αt,2 αt,3
αt,4

⊕ at

s1 s2 s3 s4

αt = softmax(et)

et = [st ⋅ h1, …, st ⋅ hN]

at =
N

∑
i=1

αt,ihi

 is sometimes called the ‘query’st

PART 2: RECURRENT NEURAL NETWORKS

ATTENTION
Motivation: entire meaning of source sentence encoded in one vector! (the ‘bottleneck problem’)

 La casa es roja
ENCODER DECODER

The house is red
h1 h2 h3 h4

αt,1 αt,2 αt,3
αt,4

⊕ at

s1 s2 s3 s4

αt = softmax(et)

et = [st ⋅ h1, …, st ⋅ hN]

at =
N

∑
i=1

αt,ihi

 is sometimes called the ‘query’st

PART 2: RECURRENT NEURAL NETWORKS

decoder ’attends’ to all inputs tokens!

ATTENTION
…for machine translation:

PART 2: RECURRENT NEURAL NETWORKS
So

ur
ce

: t
ru

ng
tra

n.
io

ATTENTION
…for machine translation:

PART 2: RECURRENT NEURAL NETWORKS
So

ur
ce

: t
ru

ng
tra

n.
io

ATTENTION
…for machine translation:

PART 2: RECURRENT NEURAL NETWORKS
So

ur
ce

: t
ru

ng
tra

n.
io

[Bahdanau et al., 2015]

ATTENTION
…for machine translation:

PART 2: RECURRENT NEURAL NETWORKS
So

ur
ce

: t
ru

ng
tra

n.
io

[Bahdanau et al., 2015]

… for summarization:

[Rush et al., 2015]

ATTENTION
…for machine translation:

PART 2: RECURRENT NEURAL NETWORKS
So

ur
ce

: t
ru

ng
tra

n.
io

[Bahdanau et al., 2015]

… for summarization:

[Rush et al., 2015]

ATTENTION
…for machine translation:

PART 2: RECURRENT NEURAL NETWORKS
So

ur
ce

: t
ru

ng
tra

n.
io

[Bahdanau et al., 2015]

… for summarization:

[Rush et al., 2015]

… for Question Answering:

[Rucke et al., 2017]

LARGE LANGUAGE MODELS:
SELF-ATTENTION, TRANSFORMERS, PRETRAINING

PART 3:

PART 3: LARGE LANGUAGE MODELS

FROM RNN TO ATTENTION-BASED MODELS

PART 3: LARGE LANGUAGE MODELS

FROM RNN TO ATTENTION-BASED MODELS

▸ RNNs (even LSTMs) struggle with very long-range dependencies

PART 3: LARGE LANGUAGE MODELS

FROM RNN TO ATTENTION-BASED MODELS

▸ RNNs (even LSTMs) struggle with very long-range dependencies

▸ So far: linear interaction between individual words. Language isn’t linear!

PART 3: LARGE LANGUAGE MODELS

FROM RNN TO ATTENTION-BASED MODELS

▸ RNNs (even LSTMs) struggle with very long-range dependencies

▸ So far: linear interaction between individual words. Language isn’t linear!

▸ Starting in 2017, new increasingly larger models have taken over NLP

PART 3: LARGE LANGUAGE MODELS

FROM RNN TO ATTENTION-BASED MODELS

▸ RNNs (even LSTMs) struggle with very long-range dependencies

▸ So far: linear interaction between individual words. Language isn’t linear!

▸ Starting in 2017, new increasingly larger models have taken over NLP

▸ Almost human-quality text generation, state-of-the-art in many tasks

PART 3: LARGE LANGUAGE MODELS

FROM RNN TO ATTENTION-BASED MODELS

▸ RNNs (even LSTMs) struggle with very long-range dependencies

▸ So far: linear interaction between individual words. Language isn’t linear!

▸ Starting in 2017, new increasingly larger models have taken over NLP

▸ Almost human-quality text generation, state-of-the-art in many tasks

▸ Two key ideas behind them: attention-based architectures and pre-training

SELF-ATTENTION

Source: jalammar.github.io/illustrated-transformer/

PART 3: LARGE LANGUAGE MODELS

SELF-ATTENTION

▸ We saw how attention helps in seq2seq models (decoder attends to encoder input)

Source: jalammar.github.io/illustrated-transformer/

PART 3: LARGE LANGUAGE MODELS

SELF-ATTENTION

▸ We saw how attention helps in seq2seq models (decoder attends to encoder input)

▸ But we can also use it for a model to ‘attend’ to its own input

Source: jalammar.github.io/illustrated-transformer/

PART 3: LARGE LANGUAGE MODELS

SELF-ATTENTION

▸ We saw how attention helps in seq2seq models (decoder attends to encoder input)

▸ But we can also use it for a model to ‘attend’ to its own input

Source: jalammar.github.io/illustrated-transformer/

PART 3: LARGE LANGUAGE MODELS

SELF-ATTENTION

▸ We saw how attention helps in seq2seq models (decoder attends to encoder input)

▸ But we can also use it for a model to ‘attend’ to its own input

Source: jalammar.github.io/illustrated-transformer/

word

embedding

vectors

PART 3: LARGE LANGUAGE MODELS

SELF-ATTENTION

▸ We saw how attention helps in seq2seq models (decoder attends to encoder input)

▸ But we can also use it for a model to ‘attend’ to its own input

Source: jalammar.github.io/illustrated-transformer/

word

embedding

vectors

model
parameters

PART 3: LARGE LANGUAGE MODELS

SELF-ATTENTION

▸ We saw how attention helps in seq2seq models (decoder attends to encoder input)

▸ But we can also use it for a model to ‘attend’ to its own input

‘query’

Source: jalammar.github.io/illustrated-transformer/

word

embedding

vectors

model
parameters

PART 3: LARGE LANGUAGE MODELS

SELF-ATTENTION

▸ We saw how attention helps in seq2seq models (decoder attends to encoder input)

▸ But we can also use it for a model to ‘attend’ to its own input

‘query’

‘key’

Source: jalammar.github.io/illustrated-transformer/

word

embedding

vectors

model
parameters

PART 3: LARGE LANGUAGE MODELS

SELF-ATTENTION

▸ We saw how attention helps in seq2seq models (decoder attends to encoder input)

▸ But we can also use it for a model to ‘attend’ to its own input

‘query’

‘key’

‘value’

Source: jalammar.github.io/illustrated-transformer/

word

embedding

vectors

model
parameters

PART 3: LARGE LANGUAGE MODELS

SELF-ATTENTION

▸ We saw how attention helps in seq2seq models (decoder attends to encoder input)

▸ But we can also use it for a model to ‘attend’ to its own input

‘query’

‘key’

‘value’

Source: jalammar.github.io/illustrated-transformer/

word

embedding

vectors

model
parameters

PART 3: LARGE LANGUAGE MODELS

SELF-ATTENTION

▸ We saw how attention helps in seq2seq models (decoder attends to encoder input)

▸ But we can also use it for a model to ‘attend’ to its own input

‘query’

‘key’

‘value’

Source: jalammar.github.io/illustrated-transformer/

word

embedding

vectors

model
parameters

PART 3: LARGE LANGUAGE MODELS

SELF-ATTENTION

▸ We saw how attention helps in seq2seq models (decoder attends to encoder input)

▸ But we can also use it for a model to ‘attend’ to its own input

‘query’

‘key’

‘value’

Source: jalammar.github.io/illustrated-transformer/

word

embedding

vectors

model
parameters

attention
matrix

PART 3: LARGE LANGUAGE MODELS

SELF-ATTENTION

▸ We saw how attention helps in seq2seq models (decoder attends to encoder input)

▸ But we can also use it for a model to ‘attend’ to its own input

‘query’

‘key’

‘value’

Source: jalammar.github.io/illustrated-transformer/

word

embedding

vectors

model
parameters

attention
matrix

PART 3: LARGE LANGUAGE MODELS

MULTI-HEADED SELF-ATTENTION

▸ Multiple stacked attention layers, model can attend to various aspects of the input at once

Source: jalammar.github.io/illustrated-transformer/

PART 3: LARGE LANGUAGE MODELS

TRANSFORMERS
[Vaswani et al. 2017]
▸ An architecture built around the concept of attention, revolutionized NLP

▸ SOTA in many tasks, soon became backbone of most subsequent models

▸ Other tricks: residual connections, layer norm., positional encodings

PART 3: LARGE LANGUAGE MODELS

THE POWER OF LARGE MODELS + PRETRAINING
▸ Most large modern NLP models involve pretraining a language model

PART 3: LARGE LANGUAGE MODELS

THE POWER OF LARGE MODELS + PRETRAINING
▸ Most large modern NLP models involve pretraining a language model

PART 3: LARGE LANGUAGE MODELS

Pre-Training Stage

(lots of generic text data)
(huge architecture)

+
(general-purpose
pre-trained model

Language
model training

=

THE POWER OF LARGE MODELS + PRETRAINING
▸ Most large modern NLP models involve pretraining a language model

PART 3: LARGE LANGUAGE MODELS

Pre-Training Stage

(lots of generic text data)
(huge architecture)

+
(general-purpose
pre-trained model

Language
model training

=

THE POWER OF LARGE MODELS + PRETRAINING
▸ Most large modern NLP models involve pretraining a language model

PART 3: LARGE LANGUAGE MODELS

Pre-Training Stage

(lots of generic text data)
(huge architecture)

+
(general-purpose
pre-trained model

Language
model training

=
(data from actual
task of interest)

Fine-Tuning Stage

Great
results!+ TASK-

SPECIFIC
TRAINING =

THE POWER OF LARGE MODELS + PRETRAINING
▸ Most large modern NLP models involve pretraining a language model

▸ Language models are the backbone of many other NLP systems (Q&A, MT, etc)

PART 3: LARGE LANGUAGE MODELS

Pre-Training Stage

(lots of generic text data)
(huge architecture)

+
(general-purpose
pre-trained model

Language
model training

=
(data from actual
task of interest)

Fine-Tuning Stage

Great
results!+ TASK-

SPECIFIC
TRAINING =

THE POWER OF LARGE MODELS + PRETRAINING
▸ Most large modern NLP models involve pretraining a language model

▸ Language models are the backbone of many other NLP systems (Q&A, MT, etc)

▸ GPT: Generative Pretrained Transformer [Radford et al., 2018]

▸ Transformer architecture (12 layers, 768dim hidden state, ~3000dim FF hidden layers)

▸ Trained on BooksCorpus: >7000 books

PART 3: LARGE LANGUAGE MODELS

Pre-Training Stage

(lots of generic text data)
(huge architecture)

+
(general-purpose
pre-trained model

Language
model training

=
(data from actual
task of interest)

Fine-Tuning Stage

Great
results!+ TASK-

SPECIFIC
TRAINING =

THE POWER OF LARGE MODELS + PRETRAINING
▸ Most large modern NLP models involve pretraining a language model

▸ Language models are the backbone of many other NLP systems (Q&A, MT, etc)

▸ GPT: Generative Pretrained Transformer [Radford et al., 2018]

▸ Transformer architecture (12 layers, 768dim hidden state, ~3000dim FF hidden layers)

▸ Trained on BooksCorpus: >7000 books

▸ BERT: Bidirectional Encoder Representations from Transformers [Devlin et al., 2018]

PART 3: LARGE LANGUAGE MODELS

Pre-Training Stage

(lots of generic text data)
(huge architecture)

+
(general-purpose
pre-trained model

Language
model training

=
(data from actual
task of interest)

Fine-Tuning Stage

Great
results!+ TASK-

SPECIFIC
TRAINING =

THE POWER OF LARGE MODELS + PRETRAINING

PART 3: LARGE LANGUAGE MODELS

A family of modern LM types ….

THE POWER OF LARGE MODELS + PRETRAINING

PART 3: LARGE LANGUAGE MODELS

A family of modern LM types ….
… with ever increasing model size

THE POWER OF LARGE MODELS + PRETRAINING

PART 3: LARGE LANGUAGE MODELS

API interface to OpenAI’s GPT-3 model:

Examples from: https://herbertlui.net/

THE POWER OF LARGE MODELS + PRETRAINING

PART 3: LARGE LANGUAGE MODELS

API interface to OpenAI’s GPT-3 model:

Examples from: https://herbertlui.net/

THE POWER OF LARGE MODELS + PRETRAINING

PART 3: LARGE LANGUAGE MODELS

API interface to OpenAI’s GPT-3 model:

Examples from: https://herbertlui.net/

HAVE LARGE LANGUAGE MODELS ‘SOLVED’ NLP?

▸ LLMs rely on extremely large datasets

PART 3: LARGE LANGUAGE MODELS

HAVE LARGE LANGUAGE MODELS ‘SOLVED’ NLP?

▸ LLMs rely on extremely large datasets

▸ most languages don’t have so much data available!

PART 3: LARGE LANGUAGE MODELS

HAVE LARGE LANGUAGE MODELS ‘SOLVED’ NLP?

▸ LLMs rely on extremely large datasets

▸ most languages don’t have so much data available!

▸ How and why models transfer well in some settings in still not fully understood

PART 3: LARGE LANGUAGE MODELS

HAVE LARGE LANGUAGE MODELS ‘SOLVED’ NLP?

▸ LLMs rely on extremely large datasets

▸ most languages don’t have so much data available!

▸ How and why models transfer well in some settings in still not fully understood

▸ How far can linguistics-free models go towards true language understanding?

PART 3: LARGE LANGUAGE MODELS

HAVE LARGE LANGUAGE MODELS ‘SOLVED’ NLP?

▸ LLMs rely on extremely large datasets

▸ most languages don’t have so much data available!

▸ How and why models transfer well in some settings in still not fully understood

▸ How far can linguistics-free models go towards true language understanding?

▸ Plus, the ugly side ….

PART 3: LARGE LANGUAGE MODELS

THE UGLY SIDE

PART 3: LARGE LANGUAGE MODELS

THE UGLY SIDE: SOCIETAL IMPLICATIONS

PART 3: LARGE LANGUAGE MODELS

THE UGLY SIDE: COMPUTATIONAL COST

PART 3: LARGE LANGUAGE MODELS

THE UGLY SIDE: COMPUTATIONAL COST

PART 3: LARGE LANGUAGE MODELS

THE UGLY SIDE: COMPUTATIONAL COST

PART 3: LARGE LANGUAGE MODELS

THE UGLY SIDE: AMPLIFYING DATA BIASES

PART 3: LARGE LANGUAGE MODELS

Source: Prates el al. 2018

WRAP-UP

KEY IDEAS WE’VE SEEN TODAY

WRAP-UP

KEY IDEAS WE’VE SEEN TODAY

▸ Continuous (rather than discrete) representations: better for computation

WRAP-UP

KEY IDEAS WE’VE SEEN TODAY

▸ Continuous (rather than discrete) representations: better for computation

WRAP-UP

KEY IDEAS WE’VE SEEN TODAY

▸ Continuous (rather than discrete) representations: better for computation

▸ Model sequential data with recurrent neural networks: challenges and solutions

WRAP-UP

KEY IDEAS WE’VE SEEN TODAY

▸ Continuous (rather than discrete) representations: better for computation

▸ Model sequential data with recurrent neural networks: challenges and solutions

WRAP-UP

KEY IDEAS WE’VE SEEN TODAY

▸ Continuous (rather than discrete) representations: better for computation

▸ Model sequential data with recurrent neural networks: challenges and solutions

▸ Language models: the backbone of most modern NLP systems

WRAP-UP

KEY IDEAS WE’VE SEEN TODAY

▸ Continuous (rather than discrete) representations: better for computation

▸ Model sequential data with recurrent neural networks: challenges and solutions

▸ Language models: the backbone of most modern NLP systems

WRAP-UP

KEY IDEAS WE’VE SEEN TODAY

▸ Continuous (rather than discrete) representations: better for computation

▸ Model sequential data with recurrent neural networks: challenges and solutions

▸ Language models: the backbone of most modern NLP systems

▸ NLP is not (just) a research field anymore, it’s a commodity: high societal impact

WRAP-UP

RECOMMENDED READINGS

WRAP-UP

RECOMMENDED READINGS

Classic text-books; great reference for
foundations and pre-neural NLP

WRAP-UP

RECOMMENDED READINGS

Classic text-books; great reference for
foundations and pre-neural NLP

self-contained intro to
neural NLP

WRAP-UP

RECOMMENDED READINGS

Classic text-books; great reference for
foundations and pre-neural NLP

self-contained intro to
neural NLP

Hands-on!

FURTHER TOPICS
BONUS:

“EVERY TIME I FIRE A
LINGUIST, THE PERFORMANCE
OF THE SPEECH RECOGNIZER
GOES UP”

Fred Jelinek,

NLP + ASR pioneer

INTERPRETABILITY IN NLP
FURTHER TOPICS:

INTERPRETABILITY IN NLP
Modern NLP models have [mi|bi|tri]-llions of parameters — essentially black boxes!

How can we interpret their predictions?

FURTHER TOPICS: INTERPRETABILITY

Via Attention?

Attention is dense! Not very
interpretable, especially for

long inputs/outputs

INTERPRETABILITY IN NLP
Modern NLP models have [mi|bi|tri]-llions of parameters — essentially black boxes!

How can we interpret their predictions?

FURTHER TOPICS: INTERPRETABILITY

[Rush et al., 2015]

Via Attention?

Attention is dense! Not very
interpretable, especially for

long inputs/outputs

RATIONALIZING NEURAL PREDICTIONS
[Lei et al. 2016]
Force model to use a small subset of the original input - interpretation as cooperative game

FURTHER TOPICS: INTERPRETABILITY

RATIONALIZING NEURAL PREDICTIONS
[Lei et al. 2016]
Force model to use a small subset of the original input - interpretation as cooperative game

FURTHER TOPICS: INTERPRETABILITY

INTERPRETABILITY IN NLP
• What if the model is already trained? And we have no access to its parameters etc…

• Idea (Ribeiro et al. 2016): fit a simple interpretable model around a given query, using
perturbations of the input

• But this assumes input is continuous, output is a single value. Can we extend this to text data?

FURTHER TOPICS: INTERPRETABILITY

INTERPRETABILITY IN NLP
• What if the model is already trained? And we have no access to its parameters etc…

• Idea (Ribeiro et al. 2016): fit a simple interpretable model around a given query, using
perturbations of the input

• But this assumes input is continuous, output is a single value. Can we extend this to text data?

FURTHER TOPICS: INTERPRETABILITY

Figure 3: Toy example to present intuition for LIME.

The black-box model’s complex decision function f
(unknown to LIME) is represented by the blue/pink

background, which cannot be approximated well by

a linear model. The bold red cross is the instance

being explained. LIME samples instances, gets pre-

dictions using f , and weighs them by the proximity

to the instance being explained (represented here

by size). The dashed line is the learned explanation

that is locally (but not globally) faithful.

distance function D (e.g. cosine distance for text, L2 distance
for images) with width �.

L(f, g,⇡x) =
X

z,z02Z

⇡x(z)
�
f(z)� g(z0)

�2
(2)

For text classification, we ensure that the explanation is
interpretable by letting the interpretable representation be
a bag of words, and by setting a limit K on the number of
words, i.e. ⌦(g) = 11[kwgk0 > K]. Potentially, K can be
adapted to be as big as the user can handle, or we could
have di↵erent values of K for di↵erent instances. In this
paper we use a constant value for K, leaving the exploration
of di↵erent values to future work. We use the same ⌦ for
image classification, using “super-pixels” (computed using
any standard algorithm) instead of words, such that the
interpretable representation of an image is a binary vector
where 1 indicates the original super-pixel and 0 indicates a
grayed out super-pixel. This particular choice of ⌦ makes
directly solving Eq. (1) intractable, but we approximate it by
first selecting K features with Lasso (using the regularization
path [9]) and then learning the weights via least squares (a
procedure we call K-LASSO in Algorithm 1). Since Algo-
rithm 1 produces an explanation for an individual prediction,
its complexity does not depend on the size of the dataset,
but instead on time to compute f(x) and on the number
of samples N . In practice, explaining random forests with
1000 trees using scikit-learn (http://scikit-learn.org) on a
laptop with N = 5000 takes under 3 seconds without any
optimizations such as using gpus or parallelization. Explain-
ing each prediction of the Inception network [25] for image
classification takes around 10 minutes.
Any choice of interpretable representations and G will

have some inherent drawbacks. First, while the underlying
model can be treated as a black-box, certain interpretable
representations will not be powerful enough to explain certain
behaviors. For example, a model that predicts sepia-toned
images to be retro cannot be explained by presence of absence
of super pixels. Second, our choice of G (sparse linear models)
means that if the underlying model is highly non-linear even
in the locality of the prediction, there may not be a faithful
explanation. However, we can estimate the faithfulness of

Algorithm 1 Sparse Linear Explanations using LIME

Require: Classifier f , Number of samples N
Require: Instance x, and its interpretable version x0

Require: Similarity kernel ⇡x, Length of explanation K
Z {}
for i 2 {1, 2, 3, ..., N} do

z0i sample around(x0)
Z Z [hz0i, f(zi),⇡x(zi)i

end for

w K-Lasso(Z,K) . with z0i as features, f(z) as target
return w

the explanation on Z, and present this information to the
user. This estimate of faithfulness can also be used for
selecting an appropriate family of explanations from a set of
multiple interpretable model classes, thus adapting to the
given dataset and the classifier. We leave such exploration
for future work, as linear explanations work quite well for
multiple black-box models in our experiments.

3.5 Example 1: Text classification with SVMs
In Figure 2 (right side), we explain the predictions of a
support vector machine with RBF kernel trained on uni-
grams to di↵erentiate “Christianity” from “Atheism” (on a
subset of the 20 newsgroup dataset). Although this classifier
achieves 94% held-out accuracy, and one would be tempted
to trust it based on this, the explanation for an instance
shows that predictions are made for quite arbitrary reasons
(words “Posting”, “Host”, and “Re” have no connection to
either Christianity or Atheism). The word “Posting” appears
in 22% of examples in the training set, 99% of them in the
class “Atheism”. Even if headers are removed, proper names
of prolific posters in the original newsgroups are selected by
the classifier, which would also not generalize.
After getting such insights from explanations, it is clear

that this dataset has serious issues (which are not evident
just by studying the raw data or predictions), and that this
classifier, or held-out evaluation, cannot be trusted. It is also
clear what the problems are, and the steps that can be taken
to fix these issues and train a more trustworthy classifier.

3.6 Example 2: Deep networks for images
When using sparse linear explanations for image classifiers,
one may wish to just highlight the super-pixels with posi-
tive weight towards a specific class, as they give intuition
as to why the model would think that class may be present.
We explain the prediction of Google’s pre-trained Inception
neural network [25] in this fashion on an arbitrary image
(Figure 4a). Figures 4b, 4c, 4d show the superpixels expla-
nations for the top 3 predicted classes (with the rest of the
image grayed out), having set K = 10. What the neural
network picks up on for each of the classes is quite natural
to humans - Figure 4b in particular provides insight as to
why acoustic guitar was predicted to be electric: due to the
fretboard. This kind of explanation enhances trust in the
classifier (even if the top predicted class is wrong), as it shows
that it is not acting in an unreasonable manner.

INTERPRETABILITY IN NLP
• What if the model is already trained? And we have no access to its parameters etc…

• Idea (Ribeiro et al. 2016): fit a simple interpretable model around a given query, using
perturbations of the input

• But this assumes input is continuous, output is a single value. Can we extend this to text data?

FURTHER TOPICS: INTERPRETABILITY

Figure 3: Toy example to present intuition for LIME.

The black-box model’s complex decision function f
(unknown to LIME) is represented by the blue/pink

background, which cannot be approximated well by

a linear model. The bold red cross is the instance

being explained. LIME samples instances, gets pre-

dictions using f , and weighs them by the proximity

to the instance being explained (represented here

by size). The dashed line is the learned explanation

that is locally (but not globally) faithful.

distance function D (e.g. cosine distance for text, L2 distance
for images) with width �.

L(f, g,⇡x) =
X

z,z02Z

⇡x(z)
�
f(z)� g(z0)

�2
(2)

For text classification, we ensure that the explanation is
interpretable by letting the interpretable representation be
a bag of words, and by setting a limit K on the number of
words, i.e. ⌦(g) = 11[kwgk0 > K]. Potentially, K can be
adapted to be as big as the user can handle, or we could
have di↵erent values of K for di↵erent instances. In this
paper we use a constant value for K, leaving the exploration
of di↵erent values to future work. We use the same ⌦ for
image classification, using “super-pixels” (computed using
any standard algorithm) instead of words, such that the
interpretable representation of an image is a binary vector
where 1 indicates the original super-pixel and 0 indicates a
grayed out super-pixel. This particular choice of ⌦ makes
directly solving Eq. (1) intractable, but we approximate it by
first selecting K features with Lasso (using the regularization
path [9]) and then learning the weights via least squares (a
procedure we call K-LASSO in Algorithm 1). Since Algo-
rithm 1 produces an explanation for an individual prediction,
its complexity does not depend on the size of the dataset,
but instead on time to compute f(x) and on the number
of samples N . In practice, explaining random forests with
1000 trees using scikit-learn (http://scikit-learn.org) on a
laptop with N = 5000 takes under 3 seconds without any
optimizations such as using gpus or parallelization. Explain-
ing each prediction of the Inception network [25] for image
classification takes around 10 minutes.
Any choice of interpretable representations and G will

have some inherent drawbacks. First, while the underlying
model can be treated as a black-box, certain interpretable
representations will not be powerful enough to explain certain
behaviors. For example, a model that predicts sepia-toned
images to be retro cannot be explained by presence of absence
of super pixels. Second, our choice of G (sparse linear models)
means that if the underlying model is highly non-linear even
in the locality of the prediction, there may not be a faithful
explanation. However, we can estimate the faithfulness of

Algorithm 1 Sparse Linear Explanations using LIME

Require: Classifier f , Number of samples N
Require: Instance x, and its interpretable version x0

Require: Similarity kernel ⇡x, Length of explanation K
Z {}
for i 2 {1, 2, 3, ..., N} do

z0i sample around(x0)
Z Z [hz0i, f(zi),⇡x(zi)i

end for

w K-Lasso(Z,K) . with z0i as features, f(z) as target
return w

the explanation on Z, and present this information to the
user. This estimate of faithfulness can also be used for
selecting an appropriate family of explanations from a set of
multiple interpretable model classes, thus adapting to the
given dataset and the classifier. We leave such exploration
for future work, as linear explanations work quite well for
multiple black-box models in our experiments.

3.5 Example 1: Text classification with SVMs
In Figure 2 (right side), we explain the predictions of a
support vector machine with RBF kernel trained on uni-
grams to di↵erentiate “Christianity” from “Atheism” (on a
subset of the 20 newsgroup dataset). Although this classifier
achieves 94% held-out accuracy, and one would be tempted
to trust it based on this, the explanation for an instance
shows that predictions are made for quite arbitrary reasons
(words “Posting”, “Host”, and “Re” have no connection to
either Christianity or Atheism). The word “Posting” appears
in 22% of examples in the training set, 99% of them in the
class “Atheism”. Even if headers are removed, proper names
of prolific posters in the original newsgroups are selected by
the classifier, which would also not generalize.
After getting such insights from explanations, it is clear

that this dataset has serious issues (which are not evident
just by studying the raw data or predictions), and that this
classifier, or held-out evaluation, cannot be trusted. It is also
clear what the problems are, and the steps that can be taken
to fix these issues and train a more trustworthy classifier.

3.6 Example 2: Deep networks for images
When using sparse linear explanations for image classifiers,
one may wish to just highlight the super-pixels with posi-
tive weight towards a specific class, as they give intuition
as to why the model would think that class may be present.
We explain the prediction of Google’s pre-trained Inception
neural network [25] in this fashion on an arbitrary image
(Figure 4a). Figures 4b, 4c, 4d show the superpixels expla-
nations for the top 3 predicted classes (with the rest of the
image grayed out), having set K = 10. What the neural
network picks up on for each of the classes is quite natural
to humans - Figure 4b in particular provides insight as to
why acoustic guitar was predicted to be electric: due to the
fretboard. This kind of explanation enhances trust in the
classifier (even if the top predicted class is wrong), as it shows
that it is not acting in an unreasonable manner.

(Input, Prediction)

to be explained

INTERPRETABILITY IN NLP
• What if the model is already trained? And we have no access to its parameters etc…

• Idea (Ribeiro et al. 2016): fit a simple interpretable model around a given query, using
perturbations of the input

• But this assumes input is continuous, output is a single value. Can we extend this to text data?

FURTHER TOPICS: INTERPRETABILITY

Figure 3: Toy example to present intuition for LIME.

The black-box model’s complex decision function f
(unknown to LIME) is represented by the blue/pink

background, which cannot be approximated well by

a linear model. The bold red cross is the instance

being explained. LIME samples instances, gets pre-

dictions using f , and weighs them by the proximity

to the instance being explained (represented here

by size). The dashed line is the learned explanation

that is locally (but not globally) faithful.

distance function D (e.g. cosine distance for text, L2 distance
for images) with width �.

L(f, g,⇡x) =
X

z,z02Z

⇡x(z)
�
f(z)� g(z0)

�2
(2)

For text classification, we ensure that the explanation is
interpretable by letting the interpretable representation be
a bag of words, and by setting a limit K on the number of
words, i.e. ⌦(g) = 11[kwgk0 > K]. Potentially, K can be
adapted to be as big as the user can handle, or we could
have di↵erent values of K for di↵erent instances. In this
paper we use a constant value for K, leaving the exploration
of di↵erent values to future work. We use the same ⌦ for
image classification, using “super-pixels” (computed using
any standard algorithm) instead of words, such that the
interpretable representation of an image is a binary vector
where 1 indicates the original super-pixel and 0 indicates a
grayed out super-pixel. This particular choice of ⌦ makes
directly solving Eq. (1) intractable, but we approximate it by
first selecting K features with Lasso (using the regularization
path [9]) and then learning the weights via least squares (a
procedure we call K-LASSO in Algorithm 1). Since Algo-
rithm 1 produces an explanation for an individual prediction,
its complexity does not depend on the size of the dataset,
but instead on time to compute f(x) and on the number
of samples N . In practice, explaining random forests with
1000 trees using scikit-learn (http://scikit-learn.org) on a
laptop with N = 5000 takes under 3 seconds without any
optimizations such as using gpus or parallelization. Explain-
ing each prediction of the Inception network [25] for image
classification takes around 10 minutes.
Any choice of interpretable representations and G will

have some inherent drawbacks. First, while the underlying
model can be treated as a black-box, certain interpretable
representations will not be powerful enough to explain certain
behaviors. For example, a model that predicts sepia-toned
images to be retro cannot be explained by presence of absence
of super pixels. Second, our choice of G (sparse linear models)
means that if the underlying model is highly non-linear even
in the locality of the prediction, there may not be a faithful
explanation. However, we can estimate the faithfulness of

Algorithm 1 Sparse Linear Explanations using LIME

Require: Classifier f , Number of samples N
Require: Instance x, and its interpretable version x0

Require: Similarity kernel ⇡x, Length of explanation K
Z {}
for i 2 {1, 2, 3, ..., N} do

z0i sample around(x0)
Z Z [hz0i, f(zi),⇡x(zi)i

end for

w K-Lasso(Z,K) . with z0i as features, f(z) as target
return w

the explanation on Z, and present this information to the
user. This estimate of faithfulness can also be used for
selecting an appropriate family of explanations from a set of
multiple interpretable model classes, thus adapting to the
given dataset and the classifier. We leave such exploration
for future work, as linear explanations work quite well for
multiple black-box models in our experiments.

3.5 Example 1: Text classification with SVMs
In Figure 2 (right side), we explain the predictions of a
support vector machine with RBF kernel trained on uni-
grams to di↵erentiate “Christianity” from “Atheism” (on a
subset of the 20 newsgroup dataset). Although this classifier
achieves 94% held-out accuracy, and one would be tempted
to trust it based on this, the explanation for an instance
shows that predictions are made for quite arbitrary reasons
(words “Posting”, “Host”, and “Re” have no connection to
either Christianity or Atheism). The word “Posting” appears
in 22% of examples in the training set, 99% of them in the
class “Atheism”. Even if headers are removed, proper names
of prolific posters in the original newsgroups are selected by
the classifier, which would also not generalize.
After getting such insights from explanations, it is clear

that this dataset has serious issues (which are not evident
just by studying the raw data or predictions), and that this
classifier, or held-out evaluation, cannot be trusted. It is also
clear what the problems are, and the steps that can be taken
to fix these issues and train a more trustworthy classifier.

3.6 Example 2: Deep networks for images
When using sparse linear explanations for image classifiers,
one may wish to just highlight the super-pixels with posi-
tive weight towards a specific class, as they give intuition
as to why the model would think that class may be present.
We explain the prediction of Google’s pre-trained Inception
neural network [25] in this fashion on an arbitrary image
(Figure 4a). Figures 4b, 4c, 4d show the superpixels expla-
nations for the top 3 predicted classes (with the rest of the
image grayed out), having set K = 10. What the neural
network picks up on for each of the classes is quite natural
to humans - Figure 4b in particular provides insight as to
why acoustic guitar was predicted to be electric: due to the
fretboard. This kind of explanation enhances trust in the
classifier (even if the top predicted class is wrong), as it shows
that it is not acting in an unreasonable manner.

Complex model's

decision boundary

(Input, Prediction)

to be explained

INTERPRETABILITY IN NLP
• What if the model is already trained? And we have no access to its parameters etc…

• Idea (Ribeiro et al. 2016): fit a simple interpretable model around a given query, using
perturbations of the input

• But this assumes input is continuous, output is a single value. Can we extend this to text data?

FURTHER TOPICS: INTERPRETABILITY

Figure 3: Toy example to present intuition for LIME.

The black-box model’s complex decision function f
(unknown to LIME) is represented by the blue/pink

background, which cannot be approximated well by

a linear model. The bold red cross is the instance

being explained. LIME samples instances, gets pre-

dictions using f , and weighs them by the proximity

to the instance being explained (represented here

by size). The dashed line is the learned explanation

that is locally (but not globally) faithful.

distance function D (e.g. cosine distance for text, L2 distance
for images) with width �.

L(f, g,⇡x) =
X

z,z02Z

⇡x(z)
�
f(z)� g(z0)

�2
(2)

For text classification, we ensure that the explanation is
interpretable by letting the interpretable representation be
a bag of words, and by setting a limit K on the number of
words, i.e. ⌦(g) = 11[kwgk0 > K]. Potentially, K can be
adapted to be as big as the user can handle, or we could
have di↵erent values of K for di↵erent instances. In this
paper we use a constant value for K, leaving the exploration
of di↵erent values to future work. We use the same ⌦ for
image classification, using “super-pixels” (computed using
any standard algorithm) instead of words, such that the
interpretable representation of an image is a binary vector
where 1 indicates the original super-pixel and 0 indicates a
grayed out super-pixel. This particular choice of ⌦ makes
directly solving Eq. (1) intractable, but we approximate it by
first selecting K features with Lasso (using the regularization
path [9]) and then learning the weights via least squares (a
procedure we call K-LASSO in Algorithm 1). Since Algo-
rithm 1 produces an explanation for an individual prediction,
its complexity does not depend on the size of the dataset,
but instead on time to compute f(x) and on the number
of samples N . In practice, explaining random forests with
1000 trees using scikit-learn (http://scikit-learn.org) on a
laptop with N = 5000 takes under 3 seconds without any
optimizations such as using gpus or parallelization. Explain-
ing each prediction of the Inception network [25] for image
classification takes around 10 minutes.
Any choice of interpretable representations and G will

have some inherent drawbacks. First, while the underlying
model can be treated as a black-box, certain interpretable
representations will not be powerful enough to explain certain
behaviors. For example, a model that predicts sepia-toned
images to be retro cannot be explained by presence of absence
of super pixels. Second, our choice of G (sparse linear models)
means that if the underlying model is highly non-linear even
in the locality of the prediction, there may not be a faithful
explanation. However, we can estimate the faithfulness of

Algorithm 1 Sparse Linear Explanations using LIME

Require: Classifier f , Number of samples N
Require: Instance x, and its interpretable version x0

Require: Similarity kernel ⇡x, Length of explanation K
Z {}
for i 2 {1, 2, 3, ..., N} do

z0i sample around(x0)
Z Z [hz0i, f(zi),⇡x(zi)i

end for

w K-Lasso(Z,K) . with z0i as features, f(z) as target
return w

the explanation on Z, and present this information to the
user. This estimate of faithfulness can also be used for
selecting an appropriate family of explanations from a set of
multiple interpretable model classes, thus adapting to the
given dataset and the classifier. We leave such exploration
for future work, as linear explanations work quite well for
multiple black-box models in our experiments.

3.5 Example 1: Text classification with SVMs
In Figure 2 (right side), we explain the predictions of a
support vector machine with RBF kernel trained on uni-
grams to di↵erentiate “Christianity” from “Atheism” (on a
subset of the 20 newsgroup dataset). Although this classifier
achieves 94% held-out accuracy, and one would be tempted
to trust it based on this, the explanation for an instance
shows that predictions are made for quite arbitrary reasons
(words “Posting”, “Host”, and “Re” have no connection to
either Christianity or Atheism). The word “Posting” appears
in 22% of examples in the training set, 99% of them in the
class “Atheism”. Even if headers are removed, proper names
of prolific posters in the original newsgroups are selected by
the classifier, which would also not generalize.
After getting such insights from explanations, it is clear

that this dataset has serious issues (which are not evident
just by studying the raw data or predictions), and that this
classifier, or held-out evaluation, cannot be trusted. It is also
clear what the problems are, and the steps that can be taken
to fix these issues and train a more trustworthy classifier.

3.6 Example 2: Deep networks for images
When using sparse linear explanations for image classifiers,
one may wish to just highlight the super-pixels with posi-
tive weight towards a specific class, as they give intuition
as to why the model would think that class may be present.
We explain the prediction of Google’s pre-trained Inception
neural network [25] in this fashion on an arbitrary image
(Figure 4a). Figures 4b, 4c, 4d show the superpixels expla-
nations for the top 3 predicted classes (with the rest of the
image grayed out), having set K = 10. What the neural
network picks up on for each of the classes is quite natural
to humans - Figure 4b in particular provides insight as to
why acoustic guitar was predicted to be electric: due to the
fretboard. This kind of explanation enhances trust in the
classifier (even if the top predicted class is wrong), as it shows
that it is not acting in an unreasonable manner.

Complex model's

decision boundary

Simple model's

decision boundary

(Input, Prediction)

to be explained

INTERPRETABILITY VIA LOCAL APPROXIMATION

FURTHER TOPICS: INTERPRETABILITY

[AM & Jaakkola, 2018]
• Weighted bipartite graph summarizes local behavior of the model.

• Explanation:

INTERPRETABILITY VIA LOCAL APPROXIMATION

FURTHER TOPICS: INTERPRETABILITY

[AM & Jaakkola, 2018]
• Weighted bipartite graph summarizes local behavior of the model.

• Explanation:

Input:

Output:

(S1,S2,...,Sn)

(T1,T2,...,Tn)

Model

INTERPRETABILITY VIA LOCAL APPROXIMATION

FURTHER TOPICS: INTERPRETABILITY

[AM & Jaakkola, 2018]
• Weighted bipartite graph summarizes local behavior of the model.

• Explanation:

S1 S2 S3 Sn...

T1 T2 T3 Tm...

0.20.50.1

P
er
tu
rb
at
io
n

M
od

el
C
au

sa
l

In
fe
re
n
ce

E
xp

la
n
at
io
n

S
el
ec
ti
on

(x
,y

)
{(
x̃
i,
ỹ
i)
}

G(
U

[
V
,E

)
{E

k x
!

y
}K k

=
1

z

z̃ 1

z̃ 2
z̃ 3

z̃ 4 z̃ 5
z̃ 6

z̃ 7

z̃ 8
s 1

s 2
s 3

s 4

t 1
t 2

t 3
t 4

t 5

s 1
s 2

t 1
t 2

t 3

s 1
s 2

t 1
t 2

weight ≈

 influence

Input:

Output:

(S1,S2,...,Sn)

(T1,T2,...,Tn)

Model

(locally)

Ex!y = {G1, . . . , Gk}

INTERPRETABILITY VIA LOCAL APPROXIMATION

FURTHER TOPICS: INTERPRETABILITY

[AM & Jaakkola, 2018]
• Weighted bipartite graph summarizes local behavior of the model.

• Explanation:

S1 S2 S3 Sn...

T1 T2 T3 Tm...

0.20.50.1

P
er
tu
rb
at
io
n

M
od

el
C
au

sa
l

In
fe
re
n
ce

E
xp

la
n
at
io
n

S
el
ec
ti
on

(x
,y

)
{(
x̃
i,
ỹ
i)
}

G(
U

[
V
,E

)
{E

k x
!

y
}K k

=
1

z

z̃ 1

z̃ 2
z̃ 3

z̃ 4 z̃ 5
z̃ 6

z̃ 7

z̃ 8
s 1

s 2
s 3

s 4

t 1
t 2

t 3
t 4

t 5

s 1
s 2

t 1
t 2

t 3

s 1
s 2

t 1
t 2

weight ≈

 influence

Input:

Output:

(S1,S2,...,Sn)

(T1,T2,...,Tn)

Model

(locally)

Ex!y = {G1, . . . , Gk}
...

INTERPRETABILITY VIA LOCAL APPROXIMATION

FURTHER TOPICS: INTERPRETABILITY

[AM & Jaakkola, 2018]
• Weighted bipartite graph summarizes local behavior of the model.

• Explanation:

S1 S2 S3 Sn...

T1 T2 T3 Tm...

0.20.50.1

P
er
tu
rb
at
io
n

M
od

el
C
au

sa
l

In
fe
re
n
ce

E
xp

la
n
at
io
n

S
el
ec
ti
on

(x
,y

)
{(
x̃
i,
ỹ
i)
}

G(
U

[
V
,E

)
{E

k x
!

y
}K k

=
1

z

z̃ 1

z̃ 2
z̃ 3

z̃ 4 z̃ 5
z̃ 6

z̃ 7

z̃ 8
s 1

s 2
s 3

s 4

t 1
t 2

t 3
t 4

t 5

s 1
s 2

t 1
t 2

t 3

s 1
s 2

t 1
t 2

weight ≈

 influence

Input:

Output:

(S1,S2,...,Sn)

(T1,T2,...,Tn)

Model

(locally)

Ex!y = {G1, . . . , Gk}
... Might need to

partition if
dense

INTERPRETABILITY VIA LOCAL APPROXIMATION

FURTHER TOPICS: INTERPRETABILITY

[AM & Jaakkola, 2018]

INTERPRETABILITY VIA LOCAL APPROXIMATION

FURTHER TOPICS: INTERPRETABILITY

[AM & Jaakkola, 2018]

Perturbation
Model

Causal
Inference

Explanation
Selection

(x,y) {(x̃i, ỹi)} G(U [V,E) {Ek
x!y}Kk=1

z

z̃1

z̃2
z̃3

z̃4

z̃5
z̃6

z̃7

z̃8 s1 s2 s3 s4

t1 t2 t3 t4 t5

s1 s2

t1 t2 t3

s1 s2

t1 t2

INTERPRETABILITY VIA LOCAL APPROXIMATION

FURTHER TOPICS: INTERPRETABILITY

[AM & Jaakkola, 2018]

Perturbation
Model

Causal
Inference

Explanation
Selection

(x,y) {(x̃i, ỹi)} G(U [V,E) {Ek
x!y}Kk=1

z

z̃1

z̃2
z̃3

z̃4

z̃5
z̃6

z̃7

z̃8 s1 s2 s3 s4

t1 t2 t3 t4 t5

s1 s2

t1 t2 t3

s1 s2

t1 t2

1.Encode input to vector representation z

INTERPRETABILITY VIA LOCAL APPROXIMATION

FURTHER TOPICS: INTERPRETABILITY

[AM & Jaakkola, 2018]

Perturbation
Model

Causal
Inference

Explanation
Selection

(x,y) {(x̃i, ỹi)} G(U [V,E) {Ek
x!y}Kk=1

z

z̃1

z̃2
z̃3

z̃4

z̃5
z̃6

z̃7

z̃8 s1 s2 s3 s4

t1 t2 t3 t4 t5

s1 s2

t1 t2 t3

s1 s2

t1 t2

1.Encode input to vector representation z

2.Generate samples around z

INTERPRETABILITY VIA LOCAL APPROXIMATION

FURTHER TOPICS: INTERPRETABILITY

[AM & Jaakkola, 2018]

Perturbation
Model

Causal
Inference

Explanation
Selection

(x,y) {(x̃i, ỹi)} G(U [V,E) {Ek
x!y}Kk=1

z

z̃1

z̃2
z̃3

z̃4

z̃5
z̃6

z̃7

z̃8 s1 s2 s3 s4

t1 t2 t3 t4 t5

s1 s2

t1 t2 t3

s1 s2

t1 t2

1.Encode input to vector representation z

2.Generate samples around z

3.Decode samples into sequences

INTERPRETABILITY VIA LOCAL APPROXIMATION

FURTHER TOPICS: INTERPRETABILITY

[AM & Jaakkola, 2018]

Perturbation
Model

Causal
Inference

Explanation
Selection

(x,y) {(x̃i, ỹi)} G(U [V,E) {Ek
x!y}Kk=1

z

z̃1

z̃2
z̃3

z̃4

z̃5
z̃6

z̃7

z̃8 s1 s2 s3 s4

t1 t2 t3 t4 t5

s1 s2

t1 t2 t3

s1 s2

t1 t2

1.Encode input to vector representation z

2.Generate samples around z

3.Decode samples into sequences

4.Map perturbed sequences using decoder

INTERPRETABILITY VIA LOCAL APPROXIMATION

FURTHER TOPICS: INTERPRETABILITY

[AM & Jaakkola, 2018]

Perturbation
Model

Causal
Inference

Explanation
Selection

(x,y) {(x̃i, ỹi)} G(U [V,E) {Ek
x!y}Kk=1

z

z̃1

z̃2
z̃3

z̃4

z̃5
z̃6

z̃7

z̃8 s1 s2 s3 s4

t1 t2 t3 t4 t5

s1 s2

t1 t2 t3

s1 s2

t1 t2

1.Encode input to vector representation z

2.Generate samples around z

3.Decode samples into sequences

4.Map perturbed sequences using decoder

• Using perturbations, infer dependencies
between original input/output tokens

INTERPRETABILITY VIA LOCAL APPROXIMATION

FURTHER TOPICS: INTERPRETABILITY

[AM & Jaakkola, 2018]

Perturbation
Model

Causal
Inference

Explanation
Selection

(x,y) {(x̃i, ỹi)} G(U [V,E) {Ek
x!y}Kk=1

z

z̃1

z̃2
z̃3

z̃4

z̃5
z̃6

z̃7

z̃8 s1 s2 s3 s4

t1 t2 t3 t4 t5

s1 s2

t1 t2 t3

s1 s2

t1 t2

1.Encode input to vector representation z

2.Generate samples around z

3.Decode samples into sequences

4.Map perturbed sequences using decoder

• Using perturbations, infer dependencies
between original input/output tokens

• Simplest approach: logistic regression

INTERPRETABILITY VIA LOCAL APPROXIMATION

FURTHER TOPICS: INTERPRETABILITY

[AM & Jaakkola, 2018]

Perturbation
Model

Causal
Inference

Explanation
Selection

(x,y) {(x̃i, ỹi)} G(U [V,E) {Ek
x!y}Kk=1

z

z̃1

z̃2
z̃3

z̃4

z̃5
z̃6

z̃7

z̃8 s1 s2 s3 s4

t1 t2 t3 t4 t5

s1 s2

t1 t2 t3

s1 s2

t1 t2

1.Encode input to vector representation z

2.Generate samples around z

3.Decode samples into sequences

4.Map perturbed sequences using decoder

• Using perturbations, infer dependencies
between original input/output tokens

• Simplest approach: logistic regression

• Account for uncertainty: Bayesian LR

INTERPRETABILITY VIA LOCAL APPROXIMATION

FURTHER TOPICS: INTERPRETABILITY

[AM & Jaakkola, 2018]

Perturbation
Model

Causal
Inference

Explanation
Selection

(x,y) {(x̃i, ỹi)} G(U [V,E) {Ek
x!y}Kk=1

z

z̃1

z̃2
z̃3

z̃4

z̃5
z̃6

z̃7

z̃8 s1 s2 s3 s4

t1 t2 t3 t4 t5

s1 s2

t1 t2 t3

s1 s2

t1 t2

1.Encode input to vector representation z

2.Generate samples around z

3.Decode samples into sequences

4.Map perturbed sequences using decoder

• Using perturbations, infer dependencies
between original input/output tokens

• Simplest approach: logistic regression

• Account for uncertainty: Bayesian LR

• For large inputs/outputs, dense
graph might not be interpretable

INTERPRETABILITY VIA LOCAL APPROXIMATION

FURTHER TOPICS: INTERPRETABILITY

[AM & Jaakkola, 2018]

Perturbation
Model

Causal
Inference

Explanation
Selection

(x,y) {(x̃i, ỹi)} G(U [V,E) {Ek
x!y}Kk=1

z

z̃1

z̃2
z̃3

z̃4

z̃5
z̃6

z̃7

z̃8 s1 s2 s3 s4

t1 t2 t3 t4 t5

s1 s2

t1 t2 t3

s1 s2

t1 t2

1.Encode input to vector representation z

2.Generate samples around z

3.Decode samples into sequences

4.Map perturbed sequences using decoder

• Using perturbations, infer dependencies
between original input/output tokens

• Simplest approach: logistic regression

• Account for uncertainty: Bayesian LR

• For large inputs/outputs, dense
graph might not be interpretable

• Cast as k-cut graph partitioning

INTERPRETABILITY VIA LOCAL APPROXIMATION

FURTHER TOPICS: INTERPRETABILITY

[AM & Jaakkola, 2018]

Perturbation
Model

Causal
Inference

Explanation
Selection

(x,y) {(x̃i, ỹi)} G(U [V,E) {Ek
x!y}Kk=1

z

z̃1

z̃2
z̃3

z̃4

z̃5
z̃6

z̃7

z̃8 s1 s2 s3 s4

t1 t2 t3 t4 t5

s1 s2

t1 t2 t3

s1 s2

t1 t2

1.Encode input to vector representation z

2.Generate samples around z

3.Decode samples into sequences

4.Map perturbed sequences using decoder

• Using perturbations, infer dependencies
between original input/output tokens

• Simplest approach: logistic regression

• Account for uncertainty: Bayesian LR

• For large inputs/outputs, dense
graph might not be interpretable

• Cast as k-cut graph partitioning

• Graph partitioning with uncertainty
[Fan et al. 2012]

INTERPRETABILITY VIA LOCAL APPROXIMATION

FURTHER TOPICS: INTERPRETABILITY

[AM & Jaakkola, 2018]
Application: explaining biases in machine translation systems

Model: Azure MT service (via API), English to French

Inputs: Sentences containing bias-prone words

Findings: Model exhibits strong unexplained grammatical gender preferences.

 - Chooses masculine in sentences containing doctor, professor, smart, talented

 - Chooses feminine in sentences containing dancer, nurse, charming, compassionate

INTERPRETABILITY VIA LOCAL APPROXIMATION

FURTHER TOPICS: INTERPRETABILITY

[AM & Jaakkola, 2018]
Application: explaining biases in MT systems

INTERPRETABILITY VIA LOCAL APPROXIMATION

FURTHER TOPICS: INTERPRETABILITY

[AM & Jaakkola, 2018]
Application: explaining biases in MT systems

Input:

Output:

INTERPRETABILITY VIA LOCAL APPROXIMATION

FURTHER TOPICS: INTERPRETABILITY

[AM & Jaakkola, 2018]
Application: explaining biases in MT systems

feminine conjugation

Input:

Output:

INTERPRETABILITY VIA LOCAL APPROXIMATION

FURTHER TOPICS: INTERPRETABILITY

[AM & Jaakkola, 2018]
Application: explaining biases in MT systems

feminine conjugation

Input:

Output:

INTERPRETABILITY VIA LOCAL APPROXIMATION

FURTHER TOPICS: INTERPRETABILITY

[AM & Jaakkola, 2018]
Application: explaining biases in MT systems

feminine conjugation

Input:

Output:

INTERPRETABILITY VIA LOCAL APPROXIMATION

FURTHER TOPICS: INTERPRETABILITY

[AM & Jaakkola, 2018]
Application: explaining biases in MT systems

feminine conjugation

Input:

Output:

INTERPRETABILITY VIA LOCAL APPROXIMATION

FURTHER TOPICS: INTERPRETABILITY

[AM & Jaakkola, 2018]
Application: explaining biases in MT systems

feminine conjugation

Input:

Output:

INTERPRETABILITY VIA LOCAL APPROXIMATION

FURTHER TOPICS: INTERPRETABILITY

[AM & Jaakkola, 2018]
Application: explaining biases in MT systems

feminine conjugation

Input:

Output:

INTERPRETABILITY VIA LOCAL APPROXIMATION

FURTHER TOPICS: INTERPRETABILITY

[AM & Jaakkola, 2018]
Application: explaining biases in MT systems

feminine conjugation

Input:

Output:

Application: flaw detection in dialogue systems

Background and Motivation Approach Experiments Conclusion and next steps References

A (mediocre) dialogue system

We train a simple dialogue system on the OpenSubtitle corpus
Tiedemann, 2009
⇠14M two-step movie dialogues.
Black-box: seq2seq with attention, 2 layers, dim 1000, no tuning.
Most predictions are Yes, No, UNK. /
Example “good” predictions:

Input Prediction

What do you mean it doesn’t matter? I don’t know
Perhaps have we met before? I don’t think so
Can I get you two a cocktail? No, thanks.

David Alvarez-Melis (CSAIL MIT) Seq2Seq Interpretability November 16, 2017 32 / 43

Are you the son

of Vito Corleone? Yes, sir.

Input Prediction

Neural Net

seq2seq with attention

INTERPRETABILITY VIA LOCAL APPROXIMATION

FURTHER TOPICS: INTERPRETABILITY

[AM & Jaakkola, 2018]
Application: explaining biases in MT systems

feminine conjugation

Input:

Output:

Application: flaw detection in dialogue systems

Background and Motivation Approach Experiments Conclusion and next steps References

A (mediocre) dialogue system

We train a simple dialogue system on the OpenSubtitle corpus
Tiedemann, 2009
⇠14M two-step movie dialogues.
Black-box: seq2seq with attention, 2 layers, dim 1000, no tuning.
Most predictions are Yes, No, UNK. /
Example “good” predictions:

Input Prediction

What do you mean it doesn’t matter? I don’t know
Perhaps have we met before? I don’t think so
Can I get you two a cocktail? No, thanks.

David Alvarez-Melis (CSAIL MIT) Seq2Seq Interpretability November 16, 2017 32 / 43

Are you the son

of Vito Corleone? Yes, sir.

Input Prediction

Neural Net

seq2seq with attention

INTERPRETABILITY VIA LOCAL APPROXIMATION

FURTHER TOPICS: INTERPRETABILITY

[AM & Jaakkola, 2018]
Application: explaining biases in MT systems

feminine conjugation

Input:

Output:

Application: flaw detection in dialogue systems

Background and Motivation Approach Experiments Conclusion and next steps References

A (mediocre) dialogue system

We train a simple dialogue system on the OpenSubtitle corpus
Tiedemann, 2009
⇠14M two-step movie dialogues.
Black-box: seq2seq with attention, 2 layers, dim 1000, no tuning.
Most predictions are Yes, No, UNK. /
Example “good” predictions:

Input Prediction

What do you mean it doesn’t matter? I don’t know
Perhaps have we met before? I don’t think so
Can I get you two a cocktail? No, thanks.

David Alvarez-Melis (CSAIL MIT) Seq2Seq Interpretability November 16, 2017 32 / 43

The model is flawed!

Are you the son

of Vito Corleone? Yes, sir.

Input Prediction

Neural Net

seq2seq with attention

STRUCTURED NLP MODELS
FURTHER TOPICS:

FURTHER TOPICS: STRUCTURED NEURAL NLP MODELS

WHAT ABOUT STRUCTURE?

▸ Language is non-linear. It has structure and compositionality [e.g. Chomsky]

Source: socher.org

http://socher.org

BONUS

RECURSIVE NEURAL NETS

Source: socher.org

[Socher et al., 2011]

FURTHER TOPICS: STRUCTURED NEURAL NLP MODELS

http://socher.org

BONUS

RECURSIVE NEURAL NETS

Source: socher.org

[Socher et al., 2011]

FURTHER TOPICS: STRUCTURED NEURAL NLP MODELS

http://socher.org

BONUS

RECURSIVE NEURAL NETS

Source: socher.org

[Socher et al., 2011]
ALLOWS ENCODING OF STRUCTURE
OBJECTS. WHAT ABOUT DECODING?

FURTHER TOPICS: STRUCTURED NEURAL NLP MODELS

http://socher.org

TREE TO TREE: STRUCTURED ENCODING AND DECODING
[Dong & Lapata, 2016; AM & Jaakkola, 2017]

FURTHER TOPICS: STRUCTURED NEURAL NLP MODELS

TREE TO TREE: STRUCTURED ENCODING AND DECODING
[Dong & Lapata, 2016; AM & Jaakkola, 2017]

FURTHER TOPICS: STRUCTURED NEURAL NLP MODELS

TREE TO TREE: STRUCTURED ENCODING AND DECODING
[Dong & Lapata, 2016; AM & Jaakkola, 2017]

APPLICATION: GENERATING

EXECUTABLE PROGRAMS FROM

NATURAL LANGUAGE DESCRIPTIONS

FURTHER TOPICS: STRUCTURED NEURAL NLP MODELS

TREE TO TREE: STRUCTURED ENCODING AND DECODING
[Dong & Lapata, 2016; AM & Jaakkola, 2017]

APPLICATION: GENERATING

EXECUTABLE PROGRAMS FROM

NATURAL LANGUAGE DESCRIPTIONS

FURTHER TOPICS: STRUCTURED NEURAL NLP MODELS

