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SUPERVISED LEARNING

• We are given a training set of 𝑛𝑛 examples 
𝑥𝑥(1),𝑦𝑦(1) , … , 𝑥𝑥 𝑛𝑛 ,𝑦𝑦 𝑛𝑛 where each pair was 

generated by an unknown function 𝑦𝑦 = 𝑓𝑓 𝑥𝑥
• The goal is to find a hypothesis ℎ ∈ ℋ that 

approximates 𝑓𝑓, where ℋ is called the 
hypothesis space

• ℎ is chosen to be a best-fit function for which 
each ℎ 𝑥𝑥 𝑖𝑖 is “close” to 𝑦𝑦(𝑖𝑖)

• ℎ generalizes well if it gives accurate 
predictions on a fresh test set



CLASSIFICATION

• Classification is the task of learning 𝑓𝑓 whose 
range is a discrete, finite set

• Such a function is called a classifier
• When the cardinality of the range is 2 then 

the task is known as binary classification, 
otherwise it’s called multi-class 
classification



EXAMPLE: IMAGE CLASSIFICATION

𝒙𝒙 1 ,𝑑𝑑𝑑𝑑𝑑𝑑 𝒙𝒙 2 , 𝑐𝑐𝑐𝑐𝑐𝑐 𝒙𝒙 3 ,𝑑𝑑𝑑𝑑𝑑𝑑 𝒙𝒙 4 ,𝑑𝑑𝑑𝑑𝑑𝑑

𝑓𝑓 𝒙𝒙 =?



EXAMPLE: SPAM FILTER

𝒙𝒙 1 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝒙𝒙 2 , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑓𝑓 𝒙𝒙 =?



EXAMPLE: RESTAURANT WAITING

Example
Input Features Output

𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵𝐵𝐵𝐵𝐵 𝐹𝐹𝐹𝐹𝐹𝐹 𝐻𝐻𝐻𝐻𝐻𝐻 𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑅𝑅𝑅𝑅 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐸𝐸𝐸𝐸𝐸𝐸 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊

𝒙𝒙(1) 𝑌𝑌 𝑁𝑁 𝑁𝑁 𝑌𝑌 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 $$$ 𝑁𝑁 𝑌𝑌 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 0-10 𝑦𝑦(1) = 𝑌𝑌

𝒙𝒙(2) 𝑌𝑌 𝑁𝑁 𝑁𝑁 𝑌𝑌 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 $ 𝑁𝑁 𝑁𝑁 𝑇𝑇𝑇𝑇𝑇𝑇𝑇 30-60 𝑦𝑦(2) = 𝑁𝑁

𝒙𝒙(3) 𝑁𝑁 𝑌𝑌 𝑁𝑁 𝑁𝑁 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 $ 𝑁𝑁 𝑁𝑁 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 0-10 𝑦𝑦(3) = 𝑌𝑌

𝒙𝒙(4) 𝑌𝑌 𝑁𝑁 𝑌𝑌 𝑌𝑌 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 $ 𝑌𝑌 𝑁𝑁 𝑇𝑇𝑇𝑇𝑇𝑇𝑇 10-30 𝑦𝑦(4) = 𝑌𝑌

𝒙𝒙(5) 𝑌𝑌 𝑁𝑁 𝑌𝑌 𝑁𝑁 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 $$$ 𝑁𝑁 𝑌𝑌 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 >60 𝑦𝑦(5) = 𝑁𝑁

𝒙𝒙(6) 𝑁𝑁 𝑌𝑌 𝑁𝑁 𝑌𝑌 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 $$ 𝑌𝑌 𝑌𝑌 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 0-10 𝑦𝑦(6) = 𝑌𝑌

𝒙𝒙(7) 𝑁𝑁 𝑌𝑌 𝑁𝑁 𝑁𝑁 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 $ 𝑌𝑌 𝑁𝑁 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 0-10 𝑦𝑦(7) = 𝑁𝑁

𝒙𝒙(8) 𝑁𝑁 𝑁𝑁 𝑁𝑁 𝑌𝑌 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 $$ 𝑌𝑌 𝑌𝑌 𝑇𝑇𝑇𝑇𝑇𝑇𝑇 0-10 𝑦𝑦(8) = 𝑌𝑌

𝒙𝒙(9) 𝑁𝑁 𝑌𝑌 𝑌𝑌 𝑁𝑁 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 $ 𝑌𝑌 𝑁𝑁 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 >60 𝑦𝑦(9) = 𝑁𝑁

𝒙𝒙(10) 𝑌𝑌 𝑌𝑌 𝑌𝑌 𝑌𝑌 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 $$$ 𝑁𝑁 𝑌𝑌 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 0-30 𝑦𝑦(10) = 𝑁𝑁

𝒙𝒙(11) 𝑁𝑁 𝑁𝑁 𝑁𝑁 𝑁𝑁 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 $ 𝑁𝑁 𝑁𝑁 𝑇𝑇𝑇𝑇𝑇𝑇𝑇 0-10 𝑦𝑦(11) = 𝑁𝑁

𝒙𝒙(12) 𝑌𝑌 𝑌𝑌 𝑌𝑌 𝑌𝑌 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 $ 𝑁𝑁 𝑁𝑁 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 30-60 𝑦𝑦(12) = 𝑌𝑌



DECISION TREES

Yes

Patrons?

WaitEstimate?No

Alternate? Hungry?No Yes

Reservation? Fri/Sat? Yes Alternate?

YesNoBar? Yes Raining?Yes

YesNo YesNo

None Some Full

>60 30-60 10-30 0-10

No Yes No Yes

No Yes No Yes No Yes

No Yes No Yes



DECISION TREES

• A decision tree reaches an output (in the 
leaves) through a sequence of tests on the 
input attributes (in internal nodes)

• Decision trees can represent any classifier, but 
some may require a large tree

• Poll 1: Which of the following Boolean 
functions can be represented via a tree of 
linear size?
◦ Unanimity 
◦ Parity
◦ Majority
◦ None of the above



SPLITTING ON FEATURES
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LEARNING DECISION TREES

function LEARN-DT(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)
if 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = ∅ then return PLURALITY-VALUE(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝑒𝑒𝑒𝑒amples)
else if all 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 have the same label then return
that label
else if 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = ∅ then return PLURALITY-VALUE(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) 
else

𝐴𝐴 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑎𝑎∈𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓IMPORTANCE(𝑎𝑎, 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ← new decision tree with root test 𝐴𝐴
for each value 𝑣𝑣 of 𝐴𝐴 do

𝑛𝑛𝑛𝑛𝑛𝑛_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ← {𝑒𝑒 ∈ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒: 𝑒𝑒.𝐴𝐴 = 𝑣𝑣}
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ←LEARN-DT(𝑛𝑛𝑛𝑛𝑛𝑛_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∖ 𝐴𝐴 , 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)
add branch to 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 with label 𝐴𝐴 = 𝑣𝑣 and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

return 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡



Mathematician and electrical engineer, 
father of information theory. Also 
remembered as a prankster.

Claude Shannon
1916-2001



INFORMATION GAIN

• To instantiate the IMPORTANCE function we will use the 
notion of entropy, which is measured in bits

• The entropy of random variable 𝑉𝑉 that takes each value 𝑣𝑣
with probability 𝑃𝑃 𝑣𝑣 is

𝐻𝐻 𝑉𝑉 = �
𝑣𝑣

𝑃𝑃 𝑣𝑣 log
1

𝑃𝑃 𝑣𝑣
= −�

𝑣𝑣

𝑃𝑃 𝑣𝑣 log𝑃𝑃(𝑣𝑣)

• The entropy of a fair coin flip is 1 bit:
𝐻𝐻 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = −(0.5 log 0.5 + 0.5 log 0.5) = 1

• The entropy of a biased coin with 99% heads is:
𝐻𝐻 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = −(0.99 log 0.99 + 0.01 log 0.01) ≈ 0.08

• Denote the entropy of a Bernoulli random variable that is 
true with probability 𝑞𝑞 by

𝐵𝐵 𝑞𝑞 = − 𝑞𝑞 log 𝑞𝑞 + 1 − 𝑞𝑞 log 1 − 𝑞𝑞



INFORMATION GAIN

• If a training set contains 𝑝𝑝 positive examples and 𝑛𝑛 negative examples, 
the entropy of the output variable is

𝐻𝐻 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝐵𝐵
𝑝𝑝

𝑝𝑝 + 𝑛𝑛
• Feature 𝐴𝐴 with 𝑑𝑑 values divides the training set into 𝑑𝑑 subsets, each 

with 𝑝𝑝𝑘𝑘 positive examples and 𝑛𝑛𝑘𝑘 negative examples
• The entropy after testing 𝐴𝐴 is 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐴𝐴 = �
𝑘𝑘=1

𝑑𝑑
𝑝𝑝𝑘𝑘 + 𝑛𝑛𝑘𝑘
𝑝𝑝 + 𝑛𝑛

𝐵𝐵
𝑝𝑝𝑘𝑘

𝑝𝑝𝑘𝑘 + 𝑛𝑛𝑘𝑘

• The information gain from testing 𝐴𝐴 is

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐴𝐴 = 𝐵𝐵
𝑝𝑝

𝑝𝑝 + 𝑛𝑛
− 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝐴𝐴)

• In LEARN-DT, we can measure IMPORTANCE based on information gain



INFORMATION GAIN: EXAMPLE
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LEARNING DECISION TREES: EXAMPLE

Yes

Patrons?

Hungry?No

Type?No

Fri/Sat? Yes

YesNo

None Some Full

No Yes

Fr It Th

No Yes

NoYes

Bu

The output of LEARN-TD is simpler than the original tree!



EARLY STOPPING

Should we stop Learn-TD when the information gain is low to 
avoid overfitting? We may miss situations where combos of 
features are informative! 

Example
Input features Output

𝑧𝑧 𝑧𝑧𝑧 𝑧𝑧 ⊕ 𝑧𝑧𝑧

𝒙𝒙(1) 𝑡𝑡 𝑡𝑡 𝑓𝑓

𝒙𝒙(2) 𝑡𝑡 𝑓𝑓 𝑡𝑡

𝒙𝒙(3) 𝑓𝑓 𝑡𝑡 𝑡𝑡

𝒙𝒙(4) 𝑓𝑓 𝑓𝑓 𝑓𝑓

2 3

1 4

2

1

3

4

𝑧𝑧

𝑧𝑧𝑧𝑧𝑧𝑧

21 43

𝑡𝑡 𝑓𝑓

𝑡𝑡 𝑓𝑓 𝑡𝑡 𝑓𝑓

YesNo Yes No



MODEL SELECTION

Linear Sinusoidal Piecewise linear Degree 12 polynomial

Da
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Degree 12 polynomials exhibit overfitting



MODEL SELECTION

• Let us think of the quality of the “fit” of 
hypothesis ℎ as error rate, i.e., the probability 
that ℎ 𝒙𝒙 ≠ 𝑓𝑓(𝒙𝒙)

• We divide the data into three sets: 
1. Training set to train candidate models
2. Validation set to choose among different models 

or hypothesis classes
3. Test set to perform an unbiased evaluation of the 

best model
• The same examples can be used both for 

training and validation through 𝑘𝑘-fold cross-
validation



MODEL SELECTION

• We refer to the “complexity” of the hypothesis 
class (e.g., number of nodes in a decision tree) as 
the model size

• Poll 2: As the model size grows (check all 
possible options):
◦ Training error decreases, validation error decreases 
◦ Training error decreases, validation error increases 
◦ Training error increases, validation error decreases
◦ Training error increases, validation error increases



MODEL SELECTION
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The graph on the right is an example of one of the 
great mysteries of deep learning!
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