

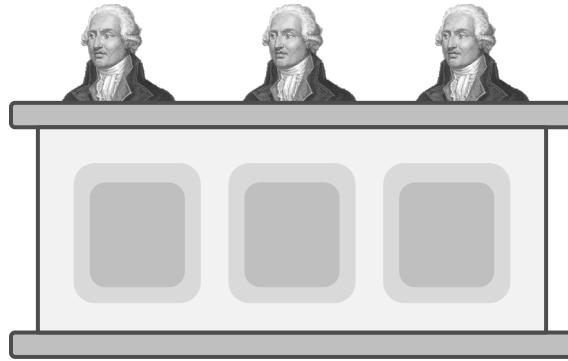
ECONOMICS & COMPUTATION

Spring 2026 | Lecture 6
The Epistemic Approach to Voting
Ariel Procaccia | Harvard University

CONDORCET STRIKES AGAIN

- For Condorcet, the purpose of voting is not merely to balance subjective opinions; it is a collective quest for the truth
- Enlightened voters try to judge which alternative best serves society
- This is an arguable model of political elections, but there are certainly settings where the ground-truth assumption holds true

CONDORCET JURY THEOREM



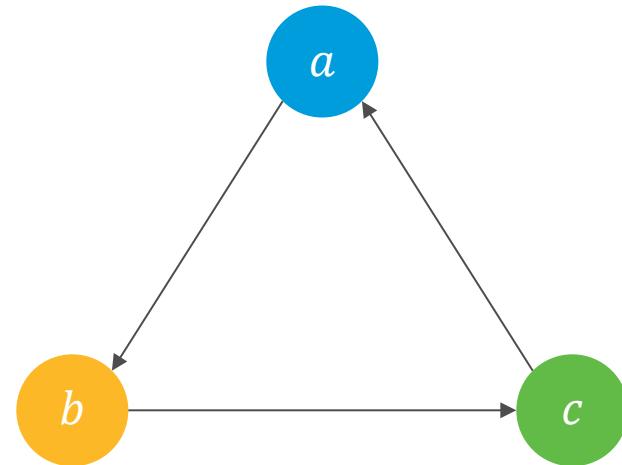
Theorem [Condorcet 1785]: Suppose that there is a correct alternative and an incorrect alternative, and there are n voters, each of whom votes independently for the correct alternative with probability $p > 1/2$, then the probability that the majority would be correct goes to 1 as $n \rightarrow \infty$

THE CASE OF $m \geq 3$

- In Condorcet's general model there is a true ranking of the alternatives
- Each voter evaluates every pair of alternatives **independently**, gets the comparison right with probability $p > 1/2$
- The results are tallied in a **voting matrix**
- Condorcet's proposal: Find the “most probable” ranking by taking the majority opinion for each comparison; if a cycle forms, “successively delete the comparisons that have the least plurality”

CONDORCET'S "SOLUTION"

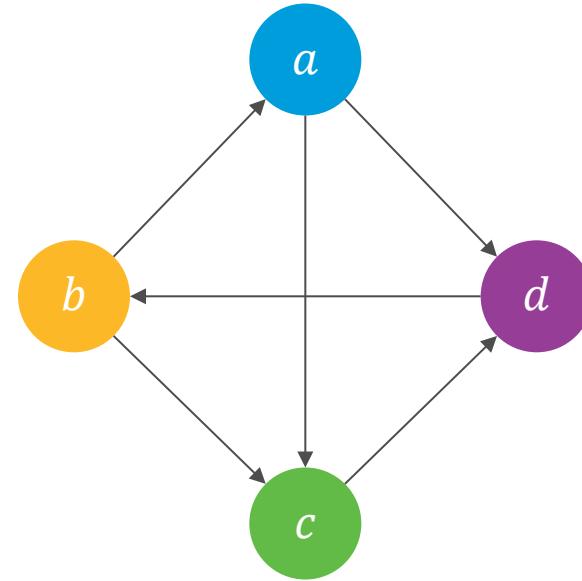
	<i>a</i>	<i>b</i>	<i>c</i>
<i>a</i>	-	8	6
<i>b</i>	5	-	11
<i>c</i>	7	2	-



Delete $c \succ a$ to get $a \succ b \succ c$

CONDORCET'S "SOLUTION"

	<i>a</i>	<i>b</i>	<i>c</i>	<i>d</i>
<i>a</i>	-	12	15	17
<i>b</i>	13	-	16	11
<i>c</i>	10	9	-	18
<i>d</i>	8	14	7	-



Order of strength is $c \succ d, a \succ d, b \succ c, a \succ c, d \succ b, b \succ a$; deleting $b \succ a$ leaves a cycle; deleting $d \succ b$ creates ambiguity

CONDORCET'S "SOLUTION"

	<i>a</i>	<i>b</i>	<i>c</i>	<i>d</i>
<i>a</i>	-	12	15	17
<i>b</i>	13	-	16	11
<i>c</i>	10	9	-	18
<i>d</i>	8	14	7	-



Did Condorcet mean we should **reverse** the weakest comparisons? If we reverse $b > a$ and $d > b$, we get $a > b > c > d$, with 89 votes, but reversing $d > b$ leads to $b > a > c > d$ with 90 votes

Isaac Todhunter

1820–1884

“The obscurity and self-contradiction are without any parallel, so far as our experience of mathematical works extends ... no amount of examples can convey an adequate impression of the evils.”

YOUNG'S SOLUTION

- M is the matrix of votes and π is the true ranking
- MLE maximizes $\Pr[M \mid \pi]$
- Suppose true ranking is $a \succ_{\pi} b \succ_{\pi} c$; prob. of observations $\Pr[M \mid \pi]$:

$$\binom{13}{8} p^8 (1-p)^5 \cdot \binom{13}{6} p^6 (1-p)^7 \cdot \binom{13}{11} p^{11} (1-p)^2$$

- For $a \succ_{\pi} c \succ_{\pi} b$, $\Pr[M \mid \pi]$ is
- Binomial coefficients are identical, so $\Pr[M \mid \pi] \propto p^{\#agree} (1-p)^{\#disagree}$

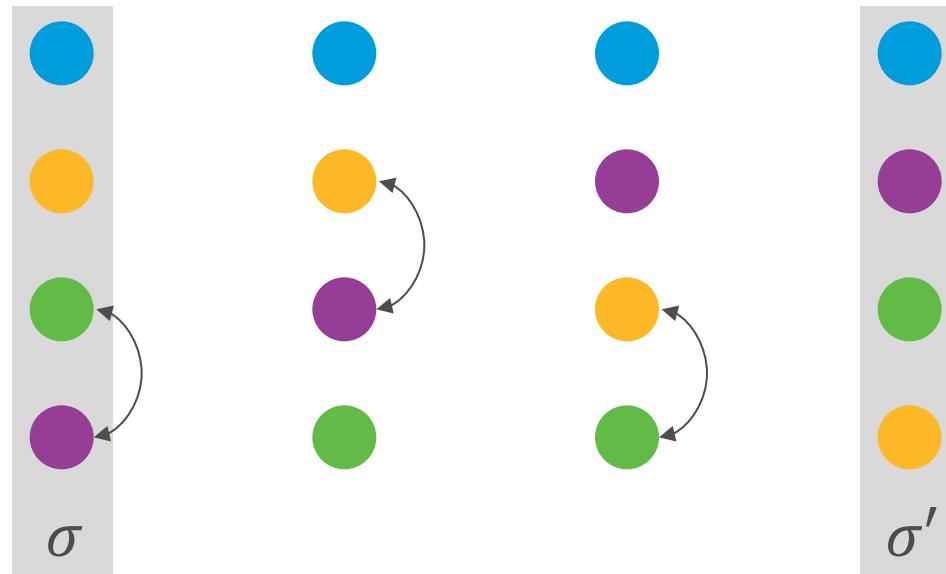
	a	b	c
a	-	8	6
b	5	-	11
c	7	2	-

THE KENDALL TAU DISTANCE

- The **Kendall tau** distance between σ and σ' is defined as

$$d_{KT}(\sigma, \sigma') = \left| \left\{ \{a, b\}: a >_{\sigma} b \wedge b >_{\sigma'} a \right\} \right|$$

- Can be thought of as “bubble sort distance”



THE MALLOWS MODEL

- Defined by parameter $\phi \in (0,1]$
- Probability of a voter having the ranking σ given true ranking π is

$$\Pr[\sigma|\pi] = \frac{\phi^{d_{KT}(\sigma,\pi)}}{\sum_{\tau} \phi^{d_{KT}(\tau,\pi)}}$$

- Same as the Condorcet noise model where the process “restarts” if a cycle forms and

$$\phi = \frac{1-p}{p}$$

THE KEMENY RULE

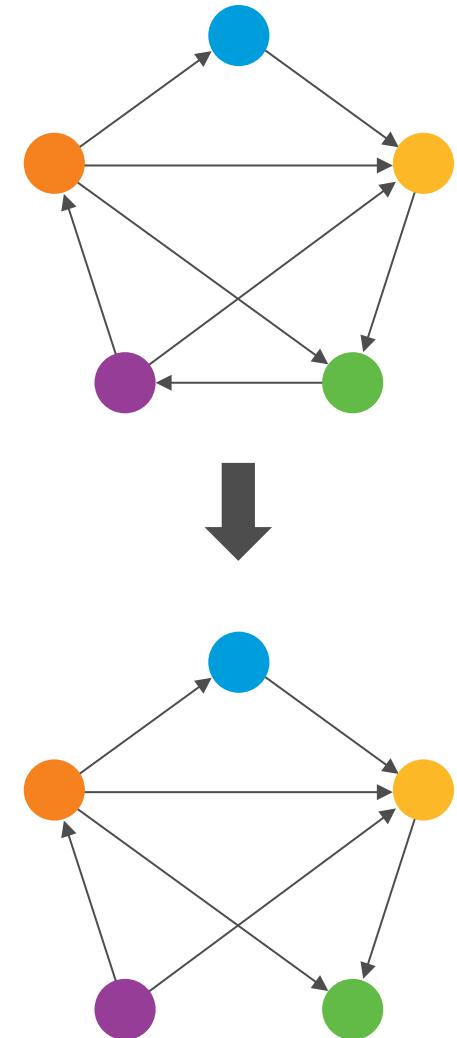
- What is probability of observing profile σ given true ranking π ?
- Denote $Z_\phi = \sum_\tau \phi^{d_{KT}(\tau, \pi)}$, then

$$\Pr[\sigma \mid \pi] = \prod_{i \in N} \frac{\phi^{d_{KT}(\sigma_i, \pi)}}{Z_\phi} = \frac{\phi^{\sum_{i \in N} d_{KT}(\sigma_i, \pi)}}{(Z_\phi)^n}$$

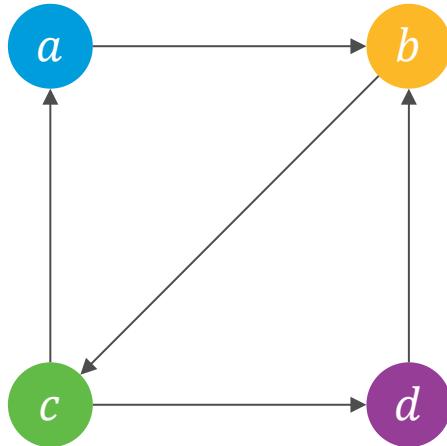
- The MLE is clearly the **Kemeny Rule**: Given a preference profile σ , return a ranking π that minimizes $\sum_{i \in N} d_{KT}(\sigma_i, \pi)$

COMPLEXITY OF KEMENY

- **Theorem:** Computing the optimal Kemeny score is NP-complete
- The proof exploits a connection to the Minimum Feedback Arc Set Problem:
Given a directed graph $G = (V, E)$ and $L \in \mathbb{N}$, is there $F \subseteq E$ s.t. $|F| \leq L$ and $(V, E \setminus F)$ is acyclic?



PROOF IDEA



(a, b)	(b, c)	(c, a)	(c, d)	(d, b)					
a	d	b	d	c	d	c	b	d	c
b	c	c	a	a	b	d	a	b	a
c	a	a	b	b	c	a	c	a	d
d	b	d	c	d	a	b	d	c	b

For each edge create a pair of voters that agree on the corresponding ordered pair of alternatives and disagree on everything else; there's an acyclic subgraph that deletes k edges if and only if there is a ranking that (beyond the inevitable disagreements) disagrees with k pairs of voters

KEMENY IN PRACTICE

In practice, Kemeny computation is typically formulated as an integer linear program: For every $a, b \in A$, $x_{(a,b)} = 1$ iff a is ranked above b , and

$$w_{(a,b)} = |\{i \in N : a \succ_{\sigma_i} b\}|$$

minimize $\sum_{(a,b)} x_{(a,b)} w_{(b,a)}$

subject to:

for all distinct $a, b \in A$, $x_{(a,b)} + x_{(b,a)} = 1$

for all distinct $a, b, c \in A$, $x_{(a,b)} + x_{(b,c)} + x_{(c,a)} \leq 2$

for all distinct $a, b \in A$, $x_{(a,b)} \in \{0,1\}$

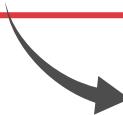
AN AXIOMATIC VIEWPOINT

The axiomatic viewpoint isn't necessarily at odds with the epistemic viewpoint; how does Kemeny fare when examined through an axiomatic lens?

Poll

Which of the following axioms is satisfied by Kemeny?

- Condorcet consistency
- Unanimity
- Both axioms
- Neither one



If all voters rank x above y then so does the Kemeny ranking