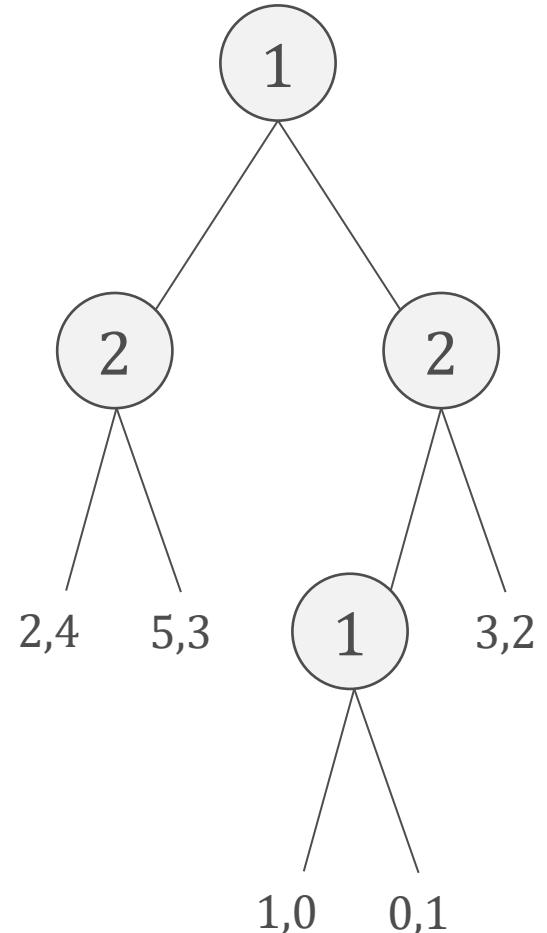


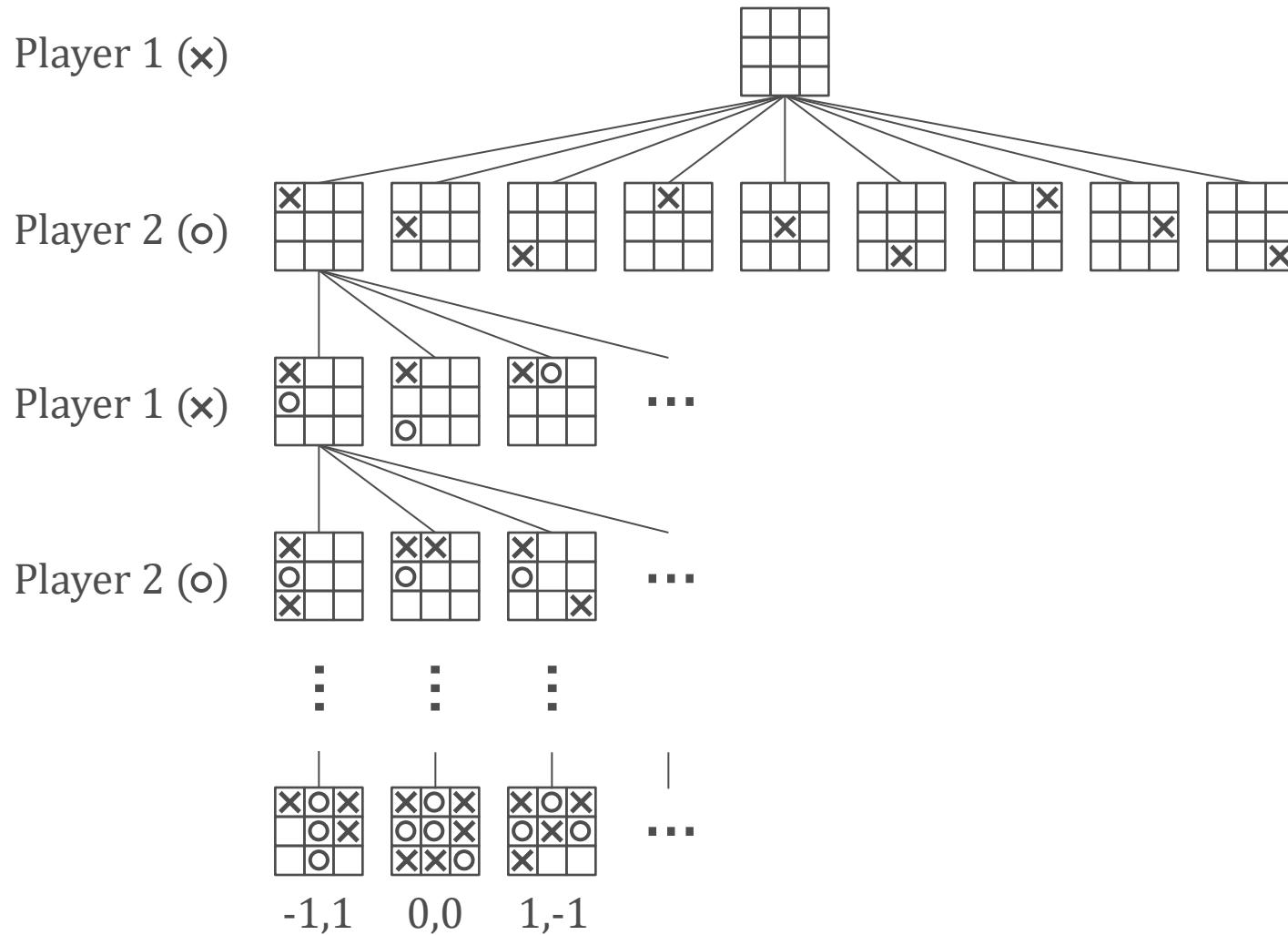
Spring 2026 | Lecture 3
Extensive-Form Games
Ariel Procaccia | Harvard University

EXTENSIVE-FORM GAMES

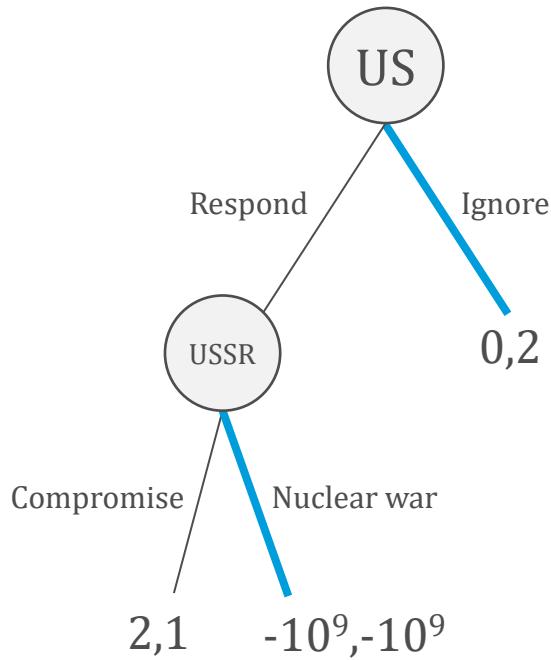
- Moves are done sequentially, not simultaneously
- Game forms a tree
- Nodes are labeled by players
- Leaves show payoffs



EXAMPLE: TIC-TAC-TOE



EXTENSIVE VS. NORMAL FORM

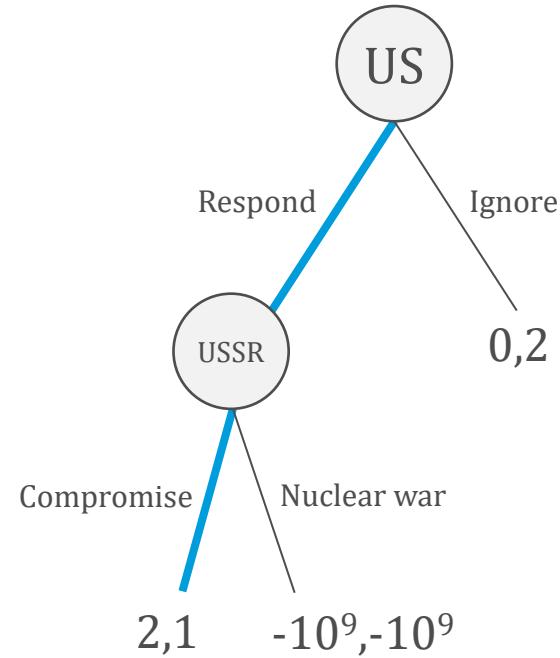


	Compromise	Nuclear war
Respond	2,1	-10 ⁹ , -10 ⁹
Ignore	0,2	0,2

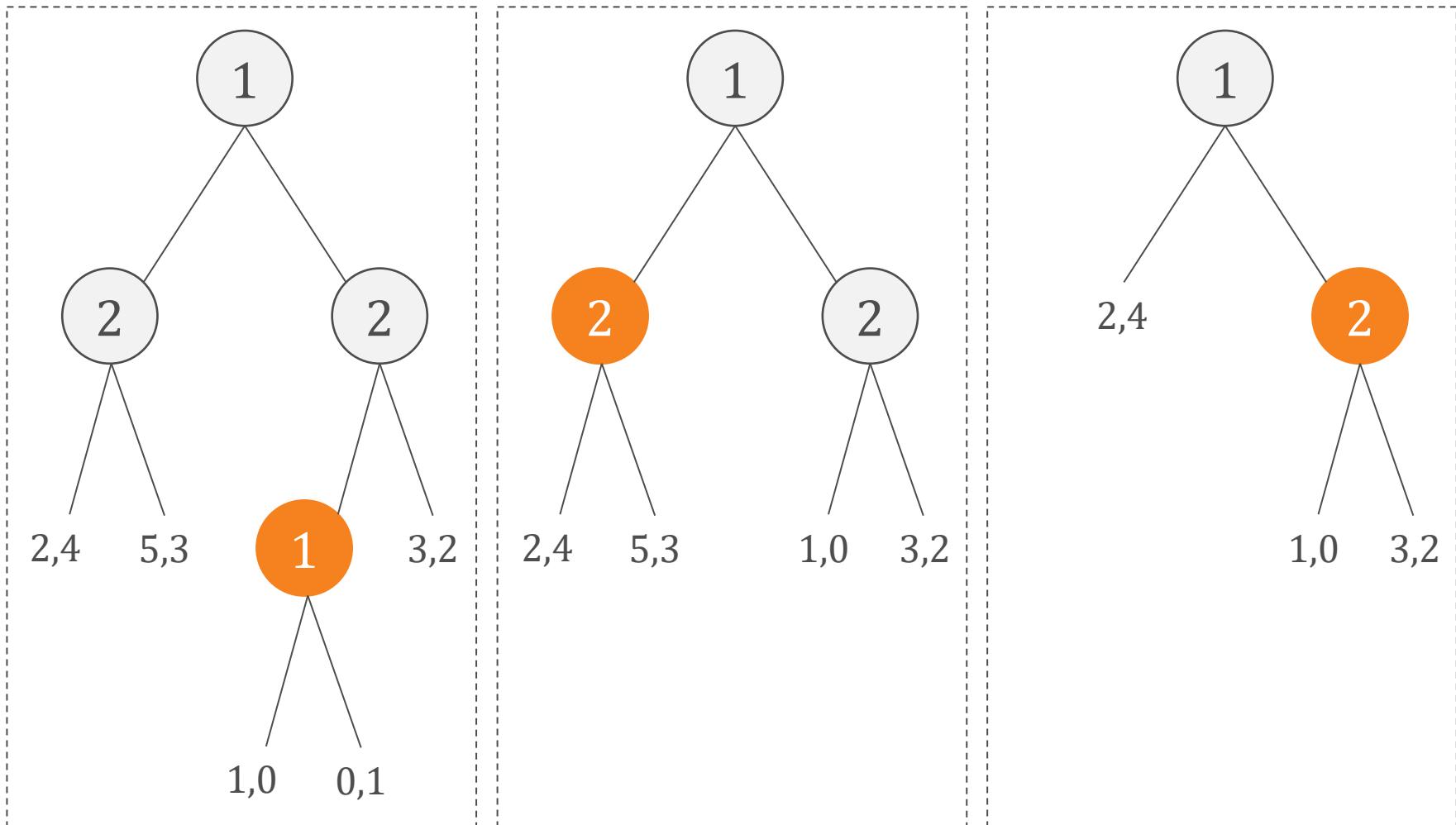
Problem: (ignore, nuclear war) is a Nash equilibrium, but threat isn't credible!

SUBGAME-PERFECT EQUILIBRIUM

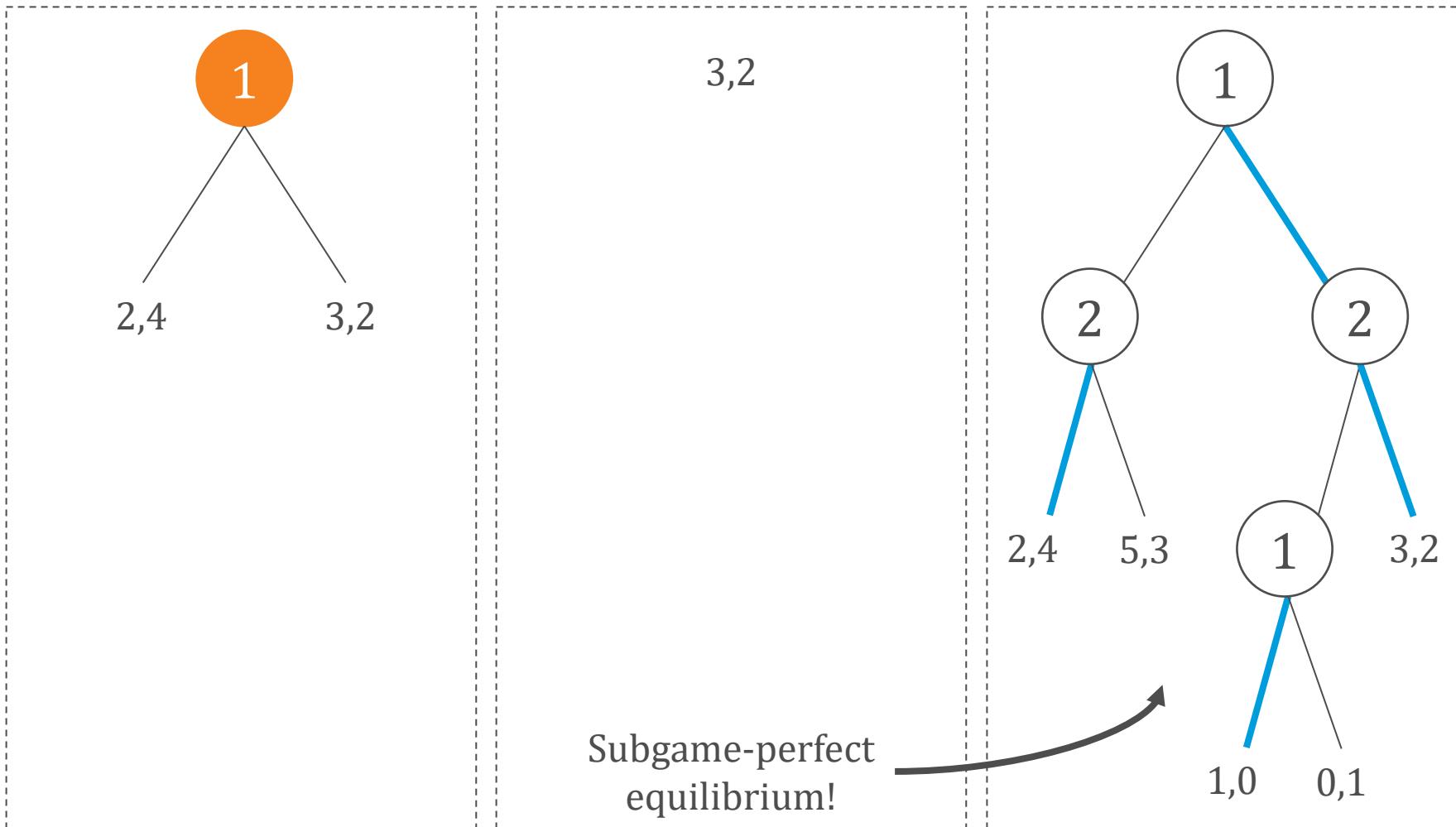
- Each subtree forms a subgame
- A set of strategies is a **subgame-perfect equilibrium** if it is a Nash equilibrium in each subgame
- Players may be able to improve their equilibrium payoff by eliminating strategies!



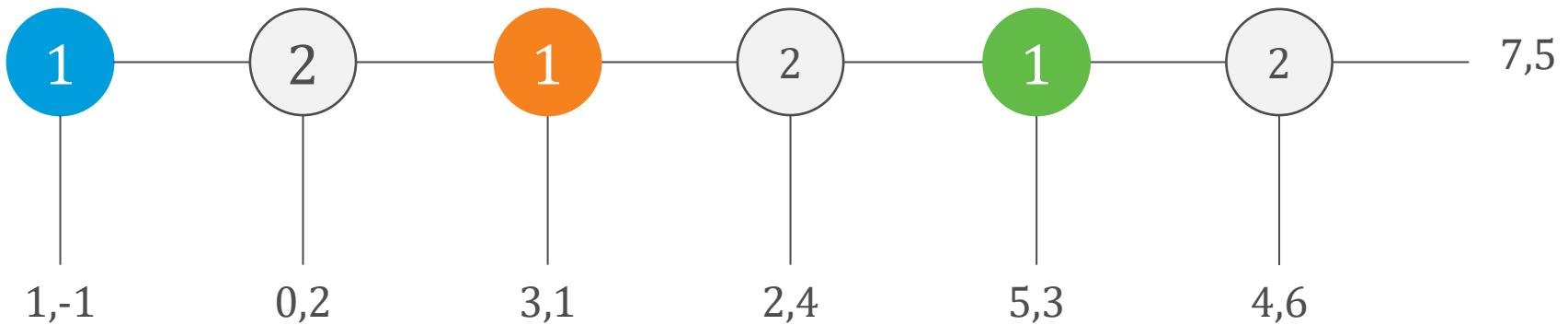
BACKWARD INDUCTION



BACKWARD INDUCTION



EXAMPLE: CENTIPEDE GAME



Poll 1

Suppose you are player 1 and you're playing with a random classmate. At which point do you choose down?

- Blue
- Orange
- Green
- None

STACKELBERG GAMES

1,1	3,0
0,0	2,1

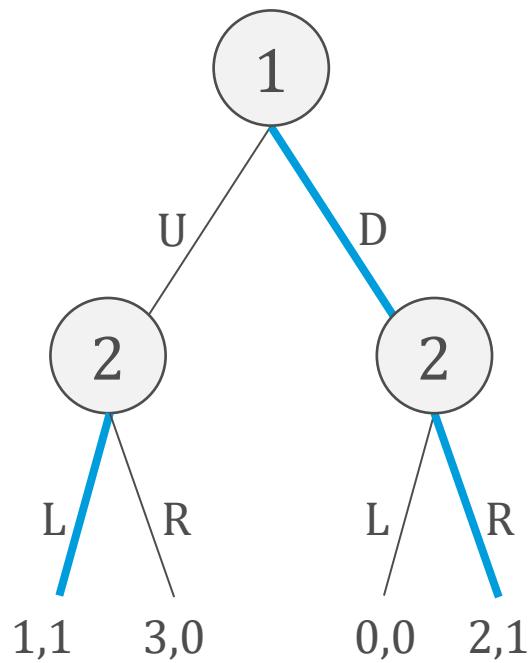
- Playing up is a dominant strategy for row player
- So column player would play left
- Therefore, (1,1) is the only Nash equilibrium outcome

STACKELBERG GAMES

1,1	3,0
0,0	2,1

- A **Stackelberg game** is played as follows:
 - Row player (the **leader**) commits to playing a row
 - Column player (the **follower**) observes the commitment and chooses column
- The leader can commit to playing down!

STACKELBERG GAMES



If the leader announces their commitment, the Stackelberg game can be rewritten as an extensive-form game (of perfect information)

STACKELBERG GAMES

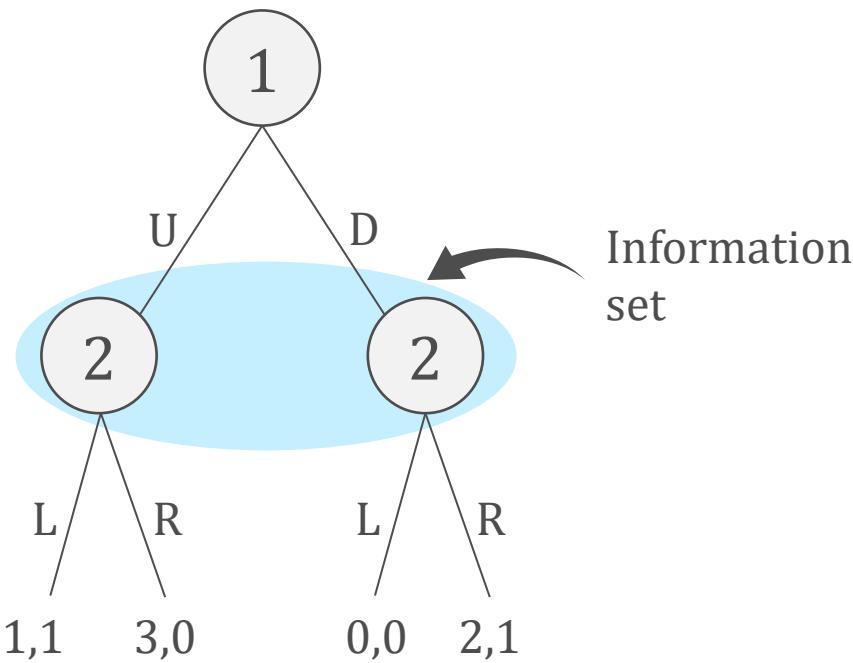
1,1	3,0
0,0	2,1

Poll 2

What reward can the leader get by committing to a mixed strategy? (Assume the follower breaks ties in favor of the leader)

- 1
- 1.5
- 2
- 2.5

STACKELBERG GAMES



Randomness helps the leader due to imperfect information

STACKELBERG EQUILIBRIUM

- For a mixed strategy x_1 of the leader, define the best response set of the follower as

$$B_2(x_1) = \operatorname{argmax}_{s_2 \in S} u_2(x_1, s_2)$$

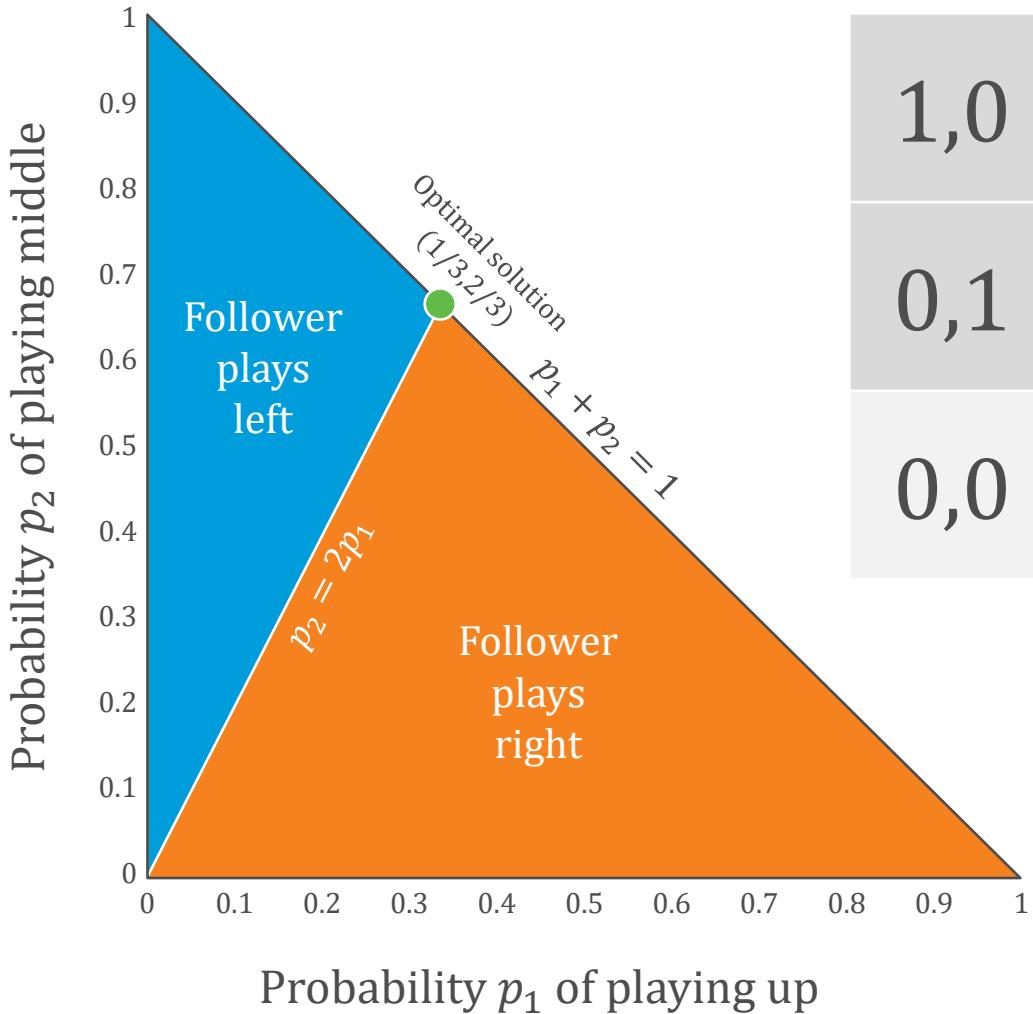
- In a **strong Stackelberg equilibrium** (SSE), the leader plays a mixed strategy in

$$\operatorname{argmax}_{x_1 \in \Delta(S)} \max_{s_2 \in B_2(x_1)} u_1(x_1, s_2),$$

where $\Delta(S)$ is the set of mixed strategies

- We'll next see that an SSE can be computed via linear programming

COMPUTING SSE: EXAMPLE

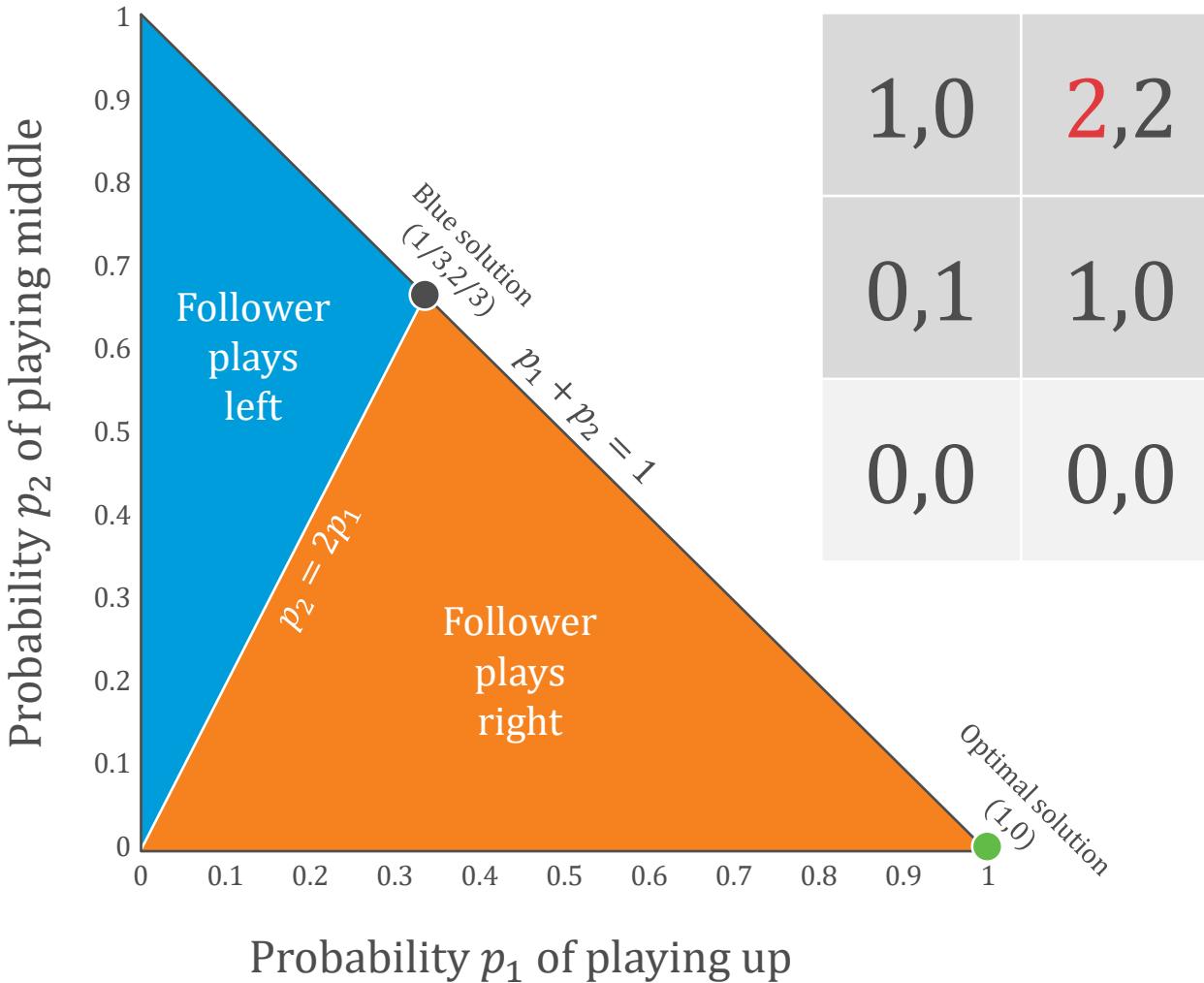


1,0	0,2
0,1	1,0
0,0	0,0

$$\begin{aligned} & \max p_1 \\ \text{s.t. } & p_2 \geq 2p_1 \\ & p_1 + p_2 \leq 1 \\ & p_1, p_2 \geq 0 \end{aligned}$$

$$\begin{aligned} & \max p_2 \\ \text{s.t. } & p_2 \leq 2p_1 \\ & p_1 + p_2 \leq 1 \\ & p_1, p_2 \geq 0 \end{aligned}$$

COMPUTING SSE: EXAMPLE



1,0	2,2
0,1	1,0
0,0	0,0

$$\begin{aligned} & \max p_1 \\ \text{s.t. } & p_2 \geq 2p_1 \\ & p_1 + p_2 \leq 1 \\ & p_1, p_2 \geq 0 \end{aligned}$$

$$\begin{aligned} & \max 2p_1 + p_2 \\ \text{s.t. } & p_2 \leq 2p_1 \\ & p_1 + p_2 \leq 1 \\ & p_1, p_2 \geq 0 \end{aligned}$$

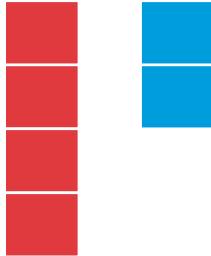
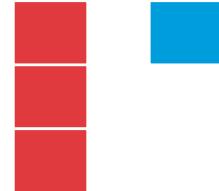
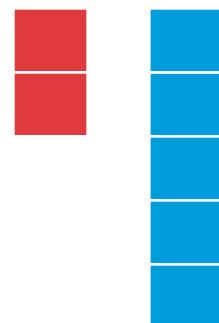
COMPUTING SSE: ALGORITHM

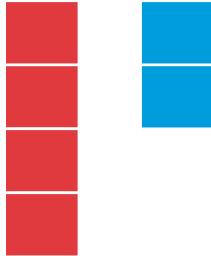
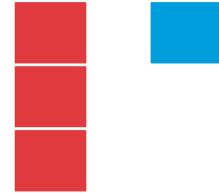
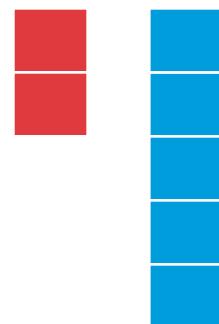
- The leader's mixed strategy is defined by variables $x(s_1)$, which give the probability of playing each strategy $s_1 \in S$
- For each follower strategy s_2^* , we compute a strategy x for the leader such that
 - Playing s_2^* is a best response for the follower
 - Under this constraint, x is optimal

$$\max \sum_{s_1 \in S} x(s_1) u_1(s_1, s_2^*)$$

$$\text{s.t } \forall s_2 \in S, \sum_{s_1 \in S} x(s_1) u_2(s_1, s_2^*) \geq \sum_{s_1 \in S} x(s_1) u_2(s_1, s_2) \\ \sum_{s_1 \in S} x(s_1) = 1 \quad \forall s_1 \in S, x(s_1) \geq 0$$

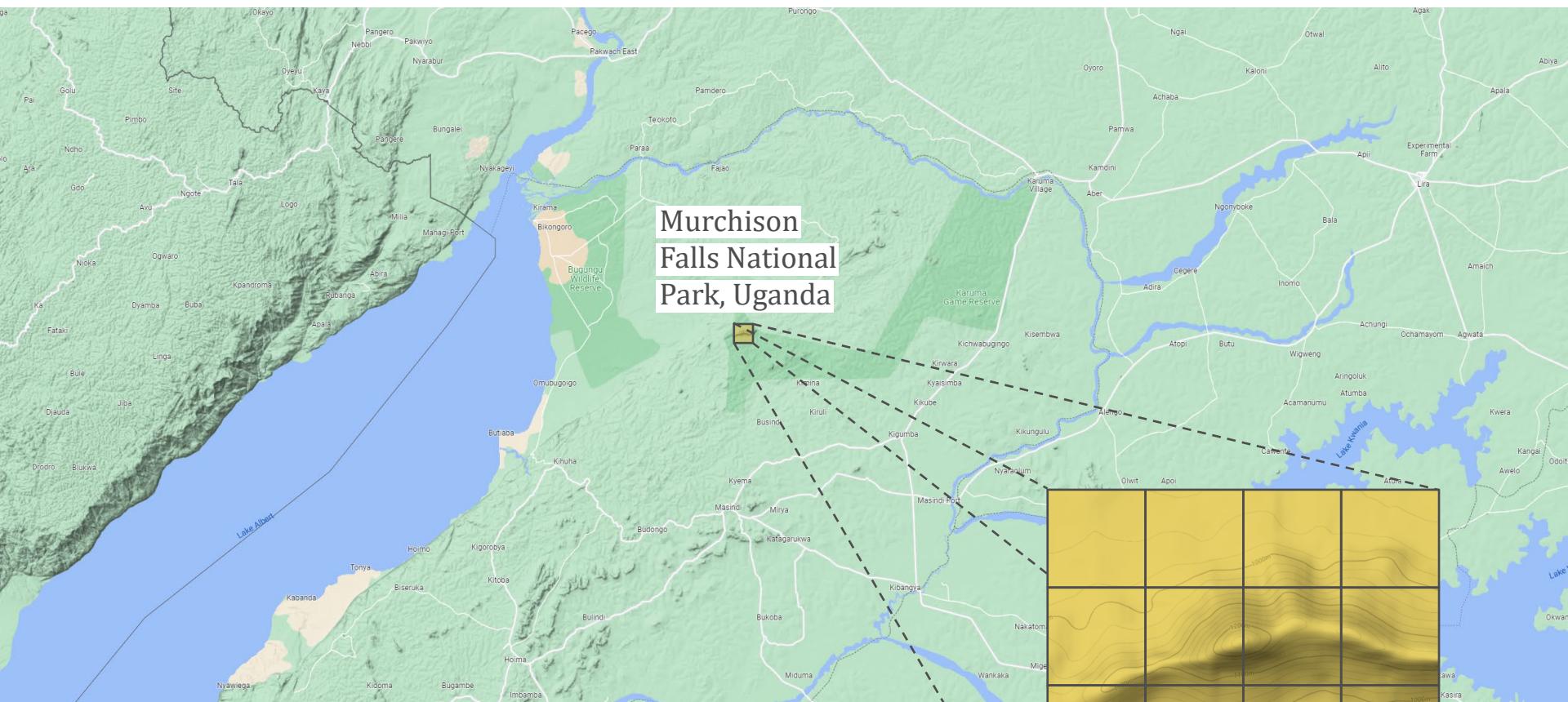
- Take the x resulting from the “best” s_2^*



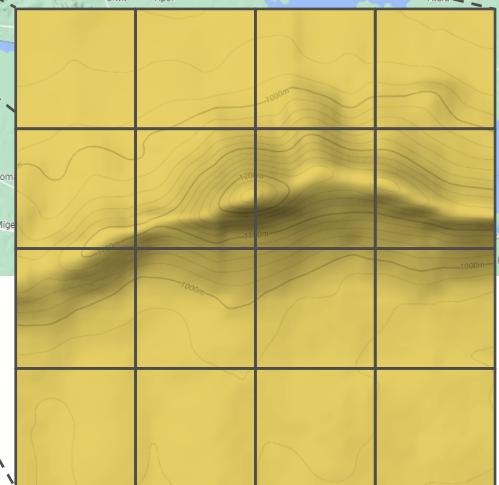


SECURITY GAMES

WILDLIFE PROTECTION

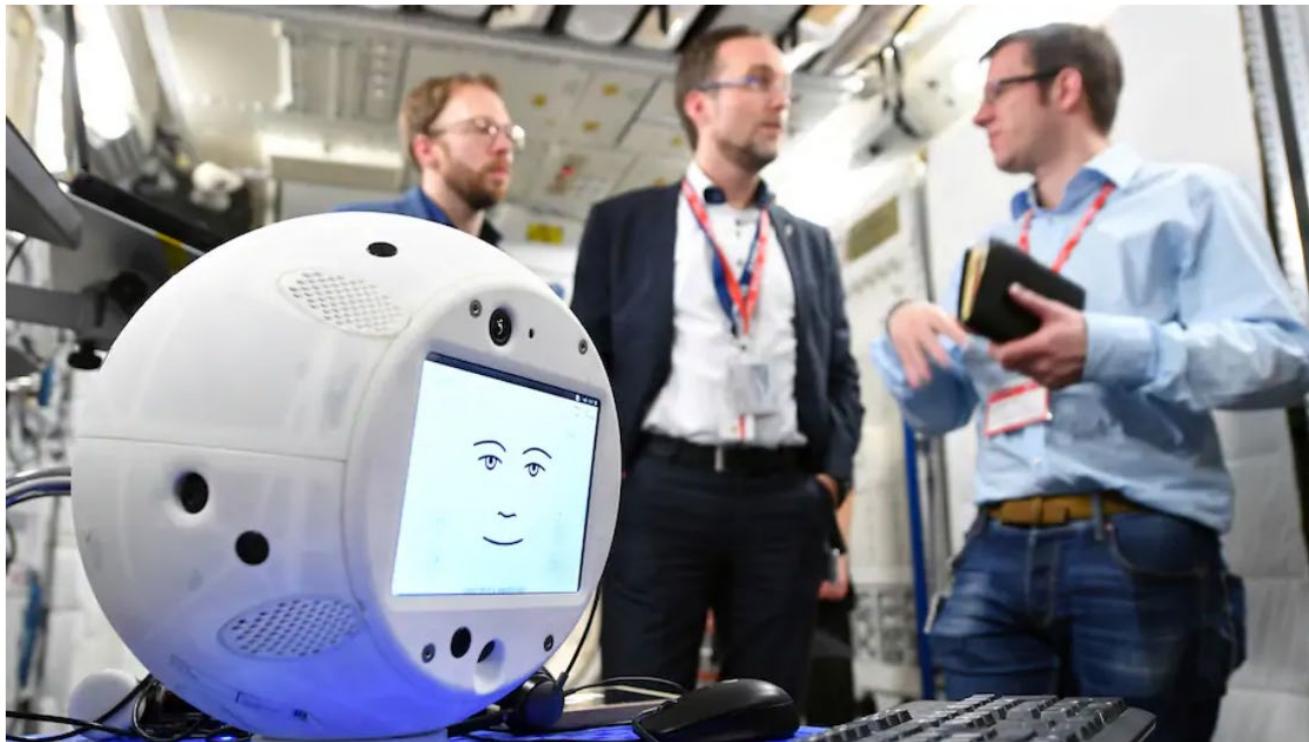


Leaders are rangers, followers are poachers,
“targets” are grid squares, utility depends on
the predicted number of snares



Opinions

It's time for AI to outgrow gaming



The Cimon (Crew Interactive MOBILE companioN) robot is shown during a communications test at the ESA European Astronaut Center in Cologne-Porz, Germany, on Jan. 30, 2018. (T. Bourry/AP)

Opinion by **Ariel Procaccia**

March 20, 2020 at 8:52 a.m. EDT