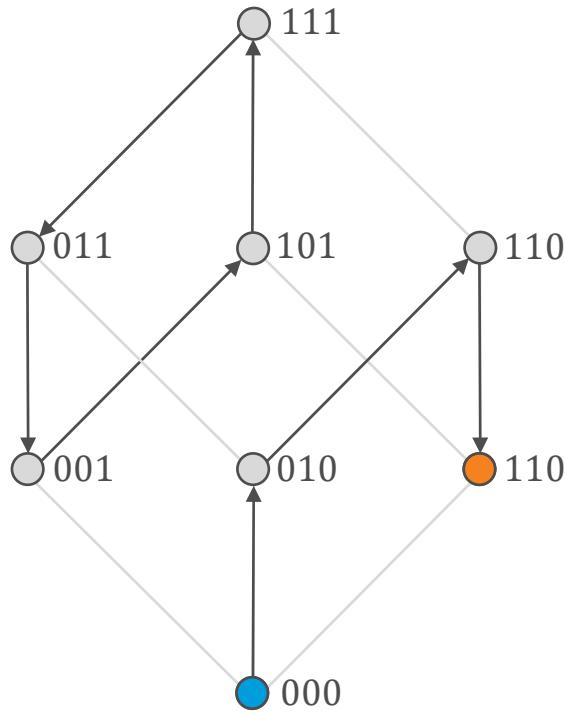


Spring 2026 | Lecture 2
Equilibrium Computation
Ariel Procaccia | Harvard University

END OF THE LINE

- In the **End of the Line problem**, the input is a directed graph $G = (V, E)$ with $V = \{0,1\}^n$, where every vertex has at most one predecessor and at most one successor
- The edges E are implicitly given by a polynomial-time-computable functions $f_p: \{0,1\}^n \rightarrow \{0,1\}^n$ and $f_s: \{0,1\}^n \rightarrow \{0,1\}^n$ that return the predecessor and successor of a given vertex (if they exist)
- Given a source vertex (no predecessor), the task is to find a sink (no successor)

END OF THE LINE



For any input to END OF THE LINE, the existence of a sink vertex is guaranteed — but how do you find it?

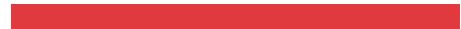
THE PPAD CLASS

- The complexity class **PPAD** (polynomial parity arguments on directed graphs) includes all problems (in “TFNP”) that have polynomial-time reductions to END OF THE LINE
- **Theorem:** For all $n \geq 2$, computing an (approximate) Nash equilibrium in an n -player normal-form game is PPAD-complete
- Computing a Nash equilibrium is “as hard as” END OF THE LINE

Christos Papadimitriou

1949–

Influential theoretical computer scientist and a founder of algorithmic game theory. Also known for not naming PPAD after himself.



WHERE TO GO FROM HERE?



Expanding the solution
Correlated equilibrium

Restricting the game
Zero-sum games

INTERLUDE: LINEAR PROGRAMMING

- Linear programming:

$$\min_x \mathbf{c}^T \mathbf{x}$$

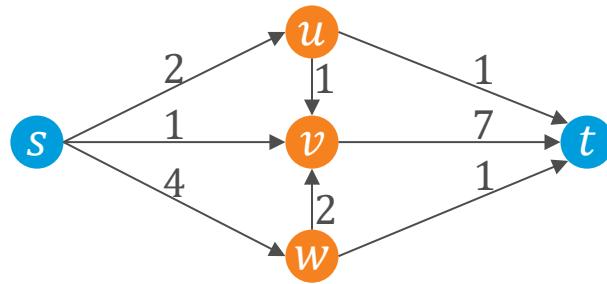
$$\text{s.t. } A\mathbf{x} = \mathbf{a}$$

$$B\mathbf{x} \leq \mathbf{b}$$

where $\mathbf{x} \in \mathbb{R}^n$ is the optimization variable, and $\mathbf{c} \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n}, \mathbf{a} \in \mathbb{R}^m, B \in \mathbb{R}^{k \times n}, \mathbf{b} \in \mathbb{R}^k$ are the problem data

- Linear programs can be solved in polynomial time using interior-point methods

INTERLUDE: LINEAR PROGRAMMING



- In the **max flow problem**, we are given a directed graph $G = (V, E)$ with a source s and a sink t , and a capacity α_{xy} for each $(x, y) \in E$
- A flow is a function $f: E \rightarrow \mathbb{R}^+$ that satisfies $f_{xy} \leq \alpha_{xy}$ for all $(x, y) \in E$, and for all $x \in V \setminus \{s, t\}$,
$$\sum_{(y,x) \in E} f_{yx} = \sum_{(x,z) \in E} f_{xz}$$
- The value of a flow is $\sum_{(s,x) \in E} f_{sx}$
- In the above example, the value of the max flow is 6

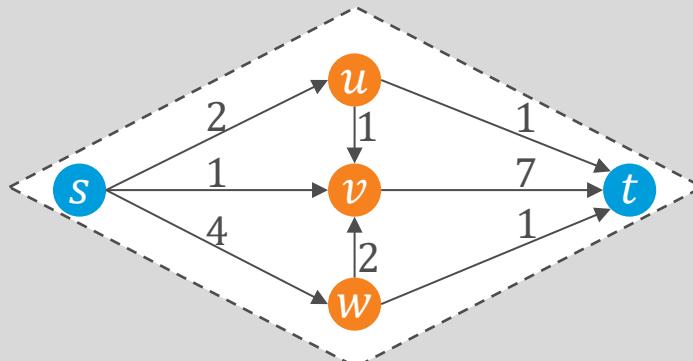
INTERLUDE: LINEAR PROGRAMMING

$$\begin{array}{ll}\min & \mathbf{c}^T \mathbf{x} \\ \text{s.t.} & \begin{array}{l} \mathbf{x} \\ A\mathbf{x} = \mathbf{a} \\ B\mathbf{x} \leq \mathbf{b} \end{array}\end{array}$$

How does the canonical LP form fit with the max flow example?

$$\max f_{su} + f_{sv} + f_{sw}$$

$$\begin{array}{llll} \text{s.t.} & f_{s,u} \leq 2 & f_{s,u} \geq 0 & f_{s,u} = f_{uv} + f_{ut} \\ & f_{s,v} \leq 1 & f_{s,v} \geq 0 & f_{s,v} + f_{uv} + f_{wv} = f_{vt} \\ & f_{s,w} \leq 4 & f_{s,w} \geq 0 & f_{sw} = f_{wv} + f_{wt} \\ & f_{uv} \leq 1 & f_{uv} \geq 0 & \\ & f_{wv} \leq 2 & f_{wv} \geq 0 & \\ & f_{u,t} \leq 1 & f_{u,t} \geq 0 & \\ & f_{v,t} \leq 7 & f_{v,t} \geq 0 & \\ & f_{w,t} \leq 1 & f_{w,t} \geq 0 & \end{array}$$



TWO-PLAYER ZERO-SUM GAMES

- In two-player zero-sum games, it holds that for every strategy profile s ,

$$u_1(s) = -u_2(s)$$

- **Maximin** (mixed) strategy of player 1 is $x_1^* \in \arg \max_{x_1 \in \Delta(S)} \min_{s_2 \in S} u_1(x_1, s_2)$
- **Minimax** (mixed) strategy of player 2 is $x_2^* \in \arg \min_{x_2 \in \Delta(S)} \max_{s_1 \in S} u_1(s_1, x_2)$

ZERO-SUM GAMES

$-1, 1$	$2, -2$
$2, -2$	$-2, 2$

Poll 1

Denote $x_1^* = (p, 1 - p)$. What is p ?

- 4/7
- 3/5
- 5/8
- 8/9

MAXIMIN AS LP

Maximin strategy is computed via LP (and minimax strategy is computed analogously):

$$\begin{aligned} & \max w \\ \text{s.t. } & \forall s_2 \in S, \sum_{s_1 \in S} x(s_1) u_1(s_1, s_2) \geq w \\ & \sum_{s_1 \in S} x(s_1) = 1 \\ & \forall s_1 \in S, x(s_1) \geq 0 \end{aligned}$$

John von Neumann

1903–1957

A founder of game theory. Also known for revolutionary contributions to mathematics, physics, computer science and the Manhattan Project.

THE MINIMAX THEOREM

- **Theorem [von Neumann 1928]:** Every 2-player zero-sum game has a unique value v such that:
 - Player 1 can guarantee utility at least v
 - Player 2 can guarantee utility at least $-v$
- **Proof (via Nash's Theorem):**
 - Let (x_1, x_2) be a Nash equilibrium and denote $v = u_1(x_1, x_2)$
 - For every $s_2 \in S_2$, $u_1(x_1, s_2) \geq v$, so player 1 can guarantee utility at least v by playing x_1
 - For every $s_1 \in S_1$, $u_2(s_1, x_2) \geq -v$, so player 2 can guarantee utility at least $-v$ by playing x_2 ■
- We will prove the theorem from scratch later in the course

Robert Aumann

1930–

Professor of mathematics at
Hebrew U and Nobel laureate
in economics.

CORRELATED EQUILIBRIUM

- Let $N = \{1,2\}$ for simplicity
- A mediator chooses a pair of strategies (s_1, s_2) according to a distribution p over S^2
- Reveals s_1 to player 1 and s_2 to player 2
- When player 1 gets $s_1 \in S$, they know that the distribution over strategies of 2 is

$$\Pr[s_2|s_1] = \frac{\Pr[s_1 \wedge s_2]}{\Pr[s_1]} = \frac{p(s_1, s_2)}{\sum_{s'_2 \in S} p(s_1, s'_2)}$$

CORRELATED EQUILIBRIUM

- Player 1 is best responding if for all $s'_1 \in S$

$$\sum_{s_2 \in S} \Pr[s_2 | s_1] u_1(s_1, s_2) \geq \sum_{s_2 \in S} \Pr[s_2 | s_1] u_1(s'_1, s_2)$$

- Equivalently,

$$\sum_{s_2 \in S} p(s_1, s_2) u_1(s_1, s_2) \geq \sum_{s_2 \in S} p(s_1, s_2) u_1(s'_1, s_2)$$

- p is a **correlated equilibrium (CE)** if both players are best responding

Poll 2

What is the relation between correlated equilibrium and Nash equilibrium?

- CE \subseteq NE
- NE \subseteq CE
- Neither

GAME OF CHICKEN

	Dare	Chicken
Dare	0,0	4,1
Chicken	1,4	3,3

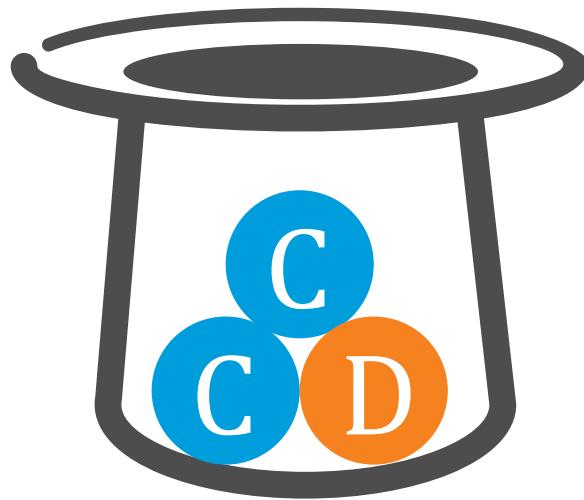
- **Social welfare** is the sum of utilities
- Pure NE: (C,D) and (D,C), social welfare = 5
- Mixed NE: both $(1/2, 1/2)$, social welfare = 4
- Optimal social welfare = 6

GAME OF CHICKEN

	Dare	Chicken
Dare	0,0	4,1
Chicken	1,4	3,3

- Correlated equilibrium: (D,D) played with probability 0, (D,C) with probability $1/3$, (C,D) with probability $1/3$, and (C,C) with probability $1/3$
- Social welfare of CE = $16/3$

IMPLEMENTATION OF CE



To implement the mediator, simply put two “chicken” balls and one “dare” ball in a hat, and have each blindfolded player pick a ball

CE AS LP

Can compute CE via linear programming in polynomial time!

find $\forall s_1, s_2 \in S, p(s_1, s_2)$

s.t. $\forall s_1, s'_1 \in S, \sum_{s_2 \in S} p(s_1, s_2)u_1(s_1, s_2) \geq \sum_{s_2 \in S} p(s_1, s_2)u_1(s'_1, s_2)$

$\forall s_2, s'_2 \in S, \sum_{s_1 \in S} p(s_1, s_2)u_2(s_1, s_2) \geq \sum_{s_1 \in S} p(s_1, s_2)u_2(s_1, s'_2)$

$\sum_{s_1, s_2 \in S} p(s_1, s_2) = 1$

$\forall s_1, s_2 \in S, p(s_1, s_2) \in [0, 1]$