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The Price of Anarchy
—

Lecture 4

1 Routing Games

We’ll start off this lecture by looking at a surprising real-world phenomenon: Sometimes, closing a road can
speed up traffic!

There are many documented occurrences of this phenomenon in the real world. A well-known instance
of this is in Seoul, South Korea, where the city closed a major highway along the Cheonggyecheon Stream to
revitalize the area. Counterintuitively, among other benefits, traffic flow across the city improved as drivers
redistributed across other routes.

Indeed, a 2008 paper conjectured that we don’t even need to look this far to find an example: They claimed
that traffic would speed up in Cambridge, if Main Street was closed between Central and Kendall Square.
Currently, the fastest route between Harvard Square (the red ‘H’ node below) and Downtown Boston (the
green ‘B’ node) is to use the yellow route: Take Mass Ave to Central Square, then Main Street to Longfellow
Bridge. However, this causes timely congestion on the single-lane Mass Ave and Longfellow Bridge. If,
instead, Main Street (dashed) was closed, traffic would be distributed across Mass Ave, Broadway, and
Cambridge Street, as well as across Harvard Bridge, Longfellow Bridge, and the Charles River Dam Bridge.
The conjecture is that this would lead to commute times decreasing for all drivers.
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We can model this paradox mathematically:

Example 1 (Braess’ Paradox). Consider a situation in which 200 travelers want to get from work (A) to
home (D). Initially, each traveler can take one of two paths:

• Go from A to B, taking k/10 minutes where k is the number of travelers who take this path, and then
go from B to D, which takes 20 minutes, independently of the number of travelers.
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• Go from A to C, which takes 20 minutes, independently of the number of travelers, and then go from
C to D, taking k/10 minutes where k is the number of travelers who take this path.

A graphical depiction of these paths is provided below.
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Assume 100 travelers take each route. Then, the travel time for each traveler is 30 minutes, because both
A to B and C to D take 100

10 = 10 minutes. This is a Nash equilibrium: If any traveler changed to the other
path, their traveling time increases to 20 + 101

10 = 30.1 minutes. It is not hard to check that this is indeed
the only (pure) Nash equilibrium.

Now, assume a new, very fast 2-way street between B and C is built, allowing to travel between these
nodes in (approximately) 0 minutes as shown below:
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In this case, 100 travelers choosing A → B → D and A → C → D, respectively, is no longer a Nash
equilibrium: Any traveler would be better of choosing A → B → C → D, bringing their travel time down
to 20 minutes.

However, this becomes a problem if all travelers take A → B → C → D, since now every traveler takes
200
10 + 200

10 = 40 minutes to get to D. However, this is a Nash equilibrium!1 No traveler has a useful unilateral
deviation because flipping to any of A → B → D, A → C → D, or A → C → B → D all result in the same
40 minutes of travel time. Indeed, this is the unique Nash equilibrium.

This phenomenon is called Braess’ paradox : The Nash equilibrium outcome after adding a new road
results in longer travel times for all travelers than the Nash equilibrium outcome before the road was built.

We now formalize the game played by the travelers picking a route to get a generalized version of Braess’
paradox.

Definition 1 (Routing Games). An (atomic) routing game consists of

• a set of players N = {1, . . . , n},

• a directed graph G = (V,E),

• for each edge e ∈ E, a nonnegative and nondecreasing cost function ce : N → R+, and

• for each player i ∈ N , a source and sink vertex ai, bi ∈ V .

1In fact, this is another example of the tragedy of the commons, introduced in lecture 1.
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The strategy set Si of each player i is the set of all paths from their source ai to their sink bi in G. In a
strategy profile s = (s1, ..., sn), we use ne(s) to denote the number players who are using edge e in their
strategy si under s. The cost of player i is the sum over the costs (corresponding to congestion) for all edges
they use,

costi(s) =
∑
e∈si

ce(ne(s)).

Intuitively, this corresponds to the player’s total ‘travel time.’ Finally, the social cost is the total cost across
all players,

cost(s) =
∑
i∈N

costi(s).

Example 2 (Routing game). Consider the following routing game between 3 players. For each i ∈ {1, 2, 3},
player i’s source is labeled as ai and their sink is labeled as bi. Each edge’s cost function ce is written next
to the edge as a function of the number of players k who traverse that edge.
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Let’s assume that player 1 takes the blue path, player 2 takes the orange path, and player 3 takes the
green path. Then player 1’s cost is 1 + 3 · 2 = 7, player 2’s cost is 1 + 3 · 2 + 1 = 8, and player 3’s cost is
1 + 1 = 2, so we get a social cost of 17.

In the solution with lowest social cost, player 1 takes a1 → x → b1, player 2 takes a2 → x → b3 → b2,
and player 3 takes a3 → x → b3. Then, player 1’s cost is 1 + 3 · 1 = 4, player 2’s cost is 1 + 1 + 1 = 3, and
player 3’s cost is 1 + 1 = 2, resulting in a social cost of 9.

In Example 1 of Braess’ paradox, there always existed a pure Nash equilibrium in the routing game. Is
this the case in all routing games? To answer this question, we make use of the fact that routing games are
a subset of a larger class of games called exact potential game.

Definition 2 (Exact Potential Games). A game is an exact potential game if there exists a function Φ :∏n
i=1 Si → R such that for all players i ∈ N , for all strategy profiles s ∈

∏n
i=1 Si, and for all alternate

strategies of player i, s′i ∈ Si, it holds that

costi(s
′
i, s−i)− costi(s) = Φ(s′i, s−1)− Φ(s)

In other words, for any strategy profile s, when player i unilaterally deviates to s′i, the change in value of Φ
equals the change in player i’s cost. We call Φ an exact potential function for the game.

All exact potential games have a pure Nash equilibrium, namely any pure strategy profile s that minimizes
Φ(s). At this minimal s, no change to s can further decrease Φ(s), so no deviation of any player from s can
reduce their cost— s is a pure Nash equilibrium.

It turns out that routing games actually do fall under this category of games, and that therefore the
existence of a pure Nash equilibrium is guaranteed.

Theorem 1. Routing games are exact potential games.

We prove this in the Appendix; reading this proof is fully optional.
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2 Price of Anarchy

In Example 1, we saw that the social cost in a Nash equilibrium can be larger than the optimal (lowest-
possible) social cost. We will now try to quantify this, by investigating how bad the social cost of an
equilibrium can be as compared to the optimal solution.

Definition 3 (Price of Anarchy). The price of anarchy (PoA) of a game with some objective function (e.g.,
social cost) is the ratio between the worst objective function value in any equilibrium of the game and the
optimal value of the objective function.

For the rest of this lecture, our objective function will be the social cost, and our equilibrium concept
will be pure Nash equilibria. In that case, the price of anarchy is

maxs∈PNE cost(s)

mins∈Sn cost(s)
,

where PNE is the set of all pure Nash equilibria and Sn is the set of all possible pure strategy profiles.

Example 3 (PoA of routing games 1). Consider the following routing game, where n players wish to go
from A to C. The edges are labeled by their cost function when k players go through the path.
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In this game, the unique pure Nash equilibrium is all n players taking the path A → B → C → D,
resulting in a travel time of 2n for everyone. If any single player deviates to A → B → D or A → C → D,
their cost is still the same 2n. The social cost is 2n · n = 2n2.

In contrast, the solution with optimal social cost is to send n/2 players along the path A → B → D and
n/2 players along the path A → C → D, resulting in a social cost of n/2 ·n/2+n/2 ·n+n/2 ·n+n/2 ·n/2 = 3n2

/2.
Therefore, the price of anarchy in this case is

2n2

3n2
/2

=
4

3
.

Example 4 (PoA of routing games 2). Let’s consider another routing game with 4 players and source-sink
pairs (ai, bi) being

{(A,B), (A,C), (B,C), (C,B)}
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In this game, the solution with optimal social cost is for all players to take the path with cost k directly
to their sink: Player 1 takes A → B, player 2 takes A → C, player 3 takes B → C, and player 4 takes
C → B. This results in a social cost of

1 · 1 + 1 · 1 + 1 · 1 + 1 · 1 = 4

This optimal solution is also a Nash equilibrium. For any player, consider any other path they could take
to their sink. In every path, the player must traverse at least one edge with cost k, so there is no beneficial
deviation for them.

However, this is not the only Nash equilibrium in the game. Consider player 1 taking A → C → B, player
2 taking A → B → C, player 3 taking B → A → C, and player 4 taking C → A → B. Here, player 1’s cost
is 2+1 = 3, player 2’s cost is 2+1 = 3, player 3’s cost is 0+2 = 2, and player 4’s cost is 0+2 = 2, resulting
in an overall social cost of 10. To see that this is a Nash equilibrium, note that visiting any node more than
once is never optimal, so we only need to consider paths of length 1 and 2. All players are currently taking
the unique path of length 2, and it can quickly be checked that unilaterally deviating to the ‘direct’ path of
length 1 is not beneficial for any player. For example, if player 1 deviated to A → B, now players 1, 2, and
4 would be taking A → B, so player 1 still has a cost of 3.

Therefore, we get that a lower bound (there may be even worse equilibria, for all we know so far) for the
price of anarchy in this case is

10/4 = 2.5.

It turns out that this lower bound is tight:

Theorem 2. For any routing game with linear cost functions, the price of anarchy is at most 2.5.

In other words, for any routing game with linear cost functions and Nash equilibrium s, we know that
cost(s) ≤ 2.5 ·cost(OPT). Furthermore, by Example 4, we know that there exists a routing game with linear
cost functions that has a Nash equilibrium s where cost(s) ≥ 2.5 · cost(OPT). In summary, we know that
the worst-case PoA for any routing game with linear cost functions is exactly 2.5.

To conclude this section, we will see that such a constant upper bound is not possible if the cost functions
can be arbitrary, nondecreasing and nonnegative functions.

Example 5 (Routing game with non-linear cost functions). Consider a routing game with n players con-
sisting of two edges from a common source A to a common sink B, one with cost 1 and one with cost
(k/n)p.

A B

( kn )
p

1

It is Nash equilibrium for all n people to take the edge with cost (k/n)p: Currently, each individual player
has cost (n/n)p = 1, so deviating to the other edge for the fixed cost of 1 is not beneficial. This Nash
equilibrium results in a total social cost of

n ·
(n
n

)p

= n · 1 = n.

On the other hand, consider the strategy profile where one player chooses to take the edge with a fixed cost
of 1 and the remaining n− 1 players take the path with a cost of (k/n)p. Then, the total social cost is

n ·
(
n− 1

n

)p

+ 1

As p → ∞, the first term goes to 0. Thus, for any number of player n, there exists a routing game with
price of anarchy as close to n

1 = n as desired (by making p sufficiently large).
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3 Cost Sharing Games

We will now introduce a similar class of games where congestion is beneficial instead of harmful.

Definition 4 (Cost Sharing Games). Just like a routing game, a cost sharing game consists of a set of
players N , a directed graph G, and a source and sink vertex, ai and bi, for each player. Each edge has a
fixed cost ce that is split among the players using it. Thus, the cost of player i taking path si in strategy
profile s is

costi(s) =
∑
e∈si

ce
ne(s)

.

As an example, consider a group of travelers deciding where to build roads to all get from their origin to
their destination, with the cost of building a road being evenly split among all travelers that use it.

Example 6 (Basic cost sharing game). In the following cost sharing game played between two players, the
first player wishes to travel from A to B and the second player wishes to travel from C to D.

A B

C D

E F
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10

1

1

1

1

In the strategy profile where player 1 takes A → B and player 2 takes C → D, the social cost is
10 + 10 = 20. It is also Nash equilibrium: If either player deviates to taking the middle path, their cost will
increase from 10 to 12.

However, the solution with lowest social cost is when player 1 takes A → E → F → B and player 2 takes
C → E → F → D, for a total social cost of 2(1 + 5 + 1) = 14.

Example 7 (Lower bound on PoA for cost sharing games). Consider a cost sharing game with n players
and two edges between a common source A and a common sink B with costs 1 and n.

A B

1

n

In the strategy profile where all n players take the edge with cost n, the social cost is n: The cost of this
edge is split across the n players, each individually having a cost of 1. This strategy profile is also a Nash
equilibrium, as no player would benefit from unilaterally deviating to the path with a cost of 1.

However, the socially optimal solution is for all players to take the path with a cost of 1 achieving a total
social cost of 1. Thus, we know that the price of anarchy of this cost sharing game is at least n

1 = n.

It turns out that this lower bound is tight:

Theorem 3. The price of anarchy of any cost sharing game is at most n.

Proof. Let s be a Nash equilibrium and let s⋆ be a solution minimizing social cost. For all i, it holds
that costi(s) ≤ costi(s

⋆
i , s−i) because i can’t gain from unilaterally deviating in a Nash equilibrium. But

costi(s
⋆
i , s−i) ≤ n · costi(s⋆), because in the worst case i pays for its path alone in the former, (s⋆i , s−i), and

in the best case splits each edge cost n ways in the latter, s∗. Thus, we get that

cost(s)

cost(s⋆)
=

∑
i∈N costi(s)

cost(s⋆)
≤

∑
i∈N costi(s

∗
i , s−i)

cost(s⋆)
≤

n
∑

i∈N costi(s
∗)

cost(s⋆)
≤ ncost(s∗)

cost(s⋆)
= n.
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4 Price of Stability

We have seen that in some cases, like Example 7, there is an equilibrium that achieves the optimal social
cost, even though there exists another, suboptimal, equilibrium. In other cases, like Example 1, we have
seen that any equilibrium outcome will be far from optimal. We now investigate distinguishing these two
cases.

Definition 5 (Price of Stability). The price of stability (PoS) of a game with some objective function (e.g.,
social cost) is the ratio between the best objective function value in any equilibrium of the game and the
optimal value of the objective function.

Since we tak social cost as our objective function and our equilibrium concept are pure Nash equilibria,
we get that the price of stability is

mins∈PNE cost(s)

mins∈Sn cost(s)
.

Note that the only component that changed from the price of anarchy is that the max in the numerator is
now a min, since we consider the best equilibrium instead of the worst equilibrium.

Example 8 (Price of stability). Let’s revisit the cost sharing game from Example 7.

A B

1

n

Previously, we identified that the strategy profile where all players take the path with cost 1 is the socially
optimal solution. We further can see that this is a Nash equilibrium: If any player deviates unilaterally to
the other path, their individual cost will increase from 1/n to n. Thus, the price of stability in this game is 1.

Example 9 (Lower bound on PoS for cost sharing games). In the following cost sharing game with n players,
each player i wishes to travel from node Ai to B.

C

A1

A2

...

An

B

t+ 1

0

0

0

t/1

t/2

t/n

Every player i has the option of choosing the direct path for a cost of t/i, independently of the other players,
or they can join the path via C that has a total cost of t+ 1. Here, every player taking their direct path is
a Nash equilibrium since no individual player would benefit from paying t+ 1 by going through node C.

Surprisingly, this is the only pure Nash equilibrium. We show this by proving that no player can go
through C in a pure Nash equilibrium. Assume towards a contradiction that in some pure Nash equilibrium,
player i is the highest-index player going through C, i.e., all players j for j > i use the direct path to B but
player i goes through C. Thus, at most i players go through C, so the cost of player i is at least t+1/i. Player
i has a beneficial deviation of instead going directly to B, for a cost of t/i—a contradiction to the original
strategy profile being a Nash Equilibrium. We find that there does not exists a pure Nash Equilibrium with
a player going through C.
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The social cost of the unique pure Nash equilibrium is

t

1
+

t

2
+ · · ·+ t

n
= tH(n)

where H(n) is the nth harmonic number. In contrast, when all n players go through x, the social cost is
only t+ 1. Thus, as t → ∞, we get cost sharing games with a price of stability as close as desired to H(n).

It turns out that this lower bound is tight:

Theorem 4. The price of stability of any cost sharing game is at most H(n).

We prove this in the Appendix; reading this proof is fully optional.
In summary, we found that for cost sharing games the worst-case PoA is exactly n and the worst-case

PoS is exactly H(n) = Θ(logn).

Appendix: Optional Proofs

This appendix contains proofs omitted from the lecture. Reading and understanding these is fully optional—
knowing them will not be required to answer problem set or exam questions. You are more than welcome
to ask any questions you may have about these proofs in Office Hours (as, of course, holds true for any part
of the course material).

Theorem 1. Routing games are exact potential games.

Proof. Define the potential function

Φ(s) =
∑
e∈E

ne(s)∑
k=1

ce(k)

Suppose that in some strategy profile s, player i deviates from path si to path s′i. Then, the difference
costi(s

′
i, s−i)− costi(s) is ∑

e∈s′i\si

ce(ne(s) + 1)−
∑

e∈si\s′i

ce(ne(s)). (1)

The first term is the new cost due to the edges added to the path of player i, denoted s′i \ si; the second
term is the reduced cost due to the edges removed from the path of player i, denoted si \ s′i.

We want to show that this is precisely Φ(s′i, s−i) − Φ(s). This follows because when player i switches
from si to s′i, only the terms corresponding to edges that are in s′i and not in si, and the edges that are
in si but not in s′i, are affected. For the edges e ∈ s′i \ si, the number of players using it increases by 1,
i.e., ne(s

′
i, s−1) = ne(s) + 1, so that ce(ne(s + 1)) gets added to the sum for such e. Further, for the edges

e ∈ si \ s′i ,the number of players using it decreases by 1, so that ce(ne(s)) gets subtracted from the sum for
such e. This gives exactly Equation (1).

Theorem 4. The price of stability of any cost sharing game is at most H(n).

Proof. Like routing games, cost sharing games are exact potential games with potential function

Φ(s) =
∑
e∈E

ne(s)∑
k=1

ce
k
,

the proof of this is analogous to above.
Observe that cost(s) ≤ Φ(s) ≤ H(n) · cost(s). Let s⋆ be a pure strategy profile that minimizes Φ; as

described earlier we know that s⋆ is a Nash equilibrium. We get that

cost(s⋆) ≤ Φ(s⋆) ≤ Φ(OPT) ≤ H(n) · cost(OPT)

as desired.
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