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—

Lecture 3

1 Extensive-Form Games and Subgame-Perfect Equilibria

Definition 1 (Extensive-Form Games). An extensive-form game is represented as a tree. Each node is
labeled with a player. The game starts at the root. At each node, the node’s corresponding player chooses
one of the edges (corresponding to the player’s strategies) to move to a child node. Once the game reaches
a leaf, the players get the given utilities.

In contrast to the normal-form games from the last two lectures, the players in an extensive-form game
move sequentially and possible over multiple rounds, not simultaneously.

Example 1 (Basic extensive-form game). Consider the following tree representation of an extensive-form
game:

1

2

2,4 5,3

2

1

1,0 0,1

3,2

Every path from the root to a leaf in the tree represents a combination of strategies of players 1 and 2 that
results in a payoff.

• If player 1 chooses left and then player 2 chooses left, player 1 gets payoff 2 and player 2 gets 4.

• If player 1 chooses left and then player 2 chooses right, player 1 gets payoff 5 and player 2 gets 3.

• If player 1 chooses right, then player 2 chooses left, and then player 1 chooses left, player 1 gets
payoff 1 and player 2 gets 0.

• If player 1 chooses right, then player 2 chooses left, and then player 1 chooses right, player 1 gets
payoff 0 and player 2 gets 1.

• If player 1 chooses right and then player 2 chooses right, player 1 gets payoff 3 and player 2 gets 2.

So how do equilibria in extensive-form games compare to normal-form games? Consider the following
(very abstract) model of the Cuban Missile Crisis as a game between the US and the USSR:

Example 2 (The Cuban Missile Crisis). The USSR has just positioned its missiles in Cuba. The US now
has two options: It can either ignore this threat or it can respond to it. Further, if the US responds, the
USSR has two options: It can either compromise or start a nuclear war. We can represent this game as an
extensive-form game.
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If the US chooses to ignore, the payoff is (0, 2). If the US chooses to respond and the USSR chooses to
compromise, the payoff is (1, 2); if the US chooses to respond and the USSR chooses to engage in a nuclear
war, the payoff is (−109,−109).

Now, consider the equivalent normal-form representation of the game.

Compromise Nuclear War

Respond 2, 1 −109,−109

Ignore 0, 2 0, 2

The payoff is (0, 2) if the US chooses to ignore, regardless of the USSR’s strategy, as the game always ends
in this leaf if the US ignores.

The strategy profile (Ignore, Nuclear War), highlighted in blue in both representations, is a Nash equilib-
rium of this game. However, there is a problem: The USSR’s threat of a nuclear war is not credible! If the
game ever ends up at the node in which the USSR must make a decision, the USSR will always choose to
compromise to get a payoff of 1, avoiding the payoff of −109 that they will receive if they choose to engage
in a nuclear war.

The lack of credibility of the USSR’s threat is due to the sequential nature of the game. This is only
captured in the extensive-form representation of the game, not the normal-form representation. Although
(Ignore, Nuclear War) is a Nash equilibrium of this game, the USSR would never choose to engage in a
nuclear war after the US has chosen to respond. This leads us to believe that the current notion of a Nash
equilibrium does not work well in this setting.

Definition 2 (Subgame-Perfect Equilibrium). In an extensive-form game, each subtree forms a subgame. A
set of strategies is a subgame-perfect equilibrium if it is a Nash equilibrium in each subgame.

Let’s apply this to the current example. There is one subtree rooted at the USSR node , corresponding
to the subgame where the USSR chooses either to compromise or to engage in nuclear war. In this game,
choosing compromise is the only Nash equilibrium as this is a one-player game where compromising is the
dominant strategy. Now, considering the subgame corresponding to the entire game. We know that in any
subgame-perfect equilibrium, the USSR will always compromise if the US chooses to respond. However,
knowing that, it is the dominant strategy for the US to respond. Thus, (Respond, Compromise) is the
unique subgame-perfect equilibrium.

An interesting phenomenon of subgame-perfect equilibria in extensive-form games is that agents may be
able to improve their equilibrium payoff by eliminating some of their own strategies from the game. In our
example, the USSR can improve their subgame-perfect equilibrium outcome by eliminating their Compromise
strategy from the game. In this case, the US will always choose to ignore, resulting in a payoff of 0 for the
US and 2 for the USSR, since they know that responding will result in a certain nuclear war with a payoff
of −109. Thus, by removing their option to compromise in the case that the US respond, the USSR can
increase their equilibrium payoff from 1 to 2.

Luckily, subgame-perfect equilibria are a lot easier to find than Nash Equilibria by using a technique
called backward induction. We start at nodes that only have edges to leaves of the tree. The subgames
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corresponding to the subtrees rooted at these notes are 1-player games, so we know that any edge that
maximizes the payoff for the player of this node is a (Nash) equilibrium in this subgame. Now, knowing
what strategies the players in nodes that only have edges to leaves are going to play, we can look at all nodes
that only have edges to leaves or other nodes for which we already determined the equilibrium strategy, and
solve for the optimal strategy of the players corresponding to those nodes. We iteratively work our way up
to the root, where we know the strategies for all nodes in the subgame-perfect equilibrium. We illustrate
this approach with an example.

Example 3 (Backward induction). Consider the extensive-form game from Example 1. In order to solve
for the subgame-perfect equilibrium, we start with the subgame represented by the subtree rooted at the
node highlighted in Figure 1a. Player 1 needs to choose between left and right, receiving a payoff of 1
or 0 respectively. If the game ever reaches this subgame, player 1’s optimal strategy will be to choose left.
Thus, we can replace the subtree rooted at the highlighted node with the payoff that the game will result in
if the game ever reaches that subgame. This is shown in Figure 1b.

Next, we consider the subgame represented by the subtree rooted at the node highlighted in Figure 1b.
Player 2 must choose between left and right, receiving a payoff of 4 or 3, respectively. Thus, if the game
ever reaches this subgame, player 2’s optimal strategy is to choose left and receive a payoff of 4. Thus, we
can replace the subtree rooted at this highlighted node with the payoff that the game will result in if the
game ever reaches that subgame, shown in Figure 1c.
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Figure 1: Backward induction for the extensive-form game from Example 1.
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Continuing this process, we consider the subgame represented by the subtree rooted at the node high-
lighted in Figure 1c. Player 2 will always choose right in this subgame, so we replace this subtree with 3, 2
in Figure 1d. Finally, we consider the subgame represented by the subtree rooted at the node highlighted
in Figure 1d, the root of the original game. Player 1 will always choose right in this subgame, so we can
replace this tree with a 3, 2 as depicted in Figure 1e. This is the payoff of the players in the subgame-perfect
equilibrium.

To get the strategy profile for this subgame-perfect equilibrium, we keep track of the strategies we found
for the two players in each subgame, as shown in Figure 1f.

While we did not formally prove that backward induction successfully identifies a subgame-perfect equi-
librium, the intuition for why this is the case is clear. In the strategy profile we construct, at every point in
the game, a player is doing what is best for them, given that all following players will also do what is best
for themselves.

When a player has multiple optimal options given them equal payoff at a step of backwards induction,
we can break these ties arbitrarily: Any choice of tie-breaking will lead to a subgame-perfect equilibrium.
In fact, also every subgame-perfect equilibrium in an extensive-form game can be obtained this way, by
doing backward induction with the ‘right’ tie-breaking choices. This process for finding one subgame-perfect
equilibrium is efficient (given the entire tree representation of the game) since we only need to eliminate nodes
one by one. However, finding all subgame-perfect equilibria via backward induction is not always efficient,
since the number of subgame-perfect equilibria can grow exponentially with the number of tie-breaking
choices.

While subgame-perfect equilibria capture more nuances of player strategies in extensive-form games than
Nash equilibria, they still may not explain the empirically observed strategies of players in certain games:

Example 4. Consider the following extensive-form game played between two players, rooted at the leftmost
node.

1 2 1 2 1 2

1, -1 0, 2 3, 1 2, 4 5, 3 4, 6

7, 5

We can solve for the subgame-perfect equilibrium via backward induction. Starting at the smallest
subgame, the rightmost node, we see that player 2 will always choose down (with a payoff of 6) over right
(with a payoff of 5), if the game ever reaches this subgame. Continuing up the tree to the subgame rooted
at node just to the left, we see that player 1 will always choose down (payoff of 5) over right (payoff of 4,
because player 2 will choose down). Continuing this process up the tree, we get that at any node the player
whose turn it is will choose down. In particular, when the game starts, player 1 will choose down in the
subgame-perfect equilibrium, leading to a payoff of (1,−1).

However, because of the structure of the game, payoffs generally increase as the game continues down
the tree. There are outcomes later in the tree in which both players are better off than with (1,−1), that
they get to by letting the game continue rather than ”defecting” by choosing down at some early point in
the game.

If you were playing the game as player 1, when, if at all, would you choose down? Although the subgame-
perfect equilibrium suggests the answer to this question is to choose down on the leftmost node, most people
would play differently.

2 Imperfect Information Games

So far, we have assumed that the players in extensive-form games know, once it is their turn, which strategies
the players preceding them played. Relaxing this assumption leads to a large class of games, that we will
only cover at a high level.
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Definition 3 (Imperfect Information Games). A chance node does not belong to a player, but instead
chooses one of its outgoing edges according to a known probability distribution. An information set is a set
of nodes that a player may be in, so that the player only knows that they are in one node of the set, but do
not know in which node of the set. Their strategy thus must be identical for all nodes in the information
set. An imperfect information game is a extensive-form game with chance nodes and information sets.

Example 5 (Basic Imperfect Information Game). Consider the following imperfect information game:

Information
Set

C

1

-5, 0

Fold

2

-1, 1

H

1, -1

T

Bet

Pr = 0.5

H

1

2

1, -1

H

-1, 1

T

Bet

5, 0

Fold

Pr = 0.5

T

The yellow root node represents a chance node where a coin is flipped, with a 0.5 probability of H and
a 0.5 probability of T. Player 1 observes the outcome of the flip before choosing their action. Player 1 can
then either ”Bet” or ”Fold.” If Player 1 folds, the game ends with payoffs of -5 for Player 1 and 0 for Player
2 if the coin flip was H, and 5 for Player 1 and 0 for Player 2 if the coin flip was T. If Player 1 bets, the
next moves is up to Player 2, who does not know the outcome of the coin flip, represented in the game tree
through the blue indifference set. Player 2 has to choose between H and T, with the payoff being -1,1 if
player 2 guesses the coin flip correct, and 1,-1 if not.

Observe that if the coin flip is H, then player 1 will bet, and if the coin flip is T, then player 1 will fold.
Therefore, player 2 will always play H: They will only ever be in the position to make this decision if the
coin flip was H and player 1 thus chose to bet. If the −5 and 5 payoffs were flipped, however, then player 2
would always play T, by the same reasoning. We see that it’s impossible to compute the optimal strategy
of a subgame in isolation in imperfect information games, making finding optimal strategies a significantly
harder task.

3 Stackelberg Games

We now consider a special case of imperfect information games with only 2-steps that we’ll find to be
tractable:

Definition 4 (Stackelberg Games). In a Stackelberg game between 2 players is represented as a payoff
matrix. The row player is the leader and commits to a certain (possibly mixed) strategy. The column player
is the follower, wo observes the leader’s commitment and then chooses a strategy.

Example 6 (Basic Stackelberg Game). Consider the following Stackelberg game:
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left right

up 1, 1 3, 0

down 0, 0 2, 1

Playing up is a dominant strategy for the row player. In that case, the column player is better of playing
left. Thus, (up,left) is the only Nash equilibrium in this game, with payoffs (1, 1).

However, since this is a Stackelberg game, the row player as the leader can commit to playing down. In
response, it is optimal for the column player as the follower to choose right. The payoffs now are (2, 1), so
that the leader is strictly better off! Given that the leader announces their commitment to a pure strategy,
the Stackelberg game can be rewritten as an extensive-form game of perfect information:

1

2 2

1,1 3,0 0,0 2,1

up down

left right left right

The subgame-perfect equilibrium is highlighted in blue. It is achievable when the game is played as a
Stackelberg game.

We just saw that in a Stackelberg game, it may be optimal for the leader to play a pure strategy in
spite of the existence of another, dominating strategy. Can the leader increase their payoff even more by
committing to a mixed strategy? In particular, what is the maximum payoff the leader can get with a mixed
strategy? This turns the game into the following imperfect information game:

assuming that the follower breaks their ties in favor of the leader? This turns

1

2 2

1,1 3,0 0,0 2,1

up down

left right left right

Let’s assume the leader’s mixed strategy is to play up with probability p and down with probability
1 − p. Thus, when it is the follower’s turn, they do not know which of the two nodes they are actually in,
they just know they are in the left node (corresponding to player 1 choosing up) with probability p and in
the right node (corresponding to player 1 choosing down) with probability 1− p. Thus, the follower knows
that their expected payoff for choosing left is

p · 1 + (1− p) · 0 = p

and that their expected payoff for choosing right is

p · 0 + (1− p) · 1 = 1− p.
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If p > 1/2, the follower will choose left and if p ≤ 1/2, the follower will choose right. Note that there is
a tie at p = 1/2 and we are assuming that the follower chooses the strategy right which makes the leader
better off—we’ll explain why this is reasonable in a moment.

Consequently, if p > 1/2, the leader’s expected payoff is

p · 1 + (1− p) · 0 = p

and if p ≤ 1/2 the leader’s expected payoff is

p · 3 + (1− p) · 2 = 2 + p

Therefore, the leader’s expected payoff is maximized when they set p = 1/2 for an expected payoff of 2.5.
This is greater than 2, their best payoff from a pure strategy! Thus, the leader can use randomness and the
induced imperfect information to increase their payoff even further.

Let’s now reconsider the assumption that the follower will break ties in favor of the leader, as we encoun-
tered it at p = 1/2. To avoid trusting the benevolence of the follower, the leader may choose p = 1/2 − ε for
an arbitrarily small ε > 0. In that case, it is strictly better for the follower to chose right, giving the leader
a payoff of 2.5 − ε. Since the leader can pick ε as small as they desire, their payoff can get as close to 2.5
as they desire—we say that it is 2.5 at the optimum. To avoid this awkward treatment of edge cases, it is
customary to assume that the follower breaks ties in favor of the leader.

Definition 5 (Stackelberg Equilibrium). For a mixed strategy x1 ∈ ∆(S1) of the leader, define the best
response set of the follower as

B2(x1) = arg max
s2∈S2

u2(x1, s2)

In a strong Stackelberg equilibrium (SSE) (x∗
1, s

∗
2) the leader plays a mixed strategy x∗

1 in

arg max
x1∈∆(S1)

max
s2∈B2(x1)

u1(x1, s2)

and the follower plays a best-response strategy s∗2 ∈ B2(x
∗
1).

This definition is assuming that in response to the leader committing to strategy x1 ∈ ∆(S1), player
2 responds optimally by picking a strategy in B2(x1), but breaking ties in favor of player 1 (which is a
reasonable simplifying assumption, by the same ε-argument as above). Knowing this, player 1 picks their
strategy x1 to maximize their utility maxs2∈B2(x1) u1(x1, s2).

We will next see how an SSE can be computed via linear programming.

Example 7. Consider the following Stackelberg game where the row player is the leader and the column
player is the follower:

left right

up 1, 0 0, 2

middle 0, 1 1, 0

down 0, 0 0, 0

We write player 1’s strategy as x1 = (p1, p2, 1− p1 − p2), where p1 is the probability of playing up, p2 is
the probability of playing middle, and 1− p1 − p2 is the probability of playing down. The follower’s utility
given x1 for playing left is p2 and for playing right is 2p1, so their best response depends on p1 and p2.

We set up two linear programs: one maximizing player 1’s utility conditioned left being a best response
of player 2 and another maximizing player 1’s utility conditioned on right being a best response of player
2. Then, for whichever linear program achieves a higher objective function (player 1’s utility), player 1’s
corresponding mixed strategy and player 2’s best response is a SSE.
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Let’s first consider the case where left is a best response of the follower, i.e., when p2 ≥ 2p1. The
leader’s utility when the follower plays left is p1, so we have the following linear program:

max p1

s.t. p2 ≥ 2p1,

p1 + p2 ≤ 1,

p1, p2 ≥ 0

The first constraint ensures that left is a best response of the follower, the other two constraints ensure
that the leader’s mixed strategy is a probability distribution over the leader’s strategies. The solution to
this LP is p1 = 1/3 and p2 = 2/3, with the optimal objective function value being 1/3.

We now consider the case where right is a best response of the follower, i.e., p2 ≤ 2p1. The leader’s
utility when the follower plays right is p2, so we have the following linear program:

max p2

s.t. p2 ≤ 2p1,

p1 + p2 ≤ 1,

p1, p2 ≥ 0

The solution to this LP is also p1 = 1/3 and p2 = 2/3, with the optimal objective function value being 2/3.
In this case, both linear programs gave us the same optimal mixed strategy, but the leader’s utility is

higher when the follower chooses right—which they will, since we are assuming they are breaking ties in
favor of the leader. Thus, the SSE is x1 = (1/3, 2/3) and s2 = right.

Figure 2 illustrates the solution space of the linear programs and the position of the optimal solutions.
The x-axis corresponds to p1 and the y-axis to p2. The solution space is limited by the constraint that
p1 + p2 ≤ 1 so all solutions must inside the large triangle. The blue region represents p2 ≥ 2p1, where the
follower plays left. In the orange region, p2 ≤ 2p1, where the follower plays right. Finally, note that the
optimal solution exists on the indifference line at (1/3, 2/3).
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Figure 2: The solution space of the LPs for the original Stackelberg game

Now, consider a slightly modified Stackelberg game with the payoff matrix:
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left right

up 1, 0 2, 2

middle 0, 1 1, 0

down 0, 0 0, 0

This changes our second linear program (when right is a best response of the follower) to

max 2p1+p2

s.t. p2 ≤ 2p1,

p1 + p2 ≤ 1,

p1, p2 ≥ 0

because the leader now receives a payoff of 2 instead of 0 when they play up and the follower plays right.
This changes the optimal solution of the second LP to x1 = (1, 0), achieving an objective function value of
2. Since this is higher than the objective function (leader’s payoff) in the first LP, corresponding to when
left is a best response of the follower, the SSE changes to x1 = (1, 0) and s2 = right. A depiction of the
solution space of the linear programs for this modified game can be found in Figure 3. The optimal solution
moved to (1, 0).
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Figure 3: The solution space of the LPs for the modified Stackelberg game

We now give a general algorithm for computing SSEs using linear programming. The leader’s mixed
strategy is defined by variables x(s1) corresponding to the probability of playing strategy s1 ∈ S1. For
each strategy of the follower s2, we compute the strategy x for the leader maximizing the leaders payoff,
conditioned on s∗2 being a best response for the follower. This is done via the following LP:

max
∑

s1∈S1
x(s1)u1(s1, s

∗
2)

s.t. ∀s2 ∈ S2,
∑

s1∈S x(s1)u2(s1, s
∗
2) ≥

∑
s1∈S1

x(s1)u2(s1, s2)∑
s1∈S1

x(s1) = 1
∀s1 ∈ S1, x(s1) ≥ 0

where the first set of constraints ensures that s∗2 is a best response for the follower and the other two sets of
constraints ensure that the x(s1) indeed are a probability distribution. Finally, we know that the strategy x
resulting from the LP corresponding to s∗2 with the largest optimal objective value is going to be an optimal
strategy for player 1, and together with this s∗2 is going to be a SSE.
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4 Game Theory in the Real World

We will end this lecture with a brief discussion about using these algorithms for equilibria in games in the
real world. Over the last few years, we have seen many advances in computational game-playing, with a well-
known example being poker. Mathematically, poker is modeled as an extensive form game with incomplete
information (you do not know what cards your opponents are holding), and as such is inherently difficult to
solve computationally. Nonetheless, we have reached a point where we can solve extensive-form games with
incomplete information well enough to outperform humans in Poker.

However, these algorithms can also be used for more than just recreational games. We can use game-
theoretic algorithms to solve high-stakes problems in the real world in fields like negotiations and (cy-
ber)security, leading to much better outcomes in some situations. The biggest difficulty seems to be to
determine which game we are playing in a real-world situation and delineating the rules, to decide which
algorithms or notion of equilibrium to apply. Much of Havard Professor Milind Tambe’s work has been on
these topics, for example applying game theoretic algorithms in real-world situations like ensuring physical
security and protecting wildlife. You can also read more about AI’s need to outgrow classical games here.
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