Harvard CS 1360, Spring 2026
Instructor: Ariel Procaccia

EE['N[IM' Sk EMF”TAT'UN Scribe: Taig Singh, Jakob de Raaij

Equilibrium Computation

Lecture 2

In the last lecture we saw that in every finite game there exists at least one, possibly mixed, Nash
equilibrium. A natural next question for computer scientists to ask is whether we can efficiently compute it.
In particular, given a normal-form game, what is the computational complexity of finding a Nash equilibrium?

1 The complexity class PPAD

To introduce the complexity class that Nash equilibrium computation falls under, we will begin by defining
the End of the Line problem.

Definition 1 (End of the Line Problem). Given is a directed graph G = (V, E) with V' = {0,1}", where
every vertex has at most one predecessor and at most one successor. The edges E are implicitly given by
polynomial-time computable functions f, : {0,1}" — {0,1}" and f, : {0,1}" — {0,1}" that respectively
return the predecessor and successor of a given vertex, or that none exists. Given a vertex with no predecessor
(the source), the problem is to find a vertex with no successor (a sink).

O 111

O 101 110

010 110

000

Figure 1: An instance of End of the Line with n = 3. The source is blue, the sink is

For any input to End of the Line, the existence of a sink vertex is guaranteed: Imagine starting at at
the source vertex and repeatedly taking the outgoing edge. On this path, we will never visit a vertex twice,
since each vertex has only one predecessor and the source vertex has none. Since the number of vertices is
finite, we must eventually end up in a vertex with no outgoing edge, a source. However, how do we find it?

In its nature, the End of the Line problem is very similar to the problem of finding a Nash equilibrium:
We are guaranteed that a solution does exist, but it is not obvious how to find it efficiently. However, if
presented with a solution, we can verify it efficiently.

Definition 2 (TFNP). The complexity class of total function problems that can be solved in non-deterministic
polynomial time (TFNP) includes all problems that are guaranteed to have a solution, and this solution
can be verified in polynomial time.

Both End of the Line and finding a Nash equilibrium are in TFNP. Another well-known example of
a problem in TFNP is the factoring problem of finding a prime factor of a given composite integer n: A
solution always exists and the validity of any factorization can be quickly checked.

Equilibrium Computation Harvard CS 1360, Spring 2026

Definition 3 (PPAD). The complexity class polynomial parity arguments on directed graphs (PPAD)
includes all problems in TFNP that have polynomial-time reductions to the End of the Line problem.

This complexity class was introduced by Christos Papadimitriou (1949-present) in 1994, an influential
theoretical computer scientist and a founder of algorithmic game theory. A depiction of how PPAD relates
to the other complexity classes you may have learned about is shown in Figure 2. FP and FNP are the
classes corresponding to P and NP for problems with not just a 0/1 decision (f.e., ‘Is this graph 3-colorable?’)
but a string (f.e., the 3-coloring, if it exists) as their output.

Figure 2: How PPAD relates to other complexity classes

Theorem 1. For alln > 2, computing an (approzimate) Nash equilibrium in an n-player normal-form game
is PPA D-complete.

PPAD-completeness behaves very similarly to NP-completeness: If we can solve one PPAD-complete
problem in polynomial time, we can solve all problems in PPAD in polynomial time. Since the End of the
Line problem is believed not to be solvable in polynomial time, it is also believed that we cannot compute a
Nash equilibrium in polynomial time.

This may be bad news for the Nash equilibrium: Why should we expect games in the real world to be in
an equilibrium state that is hard to find? In the remainder of the lecture, we explore two ways to get around
the computational hardness of computing a Nash equilibrium. Both are based on Linear Programming.

2 An Introduction to Linear Programming

We will take a brief interlude to discuss linear programming, which will later help us show that some
equilibrium concepts can be computed in polynomial time.

Definition 4 (Linear Programming). Linear programming (LP) is an optimization technique used to find
the best outcome within a linear mathematical model. The goal is to optimize a linear objective function

1In a similar vein, note that PPAD problems cannot be NP-complete, as problems that are NP-complete are decision
problems, but there is always a solution to a problem in PPAD, just finding it is difficult. Thus, even though finding a Nash
equilibrium in an n-player normal-form game is PPAD-complete, it is not NP-complete. Nonetheless, similar problems, like
deciding whether a second Nash equilibrium exists, are NP-complete.

Equilibrium Computation Harvard CS 1360, Spring 2026

subject to linear constraints. An LP problem takes on the following form:

min ¢‘'x
xX
st. Ax=a
Bx<b

where x € R" is the optimization variable, and ¢ € R", A € R™*" a € R™, B € RF*" b € R* are the
problem data, specifying the objective and the constraints.

LPs are more general than the above form might suggest. In particular, if we want to maximize an
objective function instead of minimizing it, we can multiply it by —1 to match the form. Similarly, inequality
constraints that specify a lower bound on x can be turned into constraints that fit the form above by
multiplying them by —1.

The key fact about linear programs for this lecture is that LPs can be solved in polynomial time
using interior-point methods. If we can model a problem as an LP (with a polynomial number of variables
and constraints), we can solve the problem in polynomial time.

Example 1 (The Max Flow Problem). In the max flow problem, we are given a directed graph G = (V, E)
with a source vertex s, a sink vertex t, and a capacity oy, for each (z,y) € E. A flow is a function
f: E — RT that satisfies

o 0 < fuy < ayy for all (z,y) € E (the flow from x to y is non-negative and at most the capacity from x
to y), and

o for all vertices x # 5,8, 32, 1yep fyz = Do (4y)ep Joy (the total flow into vertex z is equal to the flow
out of vertex).

The value of a flow is Z(S@)GE fsz, the total flow leaving the source s. We wish to find a flow with maximum
value.

In the example below, the value of the max flow is 6. Along each edge, the value of the flow along this
edge is displayed in , followed by the capacity of the edge in black.

We can formulate the max flow problem for this example using an LP:

max fou + foo + fou
st 0< feu <2, 0< fo <1, 0< fo <4,

0< fuw <1, 0Z fur <11

0< fuw <2, 0< fur <1,

0< fur <7,

Jsu = fuv + futs

Jsv + fuv + fwo = fors

fsw = fwv + fut-

Equilibrium Computation Harvard CS 1360, Spring 2026

3 Equilibrium Concepts in Polynomial Time

Going back to our discussion of the complexity of equilibrium concepts, we will consider two simplifications
of the problem: Making the class of possible games smaller (normal-form games to zero-sum games) and
making the class of solutions larger (Nash equilibria to correlated equilibria). We leverage our new tool of
linear programming to find that in both cases, solutions to the games can be computed in polynomial time.

3.1 Zero-Sum Games

Definition 5 (Two-Player Zero-Sum Games). A two-player zero-sum game is a game in normal form with
n = 2 player where it holds that for every strategy profile s,

u1(s) = —ua(s).

That is, the first player wins exactly as much as the second player looses. Consistently, every cell in the
payoff matrix contains a number and their negation.’

Definition 6 (Maximin and Minimax). A mazimin (randomized) strategy of player 1 is

N .
2} € arg max min u(x1,s2).
! 21EA(S)) 52655 (@1,

A minimax (randomized) strategy of player 2 is

N :
3 € arg min max uq(sy,x2).
x2€A(S2) 51€851

The maximin strategy of player 1 is their optimal mixed strategy if player 2 is allowed to observe player
1’s strategy and then react optimally to it (in the eyes of player 2). Given that player 1 plays strategy
x1 € A(S1), player 2 will pick a strategy zo € A(S2) to maximize us(21,22), or equivalently to minimize
u1(z1,22). Knowing that player 2 is going to play a strategy giving player 1 utility ming,egs, u1(z1, s2),
player 1 will pick their strategy =} to maximize this expression. This is the maximin strategy of player 1
as defined above. Similarly, player 2’s minimax strategy x3 minimizes player 1’s utility (thus maximizing
player 2’s own utility) when player 1 observes player 2’s strategy xo and then chooses a strategy s; that will
maximize player 1’s utility (thus minimizing player 2’s utility).

An important observation is that once one player fixes a mixed strategy, there is always a best response
for the other player that is pure. For example, there is a strategy so € Sy that is a best response for player
2 given that player 1 plays x7: Since player 1’s strategy is fixed, any mixed strategy xs of player 2 leads
to a distribution over possible utilities uj(x1, s2), for so sampled from x5. In this distribution, there has to
exist some pure strategies sy € S that minimize u; (x1, s2) — playing such a strategy so deterministically will
make player 2 no worse of than playing xz5. Thus, knowing player 1’s strategy x1, player 2 always has an
optimal pure strategy.’

Example 2. Consider a two-player zero-sum game with the following payoff matrix for strategies A and B:
A B

A -1,1 2,2

B| 2,-2 —2.2

We know that player 1’s strategy is of the form z; = (p,1 — p) for some p, with p being the probability of
them playing A and 1 — p being the probability of them playing B. When player 1 plays x1, player two has

?For this reason you will find that in many sources, each cell of the payoff matrix only contains one number, the payoff of
the row player.

3We can apply the same logic when verifying that a strategy profile (x1,z2) is a Nash equilibrium in a normal-form game:
To verify that no player can deviate to a mixed strategy that will increase their payoff, it suffices to verify that no player can
deviate to a pure strategy that will increase their payoff.

Equilibrium Computation Harvard CS 1360, Spring 2026

2 options (recall from Lecture 1 that player 2’s optimal response will certainly be a pure strategy). If player
2 plays sy = A, the payoffs are

uy (21, 82) = —uz(z1,82) = —p+2-(1—p)=-3p+2,
and if player 2 plays so = B, the payoffs are
ul(xl, 82) = —UQ(xl,Sg) = 2p —2- (1 —p) = 4p — 2.

Note that the first expression is smaller when p > % (so player 2 will chose sy = A) and the second
expression is smaller when p < % (so player 2 will chose s, = A). Thus, it is in player 1’s best interest to
choose p to maximize
-3p+2 p>
dp — 2 p<

ENINEN IS

S$2E€S2

min U1(1‘1,82) = {

uy(x1,s2) OFf =

-9 | | | |
0 0.2 04 0.6 0.8 1

p

Figure 3: The utility of player 1 if they choose A with probability p, else B, and player 2 reacts optimally

Inspecting this function, for example by looking at its plot in Figure 3, we can see that it is optimal for
player 1 to choose p = 2 to maximize this value. Thus their maximin strategy is z} = (%, 2).

A maximin strategy can also be computed with an LP:

max w
s.t. Vsg €5, Z p(s1)ui(s1, s2) > w,
s1ES
Z p(Sl) = 17
s1E€S

Vs1 €85, p(s1)>0.

Here, w corresponds to the maximum utility player 1 can achieve when player 2 responds to their strategy
to minimize player 1’s utility. The first set of constraints says that every (pure) strategy player 2 plays must
result in a utility for player 1 of at least w. The second and third constraints enforce that the p(s;) are a
probability distribution, corresponding to player 1’s mixed strategy.

A minimax strategy can be computed analogously with slight changes to the LP.

Theorem 2 (von Neumann, 1928). FEuvery 2-player zero-sum game has a unique value v such that player 1
can guarantee utility at least v and player 2 can guarantee utility at least —v.

Equilibrium Computation Harvard CS 1360, Spring 2026

Proof. By Nash’s Theorem®, every zero-sum game has a Nash equilibrium. Let (z1,22) be such a Nash
equilibrium and denote v = wuj(x1,z2). For every so € Sa, ui(x1,82) > v as (x1,22) is a Nash equilibrium
so player 1 can guarantee at least v by playing x;. Similarly, for every s; € Sy, us(s1,x2) > —v so player 1
can guarantee at least —v by playing x». O

John von Neumann (1903 - 1957) was a founder of game theory. He was also known for revolutionary
contributions to mathematics, physics, computer science, and the Manhattan Project.

His above theorem, intuitively speaking, says that in zero-sum games it does not matters which player
commits to a (mixed) strategy first. The payoff that player 1 can ensure by playing an maximin strategy =73
(with player 2 then optimally responding) is equal to the negative of the payoff that player 2 can ensure by
playing an minimax strategy x4 (with player 1 then optimally responding). In other words,

max min uy(r1,82) =v = min max ui(s1,x2).
©1€EA(S1) 526852 :52) 22€A(S2) 51€51 (s1,22)

Thus, we can use the maximin (or minimax) LP to find the value v of a zero-sum game in polynomial time!

3.2 Correlated Equilibrium

We now consider a generalization of the Nash equilibrium where correlation between the players’ mixed
strategies is allows. For simplicity, we only consider the wo player case N = {1,2}, but the definition can
be extended to more players.

Definition 7 (Correlated Equilibrium). Let p be a distribution over all pairs of strategies S x S . Now,
assume a mediator chooses (s1,s2) according to p and reveals s; to player 1 and s, to player 2. Player
1 is best responding in (s1,s2) if they are playing their most preferred strategy knowing the conditional
distribution of player 2’s strategies, given that player 1 got s;. In other words, player 1 is best responding
if for all s} € S,

Z P(sa|s1)uq(s1,82) > Z P(sa|s1)uq(s], s2),

s2€S s2€S

where P(sa]s1) is the distribution over strategies for player 2 conditional on player 1 getting sy from the

mediator,
P(s1 Ns2) p(s1, $2)

P(s1) Swesp1.sh)

Substituting in this expression, we get that player 1 is best responding if for all s} € S,

Z p(s1, 52)u1(s1,82) > Z p(s1,82)u1(s], s2).

EPIS) s2€S

P(82|81) =

A distribution p is a correlated equilibrium (CE) if both players are best responding.

Note that Nash equilibria are special cases of correlated equilibria, where each player’s actions are drawn
from an independent distribution. In Nash equilibria, conditioning on s; provides no additional information
about sy and vice versa, but both players are still best responding to each other.

Example 3 (Game of Chicken). Consider the classic game of chicken with the following payoff matrix:
Dare Chicken

Dare 0,0 4,1
Chicken 1,4 3,3

4We will reprove this theorem without referencing Nash’s Theorem later in the course.

Equilibrium Computation Harvard CS 1360, Spring 2026

Each player is best off if they Dare while the other player Chickens. However, if both players Dare, they are
worse off than if they both Chicken.

The social welfare is defined as the sum of utilities. The two pure NE in this game are (C, D) and (D, C)
in which case the social welfare is 5. There is one additional mixed NE when both players play (1/2,1/2),
choosing a strategy uniformly at random, in which case the social welfare is 4. However, the optimal social
welfare is 6.

Consider the following correlated equilibrium: (D, D) with probability 0, and (D, C), (C, D) and (C,C)
with probability % each. In this case, the social welfare is 13—6, higher than for both the pure and mixed
NEs! We leave it as an exercise to verify that this is indeed a correlated equilibrium, by going through
each possible strategy for each player and verifying that neither player would be better off switching their
strategy, knowing the conditional distribution of the other player’s strategies.

To implement a CE, one would need to implement the mediator. In the case of the correlated equilibrium
above for the game of chicken, this could be implemented by putting two ”Chicken” balls and one ”Dare”
ball in a hat. Each (blindfolded) player picks a ball and plays accordingly. This implementation achieves
the desired joint distribution: (D, D) can never be selected and (C,C), (C, D), and (D, C) are all equally
likely to be selected.

We can compute CEs via linear programming in polynomial time:

find p(s1,s2) Vs1,s2 €8
s.t. Vsi, s €S, Z p(s1,82)ur(s1,s2) > Z p(s1,82)ur(s], s2),

s2€S s2E€S
Vsg, 85 € 5, Z p(s1,s2)ua(s1, 82) > Z p(s1,52)uz(s1, 85),
s1E€S s1ES
> pls1,s2) =1,

51,52€8
Vs1,80 €5, p(s1,s2) €10,1].

Here, we are finding a distribution p over S? that is a CE, as enforced by the four sets of constraints:
The first set of constraints ensures that player 1’s strategies are the best responses given the conditional
distributions of player 2’s strategies under p. Similarly, the second set of constraints ensures that player 2’s
strategies are the best responses given the conditional distributions of player 1’s strategies under p. The
third and fourth sets of constraints ensure p is indeed a probability distribution over S2.

Note that this LP does not have an objective. However, also checking whether a set of linear constraints
can all simultaneously be satisfied can be done in polynomial time, with the same methods used to solve
LPs in polynomial time.

Finally, one may wonder why a similar approach does not work for finding Nash equilibria. The issue
is that if the two players chose mixed strategies x1(s1) and z2(s2) that are independent of each other, the
variables p(si, s2) in the constraints become x1(s1)x2(s2). The constraint is no longer linear.

	The complexity class PPAD
	An Introduction to Linear Programming
	Equilibrium Concepts in Polynomial Time
	Zero-Sum Games
	Correlated Equilibrium

