
Economics and Computation (Spring 2026)

Assignment #2

Due: 2/26/2026 11:59pm ET

Problem 1: The price of anarchy

Consider the following scheduling game. The players N = {1, . . . , n} are associated with tasks,
each with weight wi. There is also a set M of m machines. Each player chooses a machine to
place their task on, that is, the strategy space of each player is M . A strategy profile induces an
assignment A : N → M of players (or tasks) to machines; the cost of player i is the total load
on the machine to which i is assigned: ℓA(i) =

∑
j∈N : A(j)=A(i)wj . Our objective function is the

makespan, which is the maximum load on any machine: cost(A) = maxµ∈M ℓµ. It is known that
scheduling games always have pure Nash equilibria.

1. [20 points] Let G be a scheduling game with n tasks of weight w1, . . . , wn, and m machines.
Let A : N → M be a Nash equilibrium assignment. Prove that

cost(A) ≤
(
2− 2

m+ 1

)
· opt(G).

That is, the price of anarchy is at most 2− 2/(m+ 1).

2. [15 points] Prove that the upper bound of part (a) is tight, by constructing an appropriate
family of scheduling games for each m ∈ N.

Problem 2: Voting rules

[15 points] When the number of alternatives is m, a positional scoring rule is defined by a score
vector (s1, . . . , sm) such that sk ≥ sk+1 for all k = 1, . . . ,m − 1. Each voter gives sk points to
the alternative they rank in position k, and the points are summed over all voters. We discussed
two examples of positional scoring rules: plurality, defined by the vector (1, 0, . . . , 0), and Borda,
defined by the vector (m−1,m−2, . . . , 0). Another common example is veto, defined by the vector
(1, . . . , 1, 0).

For the case of m = 3, prove that any positional scoring vector with s2 > s3 is not Condorcet
consistent.

Hint: It is possible to do this via a single preference profile that includes 7 voters.
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Problem 3: The epistemic approach to voting

[15 points] Suppose that there is a true ranking of m alternatives, each of n voters evaluates all
pairs of alternatives according to the Condorcet noise model (Lecture 6, slide 5) with p > 1/2, and
these comparisons are aggregated into a voting matrix. Prove that the output of the Kemeny rule
applied to this voting matrix coincides with the true ranking with probability that goes to 1 as n
goes to infinity.

Hint: Use the Condorcet Jury Theorem (or the law of large numbers).

Problem 4: Strategic manipulation in elections

We saw in class a proof sketch of the Gibbard-Satterthwaite Theorem for the special case of strat-
egyproof and neutral voting rules with m ≥ 3 and m ≥ n. That proof relied on two key lemmas.
In this problem, you will prove the two lemmas and formalize the theorem’s proof for this special
case.

Prove the following statements.

1. [10 points] Let f be a strategyproof voting rule, σ = (σ1, . . . , σn) be a preference profile,
and f(σ) = a. If σ′ is a profile such that [a ≻σi x ⇒ a ≻σ′

i
x] for all x ∈ A and i ∈ N , then

f(σ′) = a.

2. [10 points] Let f be a strategyproof and onto voting rule. Furthermore, let σ = (σ1, . . . , σn)
be a preference profile and a, b ∈ A such that a ≻σi b for all i ∈ N . Then f(σ) ̸= b.

Hint: use part (a).

3. [15 points] Let m be the number of alternatives and n be the number of voters, and assume
that m ≥ 3 and m ≥ n. Furthermore, let f be a strategyproof and neutral voting rule. Then
f is dictatorial.

Important note: There are many proofs of the full version of the Gibbard-Satterthwaite
Theorem; here the task is specifically to formalize the proof sketch we did in class.
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