

Economics and Computation (Spring 2026)

Assignment #2

Due: 2/26/2026 11:59pm ET

Problem 1: The price of anarchy

Consider the following scheduling game. The players $N = \{1, \dots, n\}$ are associated with tasks, each with weight w_i . There is also a set M of m machines. Each player chooses a machine to place their task on, that is, the strategy space of each player is M . A strategy profile induces an assignment $A : N \rightarrow M$ of players (or tasks) to machines; the *cost* of player i is the total load on the machine to which i is assigned: $\ell_{A(i)} = \sum_{j \in N: A(j)=A(i)} w_j$. Our objective function is the *makespan*, which is the maximum load on any machine: $\text{cost}(A) = \max_{\mu \in M} \ell_\mu$. It is known that scheduling games always have pure Nash equilibria.

1. [20 points] Let G be a scheduling game with n tasks of weight w_1, \dots, w_n , and m machines. Let $A : N \rightarrow M$ be a Nash equilibrium assignment. Prove that

$$\text{cost}(A) \leq \left(2 - \frac{2}{m+1}\right) \cdot \text{opt}(G).$$

That is, the price of anarchy is at most $2 - 2/(m+1)$.

2. [15 points] Prove that the upper bound of part (a) is tight, by constructing an appropriate family of scheduling games for each $m \in \mathbb{N}$.

Problem 2: Voting rules

[15 points] When the number of alternatives is m , a *positional scoring rule* is defined by a score vector (s_1, \dots, s_m) such that $s_k \geq s_{k+1}$ for all $k = 1, \dots, m-1$. Each voter gives s_k points to the alternative they rank in position k , and the points are summed over all voters. We discussed two examples of positional scoring rules: plurality, defined by the vector $(1, 0, \dots, 0)$, and Borda, defined by the vector $(m-1, m-2, \dots, 0)$. Another common example is *veto*, defined by the vector $(1, \dots, 1, 0)$.

For the case of $m = 3$, prove that any positional scoring vector with $s_2 > s_3$ is *not* Condorcet consistent.

Hint: It is possible to do this via a single preference profile that includes 7 voters.

Problem 3: The epistemic approach to voting

[15 points] Suppose that there is a true ranking of m alternatives, each of n voters evaluates all pairs of alternatives according to the Condorcet noise model (Lecture 6, slide 5) with $p > 1/2$, and these comparisons are aggregated into a voting matrix. Prove that the output of the Kemeny rule applied to this voting matrix coincides with the true ranking with probability that goes to 1 as n goes to infinity.

Hint: Use the Condorcet Jury Theorem (or the law of large numbers).

Problem 4: Strategic manipulation in elections

We saw in class a proof sketch of the Gibbard-Satterthwaite Theorem for the special case of strategyproof and neutral voting rules with $m \geq 3$ and $m \geq n$. That proof relied on two key lemmas. In this problem, you will prove the two lemmas and formalize the theorem's proof for this special case.

Prove the following statements.

1. [10 points] Let f be a strategyproof voting rule, $\sigma = (\sigma_1, \dots, \sigma_n)$ be a preference profile, and $f(\sigma) = a$. If σ' is a profile such that $[a \succ_{\sigma_i} x \Rightarrow a \succ_{\sigma'_i} x]$ for all $x \in A$ and $i \in N$, then $f(\sigma') = a$.
2. [10 points] Let f be a strategyproof and onto voting rule. Furthermore, let $\sigma = (\sigma_1, \dots, \sigma_n)$ be a preference profile and $a, b \in A$ such that $a \succ_{\sigma_i} b$ for all $i \in N$. Then $f(\sigma) \neq b$.

Hint: use part (a).

3. [15 points] Let m be the number of alternatives and n be the number of voters, and assume that $m \geq 3$ and $m \geq n$. Furthermore, let f be a strategyproof and neutral voting rule. Then f is dictatorial.

Important note: There are many proofs of the full version of the Gibbard-Satterthwaite Theorem; *here the task is specifically to formalize the proof sketch we did in class.*