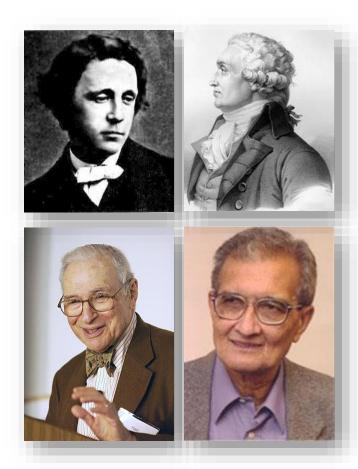


Graduate AI

Lecture 23:

Social Choice I


Teachers:

Zico Kolter

Ariel Procaccia (this time)

SOCIAL CHOICE THEORY

- A mathematical theory that deals with aggregation of individual preferences
- Origins in ancient Greece
- Formal foundations: 18th Century (Condorcet and Borda)
- 19th Century: Charles Dodgson
- 20th Century: Nobel prizes to Arrow and Sen

THE VOTING MODEL

- Set of voters $N = \{1, ..., n\}$
- Set of alternatives A; denote |A| = m
- Each voter has a ranking over the alternatives
- Preference profile =
 collection of all voters'
 rankings

1	2	3
а	С	b
b	а	С
С	b	а

VOTE OVER CUISINES

Indian (In)

Japanese (J)

Chinese (C)

Italian (It)

Mexican (M)

VOTING RULES

• Voting rule = function from preference profiles to alternatives that specifies the winner of the election

Plurality

- Each voter awards one point to top alternative
- Alternative with most points wins
- Used in almost all political elections

More voting rules

• Borda count

- $_{\circ}$ Each voter awards m-k points to alternative ranked k'th
- Alternative with most points wins
- Proposed in the 18th Century by the chevalier de Borda
- Used for national elections in Slovenia
- Similar to rule used in the Eurovision song contest

Lordi Eurovision 2006 winners

More voting rules

- x beats y in a pairwise election if the majority of voters prefer x to y
- Plurality with runoff
 - First round: two alternatives with highest plurality scores survive
 - Second round: pairwise election between these two alternatives

More voting rules

- Single Transferable vote (STV)
 - $_{\circ}$ m-1 rounds
 - o In each round, alternative with least plurality votes is eliminated
 - Alternative left standing is the winner
 - \circ Used in:
 - Ireland, Malta, Australia, and New Zealand
 - US: Maine (governor, US congress), cities like San Francisco and Cambridge

STV: EXAMPLE

2 voters	2 voters	1 voter
а	b	С
b	а	d
С	d	b
d	С	а

$\frac{2}{\text{voters}}$	$\frac{2}{ ext{voters}}$	1 voter	
а	b	С	
b	а	b	
С	С	а	

2 voters	2 voters	$1 \\ { m voter}$
а	b	b
b	а	а

2	2	1
voters	voters	voter
b	b	b

SOCIAL CHOICE AXIOMS

- How do we choose among the different voting rules? Via desirable properties!
- Majority consistency = if a majority of voters rank alternative x first, then x should be the winner
- Poll 1: Which rule is not majority consistent?
 - Plurality
 - Plurality with runoff
 - Borda count
 - 4. STV

Marquis de Condorcet

- 18th Century French Mathematician, philosopher, political scientist
- One of the leaders of the French revolution
- After the revolution became a fugitive
- His cover was blown and he died mysteriously in prison

CONDORCET WINNER

- Recall: x beats y in a pairwise election if a majority of voters rank x above y
- Condorcet winner beats every other alternative in pairwise election
- Condorcet paradox = cycle in majority preferences

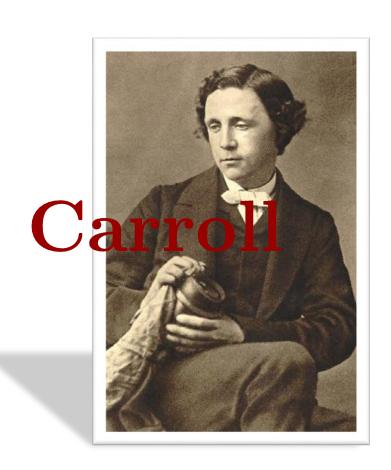
1	2	3
а	С	b
b	а	С
С	b	а

CONDORCET CONSISTENCY

- Condorcet consistency = select a Condorcet winner if one exists
- Poll 2: Which rule is Condorcet consistent?
 - 1. Plurality
 - 2. Borda count
 - 3. Both
 - 4. Neither

CONDORCET CONSISTENT RULES

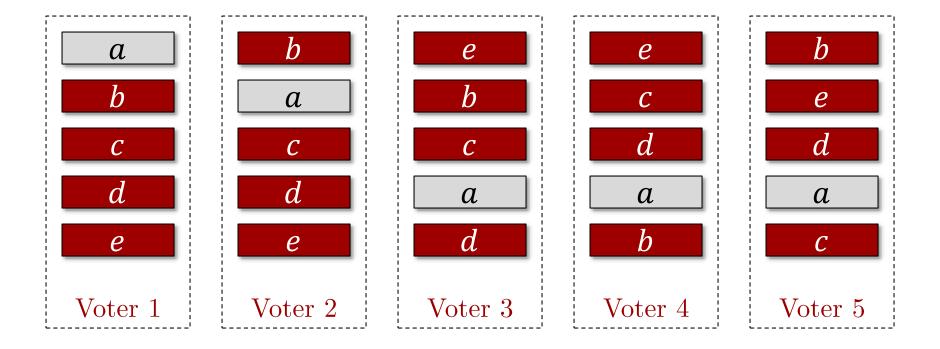
Copeland


- Alternative's score is #alternatives it beats in pairwise elections
- Why does Copeland satisfy the Condorcet criterion?

• Maximin

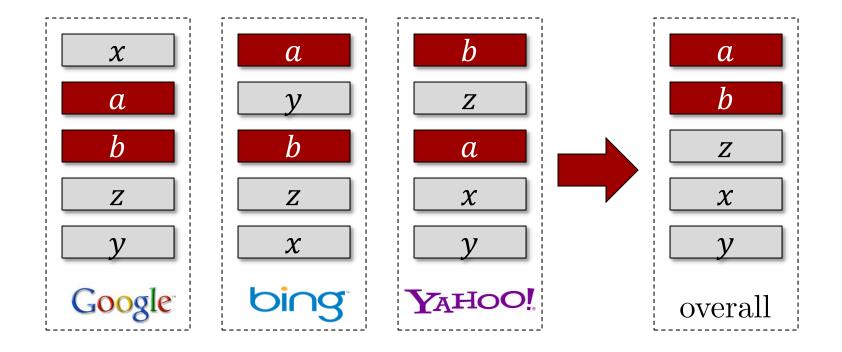
- Score of x is $\min_{v} |\{i \in N: x >_i y\}|$
- Why does Maximin satisfy the Condorcet criterion?

METAMORPHOSIS



DODGSON'S RULE

- Distance function between profiles: #swaps between adjacent alternatives
- Dodgson score of x = the min distance from a profile where x is a Condorcet winner
- Dodgson's rule: select alternative that minimizes Dodgson score
- The problem of computing the Dodgson score is NP-complete!


DODGSON UNLEASHED

APPLICATION: WEB SEARCH

- Generalized Condorcet: if there is a partition X, Y of A such that a majority prefers every $x \in X$ to every $y \in Y$, then X is ranked above Y
- Assumption: spam website identified by a majority of search engines
- When aggregating results from different search engines, spam websites will be ranked last [Dwork et al. 2001]

APPLICATION: WEB SEARCH

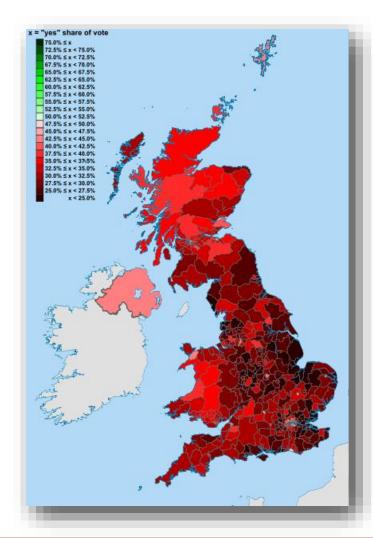
AWESOME EXAMPLE

• Plurality: a

• Borda: b

• Condorcet winner: *c*

• STV: *d*


• Plurality with runoff:

33 voters	16 voters	3 voters	8 voters	18 voters	22 voters
а	b	С	С	d	е
b	d	d	e	e	С
С	С	b	b	С	b
d	е	а	d	b	d
e	а	e	а	а	а

e

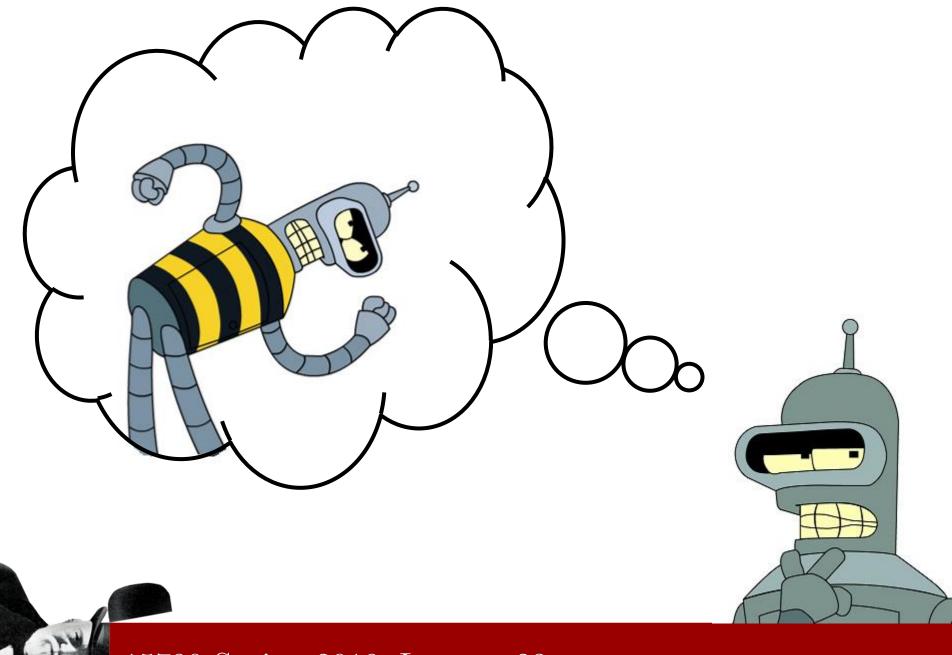
IS SOCIAL CHOICE PRACTICAL?

- UK referendum: Choose between plurality and STV as a method for electing MPs
- Academics agreed STV is better...
- ... but STV seen as beneficial to the hated Nick Clegg
- Hard to change political elections!

COMPUTATIONAL SOCIAL CHOICE

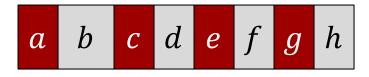
• However:

- in online voting...
- in human computation...
- in multiagent systems...


the designer is free to employ any voting rule!

EXAMPLE: ROBOBEES

- Robobees need to decide on a joint plan (alternative)
- Many possible plans
- Each robobee (agent) has a numerical evolution (utility) for each alternative
- Want to maximize sum of utilities = social welfare
- Communication is restricted



EXAMPLE: ROBOBEES

- Approach 1: communicate utilities
 - May be infeasible
- Approach 2: each agent votes for favorite alternative (plurality)
 - logm bits per agent
 - May select a bad alternative

$$n/2 - 1$$
 agents

$$n/2 + 1$$
 agents

EXAMPLE: ROBOBEES

- Approach 3: each agent votes for an alternative with probability proportional to its utility
- Theorem [Caragiannis & P 2011]: if $n = \omega(m \log m)$ then this approach gives almost optimal social welfare in expectation

PARTICIPATORY BUDGETING

Porto Alegre
Brazil
Since 1989

Paris France €100M (2016)

Madrid Spain €24M (2016)

New York USA \$40M (2017)

Al-Driven Decisions

RoboVote is a free service that helps users combine their preferences or opinions into optimal decisions. To do so, RoboVote employs state-of-the-art voting methods developed in artificial intelligence research. Learn More

Poll Types

RoboVote offers two types of polls, which are tailored to different scenarios; it is up to users to indicate to RoboVote which scenario best fits the problem at hand.

Objective Opinions

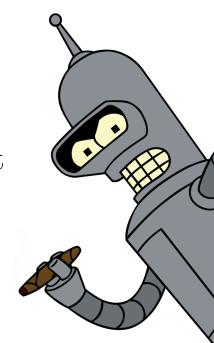
In this scenario, some alternatives are objectively better than others, and the opinion of a participant reflects an attempt to estimate the correct order. RoboVote's proposed outcome is guaranteed to be as close as possible — based on the available information — to the best outcome. Examples include deciding which product prototype to develop, or which company to invest in, based on a metric such as projected revenue or market share. Try the demo.

Subjective Preferences

In this scenario participants' preferences reflect their subjective taste; RoboVote proposes an outcome that mathematically makes participants as happy as possible overall. Common examples include deciding which restaurant or movie to go to as a group, which destination to choose for a family vacation, or whom to elect as class president. Try the demo.

Ready to get started?

CREATE A POLL


SUMMARY

• Terminology:

- Voting rules: plurality, Borda, plurality with runoff, STV, Copeland, Maximin, Dodgson
- Axioms: Majority consistency, Condorcet consistency

• Big ideas:

When we build voting systems, we are not constrained by politics and tradition!

