15-780 - Graduate Artificial Intelligence:
Adversarial attacks and provable defenses

J. Zico Kolter (this lecture) and Ariel Procaccia
Carnegie Mellon University
Spring 2018

Portions base upon joint work with Eric Wong



Outline

Adverarial attacks on machine learning
Robust optimization
Provable defenses for deep classifiers

Experimental results



Outline

Adverarial attacks on machine learning



Adversarial attacks

+ .007 %
z SignVad 0:2:9))  ion(v,.7(0, 2,1))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

[Szegedy et al., 2014, Goodfellow et al., 2015]



How adversarial attacks work

We are focusing on test time attacks: train on clean data and attackers
tries to fool the trained classifier at test time

To keep things tractable, we are going to restrict our attention to £__ norm
bounded attacks: the adversary is free to manipulate inputs within some
¢, ball around the true example

Basic method: given input x € X', output y € Y, hypothesis hy: X —
Y, and loss function £: ¥ x4 — R, adjust x to maximum loss:
maximize ((hy(x+ A),y)

[Afoc<e

Other variants we will see shortly (e.g., maximizing specific target class)



A summary of adversarial example research

@ Distillation prevents adversarial attacks! [Papernot et al., 2016]
& No it doesn’t! [Carlini and Wagner, 2017]
& No need to worry given translation/rotation! [Lu et al., 2017]
&) Yes there is! [Athalye and Sutskever, 2017]
© We have 9 new defenses you can use! [ICLR 2018 papers]
&) Broken before review period had finished! [Athalye et al., 2018]

My view: the attackers are winning, we need to get out of this arms race



A slightly better summary

Many heuristic methods for defending against against adversarial
examples [e.g., Goodfellow et al., 2015; Papernot et al., 2016; Madry et
al., 2017; Tramér et al., 2017; Roy et al., 2017]

« Keep getting broken, unclear if/when we’ll find the right heuristic

Formal methods approaches to verifying networks via tools from SMT,
integer programming, SAT solving, etc. [e.g., Carlini et al., 2017; Ehlers
2017; Katz et al., 2017; Huang et al., 2017]

* Limited to small networks by combinatorial optimization

Our work: Tractable, provable defenses against adversarial examples
via convex relaxations [also related: Raghunathan et al., 2018; Staib and
Jegelka 2017; Sinha et al., 2017; Hein and Andriushchenko 2017; Peck
et al, 2017]



Adversarial examples in the real world

Evtimov et al., 2017

i
T —
~
al™
—
—
- ——
~—
——

?
|

Sharif et al., 2016 Athalye et al., 2017

Note: only the last one here is possibly an £__ perturbation



The million dollar question

How can we design (deep) classifiers that are provably robust to
adversarial attacks?



Robust optimization

Outline

10



Robust optimization

A area of optimization that goes almost 50 years [Soyster, 1973; see Ben-
Tal et al., 2011]

Robust optimization (as applied to machine learning): instead of

minimizing loss at training points, minimize worst case loss in some ball
around the points

A

[ mlmmlze Z 14 ff!@(ﬂ?@ hylde; + D) - y;)

Ao <

S = minignize Zf(hg(aﬁi) -yi—d!@\h)

(for linear classifiers)

11



Proof of robust machine learning property

Lemma: For linear hypothesis function h,(z) = 6z, binary output y €
{—1,+1}, and classification loss £(hy(x) - y)

 hax tlhg(z +A) - y) = Llhg(x) -y — €] 0];)

Proof: Because classification loss is monotonic decreasing
max {(hy(x+A)-y) = €( min hy(z+ A) -y )

|A] o <e |A] o <e
=/ oL A
(i 07z +A)-y)
Theorem follows from the fact that
min 1A = —¢||0]|,

Ao <e

12



What to do at test time?

This procedure prevents the possibility of adversarial examples at training
time, but what about at test time?

Basic idea: If we make a prediction at a point, and this prediction does
not change within the ¢__ ball of e around the point, then this cannot be
an adversarial example (i.e., we have a zero-false negative detector)

A

13



Outline

Provable defenses for deep classifiers

Based upon work in:
Wong and Kolter, “Provable defenses against adversarial
examples via the convex adversarial polytope”, 2017
https://arxiv.org/abs/1711.00851

14



The trouble with deep networks

In deep networks, the “image” (adversarial polytope) of a norm bounded
perturbation is non-convex, we can’t easily optimize over it

-
.
.
-
-
-
.
.
-
-
-
.
-
-
-
.
.
-
-
-
.
.
-
-
-
.
.
-
-
-
.
-
-
-
-
.
-
-
-
.
.
-

>
Deep network

A

Our approach: instead, form convex outer bound over the adversarial
polytope, and perform robust optimization over this region (applies
specifically to networks with RelLU nonlinearities)

15



Convex outer approximations

Optimization over convex outer adversarial polytope provides guarantees
about robustness to adversarial perturbations

... SO0, how do we compute and optimize over this bound?

16



Adversarial examples as optimization

Finding the worst-case adversarial perturbation (within true adversarial
polytope), can be written as a non-convex problem

A

minimize  (zy),—(2g ) reracr
Z,2

subject to ||z; — x| <€
z; =max{z;,0}, i=2,..,k—1

17



Adversarial examples as optimization

Finding the worst-case adversarial perturbation (within true adversarial
polytope), can be written as a non-convex problem

A

minimize  (zy),—(2g ) reracr
Z,2

subject to ||z; — x| <€
z; =max{z;,0}, i=2,..,k—1

18



Adversarial examples as optimization

Finding the worst-case adversarial perturbation (within true adversarial
polytope), can be written as a non-convex problem

A

minimize  (zy),—(2g ) reracr
Z,2

subject to z; —x <€
Z1— T > —¢€
Ziv1 = Wiz, + b, t=1,....,k—1
z; =max{z;,0}, i=2,..,k—1

19



Adversarial examples as optimization

Finding the worst-case adversarial perturbation (within true adversarial
polytope), can be written as a non-convex problem

A

minimize  (zy),—(2g ) reracr
Z,2

subject to 2y —x <€
Z1— T > —¢€
Zig1 =Wz, +b;, i=1..,k—1
z; =max{z;,0}, i=2,...,k—1

20



Idea #1: Convex bounds on ReLU nonlinearities

r &N

Z <«—| I > z <«—f
14 u ¢/
Bounded RelU set Convex relaxation

Suppose we have some upper and lower bound £, u on the values that a
particular (pre-RelLU) activation can take on, for this particular example x

Then we can relax the RelLU “constraint” to its convex hull

minimize  (2,),—(2y ) rareet
Z,2

subject to 2y —x <€
21— T > —€

z; =max{z,,0}, i=2,...,k—1 .



Idea #1: Convex bounds on ReLU nonlinearities

r &N

Z <«—| I > z <«—f
14 u ¢/
Bounded RelU set Convex relaxation

Suppose we have some upper and lower bound £, u on the values that a
particular (pre-RelLU) activation can take on, for this particular example x

Then we can relax the RelLU “constraint” to its convex hull

minimize  (2,),—(2y ) rareet
z,2

subject to 2y —x <€
21— x> —€ A linear program!

(23:2;) €C(4,u),  i=2,...,k—1 o



Idea #2: Exploiting duality

While the previous formulation is nice, it would require solving an LP (with
the number of variables equal to the number of hidden units in network),
once for each example, for each SGD step

 (This even ignores how to compute upper and lower bounds ¢, u)

We’re going to use the “duality trick”, the fact that any feasible dual
solution gives a lower bound on LP solution

A
[ 1 True adversarial polytope
Convex outer bound (from RelLLU convex hull)

[ 1 Bound from dual feasible solution

23



An amazing property

It turns out that we can compute a (empirically, close to optimal) dual
feasible solution using a single backward pass through the network
(really a slightly augmented form of the backprop network)

minimize ¢!z,

z
subject to ||z; — x| <€
(zi41, Wiz +b;) € C(4;,u;)

g

k—1 k—1
. _ T T >
maximize Jowp(v,z) = — g Vis1b; — ' Uy —e|vy |y + E : E :ei,j [Vigl+
’ i=1 i=1 jeJ,
subject to v, = —c

I/),L:WTI/,L+1, i:k_l,...,l

v, = iU, 05305, u), i=k—1,..,2

24



An amazing property

It turns out that we can compute a (empirically, close to optimal) dual
feasible solution using a single backward pass through the network
(really a slightly augmented form of the backprop network)

minimize ¢!z,

subject to ||z; — x| <€
(2i41, Wiz +b;) € C(4;,u;)

R

k—1
maximize Jew (v E Vitby — ' Dy — €|y + E E :gz‘,j[Vz‘,j]Jr
subject to v, = —c
17 :WTI/Z+1, i:k_l,...’l

Set of all activations in
layer ¢ that can cross zero

25



An amazing property

It turns out that we can compute a (empirically, close to optimal) dual
feasible solution using a single backward pass through the network
(really a slightly augmented form of the backprop network)

minimize ¢!z,

z
subject to ||z; — x| <€
(zi41, Wiz +b;) € C(4;,u;)

g

k—1 k—1
. _ T T >
maximize Jowp(v,z) = — g Vis1b; — ' Uy —e|vy |y + E : E :ez‘,j [Vigl+
’ i=1 i=1 jeJ,
subject to v, = —c

I’/\,L:WTI/Z+1, i:k_l,...,l

v, = (0, 05305, u), i=k—1,..,2

™~ Derivative of ReLU with

slightly modification on J; 26



An amazing property

It turns out that we can compute a (empirically, close to optimal) dual
feasible solution using a single backward pass through the network
(really a slightly augmented form of the backprop network)

minimize ¢!z,

subject to ||z; — x| <€
(2iy1, Wiz +b;) € C(4;, 1)

17 71

k—1 k—1
maximize JE,W’b(V, T) = — Z V;‘Cqbi — CUT731 —€loy |y + Z Z ei,j [V’i,j]+
i=1

v, : .
1=1 j€J;

subject to |v, = —c
I’/\,L:WTI/Z+1, i:k_l,...,l

\ Almost identical to

backprop network -



An amazing property

It turns out that we can compute a (empirically, close to optimal) dual
feasible solution using a single backward pass through the network
(really a slightly augmented form of the backprop network)

minimize ¢!z,

subject to ||z; — x| <€
(2i41, Wiz +b;) € C(4;,u;)

I

1
maximize J, y (v, 7) = — Z Vi by — oy |— ey || + Z Z bi [Vi,j]+

vV, ; ¢
1=1 jeJ,;

subject to v, = —

(]

Objective at e = 0
28



An amazing property

It turns out that we can compute a (empirically, close to optimal) dual
feasible solution using a single backward pass through the network
(really a slightly augmented form of the backprop network)

minimize ¢!z,

subject to ||z; — x| <€
(2i41, Wiz +b;) € C(4;,u;)

g

maximize JE, Z VZ+1b — ! Uy | efloy |4+ Z Z ei,j [Vz',j]+

Vv,

subject to v, = —c
0, =Wy, ., i=k—1,..,1
Vi:fi(ymai;giaui); /L:k_].,

Robustness penalty (same
form as in linear case) 29



An amazing property

It turns out that we can compute a (empirically, close to optimal) dual
feasible solution using a single backward pass through the network
(really a slightly augmented form of the backprop network)

minimize ¢!z,

subject to ||z; — x| <€
(2i41, Wiz +b;) € C(4;,u;)

g

maximize JE, Z VZ+1b — ! vy — €|y |4 Z Z ei,j [Vz',j]+

Vv,

subject to v, = —c
0, =Wy, ., i=k—1,..,1

Additional penalty for
violating ReLLU constraint 30



Idea #3: Iterative lower and upper bounds

A meaningful bound requires good lower and upper bounds ¢, u;

Incrementally build bounds by solving LP for each activation

A

—> —> —> —> 2z

by, uy Uy, ug U3, ug

Need some tricks to make this efficient: use same (particular) o for dual
problems, compute multiplications in the right order in objective

31



Putting it all together

In the end, instead of minimizing the traditional loss...

C . (4)) ,,(?)
mlmemlze;ahg(ﬂ? ), y')

...we just minimize a loss with a different network, involving a few forward
and backward passes, and we get a guaranteed bound on worst-case
loss (or error) for any norm-bounded adversarial attack

. (4)) (%)
mmlermze;a:]e,g(x ), y)

At test time, evaluate the bound to see if example is possibly adversarial
(zero false negatives, but may incorrectly flag some benign examples)

32



Experimental results

Outline

33



2D Toy Example

Simple 2D toy problem, 2-100-100-100-2 MLP network, trained with
Adam (learning rate = 0.001, no real hyperparameter tuning)

1.0

0.5

0.0
0.0 0.5 1.0 0.0 0.5 1.0

Standard training Robust convex training

34



Strided ConvNet (Conv16x4x4, Conv32x4x4, FC100, FC10) RelLUs

MNIST

following each layer, convolutions have stride=2

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

100% Standard and robust errors on MNIST

44%
17%
5.80%
1.10% 1.80%
Standard deep Robust linear Our method
network classifier

B Error M Robust error bound

35%

5%

Ragunathan et al.,

2018

35



We can also look at how well real attacks perform at e = 0.1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

MNIST Attacks

MNIST Attacks
100%

82%

50%
1.10% I

1.80% 3.90% 4.10% 2-80%
— N

Standard training Our method

B No attack B FGSM ®PGD ™ Robust bound

36



Convergence

Training does take substantially longer (2 hours), and requires more
epochs than standard training

Method does largely avoid overfitting (adversarial robustness is a powerful
regularizer), so we want to consider larger architectures

— robust train — normal train — robusttest — normal test

10°

10

Error rate
S

10

Cross entropy loss

0 50 100 0 50 100

Epoch Epoch
37



Results on additional tasks

PROBLEM ROBUST € TEST ERROR  FGSM ERROR  PGD ERROR  ROBUST ERROR BOUND
MNIST X 0.1 1.07% 50.01% 81.68% 100%

MNIST Vv 0.1 1.80% 3.93% 4.11% 5.82%
FASHION-MNIST X 0.1 9.36% 77.98% 81.85% 100%
FASHION-MNIST Vv 0.1 21.73% 31.25% 31.63% 34.53%

HAR X 0.05 4.95% 60.57% 63.82% 81.56%

HAR Vv 0.05 7.80% 21.49% 21.52% 21.90%

SVHN X 0.01 16.01% 62.21% 83.43% 100%

SVHN Vv 0.01 20.38% 33.28% 33.74% 40.67%

Promising performance, but lots more work remains (right now,
performance is limited by the size of architectures we can run), current
work involves scaling to larger problems via random projections,
bottleneck layers, and other techniques



Some take away messages

The work on adversarial defenses, up until now, has been extremely ad-
hoc, defenses again some hypothesized attack, but not all attacks

Combining technigques from this class: convex optimization, linear
programming, duality, with deep networks, is a largely unexplored and
hugely fruitful area

Many open questions and practical challenges remain, but | think we are
starting to be on the right course

39



