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Convolutional neural networks



The problem with fully-connected networks

A 256x256 (RGB) image = ~200K dimensional input x

A fully connected network would need a very large number of
parameters, very likely to overfit the data

Generic deep network also does not capture the “natural” invariances we
expect in images (translation, scale)




Convolutional neural networks

To create architectures that can handle large images, restrict the weights
in two ways

1. Require that activations between layers only occur in “local”
manner

2. Require that all activations share the same weights

These lead to an architecture known as a convolutional neural network



Convolutions

Convolutions are a basic primitive in many computer vision and image
processing algorithms

ldea is to “slide” the weights w (called a filter) over the image to produce a
new image, written y = z * w
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Convolutions in image processing

Convolutions (typically with prespecified filters) are a common operation in
many computer vision applications
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Convolutional neural networks

|dea of a convolutional neural network, in some sense, is to let the
network “learn” the right filters for the specified task

In practice, we actually use “3D” convolutions, which apply a separate
convolution to multiple layers of the image, then add the results together
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Additional notes on convolutions

For anyone with a signal processing background: this is actually not what
you call a convolution, this is a correlation (convolution with the filter
flipped upside-down and left-right)

It's common to “zero pad” the input image so that the resulting image is
the same size

Also common to use a max-pooling operation that shrinks images by
taking max over a region (also common: strided convolutions)
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Number of parameters

Consider a convolutional network that takes as input color (RGB) 32x32
images, and uses the layers (all convolutional layers use zero-padding)

1. 5x5x64 convolution

2x2 Maxpooling

3x3x128 convolution

2x2 Maxpooling

Fully-connected to 10-dimensional output

ok

How many parameters does this network have?

1. ~10°
2. ~10%
3. =~ 10°
4. = 10



Learning with convolutions

How do we apply backpropagation to neural networks with convolutions?
ziv1 = fi(z; xw; + b;)

Remember that for a dense layer z; | = f;(W,z, + b;), forward pass
required multiplication by W, and backward pass required multiplication

by W

We’re going to show that convolution is a type of (highly structured)
matrix multiplication, and show how to compute the multiplication by its

transpose
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Convolutions as matrix multiplication

Consider initially a 1D convolution z; * w; for w; € R?, z, € R®

Then z, x w; = W, z, for
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So how do we multiply by W2



Convolutions as matrix multiplication, cont

Multiplication by transpose is just

Wing'—l—l —
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0 w;.

where w,_ ¢ is just the flipped version of w;

gdit1 —

In other words, transpose of convolution is just (zero-padded) convolution
by flipped filter (correlations for signal processing people)

Property holds for 2D convolutions, backprop just flips convolutions
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Outline

Applications of convolutional networks
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LeNet network, digit classification

The network that started it all (and then stopped for ~14 years)

C3: f. maps 16@10x10

INPUT ggézfgitzlge maps S4: . maps 16@5x5
32x32 S2: f. maps

6@14x14

|
‘ ‘ Full connection ‘ Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

LeNet-5 (LeCun et al., 1998) architecture, achieves 1% error
in MNIST digit classification
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Image classification

Recent ImageNet classification challenges
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Using intermediate layers as features

Increasingly common to use later-stage layers of pre-trained image
classification networks as features for image classification tasks

Building powerful image classification models using

very little data

In this tutorial, we will present a few simple yet effective methods that you can use to build a powerful image classifier, using only very few

training examples --just a few hundred or thousand pictures from each class you want to be able to recognize. Sun 05 June 2016
By Francois Chollet

We will go over the following options: In Tutorials.

e training a small network from scratch (as a baseline)
o using the bottleneck features of a pre-trained network
o fine-tuning the top layers of a pre-trained network

https://blog.keras.io/building-powerful-image-classification-
models-using-very-little-data.html

Classify dogs/cats based upon 2000 images (1000 of each class):
Approach 1: Convolution network from scratch: 80%
Approach 2: Final-layer from VGG network -> dense net: 90%
Approach 3: Also fine-tune last convolution features: 94%
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Playing Atari games




Adjust input image to
make feature activations
(really, inner products of
feature activations), match
target (art) images (Gatys
et al., 2016)

Neural style
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Detecting cancerous cells in images

non-tumor
7 .
regions

[

= tumor

Tumor probability

tumor missing in
ground truth

o

reduced noise in
normal regions
(everywhere else)

tumor

Left: Images from two lymph node biopsies. Middle: earlier results of our deep learning tumor detection. Right: our current
results. Notice the visibly reduced noise (potential false positives) between the two versions.

https://research.googleblog.com/2017/03/assisting-
pathologists-in-detecting.html
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Recurrent networks

Outline
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Predicting temporal data

So far, the models we have discussed are application to independent
inputs £V, ..., z(™)

In practice, we often want to predict a sequence of outputs, given a
sequence of inputs (predicting independently would miss correlations)

Examples: time series forecasting, sentence labeling, speech to text, etc
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Recurrent neural networks

Maintain hidden state over time, hidden state is a function of current input
and previous hidden state
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Training recurrent networks

Most common training approach is to “unroll” the RNN on some dataset,
and minimize the loss function

mmlmlze E €

:r:z? zz? zy =

Note that the network will have the “same” parameters in a lot of places in
the network (e.g., the same W, matrix occurs in each step); advance of
computation graph approach is that it’s easy to compute these complex
gradients

Some issues: initializing first hidden layer (just set it to all zeros), how long
a sequence (pick something big, like >100)
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LSTM networks

Trouble with plain RNNs is that it is difficult to capture long-term
dependencies (e.g. if we see a “(“ character, we expected a “)” to follow at
some point)

Problem has to do with vanishing gradient, for many activations like
sigmoid, tanh, gradients get smaller and smaller over subsequent layers
(and RelLU’s have their own problems)

One solution, long short term memory (Hochreiter and Schmidhuber,
1997), has more complex structure that specifically encodes memory and
pass-through features, able to model long-term dependencies

tanh(Wyze + Whihe—1 + bi)

sigm(Wixe + Whihi—1 + bj) :

sigm(Wieze + Whehe—1 + br) Flgure from

tanh(Wxoxs + Whohi—1 + bo) (JozefOW|CZ et al. y 201 5)
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Applications of recurrent networks
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Char-BRNN

Excellent tutorial available at: http://karpathy.github.io/2015/05/21/rnn-
effectiveness/

Basic idea is to build an RNN (using stacked LSTMs) that predicts the
next character from some text given previous characters

target chars: “e” ‘|2 “@p “on
1.0 0.5 0.1 0.2
2.2 0.3 0.5 1.5
output layer . e i i
4.1 1.2 -1.1 20
T T I TW hy
0.3 1.0 0.1 |w hh|-03
hidden layer | -0.1 0.3 05— 0.9
0.9 0.1 -0.3 0.7
T T T TW_xh
. 0 1 0 0
input layer 0 : ; ;
input chars:  “h” “e” | ap
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Sample code from Char-RNN

Char-RNN trained on code of Linux kernel

/*
* Increment the size file of the new incorrect UI FILTER group information
* of the size generatively.

*/
static int indicate policy(void)
{
int error;
if (fd == MARN EPT) {
/*
* The kernel blank will coeld it to userspace.
=4
if (ss->segment < mem total)
unblock graph and set blocked();

else
ret = 1;
goto bail;

}

segaddr = in SB(in.addr);
selector = seg / 16;
setup works = true;
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Sample Latex from Char-RNN

Char-RNN trained on Latex source of textbook on algebraic geometry

For @,,_, . Where £,,, = 0, hence we can find a closed subset H in # and
any sets F on X, U is a closed immersion of S, then U — T is a separated algebraic
space.

Proof. Proof of (1). It also start we get

S=Sp€C(R)=U xxUxxU
and the comparicoly in the fibre product covering we have to prove the lemma
generated by [[Z xy U — V. Consider the maps M along the set of points
Schypps and U — U is the fibre category of S in U in Section, ?? and the fact that

any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any
open subset W C U in Sh(G) such that Spec(R’) — S is smooth or an

U=|JUixs, U
which has a nonzero morphism we may assume that f; is of finite presentation over
S. We claim that Ox . is a scheme where z,2’, s” € S’ such that Ox »» — O, _, is

separated. By Algebra, Lemma ?? we can define a map of complexes GLg/(2'/S")
and we win. (m]

To prove study we see that F|y is a covering of A”, and 7; is an object of Fx/s for
i > 0 and F, exists and let F; be a presheaf of Ox-modules on C as a F-module.
In particular 7 = U/F we have to show that

M* = I* ®spec(t) Os,s — ix'F)
is a unique morphism of algebraic stacks. Note that

Arrows = (Sch/S);';f;,. (Sch/S) fpps

and

V =T(S,0) — (U,Spec(A))
is an open subset of X. Thus U is affine. This is a continuous map of X is the
inverse, the groupoid scheme S.

Proof. See discussion of sheaves of sets. ]

The result for prove any open covering follows from the less of Example ??. It may
replace S by X paces,étale Which gives an open subspace of X and T equal to Szar,
see Descent, Lemma ??. Namely, by Lemma ?? we see that R is geometrically
regular over S.

Lemma 0.1. Assume (3) and (3) by the construction in the description.
Suppose X = lim|X| (by the formal open covering X and a single map Proj, (A) =
Spec(B) over U compatible with the complex

Set(A) =T(X,0x.0y)-

When in this case of to show that Q — Cz/x is stable under the following result
in the second conditions of (1), and (3). This finishes the proof. By Definition ??
(without element is when the closed subschemes are catenary. If T is surjective we
may assume that T is connected with residue fields of S. Moreover there exists a
closed subspace Z C X of X where U in X' is proper (some defining as a closed
subset of the uniqueness it suffices to check the fact that the following theorem

(1) f is locally of finite type. Since S = Spec(R) and Y = Spec(R).

Proof. This is form all sheaves of sheaves on X. But given a scheme U and a
surjective étale morphism U — X. Let UNU =[],_, ,, Ui be the scheme X over
S at the schemes X; — X and U = lim; X;.

The following lemma surjective restrocomposes of this implies that 7., = F,, =

Lemma 0.2. Let X be a locally Noetherian scheme over S, E = Fxg. Set T =
Ji1 CI,. Since I™ C I™ are nonzero over ig < p is a subset of Jn 00 Ay works.

Lemma 0.3. In Situation ??7. Hence we may assume q' = 0.

Proof. We will use the property we see that p is the mext functor (??). On the
other hand, by Lemma ?? we see that

D(Ox/) = Ox(D)

where K is an F-algebra where d,,1, is a scheme over S. (]
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Sequence to sequence models

ldea: use LSTM without outputs on “input” sequence, then auto-
regressive LSTM on output sequence (Sutskever et al., 2014)
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Machine translation

A scale-up of sequence to sequence learning, now underlying much of
Google’s machine translation methods (Wu et al., 2016)

| GPUs GPUS |

8 ilayers

i GPU3

L GPU2 GPU3 |

i GPU2 | GPU2 |

{ GPUL | GPUL |

~~~~~~~~



Combining RNNs and CNNs

Take convolutional network and feed it into the first hidden layer of a
recurrent neural network

“straw” “hat” END
Yt

y B hy
Whi

' CNNp,
Y Wha
=
Tt

START “StraW" “hatﬂ

'man in black shirt is playing "construction worker in orange "two young girls are playing with "boy is doing backflip on
guitar” safety vest is working on road. lego toy." wakeboard."
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