15780: GRADUATE AI (SPRING 2018)
Homework 4: Robust Optimization and Game Theory

Release: April 3, 2018,
Last Updated: April 12, 2018, 5:00pm
Due: April 16, 2018, 11:59pm

1 Transit Games [20 points]

In this problem, we will consider a class of games that we will call transit games. A transit game has n
players on a directed graph G with non-negative edge weights. Each player ¢ wants to move from a node s;
to another node t;; the strategy space for ¢ therefore consists of all paths from s; to ti[]_-] Each edge e also has
a cost c.. The cost of each edge is split between all of the players who are using that edge; the cost for an
individual player is the sum of the costs of all edges they are using.

For instance, consider the following graph:
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If both players were to use the paths (s;,t;) for i = 1 and 2 respectively, they would both incur a total cost
of 10, corresponding to the full cost of the single edge used by each. If instead, both players were to use the
paths (s;, 01,09, t;), they would each incur a total cost of 7, because the edge (b1, v3) is being used by both
players and would therefore incur a cost of 5 for each player.

'You may disregard paths with cycles in them, since these will only have a higher cost than non-cyclic paths.



1.1 Finding Nash Equilibria [8 points]

Consider the following transit game with n players, where each player is at s; and wants to reach the common
node t. Here, k is a strictly positive constant.

k+1

Observe that each player has a choice between using their unique edge (s;,t), or moving to v for free
and using the shared edge (v, t), the cost of which depends on how many players in total are using that
edge.

Find all Nash equilibria (pure or mixed) in this transit game.

1.2 Potential games [12 points]

For the remainder of this question, we will consider only pure strategy profiles. A game is an exact potential
game if there exists a function ¢ : [, S; — R such that for all i € N, for all s € []""_, S;, and for all
s}, € S;, we have:

ci(si,8-i) — ci(s) = ¢(s},5-i) — ¢(s) )]

Intuitively, if a player ¢ unilaterally changes their strategy to s/, then the resulting change in the potential
function ¢ is the same as the change in that player’s cost. Any local minimum of ¢ therefore corresponds to
a point where no player can decrease their cost by changing their strategy, i.e. a Nash equilibrium. Assuming
the strategy space is finite, ¢ will always have a minimizer, leading to the following result:

Lemma 1. Every finite exact potential game has a pure Nash equilibrium.

Now, for any instance of the transit game, consider the following potential function. Let n.(s) be the number
of players using the edge e in the strategy profile s. Then:
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Prove that ¢ satisfies the property described in Equation |1} and conclude that every possible transit game
always has a pure Nash equilibrium.



2 Stackelberg Security Games [35 points]

In class, we show a polynomial-time algorithm for computing the strong Stackelberg equilibrium (SSE) of
security games with singleton schedules. (As a reminder, in an SSE, ties are broken in favor of the defender.)
In this problem, we will derive a linear time algorithm to compute the SSE of a more restricted class of
security games in which the attacker’s utilities for all covered targets are identical, and in which any resource
can cover any target.E]

As a reminder, in this setting, there is a set of n targets T = {t1,t2,...,t,}, and the defender has m
identical security resources (to protect these targets). Assume m < n. Each of these resources can protect
any one target at a time. The defender pursues a randomized strategy when allocating these resources to
protect targets. Such a strategy can be equivalently represented as a vector of coverage probabilities ¢ =
(c1,¢2,...,cn) over the n targets, where > | ¢; = m.

For this problem, we further assume that the attacker’s utility for attacking a protected target is 0 and for
attacking an unprotected target is strictly positive, i.e. u () = 0 and u (¢) > 0 for any target . When the
attacker attacks target ¢, the expected utilities of the defender and attacker are then:

j(t) e tug () (1—cyp),
a () cotug () (1—c) =ug (1) (1—cp).

For this analysis, you can use the following fact without proof:

Fact 1: The SSE is achieved for the restricted class of games described above when the coverage vector c:
(1) minimizes the attacker’s maximum expected utility, and (2) maximizes the number of targets that have
the same maximum utility for the attackerE] Observe that the solution does not depend on the defender’s
utilities (but only uses the assumption that u} () > u (t)).

Form of optimal defender strategy. Letc = (¢1,co, ..., ¢,) denote the optimal defender strategy.

1. (6 points) Show that for some constant ¢, and for all targets ¢; with coverage probability ¢; > 0, we
have that
ug (ti) - (1= ¢i) = go.

Hint: Consider some target ¢, that is optimal for the attacker to attack. Using Fact 1, why must all
targets t; with ¢; > 0 have ug (¢, ¢) = uq(to, €)?

2. (5 points) Show that the above statement (along with the optimality of cf] implies

do
= 1- 0
. max< s )

for all targets ;.

Together, these statements show that to compute ¢, we need only obtain the value of q,.

2This was added to reflect that in the general setting, resources may be restricted in the set of targets they can protect.

3This was first proved in: C. Kiekintveld, M. Jain, J. Tsai, J. Pita, M. Tambe, and F. Ordéiiez. Computing Optimal Randomized
Resource Allocations for Massive Security Games. In AAMAS-09, 2009

4Added phrase in brackets to indicate that optimality of c is also required here.



What does q, look like? Let ¢(1),%(2),.- ., %) denote the targets sorted in decreasing order of attacker
utilities (when the target is uncovered), i.e.,

ug (t1)) > ug (t2)) = > ug (En))-

Let k, be the largest index for which the corresponding target ¢ ) has positive coverage probability under
the optimal defender strategy c.

3. (4 points) Show that

ko
where S, = > L

=1 ug (t)) "
This statement indicates that to find ¢,, we need only find the corresponding value of k.

4. (8 points) Argue that the following is true: ¢, is in the interval [u; (t(ko+1))> Ug (t(ko))). Further, if

for some k we have that the corresponding ¢ = ’Cg—km < g (t(k+41)) then it must be that k, > k.
Similarly, if ¢ = 5™ > ug (f(1)), then it must be that k, < k.

Using the above, we can now construct an algorithm to find the value of %,.
The search for k,! We find the value k, corresponding to the SSE solution using binary search on the
attacker utilities (without sorting the targets). To do this, we maintain three lists of targets:

» T: targets ¢; that will certainly be covered with positive probability (c; > 0),

» T~ : targets ¢; that will certainly not be covered (¢; = 0),

o T": targets t; that we are undecided about potentially covering with positive probability.
We start with all targets in the “undecided” list, i.e., T = {t1,t2,...,t,} and Tt =T~ = (. At each
stage, we will update the value ST = ZtieTJr ﬁ(ti)’ with an initial value of S* = 0.
We then iterate over the following steps to find the value of k,:

* Step 1:

— Compute the median d of the attacker utilities for targets in 77, i.e. d = median({u; (t;) | t; €
7°}).f

— Partition 7" into two sublists based on this median: 7% = {t; | u; (t;) > d,t; € T'} and
T = {ti | u;(ti) <d,t; € T?}.

— Define ¢, as the target in 7 with the smallest value of u, , and ¢y~ as the target in 7" with the
largest value of u .

. _ _ y (T T ) -m
* Step 2: Compute S* =37, 7 #(t)’ Spe =St + 5% and g = %H

5The median d can be computed in time linear in |T'7| even if the targets are not sorted (by the u; values).

. S
5The previous formula for ¢ was ¢ = 1”57;” which is incorrect.
Pk



* Step 3: Update T+, 77, T, and ST as follows

- If ¢ < uy (tr), then: .
- If g > uy (te), then: .
- Ifu, (tir) < q < uy (te), then: .
5. (8 points) Finish the above algorithm by describing cases , , and . Specifically, for each case,

write the update equations for 7+, 7%, T~ and ST, argue if we should terminate, and briefly justify
based on our above analysis.

6. (4 points) Argue that our algorithm runs in time linear in the number of targets, i.e. the time complexity
is O(n).

3 Robust Optimization [20 points]

In this problem, we will consider variations of the robust optimization problem discussed in class. Assume
we are given m training points (z(1), y(), (3, 4@, . (2™ y(m) € RP x {~1,+1}. Consider a
monotonically decreasing classification loss £ : R — R and a hypothesis function hg(x) = 672 mapping
from R” to R for § € RP.

1. (5 points) Robust optimization with respect to /; balls. Reduce the following optimization problem
over the variables # and A, A®) . A(™) to an optimization problem over only 6:

m

mlmmlze — Z lAr(n)gh)f<€£ he(x (1) + A(i)) .y(i))

2. (5 points) Robust optimization with respect to /5 balls. Reduce the following optimization problem
over the variables # and A A®) A7) to an optimization problem over only 6:

m

1 ) ) )
minignize - ; \IAﬁ%ﬁfgeﬁ(he(x(l) + A(z)) . y(z))

3. (10 points) Robust optimization with respect to /., balls for multi-class classification. Consider
a K-class classification problem where the training points (z(1), y(1), (22, 42, (2™ y(m)
belong to RP x {1,2,..., K}. The hypothesis function

or
ho(x) =0z = 03 |

Ok

7We can define false targets t(oy and t(y4 1) With ug (t(0)) = oo and ug (t(n41)) = O to avoid edge cases here. As such, you
will not need to deal with edge cases in your argument.



maps from R? to R for © € RE*P, We consider the softmax loss

K
L(he(z),y) = log (Z €h@(z)’“> — he(x)y.
k=1

We will now upper bound the robust optimization loss. Specifically, we will define a new function he
on the training points such that for every (%), the kth co-ordinate of he (z(*)) is defined as follows:

ho (M) = 0z + €| 0k — O, ||1-
That is, the output of the classifier is increased by a small amount on all but the correct class. Show
that we can upper bound the robust optimization loss by computing softmax loss on the output of hg
for the training datapoints, i.e., show that:

1 A o m
il Llho (2@ + A® )y « = Lo (2 o
m = ”A(r})lﬁzge (ho(z"™ + ), yt) < = ; (he(z'"),y")

Hints:
(a) First, bring the second term in the softmax loss into the log term.

(b) Next, to show an upper bound, bring the maxx ) to the front of each term in the summation
22{21 inside the log. (Remember to justify why you can do this to show the upper bound.)

4 Programming: Stackelberg Strategies [25 points]

In a 2-player normal form game, a Stackelberg strategy is where one of the players is a leader and the other is
a follower. In contrast to the default situation where both players pick their respective strategies at the same
time, a Stackelberg strategy is when the leader, which is identified as player 1, first commits to a (mixed)
strategy which the follower, player 2, knows. Then player 2 commits to his own strategy using his knowledge
of player 1’s strategy.

An optimal Stackelberg strategy would be a Stackelberg strategy where player 1’s expected utility is maxi-
mized. The optimal Stackelberg strategy can be computed in polynomial time by solving multiple LPs. See
Slide 6 of Lecture 20 for a description of the algorithm.

Given a 2-player normal form game, your task is to implement the function stackelberg (ul, u2) in
stackelberg.py which will return the optimal Stackelberg strategy for the given game. You can use
cvxopt or cvxpy to solve the LPs. Your function should return numpy arrays, not datatypes from these
libraries. If there is a tie in the expected utility between two strategies of player one (i.e. the expected utility
is off by an absolute error of 1e-5), you should return the optimal strategy induced by the lowest indexed
pure strategy of player 2.



S Submitting to Autolab

Create a tar file containing your writeup and the completed stackelberg.py modules for the program-
ming problems. Make sure that your tar has these files at the root and not in a subdirectory. Use the following
commands from a directory with your files to create a handin. tgz file for submission.

$ 1s

stackelberg.py writeup.pdf [...]

$ tar cvzf handin.tgz writeup.pdf stackelberg.py
a writeup.pdf

a stackelberg.py

$ 1s

handin.tgz stackelberg.py writeup.pdf [...]
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