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1 Bidirectional A* tree search [20 points]

Search problems appear in a variety of contexts in computer science and artificial intelligence. In class,
we studied unidirectional strategies for solving search problems, in which we begin at a start state s and
search forward until we expand a node containing some goal state t. However, bidirectional strategies may
yield faster running times in certain contexts. Given a graph G with start state s and set of goal states 7,
bidirectional search finds a path from s to some goal ¢ € T by running two simultaneous searches: one
starting at s and searching forward along edges towards the goal states, and one starting at the goal states
and searching backwards towards s. In this problem, we will consider a bidirectional A* tree search strategy.
For simplicity, we will be considering undirected graphs only, with only a single goal state ¢.

More formally, for a node x, let hs(x) be a “forward-looking” heuristic that estimates the distance from
to a goal, and let h;(z) be a “backwards-looking” heuristic that estimates the distance from z to s. (As in
unidirectional A* tree search, these heuristics must be admissible for the algorithm to be optimal.) Then,
assuming z is in the frontier of the forward search, the priority of x in the forward search is fs(x) =
gs(x) + hs(x), where g4(x) is the cost of the forward path used to reach x from s. Likewise, the priority of
« in the backward search (assuming it is in the frontier) is f;(z) = g¢(x) + hi(x), where g; () is the cost of
the backward path used to reach z from ¢.

Let Fs and F} denote the frontiers of the forward and backward searches, respectively. The strategy begins
by expanding s and ¢ and inserting their neighbors into F and F3, respectively. Then, at each timestep, the
priorities of the next nodes from F and F} are compared, and the one with lower priority is dequeued and
expanded, with its neighbors being added to the frontier that the node was drawn from.



1.1 Naive stopping criterion [3 points]

When one search expands a node m that was already expanded by the other, a full path from s to a goal ¢ is
obtained by concatenating the s — m and m — ¢ paths. One might be tempted to terminate the search as
soon as the first complete path is found. Unfortunately, this path is not guaranteed to be optimal.

Construct a graph in which the first complete path found by bidirectional A* tree search is not optimal, even
under an admissible heuristic. Indicate source and target nodes s and ¢, and values for admissible heuristics
hs and h; for all vertices in your graph. Describe the order in which nodes will be expanded, and which
search (forward or backward) they will be expanded by. (You should only need a very small number of
vertices.)

1.2 Correct stopping criterion [7 points]

Luckily, a correct stopping criterion is not much more complicated. At any time, let L,,;,, denote the length
of a shortest complete path that has been discovered by our algorithm so far. If no complete paths have been
found, let L,,;, = oo. At any iteration, if we have

max{ireli}% fs(x)a ;(Irrélz% ft(x)} > Lmin7

then we terminate and return an already-discovered path with length L.

For this and the next problem, you may use this fact pertaining to unidirectional A* search (under an admis-
sible heuristicﬂ without proof:

Fact 1 (for unidirectional A*): For any optimal path P;;, at any point before termination, there exists
v" € P}, such that v’ is in the frontier, and f(v") < £(P7,) = L*, where £(-) denotes the length of a path
and L~ is the cost of the globally optimal path.

Prove that if bidirectional A* tree search (with admissible heuristics) terminates under this stopping criterion,
then it returns an optimal path from s to the goal ¢.

1.3 Early termination with bounded heuristics [10 points]

The correct stopping condition unfortunately leads to most of the work in the bidirectional search occurring
after the first path is found, since one of the frontiers must be expanded to the length of that path. However,
if we are willing to accept only an approximate shortest path, then early termination is possible. This does,
however, require certain quality guarantees on the heuristics.

Define a heuristic h to be e-bounded if, for all vertices x:
c(z,t) —e < h(z) < ¢(x,t),

where ¢(z, y) denotes the shortest-cost path from x to y. In other words, h is always within € of the true cost
¢(z,t) from x to the goal. In this case, we can bound the additive error incurred by terminating at the first
path.

! An earlier version of this writeup did not explicitly mention admissibility, which is necessary for Fact 1 to hold true.



Prove that if bidirectional A* uses e-bounded heuristic functions in both directions, and P is the first com-
pleted path (i.e. the path formed when the two searches meet, as in problem, then {(P) < L*+2e.

Hints:

e Consider how having an e-bounded heuristic affects unidirectional A* search. For any node v that has
been expanded, can you relate the found path cost g(v) to the true cost ¢(s, v) from the start state to
that node?

o Let ks = mingep, fs(x), and k; = mingep, fi:(x). Note that max(ks, k) is the left-hand side of
the stopping criterion in problem Can you relate this quantity to £(P) when the first path P is
completed?

e Suppose that v was the node expanded to complete P. How does its f-value compare to ks and k;?
And how does the length of P relate to path costs (i.e. g-values) from the two searches?

2 Gradient descent [25 points]

In class, we showed that for a differentiable objective function f : R™ — R, taking a sufficiently small
step in the direction opposite of the gradient is guaranteed to decrease the objective. This is however only a
local guarantee; when and how can we show that iteratively taking gradient descent steps will get us to the
global minimum of the function? In this section, we will explore different assumptions that guarantee global
convergence and examine the rate of convergence under those assumptions.

2.1 Case A: Convexity and Lipschitz continuity [2+2+4+4 = 12 points]

We will make two assumptions about f in this case.

Assumption 1 is that f is convex, i.e., for all z,y € R™,

fy) = f(2) + V@) (y - ).

Note that this definition is equivalent to what is presented in the slides (you do not have to prove this
equivalence). One way of interpreting this definition is that, for a convex function, the first order Taylor
expansion of the function underestimates the function everywhere.

Assumption 2 is that the gradient of f is Lipschitz continuous with constant L > 0, i.e., for any =,y € R",
we have:

IVf(x) = Viwll2 < Liz =yl

Informally, this means that the gradient of f does not vary too much as we move from one point to another
in R™.

1) Do each of the convex functions f(x) = 22 and f(z) = x* satisfy Assumption 2, for some L > 07 If
yes, give the minimum L such that the inequality is satisfied. If not, why?
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3)
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If f satisfies Assumption 2, Taylor’s remainder theorem guarantees that for any z,y € R",
T L 2
1) < @) + V@) (- o) + 5z~ I3 (M
Now, let us fix a step size of 1/L. That is, from any z, we move to
, 1
o' =z~ V() 2)

during gradient descent. Given that Equation (1)) holds, derive the following inequality for the amount of
progress gradient descent makes in locally decreasing the value of f:

1) < @) = 51V F@)IE ®

Let z* be the global minimum of the function f. To analyze the convergence of gradient descent, we want
to bound the difference between the current value of the objective f(z’) and the global minimum f(z*).
In this question, show that under Assumptions 1 and 2, the following upper bound on f(z') — f(x*)
holds:

L *
F@) = f@) < (e = 2[5 = l2" = 27[13). S
The right side of this inequality can be thought of as a measure of how far we move towards the minimum

x* in the input space with each update (we will see how this helps us analyze global convergence in the
next question!).

You may use the other equations presented above without (re-)deriving them.
Hints:
e Use the given definition of convexity to upper bound f(x) in terms of f(z*) in Equation (3).
o 2aTb+ [[bll3 = [lall3 +2a"b + [1b]]* — [lall3 = [la + blI3 — [lal3.
Let (9 2™ 2@ 2(7) be a sequence of gradient descent updates starting from some initial point

2, with 2+ = 20 — Ly f(z(®). Using Equations (3) and (@), prove the following two inequalities:

T 0) _ %2
1 N Ll I

faD) = f@*) < - Y (f@) = f@) < 5
t=1 —_—

constant

&)

T

Thus, we have shown that gradient descent converges at the rate O(1/7), where 7 is the number of
iterations of gradient descent.

2.2 Case B: Strong convexity [4+2+4+2+1 = 13 points]

In this section, in addition to Assumptions 1 and 2, we will add Assumption 3, which is that f is /-strongly
convex for some £ > (. This means that for all x,y € R™:

F) 2 £@) + V) 2) + gl — i ©
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Note that plugging ¢ = 0 into this inequality recovers the definition for (weak) convexity presented in
Assumption 1. Thus, Equation (6) is a strong notion of convexity because if the equation holds for some
£ > 0, then it also holds for ¢ = 0. Also note that while this assumption lower bounds f(y), Assumption 2
upper bounds f(y).

1) Show that the right side of Equation (6) can be lower bounded purely in terms of z (i.e., independent of
1Y) as:

F@) + V@) (- a)+ Sl — 93 > F@) — 5 IV T @) ™

(Hint: Show that the expression we want to lower bound is a convex quadratic function in y; then the
minimum is attained where its gradient with respect to y is zero.)

2) Using Equations (6) and (7), show that:

£la) ~ £ < IV T @3 ®)
3) Using Equations (3)) and (), show that:
14
1) = 16 < (1- 1) 0 - 1) ©

Observe that this equation is similar to Equation () in that it upper bounds how far we are from the
global minimum Valueﬂ

4) Again, let (9,21 22 2(7) be a sequence of gradient descent updates starting from some initial
point 2(9), where 2(+1) = z(® — 1V f(2(®)). Using Equation (@), show that

Fa) = ) < (1 - i) (F@) = F)). (19)

5) Is this a faster or slower rate of convergence than in Case A? Why?

NOTE: In this section, we were able to prove the convergence of gradient descent under a fixed step size
based on a global Lipschitz constant which is known to us. However, if Assumptions 1 and 2 do not hold or
if we do not know the Lipschitz constant, it may be necessary to select a different step size at each iteration
using methods such as backtracking line search.

3 Simplex [25 points]

For this problem, you will be implementing the simplex algorithm in Python. Your code should go in
simplex.py. You are not allowed to use cvxpy or any other convex optimization library for this prob-
lem.

2The right hand side of this equation has been corrected; specifically, f(x’) — f(x*) has been changed to f(z) — f(z*).
3The right hand side of this equation has been corrected; specifically, f(z(9) — z*) has been changed to f(z(9)) — f(z*).



3.1 Basic simplex [15 points]

Implement the basic simplex algorithm as described in Lecture 5, Slide 31. You should use the numpy
package for matrix manipulations. If you haven’t used numpy before, some examples of common operations
are provided for you in numpy_examples.py.

The inputs to your simplex method will be in the form of numpy arrays and matrices:
e [:an array consisting of a feasible basis index set.
e c: a cost vector.
e A, b: a matrix-vector pair; your solution z should satisfy Az = b.
Your output should be a tuple consisting of:
o : the value of the optimal solution.
e z: the optimal solution.

We will grade your code based on whether it is able to obtain the optimal solution to a number of different
linear programs. (Your code does not need to deal with infeasible or unbounded problems.) You have been
given a set of test cases in the directory test_cases as well as a module called test .py, which you
can use to test your code. Notice that because we are doing numerical computations, computations that
should actually yield 0 will often be approximately 0 (e.g., in [-1071°,1071°]). To avoid problems with
this, whenever you want to check if a number is strictly negative, you should check if it is < —10~'2 and
whenever you want to check if a number is > 0 you should check if it is > —10712.

3.2 Two-phase simplex [10 points]

In the problem above, you implemented the simplex algorithm assuming you have an initial feasible basis to
start with; this is how the algorithm was presented in class. In this problem, we will implement the two-phase
simplex algorithm, which first finds a feasible basis (phase one), and then proceeds with the basic simplex
algorithm (phase two). To find a feasible basis, the algorithm will first solve another linear program whose
solution will yield a feasible basis to the original linear program, which we can then pass to the simplex
algorithm. We now describe how to find a feasible basis and why our method works.

Recall that the constraints Az = b represent a set of equations:
1,171 + G12%2 + -+ A1,0 Ty = by

A21%1 + G20T2 + -+ -+ a2 nTy = bo

Am 171 + A, 22 +---+ Am nTn = bm

For each equation where b; is negative, we multiply both sides of the equation by -1. Thus the right side of
the equations can now be represented by b+ = |b|. To the left side of each equation, we also add an artificial



variable z;, so that we have the following:

sign(b1)(a1 121 + a12T2 + - + a1.,%n) + 21 =bf
sign(bg)(ag’lxl + agoxo + -+ agmxn) +29 = b;r
Sign(bm)(am,lxl + Am, 202 +-- am,nzn) + zm= bjn

Let A™ be the matrix that results from negating the equations where b; is negative and adding the artificial
variables. We will now solve the following linear program:

m
minimize Z;
timize )z
i=1
subject to ATz =b", >0, 2> 0.

Notice that a feasible point for this linear programis tosetx; = Ofor 1 <4 <nand z; = b;r forl1 <i:<m
(since all bj > 0). Thus, the set of artificial variables can serve as a feasible basis for this new problem,
which we can use to solve this problem with the basic simplex algorithm. Furthermore, notice that the mini-
mum of the objective function can at best be 0, since it must be that all z; > 0. If we find a solution such that
221 z; = 0, then we have that z; = 0 for 1 < ¢ < m; then, Az = band z; > 0 for 1 < i < n, meaning
that the remaining non-zero z; form a feasible basis for our original solutionf_’r]

Write a function that implements the two-phase simplex algorithm. The inputs and outputs of the function
should be the same as your simplex function, except that you will not be given I, the initial feasible basis
set, as an input. Your code should call your simplex algorithm twice (once in each phase).

4 Integer programming [30 points]

Develop an integer programming algorithm, based upon branch and bound, to solve Sudoku puzzles. Specif-
ically, implement the function solve_sudoku in sudoku.py.

The input of the function is a Sudoku puzzle, represented as a 9 x 9 “list of lists” of integers, e.g.,

puzzle = [[4, 8, O, 3, 0, O, O, O, O],
(o, o, o, 0, 0, 0, 0, 7, 11,
(¢, 2, o, o0, 0, 0, 0, 0, 01,
(7, 6, 5, o0, 0, 0, 0, 6, 01,
(o, o, o, 2, 0, 0, 8, 0, 01,
(o, o, o, 0, 0, 0, 0, 0, 01,
(o, 6, », o, 7, 6, 0, 0, 01,
(3, o, o, o, 0o, o, 4, 0, 01,
(o, o, o, 0, 5, 0o, 0, 0, 011,

4There will possibly be a degenerate solution where more than 1 variables are zero, but you will not have to deal with any such
cases for this problem.



where zero entries indicate missing entries that should be assigned by your algorithm, and all other positive
integers (between 1 and 9) indicate known assignments. The function solve_sudoku should return a
tuple (solved puzzle, constraints), where solved puzzle is the input puzzle with all the
missing entries assigned to their correct values. For instance, for the above puzzle, solved_puzzle should
be

solved_puzzle = [[4, 8, 7, 3, 1, 2, 6, 9, 5],
[5, 9, 3, 6, 8, 4, 2, 7, 1],
(1, 2, 6, 5, 9, 7, 3, 8, 41,
(7, 3, 5, 8, 4, 9, 1, 6, 21,
(9, 1, 4, 2, 6, 5, 8, 3, 71,
(2, 6, 8 7, 3, 1, 5, 4, 91,
(¢, 5, 1, 4, 7, 6, 9, 2, 31,
(s, 7, ¢, 1, 2, 8, 4, 5, 61,
[6, 4, 2, 9, 5, 3, 7, 1, 81]
and the constraints valuecouldbe constraints = [(8, 5, 2, 1), (5, 3, 4, 1)].

This implies that if we add two constraints (zg5)2 = 1 and (x53)4 = 1 to the linear program for Sudoku
(described in detail below) then the solution has only integer values and returns the solution above. Note
that, since these values are all indexed starting at 1, it may be necessary to add/subtract 1 to convert to and
from Python indices. Also note that there can be more than one set of constraints that lead to the same integer
solution. Thus, we will check your solution by directly plugging the constraints your algorithm returns in,
not by comparing with our solution. Specifically, you need to do two things to solve this problem:

1) Write code to solve the linear programming relaxation of a Sudoku puzzle. Let z; ; € [0,1]° be the
indicator of the (4, j)-th square in a Sudoku board. Then, solve the following optimization proble:

9
minimize Z mgx(xm)k
1,
subject to z; ; € [0, 1]9 1,7 =1...9 (i.e., all variables must be between zero and one)
9
Z(Iivj)k =1, ¢,7=1.9 (i.e., each grid must have only one assigned number)
k=1
9
Z z; =1, i=1.9 (i.e., each row must contain each number)
j=1
9
Z z; =1, j=1.9 (i.e., each column must contain each number)
=1

3
Z Titm,j+1 =1, 1,5 €{0,3,6}  (ie., each3 x 3 box must contain each number)

m,l=1

(i) =1 if (i,7)-thsquareis k > 1  (i.e., assignments of the entries fixed by the puzzle).

SThis row was missing in an earlier version of the writeup.
The text description for the row and the column constraints were incorrectly mapped.
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You should write code to solve this problem using cvxpy. You can find additional documentation about
cvxpy at its website http://cvxpy.org. You can also try to use the two-phase simplex algorithm
you implemented instead of using cvxpy; however, in that case you will have to deal with the A matrix
possibly not having full row rank (which requires some additional steps of removing linearly dependent
rows of the matrix), possibly deal with degenerate initial solutions, and encode the max function above
using linear equalities in standard form. To test this part of the assignment, you can use the following
puzzle, where the linear programming relaxation happens to give an integer solution without any addi-
tional constraints:

puzzle = [[8, 5, 0, O, O, 2, 4, 0, 0],
(7, 2, o, 0, 0, 0, 0, 0, 91,
(o, o, 4, o, 0, 0, 0, 0, 01,
(o, o, o0, 13, o, 7, 0, 0, 21,
(3, o, 5, o, o, 0, 9, 0, 01,
(o, 4, o, o, o, o, o, 0, 01,
(o, o, o, o, 8, 0, 0, 7, 01,
(o, 1, 7, o0, o, 0, 0, 0, 01,
(o, o, o, 0, 3, 6, 0, 4, 0117,

whose linear programming relaxation should give the following solution:

solved_puzzle = [[8, 5, 9, 6, 1, 2, 4, 3, 71,
(7, 2, 3, 8, 5, 4, 1, 6, 91,
(1, 6, 4, 3, 7, 9, 5, 2, 81,
(9, 8, 6, 1, 4, 7, 3, 5, 21,
(3, 7, 5, 2, 6, 8, 9, 1, 41,
(2, 4, 1, 5, 9, 3, 7, 8, 61,
(4, 3, 2, 9, 8, 1, 6, 7, 51,
(¢, 1, 7, 4, 2, 5, 8, 9, 31,
[5, 9, 8, 7, 3, 6, 2, 4, 111].

~
~
~
~
~
~
~
~

Important: The results of simplex may not be exactly integers because of numerical approximation. For
this part of the assignment, you can simply round any value within 0.005 of 0 or 1 to the nearest integer.

Next, write a branch and bound algorithm solving a Sudoku puzzle even when its linear programming
relaxation is not tight. That is, implement the algorithm in the integer programming slides (implement
the “simpler” algorithm instead of the version generating feasible upper bounds). To select variables to
split on (in this case, {(z¢; j))x : 4,7,k = 1,...,9}), a simple rule is to pick the variable with the “most
undetermined” value closest to 0.5 and split on this variable. Then, solve the two subproblems where we
constrain the variable to be either 0 or 1.

Submitting to Autolab

Create a tar file containing your writeup for the first two problems and the completed simplex.py and
sudoku.py modules for the programming problems. Make sure that your tar has these files at the root and


http://cvxpy.org

not in a subdirectory. Use the following commands from a directory with your files to create a handin.tgz
file for submission.

$ 1s

simplex.py sudoku.py writeup.pdf

$ tar cvzf handin.tgz writeup.pdf simplex.py sudoku.py
a writeup.pdf
a simplex.py
a sudoku.py
$ 1s

h

andin.tgz simplex.py sudoku.py writeup.pdf
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