


PARTICLE SWARM OPTIMIZATION (PSO)

• A population based optimization technique inspired by social behavior of bird 
flocking/roosting or fish schooling  

• A PSO swarm member/agent (a particle) iteratively modifies a complete solution 

J. Kennedy and R. Eberhart, Particle Swarm 
Optimization. Proceedings of the Fourth IEEE 
Int. Conference on Neural Networks, 1995. 

Individual swarm members establish a social network and can profit from the 
discoveries and previous experience of the other members of the swarm



BACKGROUND: REYNOLDS’ BOIDS 

Reynolds, C.W.: Flocks, herds and schools: a distributed 
behavioral model. Computer Graphics, 21(4), p.25-34, 1987 

Reynolds created a model of coordinated animal motion in which the 
agents (boids) obeyed three simple local rules: 

Separation: steer to 
avoid crowding local 

flockmates

Alignment: steer towards 
the average heading of 

local flockmates

Cohesion: steer to move 
toward the average position 

of local flockmates

https://www.youtube.com/watch?v=QbUPfMXXQIY

https://www.youtube.com/watch?v=QbUPfMXXQIY


BACKGROUND: ROOST

Kennedy and Eberhart included a roost (attraction point) in a 
simplified Boids-like simulation, such that each agent:  

• is attracted to the location of the roost,  

• remembers where it was closer to the roost,  

• shares information with its neighbors about its closest 
location to the roost  

Eventually, all agents land on the roost 

What if: 

• roost = (unknown) extremum of 
a function 

• distance to the roost = quality of 
current agent position



PARTICLE SWARM OPTIMIZATION (PSO)

• PSO consists of a swarm of bird-like particles  

• Each particle resides at a position in the search space  

• The fitness of each particle represents the quality of its position  

• The particles move over the search space with a certain velocity 
• Each particle has an internal state + network of social connections  
• The velocity (both direction and speed) of each particle is influenced by its 

own best position found so far, pbest, the best solution that was found 
so far by its social neighbors, lbest, and/or the global best so far gbest 

• “Eventually” the swarm will converge to optimal positions 

{~x,~v, ~xpbest,N(p)}



NEIGHBORHOODS

Geographical

Social

Global



PARTICLE SWARM OPTIMIZATION (PSO)

~r1 = U(0,�1) ~r2 = U(0,�2)

ɸ are acceleration coefficients determining scale of 
forces in the direction of individual and social biases 

element-wise multiplication operator 



VECTOR COMBINATION OF MULTIPLE BIASES
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VECTOR COMBINATION OF MULTIPLE BIASES

• Makes the particle move in the same 
direction and with the same velocity

• Improves the individual
• Makes the particle return to a previous 

position, better than the current
• Conservative

• Makes the particle follow the best 
neighbors direction

1. Inertia

2. Personal 
Influence

3. Social 
Influence

Exploits what 
good so far

Search for new 
solutions



PSO AT WORK (MAX OPTIMIZATION PROBLEM)

Example slides from Pinto et al.
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PSO VS. ACO

• Birds flocking/roosting vs ant pheromone laying/following 

• Iterative solution modification vs. Repeated solution construction   

• Social network of point-to-point information exchange vs.                              
Stigmergy, environment-mediated communications 

• Both are based on the use of a population of solutions 

• Both sample the solution space and are global optimizers 

• Both are quite straightforward to implement in parallel / distributed 
architectures 

• Both are relatively simple to implement and perform at the SoA



GOOD AND BAD POINTS OF BASIC PSO

• Advantages 

• Quite insensitive to scaling of design variables 

• Simple implementation 

• Easily parallelized for concurrent processing 

• Derivative free 

• Very few algorithm parameters 

• Very efficient global search algorithm 

• Disadvantages 

• Tendency to a fast and premature convergence in mid optimum points 

• Slow convergence in refined search stage (weak local search ability)



GOOD NEIGHBORHOOD TOPOLOGY?



GOOD NEIGHBORHOOD TOPOLOGY?

• Also considered were: 

• Clustering topologies (islands) 

• Dynamic topologies 

• …  

• No clear way of saying which topology is the best 

• Exploration / exploitation dilemma 
• Some neighborhood topologies are better for local search others 

for global search  

• lbest neighborhood topologies seems better for global search,  

• gbest topologies seem better for local search 



ACCELERATION COEFFICIENTS

• The boxes show the distribution of the random vectors of the 
attracting forces of the local best and global best  

• The acceleration coefficients determine the scale distribution 
of the random individual (cognitive) component vector and the 
social component vector 



ACCELERATION COEFFICIENTS

• ɸ1 >0, ɸ2=0  particles are independent hill-climbers 

• ɸ1=0, ɸ2>0   swarm is one stochastic hill-climber 

• ɸ1=ɸ2>0    particles are attracted to the average of pi and gi 

• ɸ2>ɸ1 more beneficial for unimodal problems  

• ɸ1>ɸ2 more beneficial for multimodal problems 

• low ɸ1, ɸ2 smooth particle trajectories  

• high ɸ1, ɸ2 more acceleration, abrupt movements  

• Adaptive acceleration coefficients have also been proposed, for 
example to have ɸ1, ɸ2 decreased over time (e.g., Simulated 
Annealing)



ORIGINAL PSO: ISSUES

• The acceleration coefficients should be set sufficiently high  
• High acceleration coefficients result in less stable systems in 

which the velocity has a tendency to explode! 

• To fix this, the velocity v is usually kept within the range [-vmax, vmax]  
• However, limiting the velocity does not necessarily prevent particles 

from leaving the search space, nor does it help to guarantee 
convergence :(



INERTIA COEFFICIENT

• The inertia weight ω was introduced to control the velocity explosion  

• If ω, ɸ1, ɸ2  are set “correctly”, this update rule allows for 
convergence without the use of vmax 

• The inertia weight can be used to control the balance between 
exploration and exploitation:  

•  ω ≥ 1: velocities increase over time, swarm diverges 

• 0 < ω < 1: particles decelerate, convergence depends on ɸ1, ɸ2  

~� � ~� + ~r1 � ~��nd���d��� + ~r2 � ~�soc���



CONSTRICTION COEFFICIENT

• Take away some ‘guesswork’ for setting ω, ɸ1, ɸ2  

•  An “elegant” method for preventing explosion, ensuring convergence 
and eliminating the parameter vmax 

• The constriction coefficient was introduced as:  



FULLY INFORMED PSO (FIPS)

• Each particle is affected by all of its K neighbors  

• The velocity update in FIPS is:  

• FIPS outperforms the canonical PSO’s on most test-problems  

• The performance of FIPS is generally more dependent on the 
neighborhood topology (global best neighborhood topology is 
recommended) 



TYPICAL BENCHMARK FUNCTIONS



PERFORMANCE VARIANCE



BINARY / DISCRETE PSO

• A simple modification to the continuous one 

• Velocity remains continuous using the original update rule  

• Positions are updated using the velocity as a probability threshold 
to determine whether the j-th component of the i-th particle is a 
zero or a one 



ANALYSIS, GUARANTEES

• Hard because:  
- Stochastic search algorithm 
- Complex group dynamics 
- Performance depends on the search landscape  

• Theoretical analysis has been done with simplified PSOs on 
simplified problems  

• Graphical examinations of the trajectories of individual particles 
and their responses to variations in key parameters  

• Empirical performance distributions 



SUMMARY PSO

• Inspired by social and roosting behaviors in bird flocking 

• Easy to implement, easy to get good results with “wise” parameter 
tuning (but just a few parameters) 

• Computationally light 

• Exploitation-Exploration dilemma 

• A number of variants 

• A few theoretical properties (hard to derive for general cases) 

• Mostly applied to continuous function optimization, but also to 
combinatorial optimization, and robotics / distributed systems
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