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Abstract. Apportionment is the problem of distributing h indivisible seats across states in 
proportion to the states’ populations. In the context of the U.S. House of Representatives, 
this problem has a rich history and is a prime example of interactions between mathemati
cal analysis and political practice. Grimmett suggests to apportion seats in a randomized 
way such that each state receives exactly its proportional share qi of seats in expectation (ex 
ante proportionality) and receives either ⌊qi⌋ or ⌈qi⌉ many seats ex post (quota). However, 
there is a vast space of randomized apportionment methods satisfying these two axioms, 
and so we additionally consider prominent axioms from the apportionment literature. Our 
main result is a randomized method satisfying quota, ex ante proportionality, and house 
monotonicity—a property that prevents paradoxes when the number of seats changes and 
that we require to hold ex post. This result is based on a generalization of dependent round
ing on bipartite graphs, which we call cumulative rounding and which might be of indepen
dent interest as we demonstrate via applications beyond apportionment.
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1. Introduction
The Constitution of the United States says, “Representatives 
[in the U.S. House of Representatives] shall be appor
tioned among the several States according to their 
respective numbers, counting the whole number of per
sons in each State … ”

These “respective numbers,” or populations, of the 
states are determined every decade through the cen
sus. For example, on April 1, 2020, the population of 
the United States was 331,108,434, and the state of 
New York had a population of 20,215,751. New York, 
therefore, deserves 6.105% of the 435 seats in the 
House, which is 26.56 seats, for the next 10 years. The 
puzzle of apportionment is what to do about New 
York’s 0.56 seat—in this round of apportionment, it 
was rounded down to zero, and New York lost its 
27th seat.

The mathematical question of how to allocate these 
fractional seats has riveted the American political 
establishment since the country’s founding (Szpiro 
2010). In 1792, Congress approved a bill that would 
enact an apportionment method proposed by Alexan
der Hamilton, the first secretary of the treasury and 

star of the eponymous musical. If we denote the stan
dard quota of state i by qi (qi � 26:56 in the case of 
New York in 2020), Hamilton’s method allocates to 
each state its lower quota ⌊qi⌋ (26 for New York). 
Then, Hamilton’s method goes through the states in 
order of decreasing residue qi� ⌊qi⌋ (0.56 for New 
York) and allocates an additional seat to each state 
until all house seats are allocated.

As sensible as Hamilton’s method appears, it repeat
edly led to bizarre results, which became known as 
apportionment paradoxes. 
• The Alabama paradox: Using the 1880 census 

results, the chief clerk of the Census Office calculated 
the apportionment according to Hamilton’s method for 
all House sizes between 275 and 350 and discovered 
that, as the size increased from 299 to 300, Alabama lost 
a seat. In 1900, the Alabama paradox reappeared, this 
time affecting Colorado and Maine.
• The population paradox: In 1900, the populations 

of Virginia and Maine were 1,854,184 and 694,466, 
respectively. Over the following year, the populations 
of the two states grew by 19,767 and 4,649, respectively. 
Even though Virginia’s growth was larger even relative 
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to its population, Hamilton’s method would have trans
ferred a seat from Virginia to Maine.

Occurrences of these paradoxes caused partisan 
strife, which is only natural given that a state’s repre
sentatives have a strong personal stake in their state 
not losing seats. In both Congress and the courts, this 
strife took the form of a tug-of-war over the choice of 
apportionment method, the size of the House, and 
the census numbers, which was driven by the states’, 
parties’, and individual representatives’ self-interest 
rather than the public good.

This state of affairs improved in 1941 when Con
gress adopted an apportionment method that provably 
avoids the Alabama and population paradoxes, which 
had been developed by Edward Huntington, a Harvard 
mathematician, and Joseph Hill, the chief statistician 
of the Census Bureau. Even though the Huntington–Hill 
method is house monotone (i.e., it avoids the Alabama 
paradox) and population monotone (i.e., it avoids the 
population paradox), it has a different, equally bizarre 
weakness: it does not satisfy quota; that is, the allocation 
of some states may be different from ⌊qi⌋ or ⌈qi⌉. A strik
ing impossibility result by Balinski and Young (1982) 
shows that this tension is inevitable: no apportionment 
method can simultaneously satisfy quota and be popula
tion monotone. (We revisit this result in Section 3 and 
show that, whereas the theorem by Balinski and Young 
(1982) makes additional implicit assumptions, the incom
patibility between quota and population monotonicity 
continues to hold without these assumptions.)

Beyond the troubling Balinski–Young impossibility, 
there is, in our view, an even larger source of unfair
ness that plagues apportionment methods, which is 
rooted in their determinism. In addition to introduc
ing bias (the Huntington–Hill method disadvantages 
larger states), deterministic methods often lead to 
situations in which small counting errors can change 
the outcome. For example, based on the 2020 census, 
New York lost its 27th House seat, but it would have 
kept it had its population count been higher by 89 
residents! Indeed, current projections suggest that 
New York would have kept its seat were it not for 
distortions in census response rates (Elliott et al. 
2021). After the 1990 and 2000 censuses, similar cir
cumstances were the basis for lawsuits brought by 
Massachusetts and Utah. A second shortcoming of 
deterministic apportionment methods is a lack of fair
ness over time: for example, if the states’ populations 
remain static, a state with a standard quota of, say, 1.5 
might receive a single seat in every single apportion
ment and, therefore, only receive 2=3 of its deserved 
representation.

To address these issues, an obvious solution is to 
use randomization in order to realize the standard 
quota of each state in expectation as Grimmett (2004) 
proposes. If such a randomized method was used, 89 

additional residents would have shifted New York’s 
expected number of seats by a negligible 0.0001, and 
the decision between 26 or 27 seats would have been 
made by an impartial random process, which is less 
accessible to political maneuvering than, say, the cen
sus (Stone 2011).

Grimmett’s (2004) proposed apportionment method 
is easy to describe. First, it chooses a random permu
tation of the states; without loss of generality, that per
mutation is identity. Second, it draws U uniformly at 
random from [0, 1] and lets Qi :�U+

Pi
j�1 qj. Finally, 

it allocates to each state i one seat for each integer con
tained in the interval [Qi�1, Qi). In particular, this 
implies that the allocation satisfies quota.

Why this particular method? Grimmett (2004, p. 302) 
writes, “We offer no justification for this scheme apart 
from fairness and ease of implementation.” Grimmett’s 
(2004) method is easy to implement for sure, and what 
he refers to as “fairness”—realizing the fractional quotas 
in expectation—is arguably a minimal requirement for 
any randomized apportionment method. But his two 
axioms, “fairness” and quota, allow for a vast number of 
randomized methods: indeed, after allocating ⌊qi⌋ seats 
to each agent, the problem of determining which states to 
round up reduces to so-called πps sampling (which 
stands for inclusion probability proportional to size) with
out replacement, and dozens of such schemes have been 
proposed in the literature (Brewer and Hanif 1983). We 
believe, therefore, that additional criteria are needed to 
guide the design of randomized apportionment meth
ods. To identify such criteria, we return to the classics: 
house and population monotonicity.

1.1. Our Approach and Results
In this paper, we seek randomized apportionment 
methods that satisfy natural extensions of house and 
population monotonicity to the randomized setting. 
We want these monotonicity axioms to hold even ex 
post, that is, after the randomization has been realized. 
We find such methods by taking a parameterized class 
of deterministic methods, all of which satisfy the 
desired ex post axioms (in our case, subsets of popula
tion monotonicity, house monotonicity, and quota), 
and to then randomize over the choice of parameters 
such that ex ante properties hold (here, ex ante propor
tionality). In mechanism design, a similar approach 
extends strategyproofness to universal strategyproof
ness (Nisan and Ronen 2001).

Guaranteeing monotonicity axioms ex post is help
ful for preventing certain kinds of manipulation in the 
apportionment process. For instance, say that the cen
sus concludes and a randomized apportionment is 
determined, and only then does a state credibly con
test that its population was undercounted (in the 
courts or in Congress with the support of a majority). 
Using an apportionment method without population 
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monotonicity, states might strategically undercount 
their population in the census and only reveal the true 
count in case this turns out to be beneficial once the 
randomness is revealed. When using a population 
monotone method, by contrast, any revised appor
tionment would be made using the same deterministic 
and population monotone method, which implies that 
immediately revealing the full population count is a 
dominant strategy.

In Section 3, we first show that no such randomized 
methods exist for population monotonicity. This impos
sibility is not due to randomization or ex ante propor
tionality, but arises from the outright incompatibility of 
population monotonicity and quota. Thus, there do not 
exist suitable deterministic apportionment methods 
over which a randomized apportionment method could 
randomize. That population monotonicity and quota are 
incompatible is well-known from the Balinski–Young 
impossibility theorem (Balinski and Young 1982). But 
their proof uses seemingly mild background conditions 
that are not mild for our randomized purposes because, 
to provide ex ante proportionality, the randomized 
method must sometimes prioritize smaller states over 
larger states with positive probability, which is ruled out 
by those background conditions. We are able to prove a 
stronger version of their theorem, which derives the 
impossibility with no assumptions other than popula
tion monotonicity and quota. The deterministic appor
tionment methods that are most commonly used in 
practice (so called divisor methods, which include the 
Huntington–Hill method) satisfy population monotonic
ity but fail quota. So it makes sense to ask whether pop
ulation monotonicity can be combined with ex ante 
proportionality (without requiring quota). We construct 
such a method, which is reminiscent of the family of 
divisor methods, except that the so-called divisior crite
rion (Balinski and Young 1982) is specific to each state 
and is given by a sequence of Poisson arrivals.

For house monotonicity, we provide in Section 4
a randomized apportionment method that satisfies 
house monotonicity, quota, and ex ante proportional
ity. To obtain this result, we generalize the classic 
result of Gandhi et al. (2006) on dependent rounding 
in a bipartite graph. We call this method cumulative 
dependent randomized rounding or cumulative 
rounding for short. Cumulative rounding allows to 
correlate dependent rounding processes in multiple 
copies of the same bipartite graph such that the result 
satisfies an additional guarantee across copies of the 
graph. This guarantee, which we describe in the next 
paragraph, generalizes the quota axiom of apportion
ment. As a side product, our existence proof for house 
monotonicity provides a new characterization of 
the deterministic apportionment methods satisfying 
house monotonicity and quota, which is based on the 
corner points of a bipartite matching polytope.

To describe cumulative rounding more precisely, 
we first sketch the result of Gandhi et al. (2006). For 
a bipartite graph (V, E) and edge weights {we}e∈E in 
[0, 1], dependent rounding randomly generates a sub
graph (V, E′) with E′ ⊆ E providing three properties: 
marginal distribution (each edge e ∈ E is contained in 
E′ with probability we), degree preservation (in the 
rounded graph, the degree of a vertex v is the floor or 
the ceiling of v’s fractional degree 

P
v∈e∈Ewe), and neg

ative correlation. Cumulative rounding allows us to 
randomly round T many copies of (V, E), where each 
copy 1 ≤ t ≤ T has a set of weights {wt

e}e∈E. Each copy 
provides marginal distribution, degree preservation, 
and negative correlation. As we prove in Section 5, 
cumulative rounding additionally guarantees what 
we call cumulative degree preservation: for each ver
tex v and 1 ≤ t ≤ T, the sum of degrees of v across 
copies 1 through t equals the sum of fractional degrees 
of v across copies 1 through t rounded either up or 
down. For example, node v1 in Figure 1 is incident to 
edges with a total fractional weight of 2 · 1=4+ 2 ·
1=2 � 1:5 across copies t � 1, 2, and must, hence, be 
incident to one or two edges in total across the 
rounded versions of copies t � 1, 2. Because, across 
copies t � 1, 2, 3, v1’s total fractional degree is 
1:5+ 2 · 3=4 � 3, v1 must be incident to a total of 
exactly three rounded edges across the copies 
t � 1, 2, 3. By applying cumulative rounding to a star 
graph, we obtain a randomized apportionment 
method satisfying house monotonicity, quota, and ex 
ante proportionality.

We believe that cumulative rounding is of broader 
interest, and in Section 6, we present applications of 
cumulative rounding beyond apportionment. First, we 
consider a proposal of Buchstein and Hein (2009) for 
reforming the European Commission of the European 
Union: they propose a weighted lottery to determine 
which countries nominate commissioners. Using cumu
lative rounding to implement this lottery eliminates 
two key problems the authors identify in a simulation 
study, in particular, the possibility that some member 
states may not nominate any commissioners for a long 
time. We also describe how to apply cumulative round
ing to round fractional allocations of goods or chores, 

Figure 1. (Color online) Illustration of Cumulative Rounding 

Notes. Dashed lines indicate edges e ∈ E in the bipartite graph (V, E), 
which are labeled with weights wt

e. The highlighted lines indicate a 
possible random outcome of cumulative rounding.
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and we discuss a specific application of assigning fac
ulty to teach courses.

1.2. Related Work
1.2.1. Apportionment Theory. We have already men
tioned several seminal works of apportionment theory. 
Besides the axiomatic approach (e.g., Balinski and 
Young 1975, 1982; Balinski and Ramı́rez 1999, 2014; 
Palomares et al. 2024), which has arguably proved 
the most influential, deterministic apportionment has 
been extensively studied through the lens of con
strained optimization (e.g., Huntington 1928, Burt and 
Harris 1963, Ernst 1994, Agnew 2008), with respect to 
bias against larger or smaller states (e.g., Pólya 1919, 
Balinski and Young 1982, Marshall et al. 2002, Lauwers 
and Van Puyenbroeck 2006, Janson 2014), and in multi
dimensional generalizations (e.g., Balinski and Demange 
1989a, b; Maier et al. 2010; Cembrano et al. 2022; Mathieu 
and Verdugo 2022). For a comprehensive treatment of 
this theory, we refer the reader to Balinski and Young 
(1982) and Pukelsheim (2017).

1.2.2. Randomized Apportionment. A naïve form of 
randomized apportionment was suggested by Balinski 
(1993, p. 145), who immediately rejected it: “It is trivial 
to propose an unbiased method: assign the h seats at 
random with probabilities proportional to the fair 
shares. In this case none of the other desirable proper
ties is guaranteed.” The proposal by Grimmett (2004), 
which we discuss above, makes a much stronger case 
for randomized apportionment by showing one desir
able property—quota—which can, in fact, be guaran
teed ex post. Our work adds house and population 
monotonicity to the set of achievable properties.

Aziz et al. (2019) develop a random rounding scheme 
as part of a mechanism for strategyproof peer selection, 
which they simultaneously propose as a randomized 
apportionment method. As does Grimmett’s (2004) 
method, their method satisfies ex ante proportionality 
and quota. The main advantage of their method is that 
its support consists of only linearly (not exponentially) 
many deterministic apportionments. This, Aziz et al. 
(2019) argue, is useful in repeated apportionment set
tings, in which one could repeat a periodic sequence of 
these deterministic apportionments and thereby limit 
the possibility of selecting the same state much too fre
quently or much too rarely because of random fluctua
tions. If this is the goal, cumulative rounding will 
arguably give better guarantees (see Section 6.1).

Hong et al. (2023) propose pipage rounding (Gandhi 
et al. 2006)—in this case, equivalent to pivotal sam
pling (Deville and Tille 1998)—as a randomized appor
tionment method without pursuing monotonicity.

Cembrano et al. (2024) propose a randomized 
apportionment scheme that circumvents the impossi
bility from Section 3.1 by allowing the house size to 

deviate ex post from its target. Their scheme satisfies 
ex ante proportionality, quota, and population mono
tonicity along with probabilistic bounds on how far 
the house size may deviate. Cembrano et al. (2024) 
also provide a conceptually simpler version of our 
characterization of house monotone and quota- 
compliant apportionment solutions in Theorem 6.

Evren and Khanna (2024) study a problem closely 
related to ours but inspired by affirmative action for 
faculty hiring in Indian universities. One can think of 
a house monotone and quota-compliant apportion
ment method as an iterative process that, in each time 
step t � 1, 2, : : : , allocates the tth house seat to one of 
the states, ensuring that the total number of seats 
awarded to each state is proportional up to rounding. 
In the same way, Evren and Khanna (2024) succes
sively allocate a university department’s vacancies to 
demographic groups, and they also aim for quota and 
ex ante proportionality. Their algorithm is essentially 
equivalent to our randomized apportionment method; 
instead of randomly rounding a matching, they round 
a flow that appears similar to the one of Cembrano et al. 
(2024). By independently randomizing over hiring deci
sions in each of several departments, the authors imme
diately obtain concentration bounds, which imply that, 
in total across departments, demographic groups are 
likely almost proportionally represented.

Correa et al. (2024) study randomized apportion
ment to target—in addition to ex ante proportionality 
and quota—monotonicity axioms that are quite differ
ent from ours. The general flavor of these monotonic
ity axioms is to require that, if the standard quotas of 
some set S of states weakly increase and the standard 
quotas of all other states weakly decrease, the probabil
ity that the states in S simultaneously receive more seats 
should weakly increase; that is, they impose monotonic
ity on higher order correlations in the rounding. None 
of the apportionment methods they consider satisfy 
house monotonicity (Correa et al. 2024, appendix A).

1.2.3. Fair Division. Apportionment can be seen as a 
special case of the fair division of indivisible goods, 
which has recently received increased attention in 
operations research (e.g., Sandomirskiy and Segal- 
Halevi 2022, Aziz et al. 2023b, Benadè et al. 2023). The 
apportionment setting is characterized by the fact that 
the goods (i.e., the seats) are interchangeable and that 
the agents (i.e., the states) are weighted (in other 
words, have different entitlements) (e.g., Barbanel 
1996, Aziz et al. 2020). Though the focus on inter
changeable goods may appear very restrictive at first 
glance, Chakraborty et al. (2021) show that house 
monotone apportionment methods, when interpreted 
as picking sequences, induce allocation algorithms for 
the full setting of weighted fair division. In particular, 
an apportionment method satisfying house monotonicity 
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and quota yields a fair division algorithm satisfying 
weighted proportionality up to one good (WPROP1) 
(Chakraborty et al. 2021, proposition 4.8). Hence, our 
randomized method in Section 4 can be seen as a 
randomized picking sequence algorithm that ensures 
WPROP1 ex post and ex ante satisfies that each agent i 
gets the tth pick (for each t � 1, 2, : : : ) with probability 
proportional to i’s weight. This latter property is not 
only an intuitively appealing fairness guarantee in its 
own right, but also immediately implies weighted pro
portionality (Barbanel 1996).

Our work is part of a larger thrust to develop alloca
tion mechanisms that combine desirable ex ante and 
ex post guarantees, which have been termed best-of- 
both-worlds guarantees (Aziz et al. 2023b). The works 
of Hylland and Zeckhauser (1979) and Bogomolnaia 
and Moulin (2001) were early precursors to this idea 
in the setting of matchings in which the space of real
izable ex ante probabilities has a very clean structure 
(Birkhoff 1946, von Neumann 1953). Budish et al. 
(2013) generalize this approach to more general com
binatorial constraints. Aziz et al. (2023a) first study 
classic fair division axioms in this way, and Babaioff 
et al. (2022) and Feldman et al. (2023) extend this 
approach to additional fairness axioms and more gen
eral valuations. The corollary in the previous para
graph is a best-of-both-worlds fairness guarantee for 
weighted fair division; recently, Aziz et al. (2023a) 
and Hoefer et al. (2024) obtain such guarantees for 
this setting.

1.2.4. Randomly Rounding Bipartite Matchings. As a 
consequence of the Birkhoff–von Neumann theorem 
(Birkhoff 1946, von Neumann 1953), any fractional 
matching in a bipartite graph can be implemented as a 
lottery over integral matchings in the sense that each 
edge is present in the random matching with probabil
ity equal to its weight in the fractional matching. One 
algorithm for rounding a bipartite matching is pipage 
rounding (Ageev and Sviridenko 2004), which Gandhi 
et al. (2006) randomize in their dependent rounding 
technique. This rounding technique is powerful 
because it can directly accommodate fractional degrees 
larger than one and can provide negative correlation 
properties so that Chernoff concentration bounds 
apply (Panconesi and Srinivasan 1997). The technique 
of Gandhi et al. (2006) finds many applications in 
approximation algorithms (Kumar et al. 2009, Bansal 
et al. 2012) and in fair division (Saha and Srinivasan 
2018, Akbarpour and Nikzad 2020, Cheng et al. 2020).

1.2.5. Just-in-Time Production. Steiner and Yeomans 
(1993) study a problem in just-in-time industrial 
manufacturing: how to alternate between the production 
of different types of goods in a way that produces each 
type in specified proportions. As pointed out by Bautista 

et al. (1996) and expanded upon by Balinski and Shahidi 
(1998), this problem is related to apportionment. In par
ticular, a production schedule resembles a deterministic, 
house monotone apportionment method: as the avail
able production time increases by one slot, the schedule 
needs to decide which type to produce in the next slot. 
Steiner and Yeomans (1993) end up with a property that 
nearly guarantees quota because they aim to minimize 
how far the prevalence of types among the goods pro
duced so far deviates from the desired proportions. 
(Most of the literature on this just-in-time production 
problem minimizes other measures of deviation—see 
Kubiak (1993)—which are not connected to quota.) 
Now, Steiner and Yeomans (1993) only produce deter
ministic schedules, and the existence of deterministic 
house monotone and quota apportionment methods has 
long been known (Balinski and Young 1975, Still 1979). 
But we believe that the main construction in their proof 
could be randomized to obtain an alternative proof of 
Theorem 5 without, however, providing the generality of 
cumulative rounding. In fact, a similar graph construc
tion to that by Steiner and Yeomans (1993) is randomly 
rounded within a proof by Gandhi et al. (2006) to obtain 
an approximation result about broadcast scheduling.

2. Model
Throughout this paper, fix a set of n ≥ 2 states N � {1, 
2, : : : , n}. For a given population profile p→ ∈ Nn, which 
assigns a population of pi ∈ N to each state i, and for a 
house size h ∈ N, an apportionment solution determin
istically allocates to each state i a number ai ∈ Z≥0 of 
house seats such that the total number of allocated 
seats is h. Formally, a solution is a function f : Nn ×

N→ Zn
≥0 such that, for all p→ and h, 

P
i∈N fi(p

→, h) � h. For 
a population profile p→ and house size h, state i’s stan
dard quota is qi :� (pi=(

P
i∈Npi))h.

Next, we define three axioms for solutions: 
• Quota: A solution f satisfies quota if, for any p→ and 

h, it holds that fi(p
→, h) ∈ {⌊qi⌋, ⌈qi⌉} for all states i.

• House monotonicity: A solution f satisfies house 
monotonicity if, for any p→ and h, increasing the house 
size to h+ 1 does not reduce any state’s seat number, 
that is, if fi(p

→, h) ≤ fi(p
→, h+ 1) for all i ∈N.

• Population monotonicity: We say that a solution f, 
some p→,p→′ ∈ Nn, and some h, h′ ∈ N exhibit a population 
paradox if there are two states i ≠ j such that p′i ≥ pi, 
p′j ≤ pj, fi(p

→′, h′) < fi(p
→, h), and fj(p

→′, h′) > fj(p
→, h) or, in 

words, if state i loses seats and j wins seats even though 
i’s population weakly grew and j’s population weakly 
shrunk. A solution f is population monotone if it 
exhibits no population paradoxes for any p→,p→′, h, h′. By 
setting p→ � p→′, one easily verifies that population mono
tonicity implies house monotonicity.

Note that the apportionment literature often consid
ers two components of the quota axiom separately: 
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lower quota (“fi(p
→, h) ≥ ⌊qi⌋”) and upper quota (“fi(p

→, h)
≤ ⌈qi⌉”). Also note that our definition of population 
monotonicity, taken from Robinson and Ullman (2010), 
is slightly weaker than the definition of other authors, 
whose violation we describe in the introduction. All 
results extend to this alternative notion of relative pop
ulation monotonicity (Robinson and Ullman 2010): the 
proof of Theorem 1 immediately applies, and the proof 
of Theorem 2 is easy to adapt. Our results also continue 
to apply if one weakens population monotonicity by 
requiring that h′ � h.

Finally, we define randomized apportionment meth
ods. One potential definition, used by Grimmett (2004), 
is a function that, for each p→ and h, specifies a probabil
ity distribution over seat allocations (ai)i∈N. For us, an 
apportionment method is instead a random process 
that determines an entire (deterministic) apportion
ment solution, that is, apportionments for all popula
tion profiles p→ and house sizes h. The advantage of this 
definition is that it allows us to formulate axioms relat
ing these different apportionments. We specify our 
apportionment methods by giving two components: 
first, a probability distribution for selecting some out
come ω from some suitable set Ω of possible outcomes 
and, second, the apportionment solution Fω parameter
ized by ω. We refer to such an apportionment method 
as F, leaving the distribution over ω implicit. We treat 
an apportionment method F as a solution-valued ran
dom variable so that F(p→, h) refers to the method’s ran
dom apportionment for p→, h and Fi(p

→, h) refers to the 
random number of seats apportioned to state i. (We 
can ignore the measure theoretic complications of this 
statement as long as, for each p→, h, the random appor
tionment Fω(p→, h) is a valid random variable, which is 
the case for all natural constructions following the two- 
component structure.) Our axioms, described in the 
next paragraph, constrain both the random behavior of 
F and the consistency of any solution Fω in F’s support 
across inputs.

A method F satisfies ex ante proportionality if, for 
any p→, h and for any state i, i’s expected number of seats 
equals i’s standard quota, that is, if E[Fi(p

→, h)] � qi, 
where the expected value is over the random choice of 
apportionment solution. A method F satisfies quota, 
house monotonicity, or population monotonicity if all 
solutions in the method’s support satisfy the respective 
axiom. In this paper, we mainly search for apportion
ment methods that combine quota and ex ante 
proportionality—the two axioms obtained by Grimmett 
(2004)—with either population or house monotonicity.

3. Population Monotonicity
3.1. Population Monotonicity Is Incompatible with 

Quota
We begin by showing that no apportionment method 
satisfies population monotonicity, quota, and ex ante 

proportionality. In fact, quota and population mono
tonicity alone are incompatible: we show that no solu
tion satisfies these two axioms. Because a method 
satisfying quota and population monotonicity would 
be a random choice over such solutions, no such 
method exists either.

At first glance, the incompatibility of quota and 
population monotonicity might seem to follow from 
existing results, but these results implicitly make 
assumptions that are not appropriate for randomized 
apportionment. Indeed, Balinski and Young (1982), 
who originally prove this incompatibility, as well as 
variations of their proof (Robinson and Ullman 2010, 
El-Helaly 2019) all assume what Robinson and Ull
man (2010) call the order-preserving property; that is, 
if state i has a strictly larger population than state j, 
then i must receive at least as many seats as j. This 
property is usually proved as a consequence of neu
trality together with population monotonicity.

The order-preserving property is reasonable for 
developing deterministic apportionment methods, but 
it is not desirable for the component solutions of a 
randomized apportionment method. This is clear for 
h � 1: the order-preserving property would mean that 
only the very largest state(s) can get a seat with posi
tive probability; by contrast, the strength of randomiza
tion is that it allows us to allocate the seat to smaller 
states with some positive probability. To our knowledge, 
the existence of quota and population monotone solu
tions without the assumption of the order-preserving 
property was an open problem.

Theorem 1. No (deterministic) apportionment solution 
satisfies population monotonicity and quota.

Proof. Fix a set of five states, and let f be a solution 
satisfying quota.

We show that f must violate population monotonic
ity by analyzing three types of population profiles, 
which are given in Table 1, all for house size h � 10. 
The starting profile is p→A in this table. By quota, state 1 
must receive either eight or nine seats on this profile, 
but we show that either choice leads to a violation of 
population monotonicity: first, we show that allocating 
nine seats implies a violation of population monotonic
ity with respect to profile p→B; second, we show that 
allocating eight seats contradicts population monoto
nicity with respect to p→C.

Case 1: Allocating nine seats contradicts population 
monotonicity: Suppose that f1(p

→A, 10) � 9. Then, the 
remaining seat must be given to either state 2, 3, 4, or 
5. Without loss of generality, we may assume that 
f (p→A, 10) � (9, 0, 0, 0, 1).

Next, consider the profile p→B. Because quota pre
vents us from allocating more than seven seats to state 
1 or more than two seats to state 5, at least one of the 
states 2, 3, and 4 must receive a seat on p→B. Thus, this 
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state’s allocation strictly increases from its allocation 
of zero seats on p→A even though the state’s population 
has not changed. Moreover, state 1 can receive at most 
seven seats on this profile by quota, which is strictly 
below the nine seats on p→A, and state 1’s population has 
also remained the same. But population monotonicity 
forbids there to be a pair of states with unchanged pop
ulation such that one gains a seat and the other loses a 
seat. Hence, if state 1 receives nine seats on p→A, then f 
violates population monotonicity.

Case 2: Allocating eight seats contradicts population 
monotonicity: Now, suppose that f1(p

→A, 10) � 8. The 
remaining two seats must be given to two states out 
of 2, 3, 4, and 5; without loss of generality, we may 
assume that f (p→A, 10) � (8, 0, 0, 1, 1).

On profile p→C, quota implies that state 1 receives at 
least nine seats—strictly more than the eight given on 
p→A even though the population has not changed. 
Given that there is at most one more seat to hand out, 
at least one state out of states 4 and 5 must receive 
zero seats on p→C, which is a strict reduction with 
respect to p→A even though the state’s population is the 
same. Thus, allocating eight seats to state 1 on p→A also 
leads to a violation of population monotonicity.

Because both possible choices for f1(p
→A, 10) imply a 

monotonicity violation, no solution can satisfy both 
quota and population monotonicity. w

The proof of Theorem 1 uses n � 5 states and can eas
ily be generalized to any larger number of states. For 
n � 3 states, the Sainte-Laguë method (also known as 
Webster’s method) satisfies both properties (Balinski 
and Young 1982, proposition 6.2). Whether impossibil
ity holds for n � 4 remains an open question. The origi
nal impossibility result of Balinski and Young (1982) 
(which, in addition, assumes the order-preserving prop
erty) uses only n � 4 states.

3.2. A Population Monotone and Ex Ante 
Proportional (but Not Quota) Method

The incompatibility between population monotonicity 
and quota leaves open whether there are apportion
ment methods satisfying population monotonicity and 

ex ante proportionality. The answer is positive, and 
we now construct a method satisfying both axioms.

Because population monotonicity relates a solution’s 
result for one input with those for infinitely many other 
inputs, it highly constrains the shape of population 
monotone solutions. In fact, under widely assumed 
regularity conditions, population monotone solutions 
are exactly characterized (Balinski and Young 1982) by 
the class of divisor methods (for consistency with our 
terminology, divisor solutions), which inspire our ran
domized method. A divisor solution is defined by a 
divisor criterion, which is a monotone increasing func
tion d : Z≥0→ R≥0. (For instance, the Huntington–Hill 
solution is induced by d(t) :�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t (t+ 1)

p
.) For a popula

tion profile p→ and house size h, the divisor solution cor
responding to d can be calculated by considering the 
sets {pi=d(t) | t ∈ Z≥0} for each state i, determining the h 
largest values across all sets, and allocating to each 
state i a number of seats equal to how many of the h 
largest values came from i’s set.

When state populations change, the values pi=d(t)
evolve in a way that ensures population monotonicity: 
if state i grows and state j shrinks, a value belonging 
to state i might overtake a value belonging to j that 
was originally larger, but none of j’s values can over
take any of i’s values. As a result, i’s number of seats 
cannot decrease if j’s number of seats increases.

To avoid the order-preserving property (for reasons 
described in Section 3.1), we (randomly) choose a dif
ferent divisor criterion for each state, which leaves the 
above argument for population monotonicity intact. 
The question is how to sample these divisor criteria 
such that ex ante proportionality holds. The answer 
lies in the properties of Poisson arrival processes: 
across independent, scaled Poisson processes, which 
process yields the first arrival is distributed with prob
abilities that are proportional to the reciprocals of the 
scaling factors, and because the interarrival times of 
the processes are memoryless, the same holds for each 
subsequent arrival. These properties allow us to ran
domly construct a generalized divisor solution such 
that the overall distribution satisfies population 
monotonicity and ex ante proportionality.

Theorem 2. There exists an apportionment method F that 
satisfies population monotonicity and ex ante proportionality.

Proof. Which solution is randomly chosen by the 
method depends on the values taken on by n indepen
dent Poisson arrival processes with rate one, which 
we define as our outcome ω. We now construct the 
solution Fω corresponding to any given ω. For each 
state i, ω determines an infinite sequence 0 < xi

1 <
xi

2 < · · · of arrival times. We describe the apportion
ment given by Fω on input p→ and h, which we illus
trate in Figure 2: First, we divide each arrival time xi

t 
by the corresponding state’s population; that is, we 

Table 1. Populations and Standard Quotas for Three 
Population Profiles with House Size h � 10 Used in 
Showing That Population Monotonicity and Quota Are 
Incompatible

State i

Profile p→A Profile p→B Profile p→C

pA
i qA

i pB
i qB

i pC
i qC

i

1 824 8.24 824 6.99 824 9.02
2 44 0.44 44 0.37 1 0.01
3 44 0.44 44 0.37 1 0.01
4 44 0.44 44 0.37 44 0.48
5 44 0.44 222 1.88 44 0.48
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set yi
t :� xi

t=pi. Second, we combine the yi
t for all t and i 

in a single arrival sequence (z1, i1), (z2, i2), : : : labeled 
with states; that is, each (zj, ij) corresponds to some 
arrival yi

t for some i and t such that zj � yi
t is the arrival 

time, ij � i is the agent label, and the zj are sorted in 
increasing order. Third, we allocate | {1 ≤ j ≤ h | ij � i} |
many seats to each state i, that is, a number of seats 
equal to how many among the h smallest scaled 
arrival times belonged to i’s arrival process. This spe
cifies the solution Fω and, hence, the entire apportion
ment method F. Note that Fω closely resembles a 
divisor solution, in which state i’s set is {1=yi

t |t ∈
Z≥0} � {pi=xi

t |t ∈ Z≥0}, that is, in which, for each state 
i, t ⊢→ xi

t plays the role of a state-specific divisor 
criterion.

First, we show that F satisfies ex ante proportional
ity. For this, fix some p→ and h. Then, the {yi

t}t≥1 for 
each i are distributed as the arrival sequences of inde
pendent Poisson processes, in which i’s arrival process 
has a rate of pi. As stated by the coloring theorem for 
Poisson processes (Kingman 1993, p. 53), our labeled 
arrival sequence (zj, ij) has the same distribution as if 
we had sampled a Poisson arrival process 0 < z1 <
z2 < · · · with arrival rate 

P
i∈Npi and had drawn each 

ij independently, choosing each i ∈N with probability 
proportional to pi. Because the zj and ij are indepen
dent in this way, F(p→, h) is distributed as if sampling h 
states with probability proportional to the states’ 
populations and with replacement. In particular, this 
implies ex ante proportionality.

It remains to show that F satisfies population mono
tonicity. Fix an ω, that is, the xi

t. Consider two inputs 
p→, h and p→′, h′, for which we show that Fω does not 
exhibit a population paradox. Denoting the inputs’ 
respective variables by yi

t, zj and yi
t
′, z′j , it is easy to see 

that, for all i for which p′i ≥ pi, yi
t
′ ≤ yi

t for all t, and 
that, for all i for which p′i ≤ pi, yi

t
′ ≥ yi

t for all t. 
Observe that each state i receives a number of seats 
equal to the number of its scaled arrival times yi

t 
(respectively, yi

t
′) that are at most zh (z′h).

Suppose that z′h ≥ zh (the reasoning for the case z′h ≤
zh is symmetric). Then, whenever yi

t ≤ zh for a state i 

for which p′i ≥ pi, then yi
t
′ ≤ yi

t ≤ zh ≤ z′h, which shows 
that i’s seat number must weakly increase. One veri
fies that this rules out a population paradox on p→, h 
and p→′, h′. Together with the symmetric argument for 
z′h ≤ zh, this establishes population monotonicity. w

Clearly, the solutions’ resemblance to divisor solu
tions enables our proof of population monotonicity. At 
the same time, using different divisor criteria for dif
ferent states allows us to avoid the order-preserving 
property, which would have prevented ex ante pro
portionality as described in Section 3.1. Less satisfying 
is that, whereas classic divisor criteria satisfy bounds 
such as t ≤ d(t) ≤ t+ 1, the divisor criteria used in the 
last theorem do not satisfy any such bounds. As a 
result, solutions are likely to substantially deviate from 
proportionality ex post. An interesting question for 
future work is whether Theorem 2 can be strengthened 
to additionally satisfy lower quota or upper quota.

4. House Monotonicity
Whereas we cannot obtain population monotonicity 
without giving up on quota, we now propose an 
apportionment method that combines house monoto
nicity with quota and ex ante proportionality.

4.1. Examples of Pitfalls
An intuitive strategy for constructing a house mono
tone randomized apportionment method is to do it 
inductively, seat by seat. Thus, we would need a strat
egy for extending a method that works for all house 
sizes h′ ≤ h to a method that also works for house size 
h+ 1. In this section, we give examples suggesting 
that this does not work by showing that some reason
able methods cannot be extended without violating 
quota or ex ante proportionality. This motivates a 
search for a more global strategy for constructing a 
house-monotone method.

Example 1. Our first example shows that there are 
apportionments for a given h that satisfy quota but 
that are “toxic” in that they can never be chosen by a 
house monotone solution that satisfies quota. Suppose 
that we have four states with populations p→ � (1, 2, 
1, 2). The distribution that we consider is the one given 
by Grimmett’s (2004) method (as described in the 
introduction) for these inputs. Let h � 2. Observe 
that, if the random permutation chosen by Grimmett’s 
(2004) method is identity and if, furthermore, U > 2=3, 
then Grimmett’s (2004) method returns the allocation 
(1, 0, 1, 0). But we show that no solution f such that 
f (p→, 2) � (1, 0, 1, 0) can satisfy house monotonicity and 
quota. Indeed, if f is house monotone, then at least one 
out of state 2 or state 4 must still be given zero seats 
by f when h � 3, but quota requires that both states 
receive exactly one seat when h � 3. It follows that 
Grimmett’s (2004) method, the apportionment method 

Figure 2. (Color online) Illustration of the Population Mono
tone Method in Theorem 2
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of Aziz et al. (2019), or any other method satisfying 
quota and whose support contains solutions f with 
f (p→, 2) � (1, 0, 1, 0) cannot be house monotone.

Thus, a first challenge that any quota and house 
monotone method must overcome is to never produce 
a toxic apportionment for a specific h that cannot be 
extended to all larger house sizes in a house monotone 
and quota-compliant way. Still (1979) and, later, 
Balinski and Young (1979) give a characterization of 
nontoxic apportionments, but we found no way of 
transforming this characterization into an apportion
ment method that would be ex ante proportional.

Example 2. Our second example shows that, even if 
there are no toxic apportionments in the support of a 
distribution, the wrong distribution over apportion
ments might still lead to violations of one of the 
axioms. Let there be four states with populations p→ �
(45, 25, 15, 15) and let h � 3; thus, the standard quotas 
are (1:35, 0:75, 0:45, 0:45). We consider the following 
distribution over allocations:

a→ �

(2, 1, 0, 0) with probability 35%,
(1, 1, 0, 1) with probability 20%,
(1, 1, 1, 0) with probability 20%,
(1, 0, 1, 1) with probability 25%:

8
>>><

>>>:

As we show in Appendix A, none of these allocations is 
toxic, and the distribution can be part of an apportion
ment method in which all three axioms hold for p→ and 
all h′ ≤ 3. Nevertheless, we show in the following that 
any apportionment method F that satisfies house mono
tonicity and quota and that has the above distribution 
for F(p→, 3) must violate ex ante proportionality. Indeed, 
fix such an F. On the one hand, note that, for h � 4, state 
2’s standard quota is 4 · 25=100 � 1, so any quota appor
tionment must give the state 1 seat. Because any solution 
f in the support of F satisfies house monotonicity and 
quota by assumption, any f such that f (p→, 3) � (1, 0, 1, 1)
must satisfy f (p→, 4) � (1, 1, 1, 1). Thus, with at least 25% 
probability, F1(p

→, 4) � 1. On the other hand, because 
state 1’s standard quota for h � 4 is 1:8 ≤ 2, F1(p

→, 4) ≤ 2 
holds deterministically by quota. It follows that 
E[F1(p

→, 4)] ≤ 25% · 1+ 75% · 2 � 1:75 < 1:8, which 
means that F must violate ex ante proportionality as 
claimed. To avoid this kind of conflict between house 
monotonicity, ex ante proportionality, and quota, the 
distribution of F(p→, 3)must allocate at least 5% combined 
probability to the allocations (2, 0, 1, 0) and (2, 0, 0, 1), 
which to us is not obvious other than by considering the 
specific implications on h � 4 as above.

4.2. Cumulative Rounding
The examples of the last section show that it is diffi
cult to construct house monotone apportionment 
methods seat by seat. In this section, we develop an 

approach that is able to explicitly take into account 
how rounding decisions constrain each other across 
house sizes. Our approach is based on dependent ran
domized rounding in a bipartite graph that we con
struct. First, we state the main theorem by Gandhi 
et al. (2006).
Theorem 3 (Gandhi et al. 2006). Let (A ∪ B, E) be an 
undirected bipartite graph with bipartition (A, B). Each edge 
e ∈ E is labeled with a weight we ∈ [0, 1]. For each v ∈ A 
∪ B, we denote the fractional degree of v by dv :�

P
v∈e∈Ewe.

Then, there is a random process, running in O(( |A | +
|B | ) · |E | ) time, that defines random variables Xe ∈ {0, 1}
for all e ∈ E such that the following properties hold: 
• Marginal distribution:
For all e ∈ E, E[Xe] � we.
• Degree preservation:
For all v ∈ A ∪ B, 

P
v∈e∈EXe ∈ {⌊dv⌋, ⌈dv⌉}.

• Negative correlation:
For all v ∈ A ∪ B and S ⊆ {e ∈ E |v ∈ e}, P[

V
e∈SXe �

1] ≤
Q

e∈Swe and P[
V

e∈SXe � 0] ≤
Q

e∈S(1�we).

If Xe � 1 for an edge e, we say that e gets rounded 
up, and if Xe � 0, then e gets rounded down. We do 
not use negative correlation in our apportionment 
results, but it is crucial in many applications of depen
dent rounding because it implies that linear combina
tions of the shape 

P
e∈Sae Xe for some ae ∈ [0, 1] obey 

Chernoff concentration bounds (Panconesi and Srini
vasan 1997).

To see the connection to apportionment, let p→ be a 
population profile. Then, to warm up, the problem of 
apportioning a single seat can be easily cast as depen
dent rounding in a bipartite graph: indeed, let A con
sist of a single special node a and let B contain a node 
bi for each state i. We draw an edge e � {a, bi} with 
weight we � pi=

P
j∈Npj for each state i. Apply depen

dent rounding to this star graph. Then, a’s fractional 
degree of exactly one means that, by degree preserva
tion, exactly one edge {a, bi} gets rounded up, which 
we interpret as the seat being allocated to state i. 
Moreover, marginal distribution ensures that each 
state receives the seat with probability proportional to 
its population. This shows that randomized rounding 
can naturally express ex ante proportionality, which 
becomes a useful building block in the following.

Next, we expand our construction to multiple house 
seats and to satisfying house monotonicity across dif
ferent house sizes. The most natural way is to dupli
cate the star graph from the last paragraph once per 
house size h � 1, 2, : : : with nodes ah, {bh

i }i∈N and edges 
{{ah, bh

i }}i∈N. (In this intuitive exposition, we do not 
consider any explicit upper bound on the house sizes. 
Our formal result in Theorem 5 rounds a finite graph 
but this turns out to suffice for obtaining house mono
tonicity for all house sizes h ∈ N.) If {ah, bh

i } gets 
rounded up in the hth copy of the star graph, we 
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interpret this as the hth seat going to state i. In other 
words, we determine how many seats get apportioned 
to state i for a house size h by counting how many 
edges {ah′ , bh′

i } got rounded up across all h′ ≤ h. This 
construction automatically satisfies house monotonicity 
and satisfies ex ante proportionality by the marginal 
distribution property but may violate quota by arbi
trary amounts.

To explain how randomized rounding might be use
ful for guaranteeing quota, let us give a few details on 
how the pipage rounding procedure (Gandhi et al. 2006) 
randomly rounds a bipartite graph. In each step, pipage 
rounding selects either a cycle or a maximal path consist
ing of edges with fractional weights in (0, 1). The edges 
along this cycle or path are then alternatingly labeled 
even or odd, which is possible because each cycle in a 
bipartite graph has an even number of edges. Depend
ing on a biased coinflip and appropriate numbers 
α,β > 0, the algorithm either (1) increases all odd edge 
weights by α and decreases all even edge weights by α 
or (2) decreases all odd edge weights by β and increases 
all even edge weights by β. In this process, more and 
more edge weights become zero or one, which deter
mines the Xe once no fractional edges remain.

The cycle/path rounding steps in pipage rounding 
represent an opportunity to couple the seat-allocation 
decisions across h in a way that ultimately allows us to 
guarantee quota. In our current graph consisting of dis
joint stars, there are no cycles, and the maximal paths 
are always pairs of edges {ah, bh

i }, {ah, bh
j } for two states i, 

j and some h. Thus, pipage rounding correctly anticorre
lates the decision of giving the hth seat to state i and the 
decision of giving the hth seat to state j, but decisions for 
different seats remain independent. To guarantee quota, 
increasing (respectively, decreasing) the probability of 
the hth seat going to state i should also decrease 
(increase) the probability of some nearby seats h′ going 
to state i and increase (decrease) the probability of seats 
h′ going to some other state j. The difficulty is to choose 
these h′ and j to provide quota, which is particular tricky 
because, in the course of running pipage rounding, 
some of the edge weights are rounded to zero and one 
and no longer available for paths or cycles.

Not only are we able to use pipage rounding to 
guarantee quota, but we do so through a general con
struction that adds quota-like guarantees to an arbi
trary instance of repeated randomized rounding; we 
refer to this technique as cumulative rounding. In the 
following statement, the “time steps” t take the place 
of our possible house sizes h.

Theorem 4. Let (A ∪ B, E) be an undirected bipartite 
graph. For each time step t � 1, : : : , T, consider a set of edge 
weights {wt

e}e∈E in [0, 1] for this bipartite graph. For each 
v ∈ A ∪ B and 1 ≤ t ≤ T, we denote the fractional degree 
of v at time t by dt

v :�
P

v∈e∈Ewt
e.

Then, there is a random process, running in O(T2 ·

( |A | + |B | ) · |E | ) time, that defines random variables Xt
e ∈

{0, 1} for all e ∈ E and 1 ≤ t ≤ T, such that the following 
properties hold for all 1 ≤ t ≤ T. Let Dt

v :�
P

v∈e∈EXt
e 

denote the random degree of v at time t. 
• Marginal distribution:
For all e ∈ E, E[Xt

e] � wt
e.

• Degree preservation:
For all v ∈ A ∪ B, Dt

v ∈ {⌊dt
v⌋, ⌈dt

v⌉}.
• Negative correlation:
For all v ∈ A ∪ B and S ⊆ {e ∈ E |v ∈ e}, P[

V
e∈SXt

e � 1] ≤
Q

e∈Swt
e and P[

V
e∈SXt

e � 0] ≤
Q

e∈S(1�wt
e).

• Cumulative degree preservation:
For v ∈ A ∪ B, 

Pt
t′�1 Dt′

v ∈ {⌊
Pt

t′�1 dt′
v ⌋, ⌈

Pt
t′�1 dt′

v ⌉}.

The first three properties can be achieved by simply 
applying Theorem 3 in each time step independently. 
Cumulative rounding correlates these rounding pro
cesses such that cumulative degree preservation (a gen
eralization of quota) is additionally satisfied.

4.3. House Monotone, Quota-Compliant, and Ex 
Ante Proportional Apportionment

Before we prove Theorem 4, we explain how cumula
tive rounding can be used to construct an apportion
ment method that is house monotone and satisfies 
quota and ex ante proportionality.

None of these three axioms connects the outcomes 
at different population profiles p→, and so it suffices to 
consider them independently. Thus, let us fix a popu
lation profile p→. Denote the total population by p :�P

i∈Npi. The behavior of a house monotone solution 
on inputs with profile p→ and arbitrary house sizes can 
be expressed through what we call an infinite seat 
sequence, an infinite sequence α � α1,α2, : : : over the 
states N. We also define finite seat sequences, which 
are sequences α � α1, : : : ,αp of length p over the states. 
Either sequence represents that, for any house size h (in 
the case of a finite seat sequence: h ≤ p), the sequence 
apportions ai(h) :� |{1 ≤ h′ ≤ h |αh′ � i} | seats to each 
state i. We can naturally express the quota axiom for 
seat sequences: α satisfies quota if, for all h (h ≤ p if α is 
finite) and all states i, we have ai(h) ∈ {⌊h pi=p⌋, ⌈h pi=p⌉}.

The main obstacle in obtaining a house monotone 
method via cumulative rounding is that we can only 
apply cumulative rounding to a finite number T of 
copies, whereas the quota axiom must hold for all 
house sizes h ∈ N. However, it turns out that, for our 
purposes of satisfying quota, we can treat the alloca
tion of seats 1, 2, : : : , p separately from the allocation of 
seats p+ 1, : : : , 2 p, the allocation of seats 2 p+ 1, : : :3 p, 
and so forth. The reason is that, when h is a multiple 
k p of p (for some k ∈ N), each state i’s standard quota is 
an integer k pi. Thus, any solution that satisfies quota is 
forced to choose exactly the allocation (k p1, : : : , k pn)

for house size h. At this point, the constraints for 
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satisfying quota and house monotonicity reset to what 
they were at h � 1. We make this precise in the follow
ing lemma, proved in Appendix B.

Lemma 1. An infinite seat sequence α satisfies quota iff it 
is the concatenation of infinitely many finite seat sequences 
β1,β2,β3, : : : of length p each satisfying quota, that is,

α � β1
1,β1

2, : : : ,β1
p,β2

1,β2
2, : : : ,β2

p,β3
1, : : : :

This lemma allows us to apply cumulative rounding 
to only T � p many copies of a star graph. Then, 
cumulative rounding produces a random matching 
that encodes a finite seat sequence satisfying quota, 
and Lemma 1 shows that the infinite repetition of this 
finite sequence describes an infinite seat sequence sat
isfying quota. This implies the existence of an appor
tionment method satisfying all three axioms for which 
we aimed. The formal proof is in Appendix B.

Theorem 5. There exists an apportionment method F that 
satisfies house monotonicity, quota, and ex ante proportionality.

4.3.1. Implications for Deterministic Methods. Our 
construction also increases our understanding of deter
ministic apportionment solutions satisfying house 
monotonicity and quota: indeed, the possible round
ings of the bipartite graph constructed for cumulative 
rounding (plus some minor modifications described 
in the proof) turn out to correspond one to one to 
the finite seat sequences satisfying quota. Together 
with Lemma 1, this gives a characterization of all 
seat sequences that satisfy quota, providing a graph- 
theoretic alternative to the characterizations by Still 
(1979) and Balinski and Young (1979).

Theorem 6. For any population profile p→, we can construct a 
bipartite graph whose perfect matchings are in one-to-one cor
respondence with the finite seat sequences satisfying quota.

The proof is deferred to Appendix B. Combined 
with Lemma 1, this characterizes the set of infinite 
seat sequences satisfying quota and, thus, the appor
tionment solutions satisfying house monotonicity and 
quota.

A qualitative difference from the previous character
izations (Balinski and Young 1979, Still 1979) of appor
tionment solutions satisfying house monotonicity and 
quota is that the matchings allow for a geometric 
description as the corner points of the bipartite graph’s 
matching polytope. Because a fractional matching 
assigning each edge {a, bi} a weight of pi=p > 0 lies 
in the interior of this polytope of perfect fractional 
matchings, one immediate consequence of this charac
terization (equivalently, of ex ante proportionality in 
Theorem 5) is that, for each state i and h ∈ N, there is a 
house monotone and quota-compliant solution that 

assigns the hth seat to i. To our knowledge, this result 
is not obvious based on the earlier characterizations. 
More generally, the polytope characterization might 
be useful in answering questions such as “For a set of 
pairs (h1, i1), (h2, i2), : : : , (ht, it), is there a population- 
monotone and quota-compliant solution that assigns 
the hjth seat to state ij for all 1 ≤ j ≤ t?” To answer this 
question, one can remove the nodes ahj and bhj

ij from 
the graph (simulating that they got matched) and 
check whether the remaining graph still permits a per
fect matching, for example using Hall’s (1935) mar
riage theorem. Finally, our formulation allows to 
optimize linear objectives over the space of solutions 
satisfying quota and house monotonicity. For example, 
such an optimization formulation might highlight nat
ural quota-compliant and house monotone solutions 
other than the one by Balinski and Young (1975).

4.3.2. Computation. Before we prove the cumulative 
rounding result in Section 5, let us quickly discuss 
computational considerations of our house monotone 
apportionment method. Though it is possible to run 
dependent rounding on the constructed graph (for a 
given population profile p→), the running time would 
scale in O(p2 n2), and the quadratic dependence on the 
total population p might be prohibitive. In practice, 
we see two ways to avoid this computational cost.

First, one might often not require a solution that is 
house monotone on all possible house sizes h ∈ N; 
instead, it might suffice to rule out Alabama para
doxes for house sizes up to an upper bound hmax. In 
this case, it suffices to apply cumulative rounding on 
hmax many copies of the graph, leading to a much 
more manageable running time of O(h2

max n2).
A second option would be to apply cumulative 

rounding on all p copies of the graph but to stop pip
age rounding once all edge weights in the first h cop
ies of the graph are integral even if edge weights for 
higher house sizes are still fractional. This allows to 
return an apportionment for inputs p→, h, without ran
domly determining a single house monotone solution. 
Instead, this process determines a conditioned distri
bution Fc over house monotone solutions, all of which 
agree on the apportionment for p→ and h. Because all 
solutions are house monotone, the expected number 
of seats for a party always monotonically increases in 
h across the conditioned distribution. Should it 
become necessary to determine apportionments for 
larger house sizes, one can simply continue the 
cumulative-rounding process where it left off. Because 
the pipage rounding used to prove Theorem 4 leaves 
open which cycles or maximal paths get rounded 
next, it seems likely that one can deliberately choose 
cycles/paths such that the apportionment for the first 
h seats is determined in few rounds.
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5. Proof of Cumulative Rounding
We now prove Theorem 4 on cumulative rounding. 
Our proof constructs a weighted bipartite graph includ
ing T many copies of (A ∪ B, E), connected by appropri
ate additional edges and nodes and then applying 
dependent rounding to this constructed graph. The 
additional edges and vertices ensure that, if too many 
edges adjacent to some node v are rounded up in one 
copy of the graph, then this is counterbalanced by 
rounding down edges adjacent to v in another copy.

Construction 7. Let (A ∪ B, E), T, and {wt
e}e, t be given as 

in Theorem 4. We construct a new weighted, undirected, 
and bipartite graph as follows: For each node v ∈ A ∪ B and 
for each t � 1, : : : , T, create four nodes vt, vt, ––vt, and vt:t+1; 
furthermore, create a node v0:1 for each node v. For each 
{a, b} ∈ E and t � 1, : : : , T, connect the nodes at and bt with 
an edge of weight wt

{a, b}. Additionally, for each node v ∈
A ∪ B and each t � 1, : : : , T, insert edges with the following 
weights.

Before we go into the proof, we give in Figure 3 an 
interpretation for what it means for each edge in the 
constructed graph to be rounded up. One can easily 
verify that, under the (premature) assumption that 
cumulative rounding satisfies marginal distribution, 

degree preservation, and cumulative degree preserva
tion, the edge weights coincide with the probabilities of 
each interpretation’s event. We want to stress that it is 
not obvious that these descriptions are indeed consistent 
for any dependent rounding of the constructed graph, 
and we do not make use of these descriptions in the 
proof of Theorem 4. Instead, the characterizations follow 
from intermediate results in the proof. We give these 
interpretations here to make the construction seem less 
mysterious. We begin the formal analysis of the con
struction with a sequence of simple observations about 
the constructed graph (proofs are in Appendix C).

Lemma 2. The graph of Construction 7 is bipartite.

Lemma 3. All edge weights lie between zero and one.

Lemma 4. Let 1 ≤ t ≤ T. The node vt has fractional degree 
⌊dt

v⌋ + 1, the node vt has fractional degree ⌊
Pt

t′�1 dt′
v ⌋

� ⌊
Pt�1

t′�1 dt′
v ⌋� ⌊dt

v⌋ + 1, and ––vt has fractional degree one.
Further, the node v0:1 has fractional degree zero, and the 

nodes v1:2, : : : , vt�1:t have fractional degree one.

Proof of Theorem 4. We define cumulative rounding 
as the random process that follows construction 7 and 
then applies dependent rounding (Theorem 3) to the 
constructed graph, which is valid because the graph is 
bipartite and all edge weights lie in [0, 1] (Lemmas 2
and 3). For an edge e in the constructed graph, let X̂e 
be the random variable indicating whether dependent 
rounding rounds it up or down. For any edge {a, b} ∈
E in the underlying graph and some 1 ≤ t ≤ T, we 
define the random variable Xt

{a, b} to be equal to X̂{at, bt}. 
Recall that we defined Dt

v �
P

v∈e∈EXt
e.

To prove the theorem, we have to bound the running 
time of this process and provide the four guaranteed 

Figure 3. Interpretation of Each Edge Being Rounded up in the Constructed Graph for Arbitrary Nodes v, v′ ∈ A ∪ B and 
1 ≤ t ≤ T 

Note. The correctness of this characterization is shown along the proof of Theorem 4, specifically in the sections on degree preservation and 
cumulative degree preservation.
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properties: marginal distribution, degree preservation, 
negative correlation, and cumulative degree preserva
tion. The last property takes by far the most work.

Running Time. Without loss of generality, we may 
assume that each vertex v ∈ A ∪ B is incident to at 
least one edge because, otherwise, we could remove 
this vertex in a preprocessing step. From this, it fol
lows that |E | ∈Ω( |A | + |B | ). Constructing the graph 
takes O(T |E | ) time, which is dominated by the time 
required for running dependent rounding on the con
structed graph. The constructed graph has (1+
4 T) ( |A | + |B | ) ∈O(T ( |A | + |B | )) nodes and T |E | +
4 T ( |A | + |B | ) ∈O(T |E | ) edges. Because the running 
time of dependent rounding scales in the product of 
the number of vertices and the number of edges, our 
procedure runs in O(T2 ( |A | + |B | ) |E | ) time, as 
claimed.

Marginal Distribution. For an edge {a, b} ∈ E and 
1 ≤ t ≤ T, E[Xt

{a, b}] � E[X̂{at, bt}] � wt
{a, b}, where the last 

equality follows from the marginal distribution prop
erty of dependent rounding.

Degree Preservation. Fix a node v ∈ A ∪ B and 1 ≤ t ≤ T. 
By Lemma 4, the fractional degree of vt is ⌊dt

v⌋ + 1, and 
thus, by degree preservation of dependent rounding, 
exactly ⌊dt

v⌋ + 1 edges adjacent to vt must be rounded up. 
The only of these edges that does not count into Dt

v is 
{
––vt, vt}; depending on whether this edge is rounded up or 

down, Dt
v is either ⌊dt

v⌋ or ⌊dt
v⌋ + 1. If dt

v is not integer, the 
latter number equals ⌈dt

v⌉, which proves degree preser
vation. Else, if dt

v is an integer, the edge weight of 
{
––vt, vt} is one. Dependent rounding always rounds up 

edges with weight one, which means that Dt
v is defi

nitely ⌊dt
v⌋ in this case. Thus, degree preservation holds 

in either case.

Negative Correlation. Negative correlation for v ∈ A ∪ B, 
S ⊆ {e ∈ E |v ∈ e}, and 1 ≤ t ≤ T directly follows from the 

negative correlation property of dependent rounding for 
the node vt and the edge set S′ :� {{vt, (v′)t} |{v, v′} ∈ S}.

Cumulative Degree Preservation. Fix a node v ∈ A ∪ B 
and 1 ≤ t ≤ T. We consider the rounded version of the 
constructed graph, that is, the unweighted bipartite 
graph over the nodes of the constructed graph in which 
exactly those edges are present that got rounded up by 
the randomized rounding process. We define five sets of 
nodes in the rounded graph (Figure 4):

V :� {vt′ |1 ≤ t′ ≤ t}

V :� {vt′ |1 ≤ t′ ≤ t}
––V :� {

––vt′
|1 ≤ t′ ≤ t}

V: :� {vt:t+1 |0 ≤ t′ ≤ t}

V′ :� {(v′)t
′

|v′ ∈ (A ∪ B) \ {v}, 1 ≤ t′ ≤ t}:

For any set of nodes V1 in the rounded graph, we 
denote its neighborhood by N(V1), and we write 
deg(V1) for the sum of degrees of V1 in the rounded 
graph. For any two sets of nodes V1, V2, we write 
cut(V1, V2) to denote the number of edges between V1 
and V2 in the rounded graph.

Note that 
Pt

t′�1 Dt′
v , which we must bound, equals 

cut(V, V′). We bound this quantity by repeatedly using 
the following fact, which we refer to as pivoting: for 
pairwise disjoint sets of nodes V0, V1, V2, if N(V0) ⊆
V1 ∪ V2, then deg(V0) � cut(V0, V1) + cut(V0, V2). Because 
Lemma 4 gives us a clear view of the fractional degrees 
of nodes in the constructed graph, and because, by 
degree preservation, a node’s degree in the rounded 
graph must equal the fractional degree whenever the 
latter is an integer, this property allows us to express 
cuts in terms of other cuts. Figure 4 illustrates which of 
these sets border on each other and helps in following 
along with the derivation.

Figure 4. (Color online) Illustration of the Counting Argument for Proving Cumulative Degree Preservation 

Notes. Edges in the figure are edges from the constructed graph, a superset of the edges in the rounded graph. Note shape (and, in the online ver
sion, node color) indicate the set to which a node belongs as indicated in the legend.
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We begin by using a pivot with V0 � V, V1 � V′, 
V2 �

––V, which gives

Xt

t′�1
Dt′

v � cut(V, V′)

� deg(V)� cut(V, ––V)

� t+
Xt

t′�1
⌊dt′

v ⌋� cut(V, ––V), 

noting that deg(V) � t+
Pt

t′�1⌊dt′
v ⌋ by Lemma 4. Using 

a pivot with V0 �
––V, V1 � V, V2 � V , we get

Xt

t′�1
Dt′

v � t+
Xt

t′�1
⌊dt′

v ⌋� deg(–
–
V) + cut(–

–
V, V)

�
Xt

t′�1
⌊dt′

v ⌋ + cut(–
–
V, V), 

because deg(–
–
V) � t by Lemma 4. Using a pivot with 

V0 � V , V1 �
––V, V2 � V:, we get

Xt

t′�1
Dt′

v �
Xt

t′�1
⌊dt′

v ⌋ + deg(V)� cut(V , V:)

�
Xt

t′�1
⌊dt′

v ⌋� cut(V , V:)

+
Xt

t′�1

$
Xt′

t′′�1
dt′′

v

%

�

$
Xt′�1

t′′�1
dt′′

v

%

� ⌊dt′
v ⌋ + 1

 !

�
Xt

t′�1
⌊dt′

v ⌋� cut(V , V:)

+

$
Xt

t′′�1
dt′′

v

%

�
Xt

t′�1
⌊dt′

v ⌋ + t, 

using Lemma 4 and resolving the telescoping sum. 
Hence, we have that

Xt

t′�1
Dt′

v �

$
Xt

t′�1
dt′

v

%

+ t� cut(V , V:):

To bound cut(V, V:) in the last expression, observe that 
N(V: \ {vt:t+1}) ⊆ V , from which it follows that cut(V , 
V: \ {vt:t+1}) � deg(V: \ {vt:t+1}) � t� 1. Thus, cut(V , V:)

� t� 1+1{X̂
{vt, vt:t+1}}, and hence,

Xt

t′�1
Dt′

v �

$
Xt

t′�1
dt′

v

%

+ t� (t� 1+1{X̂
{vt, vt:t+1}})

�

$
Xt

t′�1
dt′

v

%

+ 1�1{X̂
{vt, vt:t+1}}:

If 
Pt

t′�1 dt′
v is not an integer, the above shows that 

Pt
t′�1 Dt′

v is either the floor or ceiling of 
Pt

t′�1 dt′
v , estab

lishing cumulative degree preservation. Else, if 
Pt

t′�1 
dt′

v is integer, note that the weight of the edge {vt, vt:t+1}

in the constructed graph is one. Because dependent 
rounding always rounds such edges up, 

Pt
t′�1 Dt′

v �

⌊
Pt

t′�1 dt′
v ⌋. This establishes cumulative degree preser

vation, the last of the properties guaranteed by the 
theorem. w

6. Other Applications of Cumulative 
Rounding

Our exploration of house monotone randomized 
apportionment led us to the more general technique 
of cumulative rounding, which we believe to be of 
broader interest. We next illustrate this by discussing 
additional applications.

6.1. Sortition of the European Commission
The European Commission is one of the main institu
tions of the European Union, in which it plays a role 
comparable to that of a government. The commission 
consists of one commissioner from each of the 27 
member states, and each commissioner is charged 
with a specific area of responsibility. Because the 
number of EU member states has nearly doubled in 
the past 20 years, so has the size of the commission. 
Besides making coordination inside the commission 
less efficient, the enlargement of the commission has 
led to the creation of areas of responsibility much less 
important than others. Because the important portfo
lios are typically reserved for the largest member 
states, smaller states have found themselves with lim
ited influence on central topics being decided in the 
commission.

To remedy this imbalance, Buchstein and Hein 
(2009) propose to reduce the number of commissioners 
to 15, meaning that only a subset of the 27 member 
states would send a commissioner at any given time. 
Which states would receive a seat would be determined 
every five years by a weighted lottery (“sortition”) in 
which states would be chosen with degressive propor
tional weights. Degressive means that smaller states get 
nonproportionately high weight; such weights are 
already used for apportioning the European parlia
ment. The authors argue that, by the law of large num
bers, political representation on the commission would 
be essentially proportional to these weights in politi
cally relevant time spans.

However, a follow-up simulation study by Buch
stein et al. (2013) challenges this assertion on two 
fronts: (1) First, the authors find that their implementa
tion of a weighted lottery chooses states with probabil
ities that deviate from proportionality to the weights 
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in a way that is not analytically tractable (see Brewer 
and Hanif 1983). (2) Second, and more gravely, their 
simulations undermine “a central argument in favor of 
legitimacy” in the original proposal, namely, that “in 
the long term, the seats on the commission would be 
distributed approximately like the share of lots” (Buch
stein et al. 2013, own translation p. 222). From a mathe
matical point of view, the authors overestimated the 
rate of concentration across the independent lotteries. 
Instead, in the simulation, it takes 30 lotteries 
(150 years) until there is a probability of 99% that all 
member states have sent at least one commissioner.

These serious concerns could be resolved by using 
cumulative rounding to implement the weighted lotter
ies. Specifically, we would again construct a star graph 
with a special node a and one node bi for each state i, 
setting T to the desired number of consecutive lotteries. 
For each 1 ≤ t ≤ T, each edge {a, bi}would be weighted 
by 15 wi=

P
j∈Nwj, where wj is state j’s degressive weight. 

Degree preservation on a would ensure that, in each lot
tery t, exactly 15 distinct states are selected. By marginal 
distribution, the selection probabilities would be exactly 
proportional to the degressive weights, resolving issue 
1. Furthermore, cumulative degree preservation on the 
state nodes would eliminate issue 2. If we take the effec
tive selection probabilities of Buchstein et al. (2013) as 
the states’ weights, even the smallest states i would 
have an edge weight wt

{a, bi}
≈ 0:187. Then, cumulative 

quota prevents any state from getting rounded down in 
11 � ⌈2=0:187⌉ consecutive lotteries: indeed, fixing any 
0 ≤ t0 ≤ T� 11,

Xt0+11

t′�1
Dt′

bi
≥ ⌊(t0 + 11)0:187⌋

≥ ⌊t0 0:187⌋ + 2
≥ ⌈t0 0:187⌉ + 1

≥
Xt0

t′�1
Dt′

bi
+ 1, 

which means that state i must have been selected at 
least once between time t0 + 1 and t0 + 11. In political 
terms, this means that 55, not 150, years would be 
enough to deterministically ensure that each member 
state send a commissioner at least once in this period.

This cumulative rounding approach can accommo
date weights that change across lotteries according to 
population projections (which Buchstein et al. (2013) 
do for some of their experiments) simply by choosing 
different weights across the copies of the star graph. It 
is necessary, however, that these population changes 
are known in advance because no algorithm can guar
antee cumulative degree preservation in an iterated 
apportionment setting in which population changes 
are observed online (i.e., just in time for the next 

apportionment to be made). This is shown by the fol
lowing example: Let there be four states and allocate a 
single seat per time step. At time t � 1, all four states 
have an equal population and, thus, an edge weight 
of 1=4. Without loss of generality, the first seat goes to 
state 4. At time t � 2, state 4 disappears, while states 1 
through 3 have equal population and, thus, each an 
edge weight of 1=3. Without loss of generality, the sec
ond seat goes to state 3. At time t � 3, states 3 and 4 
have zero population, while (note this is in a temporal 
context) states 1 and 2 have equal population (i.e., an 
edge weight of 1=2). Because states 1 and 2 have a 
cumulative quota of 1=4+ 1=3+ 1=2 > 1, cumulative 
degree preservation requires both states to have at least 
one among the first three seats, but this is clearly impossi
ble. We have presented this argument for an adaptive 
adversary; for a nonadaptive adversary, essentially the 
same argument shows that any online apportionment 
mechanism violates cumulative degree preservation with 
probability at least 1=12. Note that this impossibility holds 
even in the absence of marginal distribution and negative 
correlation. It is an intriguing question how one should 
design an online apportionment method that keeps viola
tions from cumulative degree preservation at a minimum 
and ensures that the cost or benefit of such deviations is 
fairly spread across the remaining states.

6.2. Repeated Allocation of Courses to Faculty or 
Shifts to Workers

A common paradigm in fair division is to first create a 
fractional assignment between agents and resources, 
and to then implement this fractional assignment in 
expectation through randomized rounding. Below, 
we describe a setting of allocating courses to faculty 
members in a university department, in which imple
menting a fractional assignment using cumulative 
rounding is attractive.

For a university department, denote its set of faculty 
members by A and the set of possible courses to be 
taught by B. For each faculty member a and course b, 
let there be a weight w{a, b} ∈ [0, 1] indicating how fre
quently course b should be taught by a on average. 
These numbers could be derived using a process such 
as probabilistic serial (Bogomolnaia and Moulin 2001), 
the Hylland–Zeckhauser mechanism (Hylland and 
Zeckhauser 1979), or the mechanisms by Budish et al. 
(2013), which would transform preferences of the fac
ulty over which courses to teach into such weights. 
(Although these mechanisms are formulated for 
goods, they can be applied to bads when the number 
of bads allocated to each agent is fixed as it is when 
allocating courses to faculty or shifts to workers.) We 
allow arbitrary fractional degrees on the faculty side 
(so one person can teach multiple courses), and 
assume that the fractional degree of any course b is at 
most one.
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Applying cumulative rounding to this graph (using 
the same edge weights in each period) for consecutive 
semesters 1 ≤ t ≤ T, we get the following properties: 
• Marginal distribution implies that, in each semes

ter, faculty member a has a probability w{a, b} of teach
ing course b.
• Degree preservation on the course side means that 

a course is never taught by two different faculty mem
bers in the same semester.
• Degree preservation on the faculty side implies 

that a faculty member a’s teaching load does not vary 
by more than one between semesters; it is either the 
floor or the ceiling of a’s expected teaching load.
• Cumulative degree preservation on the course 

side ensures that courses are offered with some regu
larity. For example, if a course’s fractional degree is 
1=2, it is taught exactly once in every academic year 
(either in fall or in spring).
• Cumulative degree preservation on the faculty 

side allows for a noninteger teaching load. For exam
ple, a faculty member with fractional degree 1.5 has a 
“2-1” teaching load; that is, the faculty member will 
teach three courses per year: either two in the fall and 
one in the spring or vice versa.

The same approach is applicable for matching work
ers to shifts.

One could also use cumulative rounding to repeat
edly round a fractional assignment of general chores, 
such as the ones computed by the online platform 
spliddit.org (Goldman and Procaccia 2014). In this 
case, a caveat is that (cumulative) degree preservation 
only ensures that the number of assigned chores is 
close to its expected number per time period, not neces
sarily the cost of the assigned chores. However, if 
many chores are allocated per time step and if costs 
are additive, then an agent’s per-timestep cost is well- 
concentrated, which follows from the negative correla
tion property that permits the application of Chernoff 
concentration bounds (Panconesi and Srinivasan 1997).

7. Discussion
Though our work is motivated by the application of 
apportioning seats at random, the technical questions 
we posed and addressed are fundamental to the theo
retical study of apportionment. In a sense, any deter
ministic apportionment solution is unproportional; 
after all, its role is to decide which agents receive 
more or fewer seats than their standard quota. By 
searching for randomized methods satisfying ex ante 
proportionality, we ask whether these unproportional 
solutions can be combined (through random choice) 
such that these deviations from proportionality cancel 
out to achieve perfect proportionality and whether 
this remains possible when we restrict the solutions 
to those satisfying subsets of the axioms population 

monotonicity, house monotonicity, and quota. Natu
rally, this objective pushes us to better understand the 
whole space of solutions satisfying these subsets of 
axioms, including the space’s more extreme elements. 
Therefore, it is in hindsight not surprising that our 
work led to new insights for deterministic apportion
ment: a more robust impossibility between population 
monotonicity and quota (Theorem 1), an exploration 
of solutions generalizing the divisor solutions (Theo
rem 2), and a geometric characterization of house 
monotone and quota compliant solutions (Theorem 6).

Concerning the cumulative rounding technique 
introduced in this paper, we have only scratched the 
surface in exploring its applications. In particular, we 
hope to investigate whether cumulative rounding can 
extend existing algorithmic results that use dependent 
rounding and whether it can be used to construct new 
approximation algorithms. For both of these purposes, 
the negative correlation property, which we have 
not used much so far, will, we hope, turn out to be 
valuable.

Despite their advantageous properties, randomized 
mechanisms have in the past often met with resistance 
by practitioners and the public (Kurokawa et al. 2018), 
but we see signs of a shift in attitudes. Citizens’ assem
blies, deliberative forums composed of a random sam
ple of citizens, are quickly gaining usage around the 
world (Organisation for Economic Co-operation and 
Development 2020) and proudly point to their random 
selection—often carried out using complex algorithms 
from computer science (Flanigan et al. 2021) as a 
source of legitimacy. If this trend continues, random
ness will be associated by the public with neutrality 
and fairness, not with haphazardness. Hence, random
ized apportionment methods (though, perhaps, sim
pler ones than the ones we develop here) might yet 
receive serious consideration.

Acknowledgments
The authors thank Bailey Flanigan, Hadi Hosseini, David 
Wajc, and Peyton Young for helpful discussions. Part of 
this work was done while P. Gölz was visiting the Simons 
Institute for the Theory of Computing.

References
Ageev AA, Sviridenko MI (2004) Pipage rounding: A new method 

of constructing algorithms with proven performance guarantee. 
J. Combin. Optim. 8(3):307–328.

Agnew RA (2008) Optimal congressional apportionment. Amer. 
Math. Monthly 115(4):297–303.

Akbarpour M, Nikzad A (2020) Approximate random allocation 
mechanisms. Rev. Econom. Stud. 87(6):2473–2510.

Aziz H, Ganguly A, Micha E (2023a) Best of both worlds fairness 
under entitlements. Agmon N, An B, Ricci A, Yeoh W, eds. 
Proc. 2023 Internat. Conf. Autonomous Agents Multiagent Systems 
(International Foundation for Autonomous Agents and Multia
gent Systems, Richland, SC), 941–948.

Gölz, Peters, and Procaccia: In This Apportionment Lottery, the House Always Wins 
16 Operations Research, Articles in Advance, pp. 1–18, © 2024 INFORMS 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

37
.1

74
.7

6.
20

1]
 o

n 
27

 M
ar

ch
 2

02
5,

 a
t 1

0:
46

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 

http://www.spliddit.org/


Aziz H, Moulin H, Sandomirskiy F (2020) A polynomial-time algo
rithm for computing a Pareto optimal and almost proportional 
allocation. Oper. Res. Lett. 48(5):573–578.

Aziz H, Freeman R, Shah N, Vaish R (2023b) Best of both worlds: Ex ante 
and ex post fairness in resource allocation. Oper. Res. 72(4):1674–1688.

Aziz H, Lev O, Mattei N, Rosenschein JS, Walsh T (2019) Strategy
proof peer selection using randomization, partitioning, and 
apportionment. Artificial Intelligence 275:295–309.

Babaioff M, Ezra T, Feige U (2022) On best-of-both-worlds fair-share 
allocations. Hansen KA, Liu TX, Malekian A, eds. Web Internet 
Econom. WINE 2022, Lecture Notes in Computer Science, vol. 
13778 (Springer, Cham), 237–255.

Balinski M (1993) The problem with apportionment. J. Oper. Res. 
Soc. Japan 36(3):134–148.

Balinski M, Demange G (1989a) Algorithms for proportional matri
ces in reals and integers. Math. Programming 45(1–3):193–210.

Balinski M, Demange G (1989b) An axiomatic approach to propor
tionality between matrices. Math. Oper. Res. 14(4):700–719.

Balinski M, Ramı́rez V (1999) Parametric methods of apportionment, 
rounding and production. Math. Social Sci. 37(2):107–122.

Balinski M, Ramı́rez V (2014) Parametric vs. divisor methods of 
apportionment. Ann. Oper. Res. 215(1):39–48.

Balinski M, Shahidi N (1998) A simple approach to the product rate 
variation problem via axiomatics. Oper. Res. Lett. 22(4–5):129–135.

Balinski M, Young HP (1975) The quota method of apportionment. 
Amer. Math. Monthly 82(7):701–730.

Balinski M, Young HP (1979) Quotatone apportionment methods. 
Math. Oper. Res. 4(1):31–38.

Balinski M, Young HP (1982) Fair Representation: Meeting the Ideal of 
One Man, One Vote (Yale University Press, New Haven, CT).

Bansal N, Gupta A, Li J, Mestre J, Nagarajan V, Rudra A (2012) 
When LP is the cure for your matching woes: Improved 
bounds for stochastic matchings. Algorithmica 63(4):733–762.

Barbanel J (1996) Game-theoretic algorithms for fair and strongly fair cake 
division with entitlements. Colloquium Mathematicae 69(1):59–73.

Bautista J, Companys R, Corominas A (1996) A note on the relation 
between the product rate variation (PRV) problem and the 
apportionment problem. J. Oper. Res. Soc. 47(11):1410–1414.
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