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Abstract. The dynamics of random transitive delegations on a graph are of particular inter
est when viewed through the lens of an emerging voting paradigm: liquid democracy. This par
adigm allows voters to choose between directly voting and transitively delegating their votes 
to other voters so that those selected cast a vote weighted by the number of delegations that 
they received. In the epistemic setting, where voters decide on a binary issue for which there 
is a ground truth, previous work showed that a few voters may amass such a large amount 
of influence that liquid democracy is less likely to identify the ground truth than direct 
voting. We quantify the amount of permissible concentration of power and examine more 
realistic delegation models, showing that they behave well by ensuring that (with high proba
bility) there is a permissible limit on the maximum number of delegations received. Our theo
retical results demonstrate that the delegation process is similar to well-known processes on 
random graphs that are sufficiently bounded for our purposes. Along the way, we prove 
new bounds on the size of the largest component in an infinite Pólya urn process, which may 
be of independent interest. In addition, we empirically validate the theoretical results, run
ning six experiments (for a total of N � 168 participants, 62 delegation graphs, and over 
11,000 votes collected). We find that empirical delegation behaviors meet the conditions for 
our positive theoretical guarantees. Overall, our work alleviates concerns raised about liquid 
democracy and bolsters the case for the applicability of this emerging paradigm.
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1. Introduction
Liquid democracy is a voting paradigm that is conceptu
ally situated between direct democracy, in which voters 
have direct influence over decisions, and representative 
democracy, where voters choose delegates who repre
sent them for a period of time. Under liquid democracy, 
voters have a choice; they can either vote directly on an 
issue, like in direct democracy, or delegate their vote to 
another voter, entrusting that voter to vote on their 
behalf. The defining feature of liquid democracy is that 
these delegations are transitive; if voter 1 delegates to 

voter 2 and voter 2 delegates to voter 3, then voter 3 
votes (or delegates) on behalf of all three voters.

In recent years, liquid democracy has gained promi
nence around the world. The most impressive exam
ple is that of the German Pirate Party, which adopted 
the LiquidFeedback platform in 2010 (Kling et al. 
2015). Other political parties, such as the Net Party in 
Argentina and Flux in Australia, have run on the wily 
promise that, once elected, their representatives would 
be essentially controlled by voters through a liquid 
democracy platform. Companies are also exploring the 
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use of liquid democracy for corporate governance; Goo
gle, for example, has run a proof-of-concept experiment 
(Hardt and Lopes 2015). Blockchain systems have also 
been experimenting with related weighted decentralized 
voting systems (Benhaim et al. 2023, Li et al. 2023).

Practitioners, however, recognize that there is a poten
tial flaw in liquid democracy: namely, the possibility of 
concentration of power in the sense that certain voters 
amass a relatively large number of delegations, giving 
them pivotal influence over the final decision. This sce
nario seems inherently undemocratic, and it is not a 
mere thought experiment. Indeed, in the LiquidFeed
back platform of the German Pirate Party, a linguistics 
professor at the University of Bamberg received so 
many delegations that as noted by Der Spiegel,1 his “vote 
was like a decree.”

Kahng et al. (2021) examine liquid democracy’s 
concentration-of-power phenomenon from a theoreti
cal viewpoint and establish a troubling impossibility 
result in what has been called the epistemic setting: that 
is, one where there is a ground truth.2 Informally, they 
demonstrate that even under the strong assumption 
that voters delegate only to more “competent” voters, 
any “local mechanism” satisfying minimal conditions 
will, in certain instances, be subject to concentration of 
power, leading to relatively low accuracy. More specifi
cally, Kahng et al. (2021) model the problem as a deci
sion problem where voters decide on an issue with two 
outcomes {0, 1}, where one is correct (the ground truth) 
and zero is incorrect. Each of the voters i ∈ {1, : : : , n} is 
characterized by a competence pi ∈ [0, 1]. The binary 
vote Vi of each voter i is drawn independently from a 
Bernoulli distribution; that is, each voter votes correctly 
with probability pi. Under direct democracy, the out
come of the election is determined by a majority vote. 
The correct outcome is selected if and only if more than 
half of the voters vote for the correct outcome; that is, it 
is correct if and only if 

Pn
i�1 Vi ≥ n=2. Under liquid 

democracy, there exists a set of weights, weighti, for 
each i ∈ [n], which represent the number of votes that 
voter i gathered transitively after delegation (if voter i 
delegates, then weighti � 0). The outcome of the elec
tion is then determined by a weighted majority; it is 
correct if and only if 

Pn
i�1 weightiVi ≥ n=2.

Kahng et al. (2021) also introduce the concept of a del
egation mechanism, which determines whether voters 
delegate and if so, to whom they delegate. They are 
especially interested in local mechanisms, where the del
egation decision of a voter depends only on their local 
neighborhood according to an underlying social net
work. They assume that voters delegate only to those 
with strictly higher competence, which excludes the 
possibility of cyclic delegations. To evaluate liquid 
democracy, Kahng et al. (2021) test the intuition that 
society makes more informed decisions under liquid 
democracy than under direct democracy (especially 

given the foregoing assumption about upward delega
tion). To that end, they define the gain of a delegation 
mechanism to be the difference between the probability 
that the correct outcome is selected under liquid democ
racy and the probability that the correct outcome is 
selected under direct democracy. A delegation mecha
nism satisfies positive gain if its gain is strictly positive 
in some cases, and it satisfies do no harm (DNH) if for 
all ε > 0, its gain is at least �ε for sufficiently large 
instances. Assuming that competence after delegation 
remains strictly above 1/2, this will follow from the law 
of large number that applies to the weighted majority 
with weights relatively spread out (Häggström et al. 
2006). The main result of Kahng et al. (2021) is that local 
mechanisms can never satisfy these two requirements. 
Caragiannis and Micha (2019) further strengthen this 
negative result by showing that there are degenerate 
instances where local mechanisms perform much worse 
than either direct democracy or dictatorship (the most 
extreme concentration of power).3

These results undermine the case for liquid democracy; 
the benefits of delegation appear to be reversed by concen
tration of power. However, the negative conclusion relies 
heavily on worst-case modeling assumptions. Our re
search represents a significant advance as it offers a 
comprehensive framework that not only captures the 
worst-case scenarios of previous works but also, provides 
insights into more intriguing “high-probability” cases. In 
particular, in this paper, we provide a new theoretical 
model and extensive experiments that show that liquid 
democracy will typically satisfy a probabilistic version of 
positive gain and do no harm under minimal assumptions.

1.1. Our Contributions and Techniques
Our contributions are the following. First, building on 
the work of Kahng et al. (2021), we provide a general 
framework to analyze the stochastic network dynamics 
of transitive delegations that captures liquid democ
racy’s intricate interactions between local delegation 
choices and global properties. Second, we identify 
large classes of delegation models where liquid democ
racy performs well in that delegations induce a suffi
ciently small amount of concentration of power and 
liquid democracy almost surely results in correct out
comes. Along the way, we prove new high-probability 
bounds on the size of the largest component in an infi
nite Pólya urn process;4 this result may be of indepen
dent interest. Finally, we conduct the first series of 
laboratory experiments on liquid democracy that can 
test epistemic performance. This involved over 11,000 
votes from 168 participants in six experimental groups, 
where each group had pre-existing social ties. Our 
novel experimental design allows us to compare the 
performance of direct democracy and liquid democ
racy as well as to analyze properties of real voter dele
gation behavior. Importantly, the behaviors that we 
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observe align with one of the models that we introduce, 
thus lending support to this approach. Taken together, 
these results exhibit a regime in which liquid democ
racy displays promising performance. We next elabo
rate on some of our specific techniques.

1.1.1. Stochastic Delegations. Our point of departure 
from the existing literature is the way that we model 
delegation in liquid democracy. To emphasize these 
differences, instead of calling these delegation func
tions mechanisms, we instead call them delegation mod
els as they are intended to capture independent voter 
behavior rather than prescribing to each voter to whom 
they must delegate. Our delegation models are defined 
by M � (q,φ), where q : [0, 1] → [0, 1] is a function that 
maps a voter’s competence to the probability that they 
delegate and φ : [0, 1]2→ R≥0 maps a pair of competen
cies to a weight. In this model, each voter i votes 
directly with probability 1� q(pi) and conditioned 
on delegating with probability q(pi), delegates to voter 
j ≠ i with probability proportional to φ(pi, pj): These 
delegation functions do not model explicit reasoning; 
rather, they model behaviors that may be influenced by 
tacit knowledge captured by q and φ: A voter does not 
need to “know” the competence of another voter to 
decide whether to delegate. Rather, the delegation prob
abilities are influenced by competence as captured by φ; 
note that delegation cycles are possible, and we take a 
worst-case approach to dealing with them. If the dele
gations form a cycle, then all voters in the cycle are 
assumed to be incorrect (vote 0).5

The most significant difference between our model of 
delegation and that of Kahng et al. (2021) is that in our 
model, each voter has a chance of delegating to any other 
voter, whereas in their model, an underlying social net
work restricts delegation options. Our model captures a 
connected world where in particular, voters may have 
heard of experts on various issues, even if they do not 
know them personally. Although our model eschews an 
explicit social network, it can be seen as embedded into 
the delegation process, where the probability that i dele
gates to j takes into account the probability that i is famil
iar with j in the first place. Another difference between 
our model and that of Kahng et al. (2021) is that we model 
the competencies p1, : : : , pn as being sampled indepen
dently from a distribution D. Although this assumption 
is made mainly for ease of exposition, it allows us to 
avoid edge cases and obtain robust results.

1.1.2. Delegation Models. Our goal is to identify dele
gation models that satisfy (probabilistic versions of) 
positive gain and do no harm. Our first technical contri
bution, in Section 2.5, is the formulation of general con
ditions on the model and competence distribution that 
are sufficient for these properties to hold (Lemma 1). In 
particular, to achieve the more difficult do no harm 

property, we present conditions that guarantee that the 
maximum weight max-weight(Gn) accumulated by any 
voter is sublinear with high probability and that the 
expected increase in competence after delegation is at 
least a positive constant times the population size. These 
conditions prevent extreme concentration of power and 
ensure that the representatives after delegation are suffi
ciently better than the entire population to compensate 
for any concentration of power that does happen.

Although the proof is straightforward, the benefit of 
this lemma is that it then suffices to identify models 
and distribution classes that verify these conditions. A 
delegation model M and a competence distribution D 

induce a distribution over delegation instances that 
generates random graphs in ways that relate to well- 
known graph processes, which we leverage to analyze 
our models. Specifically, we introduce three models, all 
shown to satisfy do no harm and positive gain under 
any continuous distribution over competence levels. 
The first models, upward delegation and confidence-based 
delegation, are interesting but restricted case studies 
that demonstrate the robustness of our approach. By 
contrast, the general continuous delegation model is, as 
the name suggests, quite general. Moreover, it is realis
tic; its predictions are consistent with our experiments.

1.1.2.1. Upward Delegation. In Section 3, we consider 
a model according to which the probability p of delegation 
is exogenous and constant across competencies, q(pi) � p, 
and delegation can occur only to voters with strictly 
higher competence; the weight that any voter i puts on 
another voter j is φ(pi, pj) � I{pj�pi>0}: This model captures 
the fact that there might be some reluctance to delegate 
regardless of the voter’s competence, but it does assume 
that voters act in the interest of society by only delegating 
to voters who are more competent than they are.

To generate a random graph induced by such a 
model, one can add a single voter at a time in order of 
decreasing competence and allow the voter to either 
not delegate (with probability 1� p) and create their 
own disconnected component or delegate to the creator 
of any other component with probability proportional 
to the size of the component. This works because dele
gating to any voter in the previous components is possi
ble (because they have strictly higher competence) and 
would result in the votes being concentrated in the orig
inator of that component by transitivity. Such a process 
exactly generates a preferential attachment graph with 
a positive probability of not attaching to the existing 
components, also called an infinite Pólya urn process 
(Simon 1955). We can then show that with high proba
bility, no component grows too large so long as p < 1 
(see Section 1.1.3 for an overview of this step). Further, 
continuity of the competence distribution ensures that 
enough lower-competence voters delegate to higher- 
competence voters to sufficiently increase the average.
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1.1.2.2. Confidence-Based Delegation. In Section 4, 
we consider a model in which voters delegate with 
probability decreasing in their competencies and choose 
someone at random when they delegate. That is, the 
probability q(pi) that any voter i delegates is decreasing 
in pi, and the weight that any voter i gives to any voter j 
is φ(pi, pj) � 1. In other words, in this model, compe
tence does not affect the probability of receiving delega
tions, only the probability of delegating.

To generate a random graph induced by such a 
model, one can begin from a random vertex and study 
the delegation tree that starts at that vertex. A delega
tion tree is defined as a branching process, where a 
node i’s “children” are the nodes that delegated to node 
i. In contrast to classical branching processes, the proba
bility for a child to be born increases as the number of 
people who already received delegations decreases. 
Nevertheless, we prove that with high probability, as 
long as a delegation tree is no larger than O(logn), our 
heterogeneous branching process is dominated by a 
subcritical graph branching process (Alon and Spencer 
2016). We can then conclude that no component has 
size larger than O(log n) with high probability. Next, 
we show that the expected competence among the 
voters who do not delegate is strictly higher than the 
average competence.

1.1.2.3. General Continuous Delegation. Finally, we 
consider a general model in Section 5, where the likeli
hood of delegation is fixed and the weight assigned to 
each voter when delegating is increasing in their compe
tence. That is, each voter i delegates with probability 
q(pi) � p, and the weight that voter i places on voter j is 
φ(pi, pj), where φ is continuous and increases in its sec
ond coordinate. Thus, in this model, the delegation distri
bution is slightly skewed toward more competent voters.

To generate a random graph induced by such a 
model, we again consider a branching process, but 
now, voters j and k place different weights on i per φ. 
Therefore, voters have a type that governs their delega
tion behavior; this allows us to define a multitype 
branching process with types that are continuous in 
[0, 1]. The major part of the analysis is a proof that with 
high probability, as long as the delegation tree is no 
larger than O(log n), our heterogeneous branching pro
cess is dominated by a subcritical Poisson multitype 
branching process. In a manner similar to confidence- 
based delegation, we also show that there is an expected 
increase in competence after delegation.

1.1.3. Component Sizes in Infinite Pólya Urn Pro
cesses. Recall that to prove that upward delegation 
satisfies do no harm, we show that the largest compo
nent in an infinite Pólya urn process is sublinear with 
high probability (Lemma 2). We briefly expand on the 
proof as this result was, to the best of our knowledge, 

not previously known in the random graph literature 
and may be of independent interest. We begin by 
focusing on the first tγ bins (for a suitably chosen γ 
depending on the attachment probability p) and derive 
an upper bound on the expected size of these bins. This 
allows us to use Markov’s inequality and union bound 
over all bins to show that simultaneously all of them 
are sublinear in size with high probability.

Second, we take care of the remaining bins by observ
ing that each additional bin’s growth is isomorphic to a 
classic Pólya urn process with two bins, whose limiting 
dynamic follows a Beta distribution. We analyze the rate 
of convergence, which allows us to give sufficiently 
strong bounds using Chebyshev’s inequality after exactly 
t� tγ steps, and union bound over all of these bins, con
cluding that all are sublinear with high probability.

1.1.4. Consistency with Experiments. Lastly, we con
duct six experiments to statistically estimate the func
tions q and φ, and we test the overall effectiveness of 
liquid democracy. Participants were presented with 
several yes or no questions on various topics. We call 
the set of questions related to each topic a task. For each 
task, participants could either choose to vote directly or 
delegate their vote (for all questions) to another partici
pant. They only saw the questions in a task if they 
chose to vote directly. In a later phase, they were asked 
to answers the questions that they had delegated (and 
not seen) to see how they would have voted. This setup 
allows us to do a few things. First, it induces a matched- 
pair design, where for each task and experiment, we 
can compare the accuracy of voting under liquid and 
direct democracy. Second, we use the answers to all 
questions to estimate participants’ competencies. Using 
this information, we study how delegation behavior 
depends on competence and investigate whether it is 
consistent with the theoretical findings.

Results suggest that (i) competence is inversely cor
related with the chance of delegation and that (ii) the 
likelihood of delegating to another voter increases with 
their competence. The results, therefore, support the 
assumptions and predictions made by the confidence- 
based and general continuous delegation models. Taken 
together, these results exhibit a regime in which liquid 
democracy is overall more likely to pinpoint the truth 
than direct democracy.

1.2. Related Work
The most closely related paper is that of Kahng et al. 
(2021), which was discussed in detail above. It is worth 
noting, however, that they complement their negative 
result with a positive one; when the mechanism can 
restrict the maximum number of delegations (transitively) 
received by any voter to o(

ffiffiffiffiffiffiffiffiffiffi
log n

p
), do no harm and posi

tive gain are satisfied. Imposing such a restriction would 
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require a central planner that monitors and controls dele
gations. Gölz et al. (2018) build on this idea; they study 
liquid democracy systems where voters may nominate 
multiple delegates and where a central planner chooses 
a single delegate in order to minimize the maximum 
weight of any voter. Similarly, Brill and Talmon (2018) 
introduce a process that allows voters to specify ordinal 
preferences over delegation options and possibly restrict
ing or modifying delegations in a centralized way. Cara
giannis and Micha (2019) and then, Becker et al. (2021) 
also consider central planners; they show that for given 
competencies, the problem of choosing among delegation 
options to maximize the probability of a correct decision 
is hard to approximate. In any case, implementing these 
proposals would require a fundamental rethinking of the 
practice of liquid democracy. By contrast, our positive 
results show that decentralized delegation models can be 
inherently self-regulatory, which supports the effective
ness of the current practice of liquid democracy.

More generally, there has been a significant amount 
of theoretical research on liquid democracy in recent 
years. To give a few examples, Green-Armytage (2015) 
studies whether it is rational for voters to delegate their 
vote from a utilitarian viewpoint. Christoff and Grossi 
(2017) examine a similar question but in the context of 
voting on logically interdependent propositions. Bloem
bergen et al. (2019), Zhang and Grossi (2021), and 
Dhillon et al. (2023) study liquid democracy from a 
game-theoretic viewpoint.

Next, our work builds on the random graph litera
ture as our delegation processes are related to well- 
known stochastic graph processes. Upward delegation 
can be viewed as a generalization of the preferential 
attachment model, where agents do not attach to the 
existing component(s) with a fixed probability. Classi
cal preferential attachment models assume that a new 
node attaches to an existing node n0 with probability 
(parameterized by an attachment function) depending on 
the degree of n0 (Barabási and Albert 1999, Durrett 
2007). In our framework, a new component may be cre
ated with fixed probability, a setup introduced by 
Simon (1955) and usually referred to as an infinite Pólya 
urn process. Others have studied the distribution of 
degrees (Drinea et al. 2001), the distribution of the num
ber of components with k people at time t (Chung et al. 
2003), and the conditions for the emergence of infinite 
components (Collevecchio et al. 2013). However, to the 
best of our knowledge, the existing results do not allow 
us to derive bounds on the size of the largest compo
nent with high probability after a finite amount of time.

In terms of our experiments on liquid democracy, 
ours is the first paper to conduct experiments with 
human subjects. Previous papers have studied different 
aspects of liquid democracy through experiments in 
corporate (Hardt and Lopes 2015) and political environ
ments Independent of and essentially concurrent with 

our work, Campbell et al. (2022) tested a game-theoretic 
formulation of liquid democracy. Unlike our experi
ments, they used online platforms to gather participants 
who did not know each other. Participants were assigned 
a probability of being correct and asked whether they 
would want to delegate to others, with experts (those 
with the highest probability of being correct) being pub
licly known. The delegations were randomly assigned to 
the predetermined experts in one setup and through the 
random dot kinematogram task in another one. The 
group sizes considered were 5 people with 1 expert, 15 
people with 3 experts, and 125 people with 25 experts. 
Although this study reveals interesting connections 
between individuals’ perceived competence and delega
tion behavior, it cannot investigate how experts are (or 
are not) identified endogenously through interpersonal 
knowledge embedded in a social networks because the 
participants do not know each other.

Last, our work relates to recent advances in manage
rial studies that consider novel forms of governance, 
such as corporate governance (e.g., Huang 2023), block
chain technologies (e.g., Benhaim et al. 2023, Li et al. 
2023), and prediction markets (e.g., Chen et al. 2008, 
Atanasov et al. 2017).

2. Model
There is a set of n voters denoted [n] � {1, : : : , n}. We 
assume that voters are making a decision on a binary 
issue with possible answers of zero and one; there is a 
correct alternative (one) and an incorrect alternative 
(zero). Each voter i has a competence level pi ∈ [0, 1], 
which is the probability that i votes correctly. We 
denote the vector of competencies by p→n � (p1, : : : , pn). 
When n is clear from the context, we sometimes drop it 
from the notation.

2.1. Delegation Graphs
A delegation graph Gn � ([n], E) on n voters is a directed 
graph with voters as vertices and a directed edge (i, j) ∈
E denoting that i delegates their vote to j. Again, if n is 
clear from the context, we occasionally drop it from the 
notation. The out degree of a vertex in the delegation 
graph is at most one because each voter can delegate to 
at most one person. Voters who do not delegate have no 
outgoing edges. In a delegation graph Gn, the delegations 
received by a voter i, delsi(Gn), are defined as the total 
number of people who (transitively) delegated to i in Gn 
(i.e., the total number of ancestors of i in Gn). The weight 
of a voter i, weighti(Gn), is delsi(Gn) + 1 (the number 
of delegations that they received plus their own weight) 
if i votes directly and zero if i delegates. We define 
max-weight(Gn) �maxi∈[n]weighti(Gn) to be the largest 
weight of any voter and define total-weight(Gn) �Pn

i�1 weighti(Gn). Because each vote is counted at most 
once, we have that total-weight(Gn) ≤ n. However, note 
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that if delegation edges form a cycle, then the weights of 
the voters on the cycle and voters delegating into the 
cycle are all set to zero and hence, will not be counted. 
In particular, this means that total-weight(Gn) may be 
strictly less than n.6

2.2. Delegation Instances
We call the tuple (p→n, Gn) a delegation instance or simply, 
an instance on n voters. Let Vi � 1 if voter i would vote 
correctly if i did vote, and Vi � 0 otherwise. Fixed compe
tencies p→n induce a probability measure Pp→n 

over the n 
possible binary votes Vi, where Vi ~ Bern(pi). Given votes 
V1, : : : , Vn, we let XD

n be the number of correct votes 
under direct democracy; that is, XD

n �
Pn

i�1 Vi. We let XF
Gn 

be the number of correct votes under liquid democracy 
with delegation graph Gn; that is, XF

Gn
�
Pn

i�1 weighti 
(Gn) ·Vi. The probabilities that direct democracy and 
liquid democracy are correct are Pp→n

[XD
n >n=2] and Pp→n 

[XF
Gn
>n=2], respectively.

2.3. Gain of a Delegation Instance
We define the gain of an instance as

gain(p→n, Gn) � Pp→n
[XF

Gn
>n=2]� Pp→n

[XD
n >n=2]:

In words, it is the difference between the probability 
that liquid democracy is correct and the probability 
that majority is correct.

2.4. Randomization over Delegation Instances
In general, we assume that both competencies and 
delegations are chosen randomly. Each voter’s compe
tence pi is an independent and identically distributed 
(i.i.d.) sample from a fixed distribution D with support 
contained in [0, 1]. Delegations will be chosen accord
ing to a model M. A model M � (q,φ) is composed of 
two parts. The first, q : [0, 1] → [0, 1], is a function that 
maps competencies to the probability that the voter 
delegates. The second, φ : [0, 1]2→ R≥0, maps pairs of 
competencies to a weight. A voter i with competence pi 
will choose how to delegate as follows. 
• With probability 1� q(pi), the voter does not 

delegate.
•With probability q(pi), i delegates; i places weight 

φ(pi, pj) on each voter j ≠ i and randomly samples 
another voter j to delegate to proportional to these 
weights. In the degenerate case where φ(pi, pj) � 0 for 
all j ≠ i, we assume that i does not delegate.

A competence distribution D, a model M, and a num
ber n of voters induce a probability measure PD, M, n 
over all instances (p→n, Gn) of size n.

We can now redefine the do no harm and positive gain 
properties from Kahng et al. (2021) in a probabilistic way.

Definition 1 (Probabilistic Do No Harm). A model M 
satisfies probabilistic do no harm with respect to a class 
D of distributions if for all distributions D ∈D and all 

ε,δ > 0, there exists n0 ∈ N such that for all n ≥ n0,

PD, M, n[gain(p→n, Gn) ≥�ε]>1� δ:

Definition 2 (Probabilistic Positive Gain). A model M 
satisfies probabilistic positive gain with respect to a class 
D of distributions if there exists a distribution D ∈D 

such that for all ε,δ > 0, there exists n0 ∈N such that 
for all n ≥ n0,7

PD, M, n[gain(p→n, Gn) ≥ 1� ε]>1� δ:

2.5. Core Lemma
Next, we give a key lemma, which provides sufficient 
conditions for a model M to satisfy probabilistic do no 
harm and probabilistic positive gain with respect to a 
class D of distributions. This lemma will form the basis 
of all of our later results. Because the result follows 
from relatively straightforward concentration inequal
ities, we defer the proof to Online Appendix B.1.

Lemma 1. If M is a model, D is a class of distributions, n 
is a number of persons, and for all distributions D ∈D, 
there is an α ∈ (0, 1) and C : N→ N with C(n) ∈ o(n) such 
that
PD, M, n[max-weight(Gn) ≤ C(n)] � 1� o(1) (1) 

PD, M, n
Xn

i�1
weighti(Gn) · pi�

Xn

i�1
pi ≥ 2αn

" #

� 1� o(1);

(2) 

then, M satisfies probabilistic do no harm. If in addition, 
there exists a distribution D ∈D and an α ∈ (0, 1) such that

PD, M, n
Xn

i�1
pi + αn ≤ n=2 ≤

Xn

i�1
weighti(Gn) · pi� αn

" #

� 1� o(1), (3) 

then M satisfies probabilistic positive gain.

In words, Condition (1) ensures that as the number of 
voters grows large, the weighted number of correct 
votes under liquid democracy will concentrate around 
its expectation, 

Pn
i�1 weighti(Gn) · pi. Standard concen

tration results already imply that this holds for direct 
democracy. Condition (2) ensures that these expecta
tions are sufficiently separated. So, with high probabil
ity, liquid democracy will have more correct votes 
than direct democracy, which is sufficient to guarantee 
DNH. Finally, Condition (3) ensures that in some cases, 
the expectations for direct and liquid votes will be 
below and over half the voters, respectively, which after 
applying concentration, means that there will likely be 
a large gain.

In the following sections, we investigate natural del
egation models and identify conditions such that 
the models satisfy probabilistic do no harm and proba
bilistic positive gain. In all instances, we will invoke 
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Lemma 1 after showing that its sufficient conditions 
are satisfied.

3. Strictly Upward Delegation Model
We now turn to the analysis of a simple model that 
assumes that voters either do not delegate with fixed 
exogenous probability or do delegate to voters who 
have a competence greater than their own.

Formally, for a fixed p ∈ [0, 1], we let MU
p � (q,φ) be 

the model consisting of q(pi) � p for all pi ∈ [0, 1], and 
φ(pi, pj) � I{pj>pi} for all i, j ∈ [n]. That is, voter i delegates 
with fixed probability p and puts equal weight on all of 
the more competent voters. In other words, if voter i 
delegates, then i does so to a more competent voter 
chosen uniformly at random. Note that a voter with 
maximal competence will place zero weight on all 
other voters and hence, is guaranteed not to delegate. 
We refer to MU

p as the upward delegation model parame
terized by p.

Theorem 1 (Upward Delegation Model). For all p ∈ (0, 1), 
MU

p satisfies probabilistic do no harm and probabilistic posi
tive gain with respect to the class DC of all continuous 
distributions.

The proof of the theorem relies on novel bounds that 
we drive on the largest bin size in an infinite Pólya urn 
process (Simon 1955, Chung et al. 2003). We first for
mally define the process and present our bound in 
Lemma 2. A Pólya urn process with attachment probability 
p begins at time t � 1 with one ball in one bin. At each 
time step t > 1, a new ball arrives. With probability 
1� p, a new bin is created, and the new ball is placed in 
that bin; with probability p, the ball joins an existing 
bin, and it does so with probability proportional to the 
number of balls in the bins (i.e., if there are three bins 
containing one, two, and three balls, respectively, it 
joins each with probability 1=6, 2=6, and 3/6, respec
tively). We then have the following.

Lemma 2. For all p ∈ (0, 1) and t ≥ 1, let Lp
t be the random 

variable denoting the maximum number of balls in any bin 
after running the infinite Pólya urn process with new-bin 
probability p for t steps. Then, there exists δ < 1 depending 
only on p such that for all T ≥ 1, Pr[Lp

T ≤ Tδ] � 1� o(1):

Proof. Fix the parameter p ∈ (0, 1). Choose γ to be a 
constant such that 3=4 < γ < 1; note that p+ (1� p)γ <
p+ (1� p) � 1. Choose δ (for the lemma statement) 
such that p+ (1� p)γ < δ < 1. Notice that we can choose 
γ and δ such that δ is arbitrarily close to 3=4+ p=4.

Let B(k) denote the kth bin. Let U(k)t be the size of B(k)
at time t. Because there are at most t bins by time t, 
notice that Lp

t �max(U(1)t , : : : , U(t)t ). In general, our 
approach will be to analyze bins separately and show 
that U(k)T remains below Tδ with high-enough proba
bility so that we can union bound over all possible 

k ≤ T. That is, we will show
XT

k�1
Pr[U(k)T >Tδ] � o(1), 

which also implies Pr[Lp
T>Tδ] � o(1). Hence, it will be 

useful to consider this process more formally from the 
perspective of the kth bin, B(k). The kth bin B(k) is “born” 
at some time t ≥ k, the kth time in which a ball does not 
join a pre-existing bin, at which point U(k)t � 1 (prior to 
this, U(k)t � 0). More specifically, the first bin B(k) is 
guaranteed to be born at time t � 1, and for all other 
k > 1, B(k) will be born at time t ≥ k with probability 
� t� 1

k� 1
�
(1� p)kpt�k, although these exact probabilities 

will be unimportant for our analysis. Once born, we 
have the following recurrence on U(k)t describing that 
the probability B(k) will be chosen at time t:

U(k)t �
U(k)t�1 + 1 with probability

p ·U(k)t�1
t� 1

U(k)t�1 with probability 1�
p ·U(k)t�1

t� 1 :

8
>><

>>:

Let W(k)t be the process for the size of bin that is born 
at time k. That is, W(k)k � 1, and for k > t, W(k)t follows 
the exact same recurrence as U(k)t . Note that because 
the kth bin B(k) can only be born at time k or later, we 
have that W(k)t stochastically dominates U(k)t for all k 
and t. Hence, it suffices to show that

XT

k�1
Pr[W(k)T >Tδ] � o(1): (4) 

We split our analysis into two parts; the first considers 
the first Tγ bins, whereas the second considers the last 
T�Tγ bins.

We first show that 
PTγ

k�1 P[W
(k)
T >Tδ] � o(1). Note that 

the expectation of W(k)n

E[W(k)n ] �
Γ(n+ p)Γ(k)
Γ(p+ k)Γ(n) (5) 

for all k ≤ n, where Γ represents the Gamma function. 
We relegate the argument for Equation (5) to Online 
Appendix B.2. Using this along with Gautchi’s inequality 
(Gautschi 1959), (t+ p� 1)p ≤ Γ(p+t)

Γ(t) ≤ (t+ p)p, to approxi
mate the Γ terms, we can apply Markov’s inequality and 
use algebra to get 

Pnγ
k�1 P[Wk

n>nδ] � o(1). We again rele
gate these arguments to Online Appendix B.2.

Now, consider the final T�Tγ components. We will 
prove that Pr[W(T

γ+1)
T >Tδ] � o(1=T). Because W(k)T sto

chastically dominates W(k
′)

T for all k′ ≥ k, this implies 
that Pr[W(k)T >Tδ] � o(1=T) for all k ≥ Tγ + 1. Hence,

XT

k�Tγ+1
Pr[W(k)T >Tδ] � o(1):

To do this, we compare the W(T
γ+1)

t process with 
another process, Vt. We define V0 � 1, and for t >0, we 
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take Vt to satisfy the following recurrence:

Vt �
Vt�1 + 1 with probability Vt�1

t+ nγ

Vt�1 with probability 1� Vt�1

t+ nγ :

8
><

>:

This is identical to the W recurrence with t shifted down 
by nγ + 1, except without the p factor. Hence, VT�Tγ+1 
clearly stochastically dominates W(T

γ+1)
T . For conve

nience in calculation, we will instead focus on bounding 
VT, which itself stochastically dominates VT�Tγ+1.

Next, note that the Vt process is isomorphic to the 
following classic Pólya urn process. We begin with 
two bins: one with a single ball and the other with nγ 
balls. At each time, a new ball is added to one of the 
two bins with probability proportional to the bin size. 
The process Vt is isomorphic to the size of the one-ball 
urn after t steps. Classic results tell us that for fixed 
starting bin sizes a and b, as the number of steps grows 
large, the possible proportion of balls in the a bin fol
lows a Beta(a, b) distribution (Markov 1917, Eggenber
ger and Pólya 1923, Pólya 1930, Johnson and Kotz 
1978, Mahmoud 2009).

The mean and variance of such a Beta distribution 
would be sufficient to prove our necessary concentra
tion bounds; however, for us, we need results after 
exactly T�Tγ steps, not simply in the limit. Hence, 
we will be additionally concerned with the speed of 
convergence to this Beta distribution.

Let XT �
VT
T and ZT ~ Beta(1, Tγ). From Janson (2020), 

we know that the rate of convergence is such that for 
any p ≥ 1,

ℓp(XT, ZT) �Θ(1=T), (6) 

where ℓp is the minimal Lp metric defined as

ℓp(X, Y) � inf{E[ |X′�Y′ |p]1=p
|X′ �d X, Y′ �d Y}, 

which can be thought of as the minimal Lp norm over all 
possible couplings between X and Y. For our purposes, 
the only fact about the ℓp metric that we will need is 
that ℓp(X, 0) � E[ |X |p]1=p, where zero is the identically 
zero random variable. Because ℓp is, in fact, a metric, the 
triangle inequality tells us that ℓp(0, Xn) ≤ ℓp(0, Zn) +

ℓp(Zn, Xn), so combining with (6), we have that

E[ |XT |
p]1=p
≤ E[ |ZT |

p]1=p
+Θ(1=T) (7) 

for all p ≥ 1.
Note that because ZT ~ Beta(1, Tγ),

E[ZT] �
1

1+Tγ �Θ(T
�γ)

and

Var[ZT] �
Tγ

(2+Tγ)(1+Tγ)2
�Θ(T�2γ):

Given these results, we are ready to prove that VT is 
smaller than Tδ with probability 1� o(1=T): Precisely, 
we want to show that Pr[XT ≥ Tδ�1] � o(1): By Cheby
shev’s inequality,

Pr[XT ≥ Tδ�1] ≤
Var[XT]

(Tδ�1�E[XT])
2 :

Inequality (7) with p � 1 along with the fact that XT 
and ZT are always nonnegative implies that E[XT] ≤

E[ZT] +Θ(1=T) �O(T�γ). Hence, Tδ�1 �E[XT] �Ω(Tδ�1)

because δ� 1>�1=2>�γ. We can, therefore, write

(Tδ�1�E[XT])
2
�Ω(T�2(δ�1)): (8) 

Inequality (7) with p � 2 implies that 
ffiffiffiffiffiffiffiffiffiffiffiffiffi

E[X2
T]

q

≤

ffiffiffiffiffiffiffiffiffiffiffiffiffi

E[Z2
T]

q

+ Θ(1=T): Hence,

E[X2
T] ≤ Θ(1=T) +

ffiffiffiffiffiffiffiffiffiffiffiffiffi

E[Z2
T]

q� �2

≤ Θ(1=T) +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E[ZT]
2
+Var[ZT]

q� �2

≤ Θ(1=T) +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Θ(T�2γ)

p� �2

� (Θ(1=T) +Θ(T�γ))2

�Θ(T�γ)2

�Θ(T�2γ):

Next, note that Var[XT] ≤ E[X2
T], so

Var[XT] �O(T�2γ) (9) 

as well. Combining (8) and (9), we have that

Pr[XT ≥ Tδ�1] ≤
Var[XT]

(Tδ�1�E[XT])
2 �O(T�2γ+2(1�δ)):

Because �2γ+ 2(1� δ) < 1, given our assumption that 
3=4 < γ < δ, it follows that Pr[XT ≥ Tδ�1] � o(1=T), 
which allows us to conclude that

XT

k�Tγ+1
Pr[W(k)T >Tδ] � o(1):

Because we showed earlier that 
PTγ

k�1 Pr[W(k)T >Tδ] �
o(1), we have that

XT

k�1
Pr[W(k)T >Tδ] � o(1)

as needed. w

We are now ready to prove the theorem about 
upward delegation.

Proof of Theorem 1. To prove the theorem, we will 
prove that the upward delegation model with respect 
to DC satisfies (1), (2), and (3), which implies that the 
model satisfies probabilistic do no harm and positive 
gain by Lemma 1. We show (1) here and relegate (2) 
and (3) to Online Appendix B.3. w
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3.1. Upward Delegation Satisfies (1)
To do this, we will simply show that the component sizes 
in Gn sampled according to PD, M, n have the same distri
bution as the bin sizes in a Pólya urn process with attach
ment probability p, and hence, max-weight(Gn) follows 
the same distribution as Lp

n. Once we have shown this, 
(1) follows immediately from Lemma 2 as nδ ∈ o(n).

To that end, fix some sampled competencies p→n. 
Recall that each entry pi in p→n is sampled i.i.d. from D, a 
continuous distribution. Hence, almost surely, no two 
competencies are equal. From now on, we condition on 
this probability 1 event. Now, consider sampling the 
delegation graph Gn. By the design of the model MU

p , 
we can consider a random process for generating Gn 
that is isomorphic to sampling according to PD, M, n as 
follows. First, order the competencies p(1)>p(2)>⋯>p(n)
(note that such strict order is possible by our assump
tion that all competencies are different), and rename 
the voters such that voter i has competence p(i); then 
construct Gn iteratively by adding the voters one at a 
time in decreasing order of competencies: voter 1 at 
time 1, voter 2 at time 2, and so on.

We start with the voter with the highest competence: 
voter 1. By the choice of φ, voter 1 places weight 0 on 
every other voter and hence, by definition, does not 
delegate. This voter forms the first component in the 
graph Gn, which we call C(1). Then, we add voter 2, 
who either delegates to voter 1 joining component C(1)
with probability p or starts a new component C(2) with 
probability 1� p. Next, we add voter 3. If 2 ∈ C(1) (that 
is, if voter 2 delegated to voter 1), voter 3 either dele
gates to voter 1 (either directly or through voter 2 by 
transitivity) with probability p, or she starts a new com
ponent C(2). If 2 ∈ C(2), then voter 3 delegates to voter 1 
with probability p=2 and is added to C(1), delegates to 
voter 2 with probability p=2 and is added to C(2), or 
starts a new component C(3). In general, at time t, if there 
are k existing components C(1), : : : , C(k), voter t either 
joins each component C(j) with probability p |C(j) |

t�1 or 
starts a new component with probability 1� p. To con
struct Gn, we run this process for n steps. Notice that this 
is identical to the Pólya urn process with bins B(k), balls 
replaced with components C(k), and voters being run for 
n steps as needed.

4. Confidence-Based Delegation Model
We now explore a model according to which voters 
delegate with probability that is strictly decreasing (or 
monotonically decreasing; that is, x < y implies f (x)>
f (y)) in their competence, and when they do decide to 
delegate, they do so by picking a voter uniformly at ran
dom. This models the case where voters do not need to 
know anything about their peers’ competencies, but 
they do have some sense of their own competence and 
delegate accordingly.

Formally, for any q, let MC
q � (q,φ1), where φ1(pi, pj) � 1 

for all i, j ∈ [n]. Voter i puts equal weight on all of the 
voters and hence, samples one uniformly at random 
when they delegate. We refer to MC

q as the confidence- 
based delegation model.

Theorem 2 (Confidence-Based Delegation Model). All 
models MC

q with monotonically decreasing q satisfy proba
bilistic do no harm and probabilistic positive gain with 
respect to the class DC of all continuous distributions.

Proof. We show that the confidence-based model 
satisfies (1) and (2) here, and we relegate showing (3) 
to Online Appendix B.4. w

4.1. Confidence-Based Delegation Satisfies (1)
Fix some distribution D ∈DC. We show that there 
exists C(n) ∈O(log n) such that (1) holds.

Note that when sampling an instance (p→n, Gn), the 
probability that an arbitrary voter i chooses to delegate 
is precisely p :� ED[q]. To see this, consider how a voter 
i chooses whether to delegate; the voter first samples a 
competence pi ~ D and then, samples whether to dele
gate from Bern(q(pi)). Treating this as a single process, 
it is clear that the overall probability of choosing to dele
gate is exactly ED[q] by integrating out the competence.

Further, because D is continuous and q is monotoni
cally decreasing, p ∈ (0, 1). When a voter does decide 
to delegate, the voter does so by picking another voter 
uniformly at random. Hence, we can consider the 
marginal distribution of delegation graphs directly 
(ignoring the competencies). We will show that when 
sampling a delegation graph for any specific voter i, 
with probability 1� o(1=n), delsi(Gn) ≤ C(n), which 
implies weighti(Gn) ≤ C(n). A union bound over all n 
voters implies max-weight(Gn) ≤ C(n)with probability 
1� o(1).

To that end, we will describe a branching process 
similar to the well-known graph branching process (Alon 
and Spencer 2016), which has the property that the dis
tribution of its size exactly matches the distribution of 
delsi(Gn) for an arbitrary voter i. We will compare this 
process with a known graph branching process that 
has size at most O(log n) with high probability. We will 
show that our process is sufficiently dominated such that 
it too has size at most O(log n)with high probability. The 
branching process works as follows. Fix our voter i. We 
sample which other voters end up in i’s “delegation tree” 
(i.e., its ancestors in Gn) dynamically over a sequence of 
time steps. As is standard for these processes, all voters V 
will be one of three types: live, dead, or neutral. Dead 
voters are those whose “children” (i.e., voters who dele
gate to them) we have already sampled. Live voters are 
voters who have decided to delegate but whose children 
have not yet been sampled. Neutral voters are still in the 
“pool” and have yet to commit to a delegation. At time 0, 
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i is a live voter, there are no dead voters, and all other 
voters V \ {i} are neutral. At each time step, we take some 
live voter j, sample which of the neutral voters choose to 
delegate to j, add these voters as live vertices, and update 
j as dead. The procedure ends when there are no more 
live vertices, at which point the number of delegations 
received by i is simply the total number of dead vertices.

Let us now describe this more formally. Following the 
notation of Alon and Spencer (2016), let Zt denote the 
number of voters who we sample to delegate at time t. 
Let Yt be the number of live vertices at time t; we have 
that Y0 � 1. At time t, we remove one live vertex and 
add Zt more, so we have the recursion Yt � Yt�1�

1+Zt. We let Nt be the number of neutral vertices at 
time t. We have that N0 � n� 1 and Nt �Nt�1�Zt. 
Note that after t time steps, there are t dead vertices and 
Yt live ones, so this is equivalent to Nt � n� 1� t�Yt. 
To sample Zt, we fix some live voter j and ask how 
many of the neutral voters chose to delegate to j condi
tioned on them not delegating to any of the dead voters. 
Note that when sampling at this step, there are t� 1 
dead voters, and conditioned on the neutral voters not 
delegating to the dead ones, the probability that they del
egate to any of the other n – t individuals (not including 
themselves) is exactly p

n�t, equally split between them for 
a total delegation probability of p. Hence, Zt ~ Bin(Nt�1, 

p
n�t) ~ Bin(n� t�Yt�1, p

n�t). We denote by XD
n, p the ran

dom variable that counts the size of this branching pro
cess (i.e., the number of time steps until there are no 
more live vertices). Note that the number of delegations 
received by any voter has the same distribution as XD

n, p.
Choose some constant p′ such that p < p′ < 1. We will 

be comparing the XD
n, p with a graph branching process 

XG
n, p′ . The graph branching process is nearly identical 

except that the probability that each of the neutral ver
texes joins our component is independent of the num
ber of dead vertices and is simply p′

n . In other words, 
Zt ~ Bin(Nt�1, p′

n). A key result about this branching pro
cess is the probability of seeing that a component of a 
certain size ℓ decreases exponentially with ℓ. In other 
words, there is some constant c such that

PD, MC
q , n[X

G
n, p′ ≤ c log(n)] � 1� o(1=n):

Take C(n) � c log(n). Note that as long as t is such that 
p

n�t ≤
p′
n , the sampling in the delegation branching pro

cess is dominated by the sampling in this graph branch
ing process. Hence, as long as p

n�C(n) ≤
p′
n , P[XD

n, p ≤ c log 
(n)] ≥ P[XG

n, p′ ≤ c log(n)]. Because C(n) ∈O(log n), this is 
true for sufficiently large n, so for such n, P[XD

n, p ≤

c log(n)] � 1� o(1=n). By a union bound over all n voters, 
this implies the desired result.

4.2. Confidence-Based Delegation Satisfies (2)
Let q be such that q(x) � 1� q(x), so q represents the 
probability that someone with competence x does not 

delegate. Notice that ED[q] is exactly the probability 
that an arbitrary voter will not delegate. Let q+(x) �
q(x)x, and let

µ∗ �
ED[q+]
ED[q]

:

Expanding the definition, we see that µ∗ is exactly the 
expected value of a voter’s competence, conditioned on 
them not voting. Let µD be the mean of the competence 
distribution D. We first show that µ∗>µ

D
. Indeed, 

because both x and q(x) are strictly increasing functions 
of x, the Fortuin–Kasteleyn–Ginibre inequality (Fortuin 
et al. 1971) tells us that ED[q+]>ED[q] ·ED[x] � ED[q] ·
µ

D
: This implies that the expected competence condi

tioned on not delegating is strictly higher than the over
all expected competence.

Next, we will show that for any constant γ>0, with 
high probability, both 

Pn
i�1 pi ≤ (µ+ γ)n and 

Pn
i�1 

weighti(G)pi ≥ (µ
∗ � γ)n. If we choose γ � (µ∗ �µ)=3 

and α � γ=2, it follows that with high probability,
Xn

i�1
weighti(G)pi�

Xn

i�1
pi ≥ 2αn, 

implying that (2) is satisfied.
Because the pi’s are bounded independent variables, 

it follows directly from Heoffding’s inequality that 
Pn

i�1 pi ≤ n(µ+ γ) with high probability, so we now 
focus on showing 

Pn
i�1 weighti(G) · pi ≥ (µ

∗� γ)n with 
high probability. To do this, we will first show that 
with high probability, the delegation graph G satisfies 
delsi(G) ≤ C(n) for all i and total-weight(G) ≥ n�C(n)
log2 n.

We showed in the earlier part of this proof that delsi 
(G) ≤ C(n) with high probability. We will now prove 
that PD, MC

q , n[total-weight(G) ≥ n�C(n)log2 n |delsi(G) ≤
C(n)] � 1� o(1): To do this, we will first bound the 
number of voters who with high probability, end up in 
cycles. Fix a voter i and sample i delegation tree. Voter i 
will only end up in a cycle if i chooses to delegate to 
someone in this delegation tree. Because we are condi
tioning on delsi(G) ≤ C(n), the maximum size of this 
tree is C(n). Hence, the total φweight that voter i places 
on someone in the tree is at most C(n), whereas the total 
weight that voter i place on all voters is n� 1: Hence, 
the probability that i delegates to someone in the tree 
can be at most p ·C(n)=(n� 1). Because this is true for 
each voter i, the expected number of voters in cycles is 
at most np C(n)

(n�1) ∈O(log n): By Markov’s inequality, the 
probability that more than log2 n voters are in cycles is 
at most np C(n)

(n�1)log2 n �O(1=log n) � o(1):
Next, because we have conditioned on delsi(G) ≤

C(n), no single voter and in particular, no single voter 
in a cycle can receive more than C(n) delegations. 
So, conditioned on the high-probability event that 
there are at most log2 n voters in cycles, there are at 
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most C(n)log2 n voters who delegate to those in cycles. 
This implies that total-weight(G) ≥ n�C(n)log2 n+ log2 n 
with high probability.

We now show that conditioned on the graph satisfy
ing these properties, the instance (p→, G) satisfies 

Pn
i�1 

weighti(G) · pi ≥ n(µ∗� γ) with high probability. Note 
that the competencies satisfy that those that do not del
egate are drawn i.i.d. from the distribution of compe
tencies conditioned on not delegating, which has mean 
µ∗. Fix an arbitrary graph G satisfying the properties. 
Suppose M is the set of voters who do not delegate. 
Note that for each i ∈M, weighti(G) ≤ C(n) by assump
tion. Further, 

P
i∈Mweighti(G) ≥ n�C(n)log2

(n). Hence, 
when we sample the nondelegator pi’s, E[

P
i∈Mweighti 

(G) · pi] ≥ (n�C(n)log2
(n)) ·µ∗. Moreover,

Var
X

i∈M
weighti(G) · pi

" #

≤
X

i∈M
weighti(G)2 ≤ C(n) · n:

This follows from the fact that Var[pi] ≤ 1 and that we 
have fixed the graph G and hence, weighti(G) for each i, 
so these terms can all be viewed as constants. In addi
tion, we know that for each voter i, weighti(G) ≤ C(n), 
and 

Pn
i�1 weighti(G) ≤ n. Hence, we can directly apply 

Chebyshev’s inequality:

PD, MC
q , n

X

i∈M
weighti(G)pi < n(µ∗� γ)

" #

<
Var

P
i∈Mweighti(G)pi

� �

E
P

i∈Mweighti(G)pi
� �

� n(µ∗� γ)
� �2

≤
nC(n)

(γn�C(n)log2
(n)µ∗)2

∈ o(1), 

where the final step holds because the numerator is 
o(n2) and the denominator is Ω(n2). Hence, 

P
i∈Mweighti 

(G)pi ≥ n(µ∗ � γ)with high probability as needed.
To summarize, we have proven that conditioned on 

delsi(G) ≤ C(n) for all i and total-weight(G) ≥ n�C(n)
log2 n,

Pn
i�1 weighti(G) · pi ≥ n(µ∗� γ=3) occurs with high 

probability. Given that conditioned on delsi(G) ≤ C(n), 
total-weight(G) ≥ n�C(n)log2n occurs with high prob
ability and delsi(G) ≤ C(n) occurs with high probability, 
we can conclude by the chain rule that the intersection 
of these events holds with high probability. Given that 
the probability of any of this event is greater than the 
probability of the intersection, we can conclude that 
Pn

i�1 weighti(G) · pi ≥ n(µ∗� γ=3) occurs with probabil
ity 1� o(1) as desired.

5. Continuous General Delegation Model
Finally, we study a model in which voters delegate 
with fixed probability, and they do so by picking a 

voter according to a continuous increasing delegation 
function. This is a general model in which delegations 
can go to either more competent neighbors or less com
petent neighbors but where more competent voters are 
more likely to be chosen over less competent ones.

Formally, let MS
p,φ � (qp,φ), where qp is a constant 

function equal to p: that is, qp(x) � p for all x ∈ [0, 1], 
and φ(x, y) is nonzero, continuous, and increasing in y. 
We then have the following.

Theorem 3 (Continuous General Delegation Model). All 
models MS

p,φ with p ∈ (0, 1) and φ that is nonzero, continu
ous, and increasing in its second coordinate satisfy probabi
listic do no harm and probabilistic positive gain with 
respect to the class DC of all continuous distributions.

Proof. A majority of the proof is related to Online 
Appendix B.5. In the following, we show the begin
ning of the proof, which describes the setup for prov
ing (1).

Fix MS
p,φ and D ∈DC. Note that because φ is continu

ous and always positive on the compact set [0, 1]2, φ is 
in fact uniformly continuous, and there are bounds 
L, U ∈ R+ such that φ is bounded in the interval [L, U]. 
Additionally, we can assume without loss of generality 
that for all x ∈ [0, 1], ED[φ(x, ·)] � 1. Indeed, ED[φ(x, ·)]
is a positive, continuous function of x, so replacing φ
by φ′(x, y) � φ(x, y)=ED[φ(x, ·)] induces the same model 
and satisfies the desired property.

5.1. The Continuous General Delegation Model 
Satisfies (1)

Our goal is to show there is some C(n) ∈O(log n) such 
that with high probability, no voter receives more than 
C(n) delegations. To do this, just as in the proof of The
orem 2, we consider a branching process of the delega
tions received beginning with some voter i. We will 
show that under minimal conditions on the sampled 
competencies (which all occur with high probability), 
this branching process will be dominated by a well- 
known subcritical multitype Poisson branching process 
(Bollobás et al. 2007), which has size O(log n)with high 
probability.

For a fixed competence vector p→n, the branching pro
cess for the number of delegations received by a voter i 
works as follows. We keep track of three sets of voters: 
those who are alive at time t (Lt), those who are dead at 
time t (Dt), and those who are neutral at time t (Nt). 
Unlike in the proof of Theorem 2, where it was suffi
cient to keep track of the number of voters in each cate
gory, here we must keep track of the voter identities as 
well as they do not all delegate with the same probabil
ity. At time 0, the only live voter is voter i, and the rest 
are neutral; so, L0 � {i}, D0 � ∅, and N0 � [n] \ {i}. As 
long as there are still live voters, we sample the next set 
of delegating voters Zt in time t by choosing some live 
voter j ∈ Rt�1 and sampling the voter’s children. Once 
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j’s children are sampled, j becomes dead, and j’s chil
dren become live. All voters who did not delegate and 
were not delegated to remain neutral. The children are 
sampled independently; the probability that they are 
included is the probability that they delegate to j condi
tioned on them not delegating to the dead voters in 
Dt�1. For each voter k ∈Nt�1, k will be included with 
probability

p ·
φ(pk, pj)

P
k′∈[n]\(Dt�1∪{k})φ(pk, pk′ )

:

This is precisely the probability that k delegates to j 
conditioned on them not delegating to any voter in 
Dt�1. We continue this process until there are no more 
live voters, at which point the number of delegations is 
simply the number of dead voters or equivalently, the 
total number of time steps. We denote by XD

p→n, i the size 
of the branching process parameterized by competen
cies p→n and a voter i ∈ [n].

Our goal will be to compare XD
p→n, i with the outcome 

of a well-known multitype Poisson branching process. 
In this branching process, there are a fixed finite num
ber k of types of voters.8 The process itself is parameter
ized by a k × k matrix M, where Mττ′ is the expected 
number of children of type τ′ that a voter of type τ will 
have. The process is additionally parameterized by the 
type τ ∈ [k] of the starting voter. The random variable 
Yt keeps track of the number of live voters of each type; 
it is a vector of length k, where the τth entry is the num
ber of live voters of type τ. Hence, Y0 � eτ, the (basis) 
vector with a one in entry τ and an entry of zero for all 
other types. We sample children by taking an arbitrary 
live voter of type τ′ (the τ′ component in Yt�1 must be 
positive, indicating that there is such a voter) and sam
pling the voter’s children Zt, which is also a vector of 
length k, each entry indicating the number of children 
of that type. The vector Zt is sampled such that the τ′′
entry is from the Pois(Mτ′τ′′ ) distribution. That is, chil
dren of different types are sampled independently 
from a Poisson distribution, with the given expected 
value. We have the recursion Yt � Yt�1 +Zt� eτ′ .

Note that this means that there is no “pool” of voters 
to choose from; in fact, it is possible for this process to 
grow unboundedly large (see Alon and Spencer 2016, 
section 11.6 for the classical description of the single- 
type Poisson branching process). Nonetheless, this pro
cess will still converge often enough to remain useful. 
We denote by XP

M,τ the random variable that gives 
the size of this branching process, parameterized by 
expected-children matrix M and starting voter type 
τ ∈ [k]. Such a branching process is considered subcriti
cal if the largest eigenvalue of M is strictly less than one 
(Bollobás et al. 2007). In such a case, if we begin with a 
voter of any type τ ∈ [k], the probability of the branch
ing process surviving ℓ steps decreases exponentially 

in ℓ. Hence, there is some c such that for all τ ∈ [k],

P[XP
M,τ ≤ c log(n)] � 1� o(1=n):

To compare these branching processes, we make a 
sequence of adjustments to the original branching pro
cess that at each step creates a dominating branching 
process slightly closer in flavor to the multitype Pois
son. In the end, we will be left with a subcritical multi
type Poisson process that we can bound.

Fix some ε>0, which is a parameter in all of our 
steps. Later, we will choose ε to be sufficiently small 
(specifically, such that p (1+ε)

3

1�2ε < 1) to ensure that the 
Poisson branching process is subcritical. To convert 
from our delegation branching process to the Poisson 
branching process, we take a voter’s type to be the com
petence (which completely characterizes the delegation 
behavior). However, to compare with the Poisson pro
cess, there must be a finite number of types. Hence, we 
partition the interval [0, 1] into B buckets, each of size 
1=B, such that voters in the same bucket delegate and 
are delegated to “similarly.” We choose B large enough 
such that all points in [0, 1]2 within a distance of 

ffiffiffi
2
√
=B of 

each other differ in φ by at most L · ε. (Recall that the 
range of φ is in the interval [L, U].) This is possible 
because φ is uniformly continuous. Further, this implies 
that any points (x, y), (x′, y′) within a square with side 
length 1=B have the property that φ(x, y) ≤ φ(x′, y′)+
L · ε ≤ (1+ ε) ·φ(x′, y′). Note that B depends only on φ
and ε and hence, is a constant with respect to the num
ber of voters n.

We say a voter i is of type τ if τ�1
B < pi ≤

τ
B for 1 ≤ τ ≤

B (with a nonstrict inequality for τ � 1, so zero is of 
type 1). Let Sτ � (τ�1

B , τB] be the set of competencies of 
type τ (except that in the case that τ � 1, we take S1 to 
be the closed interval [0, 1

B]). Let πτ �D[Sτ] be the prob
ability that a voter has type τ. Because the types form a 
partition of [0, 1], we have that 

PB
τ�1πτ � 1.

For any two types τ,τ′, we define9

φ′(τ,τ′) � sup
(x,y)∈Sτ×Sτ′

φ(x, y):

We abuse notation by extending φ′ to operate directly 
on competencies in [0, 1] by first converting competen
cies to types and then, applying φ′. Then, φ′ has the 
property that for any pi, pj ∈ [0, 1],

φ(pi, pj) ≤ φ
′(pi, pj) ≤ (1+ ε)φ(pi, pj):

We have that for all τ, if x ∈ Sτ, then
XB

τ′�1
φ′(τ,τ′)πτ′ � ED[φ

′(x, ·)] ≤ (1+ ε) ·ED[φ(x, ·)]

� (1+ ε):
Hence, we define

φ̃(τ, τ′) � φ′(τ, τ′) · (1 + ε)
PB
τ′′�1φ

′(τ, τ′′)πτ′′
:
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We again abuse notation to allow φ̃ to operate directly on 
competencies. We have that φ̃(x, y) ≥ φ′(x, y) ≥ φ(x, y)
for all competencies x, y ∈ [0, 1], and further, for all τ, 
PB
τ′�1 φ̃(τ,τ′)πτ′ � 1+ ε.
The Poisson branching process that we will eventu

ally compare with is one with B types parameterized 
by the expected-children matrix M, where

Mττ′ � p (1 + ε)
2

1� 2ε φ̃(τ, τ
′):

First, we show that M has largest eigenvalue strictly less 
than one (for our choice of ε) so that the branching pro
cess will be subcritical. Indeed, M has only positive 
entries, so we only need to exhibit an eigenvector with 
all nonnegative entries such that the associated eigen
value is strictly less than one. The Perron–Frobenius the
orem tells us that this eigenvalue must be maximal. w

The remainder of this proof can be found in Online 
Appendix B.5. At a high level, we give details for 
proving that the Poisson process is subcritical as well 
as completing the comparison between the original 
delegation process and this one. The comparison 
makes use of the concentration of the number of 
voters in each bucket. The proofs of (2) and (3) follow 
a similar structure to confidence based; however, they 
are quite a bit more intricate because of the interde
pendencies between competence level and delegation 
probability.

6. Liquid Democracy in Experiments
In six experiments, we statistically estimate the func
tions q and φ to assess the real-world implications of 
our theoretical findings. These experiments rely on a 
novel design measuring the vote in a nonstrategic, non
incentivized liquid democracy setting while simulta
neously estimating voters’ competence. Our empirical 
results consistently exhibit a regime in which liquid 
democracy enhances collective intelligence, leveraging 
interpersonal knowledge embedded in social networks 
and identifying diverse sets of experts. Data and code 
are available at http://tinyurl.com/osf-liqdem.10

6.1. Experimental Design
6.1.1. Experiments and Material. We conducted E � 6 
experiments after an initial pretest11 between March 21 
and November 27, 2022.12 In each experiment e, a 
group of participants13 performed |T e | tasks.14 Each 
task consisted of eight questions on the corresponding 
topic that were primarily taken and adapted from the 
work of Simoiu et al. (2019).15 A total of N � 168 indivi
duals participated. They hailed from over 30 countries; 
33% were female, 1% were nonbinary, 64% were male, 
and 2% preferred to self-describe. Each experiment e 
had a number of participants Ne ranging between 14 
and 50. A description of the settings and group sizes is 

presented in Online Appendix C, and the survey mate
rial can be found in Online Appendix D.

6.1.2. Survey Flow. Participants began by providing 
informed consent and inputting their name. Next, they 
completed the following steps. 

First experimental stage. Participants were presented 
with a task and could either answer a series of ques
tions related to that theme or delegate the task to a 
peer. For instance, a task read: “You will be shown 
images of architectural landmarks from around the 
world, and asked to select the country where the 
landmark is located” (https://github.com/ManRev/ 
liquiddemocracy/blob/main/material/LD_template.qsf). 
This was followed by “Do you want to vote yourself or 
delegate your vote to a trusted peer?” If they chose to vote 
themselves, they were taken to the eight questions con
tained in the task. If they chose to delegate, they were 
asked to select the name of their delegate and then, imme
diately directed to the next task. Importantly, when decid
ing whether to delegate, participants did not see the 
questions.

Second experimental stage. Participants were then 
asked to answer “additional questions.” These were all 
of the questions corresponding to tasks that they had 
chosen to delegate in the first stage. We collected these 
data at the end of the experiment so as not to prime the 
participants on the exercise.16

Finally, optional background questions were asked 
on the last page. Note that the orders in which tasks, 
questions within each task, and the “true/false” options 
appeared were all randomized. The entire flow is sum
marized in Figure 3 in Online Appendix D.

6.1.3. Data Collected. Let [N] be the set of N partici
pants, and let [E] be the set of E experiments. Each 
experiment e ∈ [E] has Ne participants so that N �
P

e∈[E]Ne: [Ne] denotes the subset of voters in experi
ment e and T is the set of tasks surveyed ( |T | � 15). 
For each task t ∈ T , there is a set Rt of eight correspond
ing questions. We let R � ∪tRt be the set of all ques
tions. For each participant i, e(i) ∈ [E] is the experiment 
that participant i participated in; for each question r, 
t(r) ∈ T is its corresponding task.

In the experiments, we collect (i) the direct vote to each 
question i answered vi, r ∈ {0, 1}, where one means correct 
and zero means incorrect, and (ii) the binary signal δi, t 
equal to one if i delegated on task t and zero otherwise 
(note that δi, t is constant at the task level), along with 
which voter they delegated to. From these collected data, 
we can compute wi, t, the weight of voter i on task t. This is 
i’s total weight after adding up all transitive delegations; it 
is set to zero when i delegates. Figure 1 provides an exam
ple of a collected delegation graph.

In rare cases, a delegation could not be included for 
a couple of possible reasons. The first reason is if a 
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participant delegated to somebody who did not complete 
the survey. In this case, we would simply ignore the dele
gation (assuming that they directly voted). The second 
reason is in an instance of a cycle (e.g., participant i dele
gated to participant j who delegated to participant i). 
These were also ignored (i.e., assumed that no voter on 
the cycle delegated). In many real-world implementa
tions, such participants would be notified of the cycle and 
asked to choose a new delegate or vote directly.

6.2. Delegation and Competence Statistics
Over the 1,096 (participant/task) pairs, we observed a 
total of 505 delegations, meaning that participants dele
gated 47% of the time (standard deviation (std) � 0.49). 
The rate varied across experiments from 32% (std �
0.49) in experiment 2 to 54% (std � 0.50) in experiment 
5, and the rate varied across tasks from 22% (std � 0.50) 
in task T8 to 80% (std � 0.40) in task T15: Among those 
who voted directly, 15% received only one delegation 
besides their own (hence, had weight 2 in the decision), 
6% received two delegations, and just about 5% received 
five or more delegations. However, in one experiment, 
over half of the votes were delegated to a single partici
pant. Additionally, throughout all of the experiments, we 
observed only four delegation cycles, and all were only of 
size 2 (where a delegates to b and then, b delegates back 
to a). These occurred in Experiment 4 with N4 � 27 and in 
Experiment 6 with N6 � 50: Examples of additional dele
gation graphs can be found in Online Appendix D.

6.2.1. Estimating Competence. In order to evaluate 
how delegation behavior relates to competence, we 

need to estimate participants’ competence. We denote 
by ηi, t the estimated competence of participant i in task 
t. Naively, participants’ competence per task could be 
estimated by averaging the number of correct answers 
given on all eight questions of that task, ηnaive

i, t �

P
r∈Rt

vi, r

|Rt |
:

However, such a computation does not account for the 
questions’ heterogeneity. We thus estimate ηi, t using the 
item response theory (IRT) framework (Lalor and Rodri
guez 2023), which provides a widely used parametric 
model to estimate competence ηi, t and question diffi
culty from repeated measurements. We explain the 
parametric estimation in Online Appendix E.17

6.2.2. Gender-Based Statistics. Although we might 
worry that delegation patterns vary across gender 
because of significant differences in confidence (e.g., 
Ellis et al. 2016, Sarsons and Xu 2021), we actually find 
no significant differences in these experiments, neither 
in measured competence in tasks nor in propensity to 
delegate. Analysis of variance tests for the propensity to 
delegate (respectively, competence) across gender show 
no significant differences with p � 0.464 (respectively, p 
� 0.112). Tukey tests for pair-wise mean comparison 
further validate the absence of significant differences 
across the different genders (see Online Appendix G).

6.3. Estimating the Probability of Delegating as a 
Function of Competence

We now turn to estimating q and φ as a function of 
voters’ competence. Recall that q(η) represents the prob
ability that somebody of competence η chooses to dele
gate. We have observations δi, t encoding participant i’s 

Figure 1. (Color online) Delegation Graphs for Task T7 (“You Will Be Given Upcoming European Men Soccer Games and Asked 
to Predict the Games’ Outcomes”) from Experiment 6 

Note. Each node is a voter, and the node’s number represents the rounded expertise ηi, t of a given voter i for task t computed using item 
response theory; see Online Appendix E.
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delegation choice for task t and an estimate ηi, t of i’s 
competence on task t. We use these to estimate the rela
tionship between competence ηi, t and the probability of 
delegating q(ηi, t):

6.3.1. Methods. To estimate q, we fit a logistic model, 
regressing δi, t against ηi, t. The following equation shows 
the relationship that we wish to fit, where α0 is the inter
cept and βq is the effect size that we measure:

log Pr[δi, t � 1]
1�Pr[δi, t � 1]

� �

� α0 + β
qηi, t + εi: (10) 

To account for potential correlation in the error term 
within participants’ answers, when estimating the para
meters in Equation (10), we cluster standard errors 
(s.e.s) at the participant level. We also test for the data 
normality; results for these test can be found in Online 
Appendix H.

We repeat the procedure above on data sets filtered 
by task, this time having a distinct βt for each task t to 
measure the task-specific estimates. Additionally, we 
run these with fixed effects for individuals and tasks to 
more directly measure the impact of competence (rather 
than just looking at population trends). Additional 
details and results can be found in Online Appendix I.

6.3.2. Results. We find βq ��2:24, with s:e: � 0:42, 
statistics z ��7:12, and p � 10�7: In turn, we estimate 
that q(ηi, t) �

cPr[δi, t � 1] � 1
1+exp�(�1:39�2:24×ηi, t)

, suggesting 
that the probability of delegating decreases with com
petence. We can also test for monotonic dependence 
through a model-free method using a Pearson correla
tion test and its associated p-value. We find a correla
tion coefficient of –0.17 and p < 5 × 10�8:

6.4. Estimating Weight Function Used 
to Delegate

Recall that in the theoretical model, a voter with com
petence η1 delegates to another with competence η2 
with probability proportional to φ(η1,η2).

6.4.1. Methods. We first bucket the observed compe
tence levels into B clusters c1, : : : , cB. We assume that φ
is constant across inputs in the same bucket and fit it 
based on bucket “centers,” η1, : : :ηB, which are simply 
taken to be the mean values of the competences in each 

bucket (i.e., ηℓ �
P

i, t:ηi, t∈cℓ
ηi, t

| {(i, t) |ηi, t∈cℓ} |
). This means that we can 

estimate φ(x, y) using the number of delegations from 
any competence x′ to competence y′, where x′ and y′
fall in the same bucket as x and y, respectively. Finally, 
we determine the Kendall tau rank correlation coeffi
cient between φ(x, y) and y with its associated p-value 
to test for the monotonic relation between φ and its sec
ond coordinate.

6.4.1.1. Bucketing Strategies. We discretize the seg
ment [0, 1] into B buckets. We do so using several 
methods (to ensure the robustness of our approach); 
we describe here the k-means clustering procedure and 
discuss the rest in Online Appendix J.1.

To bucket using k-means, we optimize for B clusters, 
c1, : : : , cB, that minimize 

PB
k�1
P
ηi, t∈ck

�
ηi, t�

P
ηi, t∈ck

ηi, t

| ck |

�2
:

In words, we compute a partition of the [0, 1] segment 
such that the total squared distance from elements to 
their cluster centers is minimized. We use the standard 
k-means clustering algorithm to find the clusters (Har
tigan and Wong 1979).

6.4.1.2. Estimation of w for a Given Delegation 
Graph. Next, we wish to fit a function φ: For given 
experiment e and task t, we estimate φe, t(ηℓ,ηk) for 
each ℓ, k ∈ [B], so for conciseness, we write φℓe, t(ηk) :�

φe, t (ηℓ,ηk).
18

Observe that the experiment can then be viewed as a 
multinomial trial; from the perspective of an ℓ partici
pant, there are B choices to pick from, where the proba
bility of picking a k participant is proportional to all of 
the φℓe, t(ηk) for k ∈ [B] and the number of participants of 
each competence level. We observe instances of these 
choices; the zℓk’s are the observed numbers of times that 
someone of type ℓ delegated to someone of type k. It 
then suffices to find the maximum likelihood estima
tors for φℓe, t(ηk) as a function of zℓk, nk, and nℓ: We pro
vide more technical details in Online Appendix J.2.

6.4.1.3. Testing for Monotonic Dependence of w in 
Its Second Coordinate. Finally, we test for potential 
monotonic dependence of φℓe, t(ηk) as a function of ηk, 
visualizing the φℓe, t(ηk) in Figure 2 and computing the 
Kendall tau rank correlation coefficient between 
φℓe, t(ηk) and ηk for a fixed ℓ and its associated p-value. 
The Kendall tau rank correlation coefficient evaluates 
the similarity between two vectors of rank; its form and 
significance are detailed in the Online Appendix.

6.4.2. Results. We show here the results for using k- 
means bucketing with B � 4.19 Additional results for 
other strategies and other numbers of buckets can be 
found in Online Appendix J.5. Descriptions of these 
four buckets can be found in Table 1.

In Figure 2, the blue crosses in each column show the 
φℓe, t(ηk) for all (e, t) (for a particular ηℓ in the four plots 
in the left panel and for all combined in the right panel) 
as a function ηk. The pink points in Figure 2 represent 
the average across all experiments and tasks for a given 
ηk, and the regression lines in Figure 2 correspond to 
ordinary least square regression on the mean values. 
We show this pooled both only for those in the same 
bucket as well as all grouped together.
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To test the significance of the trends observed in 
Figure 2, we test whether the Kendall tau rank correla
tion coefficient between φℓe, t(ηk) and ηk signals signifi
cant associations both at the overall level and when 
fixing ℓ or ηℓ, the first coordinate in φe, t(ηℓ,ηk): Table 2
shows the resulting correlation coefficients and signifi
cance tests. The trends observed in both Figure 2 and 
Table 2 confirm that there is a statistically significant 
increase in φe, t(ηℓ,ηk) as a function ηℓ across all exper
tise levels, confirming that voters behave according to 
the general continuous delegation model. We further 
note that these significant trends are valid at the granu
larity of three of the four buckets (the third bucket c3 
exhibits nonstatistically significant positive Kendall tau 
rank correlation). We also run the same tests partitioned 
into tasks. The results can be found in Online Appendix 
J.4. We last check that these results are not sensitive to 
the bucketing strategy in Online Appendix J.5.

6.5. Experimental Conclusions
We found that voters’ likelihood to delegate decreases 
with their competence (as suggested by the confidence- 
based model). In addition, voters are more likely to dele
gate to someone of increasing competence (as suggested 
by the general continuous model). Note that in fact, the 
general continuous model can be generalized to allow 
monotonically decreasing q as well (indeed, it suffices to 
consider the expectation of q(pi) taken over the distribu
tion of competence as the constant probability of vot
ing). Our empirical results are hence consistent with a 
general continuous delegation model. Unsurprisingly, 
the upward delegation model that we described based 
on Caragiannis and Micha (2019) and Kahng et al. (2021) 
that leads to a catastrophic concentration of power is not 
consistent with experimental data; voters do not dele
gate only to higher-competency agents, and we do not 
observe constant delegation competence.

Figure 2. (Color online) Estimates of φℓe, t for Each Bucket (Left) and for Buckets Grouped (Right) 

(a)

(b)

Notes. The crosses show the values computed for φℓe, t(ηk). The dots show the average across all values for that ηk, and the lines correspond to a 
linear regression over the mean values. We observe increasing trends across the board, with slopes (coefficient of determination) being 
0:53(0:90), 0:28(0:46), 0:29(0:47), and 0:60(0:92), respectively, for individual buckets and 0:38(0:85) for the pooled test. The shaded areas represent 
the 95% confidence intervals. (a) Estimated values separated by input bucket. (b) Estimated values pooled together.

Table 1. Bucket Descriptions

Bucket Interval
Mean 

competence
Proportion of 

participants (%)

c1 [0.00–0.514] 0.43 16
c2 [0.515–0.674] 0.60 32
c3 [0.677–0.814] 0.75 35
c4 [0.818–1.00] 0.88 17

Table 2. Summary of Correlation Effects

Overall

For fixed ℓ

c1 c2 c3 c4

Correlation 0.17**** 0.29** 0.12* 0.11 0.28***
p-value 2 × 10�5 2 × 10�2 9 × 10�2 1 × 10�1 3 × 10�3

*p < 0.1; **p < 0.05; ***p < 0.01; ****p < 0.0001.
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6.6. Additional Results
In Online Appendix K, we run additional tests and 
check other properties of the collected data. These 
include comparing the frequency of correctness between 
liquid democracy and direct democracy (Online Appen
dix K.2), analyzing the increase in competence (Online 
Appendix K.3), and analyzing the concentration of 
power using both the maximum weight (Online Appen
dix K.4) and the power of small coalitions (Online 
Appendix K.5). Note that the latter results are particu
larly relevant to the concentration of power in liquid 
democracy, a topic that was extensively discussed in 
previous work. Recall that although previous work 
exhibited scenarios in which a concentration of power 
occurs, our work is concerned with measuring whether 
such an extreme concentration of power is likely. In all 
but 1 of the 32 instances, we found no evidence of a con
centration of power. Anecdotally, we further observe 
that a number roughly the square root of the number of 
voters controls half of the votes.

7. Discussion
Our paper relies on a set of assumptions and modeling 
choices that are worth discussing.

First, a prominent feature of our model is that there 
is no underlying social network; that is, there is no 
restriction on whom a voter may delegate to. As we 
explained in Section 1, we believe that this is realistic in 
a variety of scenarios. But, we can, in fact, extend our 
results to a model where a directed social network is 
first sampled, and then, a (q,φ) model is followed. The 
social network must be sampled such that the neigh
bors of each voter are chosen uniformly at random, 
although the number of such neighbors could follow 
any small-tailed distribution. Intuitively, delegation 
proportional to weighting the neighbors of i (rather 
than the entire population) is equivalent to a possibly 
different weighting over the entire population.20 An 
open research direction is to consider graph topologies 
not covered by these dynamics.

Second, building on Kahng et al. (2021), we assume 
that there exists a true best alternative. Needless to say, 
this assumption is necessary if we wish to “defend” liq
uid democracy against their conclusions. It is also an 
extremely well-studied assumption that dates back to 
the eighteenth century (Young 1988). The existence of a 
ground truth is easily justified in the contexts of predic
tion markets or corporate governance, where alterna
tive policies can be measured in terms of concrete 
metrics, like “estimated revenue in five years,” and 
these metrics can be communicated to voters. That 
said, some decisions inherently rely on other subjective 
criteria that we do not capture.

Third, again like previous papers (Caragiannis and 
Micha 2019, Becker et al. 2021, Kahng et al. 2021), we 

assume that voters vote independently. Admittedly, this 
is not a realistic assumption; relaxing it, as it was relaxed 
for the classic Condorcet jury theorem (Häggström et al. 
2006, Nitzan and Paroush 2017), is a natural direction 
for future work.

Fourth, our models do not take strategic behaviors 
into account. In the same vein, our experiments do not 
involve explicit incentives, and although we do not 
have reasons to believe that significant strategic voting 
occurs, studying it these issues is beyond the scope of 
this work. It would be of interest to extend our results to 
a more game-theoretic setting and relate them to work 
focusing on game-theoretic issues in liquid democracy 
(Bloembergen et al. 2019, Zhang and Grossi 2021, Dhil
lon et al. 2023). Along those lines, experiments with 
monetary incentives would be interesting.

Fifth, our framework for stochastic delegations opens 
up interesting directions for more research. For instance, 
one could characterize all of the delegation models satis
fying positive gain and do no harm. One may also con
sider more general local delegation models that would 
depend on the competences of all voters.

More generally, our work aims to provide a better 
understanding of a prominent shortcoming of liquid 
democracy: concentration of power. But, there are others. 
For example, any voter can see the complete delegation 
graph under current liquid democracy systems—a fea
ture that helps voters make informed delegation deci
sions (because one’s vote can be transitively delegated). 
This may lead to voter coercion, however, and the 
trade-off between transparency and security is poorly 
understood.

Finally, to summarize, we have introduced a general 
framework to investigate stochastic dynamics in liquid 
democracy and proved new conditions for the conver
gence of weighted majorities; we then identified regimes 
in which liquid democracy leads to correct outcomes 
with high probability. In that sense, our work is to liquid 
democracy what the Condorcet jury theorem is to direct 
democracy. There are many reasons to be excited about 
the potential of liquid democracy (Blum and Zuber 
2016). We believe that our results provide another such 
reason, and we hope that our techniques will be useful 
in continuing to build the theoretical and empirical 
understanding of this compelling paradigm.

Endnotes
1 See https://tinyurl.com/y52j6nfs, last accessed January 2, 2025.
2 The use of the term “epistemic” in this context is well established 
in the social choice literature (List and Goodin 2001, Pivato 2012).
3 The former constructs an instance where even with arbitrarily 
many voters, a constant number will receive a majority of the dele
gations. The group has an average competence above 1/2. The 
probability that liquid democracy gives the right answer can be 
upper bounded by a constant strictly below one, whereas direct 
democracy is correct with probability approaching one. In the latter 
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case, the voters’ numbers and relative competence are chosen so that liq
uid democracy almost always gives the incorrect answer (as does direct 
voting), whereas dictatorship is correct with a constant probability.
4 An infinite Pólya urn process models an urn process where each 
new ball picks its urn with a probability proportional to the size of 
the urn or creates its own urn with constant probability.
5 In LiquidFeedback, delegation cycles are, in fact, ignored.
6 This is a worst-case approach, where cycles can only hurt the per
formance of liquid democracy because this assumption is equiva
lent to assuming that all voters on the cycles vote incorrectly.
7 Note that positive gain and do no harm relate to the notion of con
centration of the weighted sum 

Pn
i�1 weightiVi. Indeed, the probabil

ity of direct democracy being correct approaches one as n increases 
when the average competence is strictly above 1/2. As a result, do 
no harm is satisfied by a delegation model exactly when the probabil
ity that liquid democracy is correct also approaches one. This hap
pens when the competence after delegation remains strictly above 
1/2, and the weighted sum 

Pn
i�1 weightiVi concentrates. Positive gain 

also holds if there exists a setup where the average group compe
tence is strictly below 1/2, the average competence after delegation 
remains strictly above 1/2, and the weighted sum 

Pn
i�1 weightiVi con

centrates. In turn, these established benchmarks are directly mapped 
to existing results in social choice theory on the convergence of 
weighted majorities Häggström et al. (2006).
8 In the literature, these are often called particles, but to be consistent 
with our other branching processes, we call them voters here.
9 Note that because φ is increasing in its second coordinate, one can 
actually write φ̃(τ,τ′) � supx∈Sτφ(x, τ′B).
10 The full link is https://osf.io/skxwg/?view_only=3671d431bcfd 
4a9cb94ded5aa86a0a95.
11 A description of the setup and the results from the prestudy can 
be found in Online Appendix L, and initial results can be found in 
Revel et al. (2022).
12 Our protocol E-3948 was approved and exempted by the univer
sity’s Committee on the Use of Humans as Experimental Subjects.
13 Note that liquid democracy depends on the potential for benefi
cial delegation. It is, therefore, necessary to work with participants 
who have at least a passing familiarity with each other. Experiments 
were conducted in places such as classrooms and company work
shops, where pre-existing group structures guaranteed such condi
tions. Although significant preparation was needed to ensure 
correct experimental setups for these environments, this design did 
have the benefit of producing high-quality data with few missing 
entries and minimal drop out.
14 |T e | � 4 except for experiment e � 6, in which |T e | � 12; the final 
experiment was conducted over a longer period of time, allowing 
more tasks to be completed.
15 To be consistent with the theoretical setup under study, we con
verted all categorical questions into binary questions. For example, 
for a question from Simoiu et al. (2019) of the form “Where is this 
famous landmark from? (see in https://github.com/stanford-policylab/ 
wisdom-of-crowds/blob/master/data/original/tasks.csv.zip)” with 
four options (Italy, Tibet, Greece, or Brazil), we selected a possible 
answer (e.g., Brazil) to reformulate the question: “Is this famous land
mark from Brazil?” In more detail, we first randomly selected which 
questions would be correct (to avoid the sense that most questions are 
incorrect) and then, for the incorrect ones, drew a wrong option at 
random. We found multiple inconsistencies in the Simoiu et al. (2019) 
data that we corrected; also, the prediction questions pertained to 
events that had passed, so these were replaced with new ones.
16 We validated this approach with a robustness check on the time 
spent by participants as a function of how often they delegated (see 
Online Appendix K.1).

17 Although ηnaive
i, t takes on one of nine values (multiples of 1/8), ηi, t 

(computed using IRT) is a continuous variable that can take on arbi
trary values in R: We normalize so that ηi, t ∈ [0, 1] and assume this 
to be the competence, the probability of being correct. Note that 
these different methods yield a correlation between ηnaive

i, t and ηi, t of 
more than 94%:
18 Note that because the number of participants in each bucket changes 
for different experiments/tasks, it is difficult to fit a single function. 
Instead, we first found the most likely φ to have generated each 
experiment/task and then, combined these to find an overall best fit.
19 This was the optimal number found using the Kneedle algorithm 
(Satopaa et al. 2011).
20 This extension does not carry over to undirected networks 
because if voters have a small number of neighbors, we would 
expect many two cycles to form after delegation, which under the 
worst-case cycle approach, may not be canceled out by the overall 
increase in competence.
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