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Abstract

In the design and analysis of political redistricting maps, it is often useful to be able to sample from the
space of all partitions of the graph of census blocks into connected subgraphs of equal population. There are
influential Markov chain Monte Carlo methods for doing so that are based on sampling and splitting random
spanning trees. Empirical evidence suggests that the distributions such algorithms sample from place higher
weight on more “compact” redistricting plans, which is a practically useful and desirable property. In this
paper, we confirm these observations analytically, establishing an inverse exponential relationship between
the total length of the boundaries separating districts and the probability that such a map will be sampled.
This result provides theoretical underpinnings for algorithms that are already making a significant real-world
impact.

1 Introduction

In April 2021, the US Census Bureau released the 2020 apportionment counts: the tally of residents of the 50
states, which determines the number of seats each state is entitled to in the House of Representatives for the next
decade. This kicks off the complicated and contentious process of redrawing the states’ congressional districts,
which, we expect, will prove to be a historically impactful application of algorithms to societal questions.

Although this process of redistricting is mandated by the US Constitution and further spelled out by the states,
the law allows significant flexibility and — even in small states — an astronomical number of possible plans. Since
the early 19th Century, partisan actors have exploited this flexibility to engineer plans that give their parties an
unfair advantage, a phenomenon known as gerrymandering.

From the viewpoint of computer science, “good” redistricting is a natural algorithmic problem, and indeed
there is a longstanding interest in algorithms for redistricting [15]. However, it is only in the last few years that
computer scientists and mathematicians have joined the fight against gerrymandering in earnest [11, 23].

The algorithmic approach that has been most successful in terms of policy impact is that of sampling
a distribution over all feasible plans by running a Markov chain Monte Carlo (MCMC) algorithm, thereby
generating an ensemble of “representative” plans. Such ensembles have been used — including in a number of
successful legal challenges to state redistricting plans in Pennsylvania, North Carolina, Michigan, Wisconsin and
Ohio — to determine whether implemented plans are statistical outliers, which suggests that they resulted from
gerrymandering [12, 6, 17, 8]. This method has the advantage of being able to discern whether proposed plans
are fair in light of each state’s unique political geography.

In our view, the most influential MCMC method is ReCom (shorthand for “Recombination”) [10]. For the
upcoming cycle, at least two redistricting commissions will rely on ReCom to evaluate redistricting plans [7]: the
Michigan Independent Citizens Redistricting Commission (which is vested with the authority to adopt redistricting
plans for the state) and the Wisconsin People’s Maps Commission (which was appointed by the governor to prepare
plans for consideration by the state legislature).

ReCom starts from an arbitrary plan represented as a partition of a graph where the vertices are census blocks,
which form the building blocks of districts,1 and there is an edge between two vertices if the corresponding census
blocks are adjacent. In each step, ReCom randomly selects a pair of adjacent districts, merges them together,
then re-partitions the merged region into two new districts. The algorithm accomplishes the re-partitioning step
by uniformly sampling a spanning tree of the merged region from the set of all such spanning trees. It then
attempts to cut an edge of the spanning tree so that the two subtrees induce two new districts with roughly
equal populations (which is a constitutional requirement); if there are multiple such edges it selects uniformly at

∗Harvard University.
†Harvard University.
1Some states use precincts or counties instead.
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random among them, and if there are none it samples a new spanning tree. The Markov chain is run for a fixed
number of steps and the final plan is returned.

The case for ReCom rests on its ability to generate plans consisting of compact districts with regular shapes.
A practical and well-studied measure for compactness in the graph partitioning setting is to count the total
number of cut edges — the edges whose endpoints lie in different districts; plans with fewer cut edges are more
compact [10, 22]. Empirically, ReCom does generate compact plans according to this measure.

By contrast, a theoretical compactness result had been out of reach. It is known that, with some slight
technical modifications to the recombination step, the stationary distribution of the ReCom chain is the spanning
tree distribution, where the probability of a plan is proportional to the number of forests that span its districts
or, equivalently, the product over districts of the number of spanning trees of each district [3]. The compactness
of ReCom-generated plans (assuming sufficient mixing2), therefore, depends on the relation between the number
of spanning trees and the number of cut edges of a plan. It is perhaps intuitive that such a relation exists; for
example, a rectangular district with few cut edges has many spanning trees, whereas a snaky district that consists
of the same number of census blocks has many cut edges and few spanning trees (see Figure 1).

Our goal is to formalize this intuition and quantify it. We aim to provide theoretical underpinnings for
the observed compactness of ReCom-generated plans, further justifying the important role of this algorithm in
redistricting.

1.1 Main Result and Technique Our main result, Theorem 3.1, is best understood through a corollary. To
state it informally, consider two partitions P1 and P2 of the census block graph (which is planar) into m districts
of equal size, and let |∂P1| and |∂P2| denote their discrete perimeters (total number of cut edges). In addition,
denote the spanning tree distribution by µ?.

Corollary 3.1 (informal version). For any pair of m-partitions P1 and P2 of a planar graph G such that the
second-largest degrees of G and its dual are upper-bounded by a constant,

Prµ? [P1]

Prµ? [P2]
≥ 2

Θ
(
|∂P2|
|∂P1|

)
.

In words, the corollary establishes an asymptotic exponential relationship between the ratio of probabilities
under µ? of the two partitions and the inverse ratio of their discrete perimeters. It is reassuring that the
relationship is exponential (rather than, say, linear): As noted by DeFord et al. [10], the space of all redistricting
plans is generally dominated by non-compact plans, so a significant skew towards compact plans is required for
it to be likely that such a plan would be sampled. We emphasize that this result does not imply anything about
the probability of say, sampling a partition with less than a given number of cut edges. For that, one would
additionally need bounds on the relative numbers of balanced partitions of a given compactness that exist.

Theorem 3.1 itself is not asymptotic; rather, it gives a precise relationship between the probabilities under µ?

and the discrete perimeters of different partitions. This relationship, in turn, depends on degree bounds that we
formalize in Section 2.2. For example, for large grid graphs the theorem implies that if |∂P2| ≥ 7.23× |∂P1| then
Prµ? [P1] ≥ Prµ? [P2]; the bounds are quite similar for planar graphs corresponding to real redistricting instances.

The basic idea behind the proof of the theorem is to take an arbitrary partition P of G into m districts and
add m− 1 edges to connect the subgraphs of each district together into a single connected graph H (see Figure
3). It is not too hard to see that the number of cut edges of P is precisely |E(G)| − |E(H)| + (m − 1), and the
likelihood of sampling P is proportional to the number of spanning trees of H. Thus, it suffices to establish a
relationship between the number of edges in H and the number of spanning trees in H.

Our approach is to imagine iteratively removing edges from G until we are left with H and compute upper and
lower bounds for the average factor by which the number of spanning trees decreases at each iteration (Lemma
3.1). Specifically, we are interested in bounding the probability that a given edge is contained in a uniformly
random spanning tree of the current graph. This quantity is known as the effective resistance of the edge due to
an alternative, equivalent definition in terms of the electrical resistance across the edge in a network of resistors

2Empirically, ReCom mixes extremely quickly, though this has not be established in any formal sense. In fact, it is still an open
question whether the state space is connected, even when the census block graph is a square grid! However, a breakthrough result

by [8] shows that, for a reversible Markov chain like that of [3], it is possible to conduct meaningful statistical outlier tests without
mixing.
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(see Section 2.3). We use the electrical formulation of the problem to derive useful bounds for counting spanning
trees in our particular setting. While these bounds do not imply that the effective resistance of each edge deleted
from G is upper and lower bounded by fixed constants at every iteration (as this is generally not true), we argue
that the geometric mean of the effective resistances is. For this, we use a potential function to amortize the
extremely high and low factors over the less extreme factors accumulated over previous iterations.

1.2 Related Work The ReCom Markov chain is one of many Markov chains on the space of graph partitions
that have been studied in the context of redistricting [10, 16, 13, 8, 4]. Most of the predecessors of ReCom are
based on the “Flip” chain, whereby a single census block on the boundary of a district is reassigned at each step.
While computing the transition function is easier for Flip than for ReCom, random walks using the Flip chain mix
extremely slowly, and produce non-compact districts by any reasonable metric. Empirically speaking, ReCom is
a great improvement over Flip.

From a theoretical perspective, very little is known about the properties of the spanning tree distribution from
which ReCom samples. DeFord et al. [10] give some informal, intuitive arguments for why we should expect it to
favor compact partitions — for example, it is easy to see that adjoining a long “tentacle” to one of the districts
in an otherwise compact partition will reduce the number of spanning trees by a large factor. It is conjectured
that, among all grid subgraphs of the same number of vertices, square subgrids (which have minimal perimeter)
have the largest number of spanning trees. Kenyon [18] provides an encouraging result to this end, asymptotically
counting spanning trees in finer and finer grids approximating a rectilinear polygon in R2. A very recent paper
by Tapp [25] gives concrete, non-asymptotic bounds on the number of spanning trees of a grid subgraph in terms
of its perimeter and number of vertices, but they are not strong enough to resolve this conjecture either.

There is a large body of work in the combinatorics literature on approximately counting spanning trees in
graphs of bounded degree (see, for example, [1, 19, 21, 14]). Given two subgraphs H1 and H2 of G as in Section
1.1, a natural line of attack for our main result is to apply these bounds to each Hi. However, these bounds
are insufficient for our purposes since they have a multiplicative error term which is exponential in the number
of vertices of Hi. For example, if we assume G is 3-regular, it is known that the number of spanning trees in
Hi is bounded between 1.62|V (Hi)| and 2.31|V (Hi)| [19, 21]. Our result requires the error to be on the order of
2O(|E(G)|−|E(Hi)|), which can be significantly smaller than 2Θ(|V (Hi)|). Our alternative analysis based on effective
resistances overcomes this difficulty, since it does not accumulate error for each edge in E(Hi), but instead for
the edges in E(G) \ E(Hi).

Connections between effective resistance and discrete perimeters have been studied before. A well-known
example is the Nash-Williams Inequality [20, (2.13)], which yields a lower bound for effective resistance in terms
of sets of edges that separate the graph. Benjamini and Kozma [2] give an upper bound for effective resistance
via sums of isoperimetric quantities for connected sets containing the two vertices. These results are largely
orthogonal to our work, with the exception of Footnote 4.

Our contribution can be viewed as a positive result about the computational tractability of approximately
sampling graph partitions from “nice” distributions. By contrast, Najt, Deford, and Solomon [22] establish
hardness of several related sampling problems motivated by redistricting, mostly via reductions from the
Hamiltonian Cycle problem. For example, they show that, for any λ ∈ (0, 1], there is no polynomial time
algorithm to approximately sample k-partitions of an input graph G proportional to λ|cut edges| unless NP = RP.
Even if ReCom could be shown to run in polynomial time, this result still would not contradict ours because
(1) the graphs produced by the reduction do not satisfy the (realistic) conditions of our main theorem, (2) the
approximation guarantee is much more stringent than ours, and (3) their result allows for partitions that are not
even approximately balanced.

2 Preliminaries

All graphs we consider are undirected and unweighted, but may have multiple edges and/or self-loops. For any
connected, planar embedded graph G, we write G∗ for the dual of G, which is the graph whose vertex set consists
of the faces of G with respect to the embedding, where there is an edge in G∗ between two faces whenever they
share a common edge on their boundaries in G. For any face f ∈ V (G∗), we overload the notation deg(f) to
mean the degree of f as a vertex in G∗, i.e., the number of edges/vertices on the boundary of f in G.
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2.1 Graph Partitions Our central object of study is the census block graph, in which the vertices represent
census blocks, and there is an edge between two vertices if the census blocks share a border of nonzero length (or
are legally considered adjacent for other reasons, e.g., in the case of islands). See Figure 1 for an example of a
census block graph.

   

Figure 1: In center, 12 counties in the Southeast corner of Iowa and the corresponding census block graph (in
Iowa, counties are actually the atomic units for redistricting, not census blocks). On the left and right, two
potential 3-partitions into connected districts of 4 counties each, where the red dashed lines are cut edges.

For simplicity, we consider an idealized redistricting setting where all census blocks have equal population
and districts must be exactly population-balanced. Thus, we define an m-partition of a graph G to be a partition

P = {D1,D2, . . . ,Dm} of the vertex set of G such that each Di, which we call a district, has exactly |V (G)|
m vertices

and induces a connected subgraph. Given an m-partition P of G, we write G/P to denote the graph obtained by
contracting the induced subgraphs of all the districts. A cut edge of an m-partition P is an edge with endpoints
in different districts. For example, the 3-partition on the left of Figure 1 has 13 cut edges, while the 3-partition
on the right only has 8. We write ∂P for the set of cut edges of P.

The spanning tree score of a graph G, written sp(G), is the number of spanning trees of G. The spanning
tree score of an m-partition P, written sp(P), is defined as the product of the spanning tree scores of the induced
subgraphs of each of the districts in P. The spanning tree score of the 3-partition on the left of Figure 1 is
1× 1× 1 = 1, whereas the spanning tree score of the 3-partition on the right is 8× 3× 8 = 192.

2.2 Planar Graphs With Bounded Vertex and Face Degrees Typical instances to the graph partitioning
problem that arise in redistricting have several additional properties:

• The census block graph is connected, planar, and does not contain any self-loops, leaves, or bridges.3

• All census blocks have low degree.

• No large group of census blocks intersect at the same boundary point (e.g., in the graph of states in the
USA, there is a “Four Corners” location between Colorado, Utah, Arizona, and New Mexico, but there is
no “Five Corners” or greater).

This motivates the following definition. For any positive integers k1 and k2, we say that G is (k1, k2)-bounded if
G is connected, neither G nor G∗ have a self loop, and there exists a planar embedding of G, a vertex v0 ∈ V (G),
and a face f0 ∈ V (G∗) such that, for all v ∈ V (G) \ {v0}, deg(v) ≤ k1, and for all f ∈ V (G∗) \ {f0}, deg(f) ≤ k2.

Simply put, k1 and k2 upper bound the second-largest degrees in G and G∗, respectively. Think of f0, the
face of unbounded degree, as the outer face of the census block graph. It would be impractical to impose a bound
on the number of census blocks this face touches. The vertex v0 has no specific meaning in our redistricting
context; we allow for such a vertex merely for generality and symmetry.

3It does sometimes occur that one precinct will be surrounded by another one on all sides, in which case it is a leaf. However, this
is rare, and can easily be modeled by just merging the two precincts together.
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For example, grid graphs are (4, 4)-bounded, the subgraph of counties in Iowa shown in Figure 1 is (5, 3)-
bounded, and the entire graph of all Iowa counties happens to be (6, 4)-bounded.

2.3 Effective Resistance We now briefly review some tools from spectral graph theory that we will need
shortly. For more background, we refer the reader to Chapters 12 and 13 of Spielman [24].

Consider the following physics problem. We are given a graph G and a specific edge e∗ ∈ E(G). We place
a resistor of unit resistance on every edge (including e∗), hook up a power supply between the endpoints of e∗

(call them a and b), and adjust the voltage so that 1 unit of current is flowing into a and out of b. The effective
resistance of e∗, denoted Rab, is defined as the voltage differential between a and b under this setup.

Formally, this voltage difference can be computed by enforcing Ohm’s law “V = IR” (voltage equals current
times resistance) across every edge. Specifically, we wish to find voltages v(c) for every vertex c and currents i(e)
for every oriented edge e such that:

• There is 1 net flow out of a.

• There is 1 net flow into b.

• For all c /∈ {a, b} there is zero net flow in/out of c.

• (Without loss of generality) v(b) = 0.

• For any edge e from vertex c to vertex d, v(c)− v(d) = i(e).

Given any edge e∗, and picking the arbitrary orientation of e∗ from a to b, there is a unique solution of v(·) and
i(·) satisfying these constraints. The effective resistance of e∗ is Rab = v(a) = i(e∗).

Figure 2: Computing the effective resistance across the edge between a and b.

For example, consider the graph on the left in Figure 2. To determine the effective resistance between a and
b, we compute the unique voltages (brown) and currents (blue) satisfying the constraints, as shown on the right.
The voltage at a and the current from a to b are both 5

8 , so the effective resistance is Rab = 5
8 .

Our interest in effective resistance stems from the following well-known statement, which gives an equivalent
definition in terms of spanning trees.

Lemma 2.1. For any edge e∗ ∈ E(G) between two vertices a, b ∈ V (G), the effective resistance Rab is equal to
the probability that e∗ is in a uniformly chosen spanning tree of G.

For example, one can verify by enumeration that the graph from Figure 2 has 8 spanning trees, and exactly
5 of them include the edge {a, b}.

To derive useful bounds on effective resistance (and, therefore, on spanning trees) we briefly consider a more
general version of the problem in which there are resistors in the graph with non-unit resistance. In that case, we
simply replace the final condition with

v(c)− v(d) = i(e)r(e),
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where r(e) is the resistance of e. It is not too hard to see that deleting an edge is equivalent to setting its
resistance to∞, so that no current can possibly flow through it, while contracting an edge is equivalent to setting
its resistance to 0, so that both endpoints must have the same voltage.

Lemma 2.2. (Rayleigh’s Monotonicity Principle) For any vertices a and b of a graph G, weakly increasing
the resistance of the resistor on any edge in G weakly increases Rab.

The following lemmas use Rayleigh’s Monotonicity Principle to derive upper and lower bounds for effective
resistances.4

Lemma 2.3. Let a, c1, c2, . . . , ck−2, b be a simple cycle of length k ≥ 2 in a network of unit resistors. Then
Rab ≤ 1− 1

k .

Proof. Delete all edges (i.e., send resistances to infinity) except for the cycle. A simple calculation shows that,
in the new network, Rab = 1 − 1

k , with 1
k units of current passing the “long way” around the cycle and 1 − 1

k
units of current passing through the given edge from a to b. By Lemma 2.2, the effective resistance in the original
network must be at most 1− 1

k .

Lemma 2.4. Let a and b adjacent vertices in a network of unit resistors. Then Rab ≥ 1
deg(a) .

Proof. Contract all edges (i.e., lower resistances to zero) except for the edges from a. Then add additional resistors
of resistance zero joining each neighbor of a to b if not already adjacent (i.e., lower resistances from infinity to
zero). A simple calculation shows that, in the new network, Rab = 1

deg(a) , with 1
deg(a) units of current on every

edge from a, and zero current on every other edge. By Lemma 2.2, the effective resistance in the original network
must be at least 1

deg(a) .

3 Main Result

In this section, we prove the following theorem, which shows that, for sufficiently large census block graphs, the
spanning tree distribution — denoted hereinafter by µ? — favors partitions with smaller boundaries.

Theorem 3.1. For any positive integers k1 and k2, any α ≥ 1, and any ε > 0, let

(3.1) λ = λ(k1, k2, α, ε) :=
log
(

1
2k2

)
− log(α)

log
(

1− 1
k1

) + ε.

For any two m-partitions P1 and P2 of a (k1, k2)-bounded graph, if

(3.2) |∂P2| ≥ λ |∂P1|

and

(3.3) |∂P1| ≥
m− 1

ε
,

then Prµ? [P1] ≥ αPrµ? [P2].

For example, in grid graphs, where k1 = k2 = 4, we have

λ(4, 4, 1, ε) =
log
(

1
8

)
− log(1)

log
(
1− 1

4

) + ε ≈ 7.23

(for small ε). Thus, our result shows that, for fixed m and sufficiently large grids, an m-partition whose total
boundary length is at least 7.23 times longer than that of another partition is less likely to be sampled.

4We note that Lemma 2.4 can alternatively be derived as a special case of the Nash-Williams Inequality [20, (2.13)] with one
cutset.
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To prove Theorem 3.1, we first establish upper and lower bounds for the geometric mean of the pi values on
any run of the following sampling algorithm.

Algorithm 1: Samples uniformly from the set of all spanning trees of an input graph G.

1 i← 0;
2 T ← {};
3 while G has at least 2 vertices do
4 i← i+ 1;
5 ei ← arbitrary edge in G;
6 ri ← effective resistance of ei;
7 with probability ri do
8 pi ← ri;
9 T ← T ∪ {ei};

10 contract ei in G (keeping multiple edges and self-loops);

11 else
12 pi ← 1− ri;
13 delete ei from G;

14 end

15 end
16 return T ;

By Lemma 2.1, at any point in the execution of Algorithm 1, the probability of the computation path (which
is the product of all pi values so far) is equal to the probability that a randomly chosen spanning tree of the
original input graph G includes all of the contracted edges and does not include any of the deleted edges. In
particular, this implies that the order in which the edges are chosen in the successive executions of line 5 does
not affect the probability of the given computation path. By the time the algorithm terminates, T is guaranteed
to be a uniform sample from the set of all spanning trees.

Our main technical lemma consists of two statements, where statement (1) is more general but statement (2)
gives tighter bounds. While we only require (2) for our application, we additionally prove (1) because we believe
it may be of independent interest.

Lemma 3.1. For any positive integers k1 and k2, there exist constants 0 < c1 < c2 < 1, such that, on any run of
Algorithm 1 on a (k1, k2)-bounded graph, after any number of iterations t,

c1
t ≤ p1p2p3 . . . pt ≤ c2t

(where the pi are as defined on Lines 8 and 12). Specifically, this holds with the following constants:

1. If the run involves both deletions and contractions,

c1 =
1

2 max{k1, k2}
, c2 =

(
1− 1

max{k1, k2}

) 1
2(min{k1,k2}−1)

.

2. If the run involves only deletions,

c1 =
1

2k2
, c2 = 1− 1

k1
.

We remark that it is not true that each pi is always between c1 and c2. It is not too hard to see that sometimes
we may have ri = 0 or ri = 1, in which case pi = 1. Also, after an adversarial sequence of contractions, it is
possible to have ri arbitrarily close to 0 but not equal to 0, and after an adversarial sequence of deletions, it is
possible to have ri arbitrarily close to 1 but not equal to 1. Thus, pi may be arbitrarily close to 0 as well. In
these scenarios, however, it can take many iterations to get to such a case, so we must amortize these bad factors
over the iterations where pi is less extreme.
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Proof. [Proof of Lemma 3.1] Let v0 and f0 be as in the definition of G being (k1, k2)-bounded. We begin by
proving the upper bounds. Let D be the subset of the first t edges that are ultimately deleted, and let C be
the subset of the first t edges that are ultimately contracted. For every edge e ∈ C, choose a face f(e) ∈ V (G∗)
such that e is on the boundary of f(e) and deg(f(e)) ≤ k2. Note that this is always possible since the two faces
e bounds cannot both be f0, for this would imply G∗ has a self-loop, contradicting the definition of G being
(k1, k2)-bounded. Partition C into C1 ∪C2, where C1 consists of the edges e such that f(e) does not contain any
edges in D. Without loss of generality, we assume Algorithm 1 first processes the edges in D, then in C1, then in
C2.

By Lemma 2.4, each edge in D has effective resistance at least 1
k1

when it is deleted from G. Therefore, on a
deletion iteration i, we have

pi = 1− ri ≤ 1− 1

k1
.

This immediately implies the upper bound in statement (2).
To prove the upper bound in statement (1), we must consider the contractions as well. By Lemma 2.3 and

the way we chose C1, each edge in C1 has effective resistance at most 1 − 1
k2

when contracted in G, so on an
iteration i that contracts an edge from C1,

pi = ri ≤ 1− 1

k2
.

We next claim that |D| + |C1| ≥ t
2k2−1 . Supposing for contradiction that this were not the case, we must

have |D| < t
2k2−1 and

|C2| = t− (|D|+ |C1|) > t− t

2k1 − 1
=

2(k2 − 1)t

2k2 − 1
,

so it follows that

|C2| > 2(k2 − 1) |D| .

This contradicts the way C2 was defined, since each edge in D can be contained in f(e) for at most 2(k2 − 1)
edges e ∈ C2 (in the extreme case, the edge in D lies between two faces, each containing k2 − 1 other edges e).

Putting these bounds together, we have

∏
1≤i≤t

pi =

 ∏
1≤i≤t, ei∈D

pi

 ∏
1≤i≤t, ei∈C1

pi

 ∏
1≤i≤t, ei∈C2

pi


≤
(

1− 1

k1

)|D|(
1− 1

k2

)|C1|

(1)

≤
(

1− 1

max{k1, k2}

)|D|+|C1|

≤
(

1− 1

max{k1, k2}

) t
2(k2−1)

=

((
1− 1

max{k1, k2}

) 1
2(k2−1)

)t
.

Note that we could make the dual argument, first processing the contractions, in which case we would be left
with the same upper bound, except with a k1 in the exponent instead of k2. The upper bound in statement (1)
follows.

To prove the lower bounds, we define a potential function on the graph as follows. Initially, place one pebble
on every vertex and face of G except v0 and f0, which receive piles of deg(v0) and deg(f0) pebbles, respectively.
Throughout the execution of Algorithm 1, whenever an edge is deleted from G (and its dual edge is contracted
in G∗), combine the piles on the faces on either side of the deleted edge into a new pile on the new face, and
whenever an edge is contracted in G (and its dual edge is deleted from G∗), combine the piles on the endpoints
of the contracted edge into a new pile on the new vertex. After each iteration 0 ≤ i ≤ t, let Pi denote the
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product of the numbers of pebbles in each pile. When i = 0, before any edges have been deleted or contracted,
P0 = deg(v0) deg(f0).

We claim that, after any deletion iteration 1 ≤ i ≤ t,

(3.4) pi
Pi−1

Pi
≥ 1

2k2
,

and after any contraction iteration 1 ≤ i ≤ t,

(3.5) pi
Pi−1

Pi
≥ 1

2k1
.

The proofs of these two statements are completely dual, so we will only discuss the deletion case.
Suppose that the deleted edge on round i lies between faces f1 and f2. Suppose there are x pebbles on f1 and

y pebbles on f2, and, without loss of generality, assume x ≤ y. Let z be the product of the number of pebbles in
all of the other piles before the edge is deleted from G. By Lemma 2.3, we know pi = 1 − ri ≥ 1

deg(f1) . Observe

that, before any edges are deleted, the degree of every face is at most k2 times the number of pebbles on that
face. This is because, initially, either the degree is at most k2 or, in the case of f0, the number of pebbles is equal
to the degree. It is not too hard to see that this property is preserved under contracting edges (which can only
lower degrees) and deleting edges (which simultaneously combines face degrees and pebble pile sizes). Thus, this
property holds of f1 before deletion on round i, i.e., deg(f1) ≤ k2x. Therefore,

pi
Pi−1

Pi
≥ 1

deg(f1)

Pi−1

Pi

≥ 1

k2x
· Pi−1

Pi

=
1

k2x
· xyz

(x+ y)z

≥ 1

k2x
· xyz

(2y)z
(since x ≤ y)

=
1

2k2
,

as desired.
If ID is the set of deletion iterations and IC is the set of contraction iterations, it follows from Equations

(3.4) and (3.5) that

p1p2 . . . pt ≥
∏
i∈ID

(
1

2k2
· Pi
Pi−1

) ∏
i∈IC

(
1

2k1
· Pi
Pi−1

)
=
P1

P0
· P2

P1
· · · · · Pt

Pt−1

∏
i∈ID

(
1

2k2

) ∏
i∈IC

(
1

2k1

)

=
Pt
P0

(
1

2k2

)|ID|( 1

2k1

)|IC |
≥
(

1

2k2

)|ID|( 1

2k1

)|IC |
,

where the final inequality holds since the initial piles of pebbles placed on v0 and f0 can only grow and cannot
merge, so Pt ≥ deg(v0) deg(f0) = P0. The lower bound for statement (1) follows since |ID| + |IC | = t, while the
lower bound for statement (2) follows by specializing |ID| = t and |IC | = 0.

We are now ready to prove our main result and its corollary.

Proof. [Proof of Theorem 3.1] Letting c1 and c2 be as in Lemma 3.1 (2), observe that

λ =
log(c1)− log(α)

log(c2)
+ ε =

log(c1)

log(c2)
+ ε− logc2(α) ≥ log(c1)

log(c2)
+ ε−

logc2(α)

|∂P1|
.
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Rearranging, we have

λ− ε+
logc2(α)

|∂P1|
≥ log(c1)

log(c2)
,

so

(3.6) αc
|∂P1|(λ−ε)
2 ≤ c|∂P1|·(log(c1)/ log(c2))

2 .

For each i ∈ {1, 2}, let Ti be a spanning tree of G/Pi, and let Si ⊆ ∂Pi be a set of edges of size
|S| = |∂Pi| − (m − 1) obtained by removing from ∂Pi one cut edge between districts D,D′ ∈ Pi for every
pair of adjacent districts {D,D′} ∈ E(Ti), as shown in Figure 3. The probability of the partial computation path
of Algorithm 1 which deletes all edges in Si is the probability of drawing from the uniform distribution a tree with
no edges in Si. By construction, the number of such trees is equal to the spanning tree score of Pi. Therefore,
applying Lemma 3.1, there exist 0 < c1 < c2 < 1 such that, for each i ∈ {1, 2},

(3.7) c
|∂Pi|−m+1
1 ≤ sp(Pi)

sp(G)
≤ c|∂Pi|−m+1

2 .

   

Figure 3: Illustration of the proof of Theorem 3.1, where we approximately compute the spanning tree score of
the partition on the left by linking the districts together with additional edges. The Si set consists of all the
dashed red edges in the graph on the right. After removing these edges, the number of spanning trees of the
graph on the right is precisely the spanning tree score of the original partition (which in this case is 192).

Let β be the normalization constant such that, for any m-partition P of G, Prµ? [P] = β
sp(G) sp(P). Then,

whenever P1 and P2 satisfy Equations (3.2) and (3.3), we derive that

Pr
µ?

[P1] = β
sp(P1)

sp(G)

≥ βc|∂P1|−m+1
1 (from Equation (3.7))

≥ βc|∂P1|
1

= βc
|∂P1|·(log(c1)/ log(c2))
2

≥ αβcλ|∂P1|−ε|∂P1|
2 (from Equation (3.6))

≥ αβc|∂P2|−ε|∂P1|
2 (from Equation (3.2))

≥ αβc|∂P2|−m+1
2 (from Equation (3.3))

≥ αβ sp(P2)

sp(G)
(from Equation (3.7))

= αPr
µ?

[P2].
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As we mentioned in Section 1.1, Theorem 3.1 is more easily understood through a corollary that shows an
inverse exponential relationship between the ratio of probabilities (under the spanning tree distribution) and ratio
of discrete perimeters of any two m-partitions. Here we state and prove a more formal version of the corollary.

Corollary 3.1. On any class of graphs that are (k1, k2)-bounded for constants k1, k2 ∈ Z≥1, and for any pair
of m-partitions P1 and P2,

Prµ? [P1]

Prµ? [P2]
≥ 2

Θ
(
|∂P2|
|∂P1|

)
.

Proof. Given any pair of m-partitions P1 and P2 of a (k1, k2)-bounded graph G (for any m), let

α :=
1

2k2

(
1 +

1

k1 − 1

)(
|∂P2|
|∂P1|

−1
)

and ε := 1. Observe that we may equivalently write

α =
1

2k2(
1− 1

k1

)( |∂P2|
|∂P1|

−ε
) ,

so

log(α) = log

(
1

2k2

)
−
(
|∂P2|
|∂P1|

− ε
)

log

(
1− 1

k1

)
.

Plugging this into Equation (3.1), we have

λ(k1, k2, α, ε) =
log
(

1
2k2

)
− log

(
1

2k2

)
+
(
|∂P2|
|∂P1| − ε

)
log
(

1− 1
k1

)
log
(

1− 1
k1

) + ε =
|∂P2|
|∂P1|

,

so Equation (3.2) holds. Furthermore, Equation (3.3) must always hold for ε = 1, for otherwise G would have

to be disconnected. As long as |∂P2|
|∂P1| is sufficiently large, we have α ≥ 1 as well, and thus we meet all of the

hypotheses of Theorem 3.1, concluding that

Prµ? [P1]

Prµ? [P2]
≥ α =

1

2k2

(
1 +

1

k1 − 1

)(
|∂P2|
|∂P1|

−1
)
.

This shows that
Prµ? [P1]

Prµ? [P2]
≥ 2

Θ
(
|∂P2|
|∂P1|

)
.

Finally, we remark that the constant λ from Theorem 3.1 must have some dependence on k1 and k2, and
so there is not a more general statement that applies to, say, all planar graphs. The following two theorems
demonstrate that assuming fixed k1 and k2 is necessary, even when we impose the additional realistic restriction
that graphs do not have multiple edges between any pair of vertices.

Theorem 3.2. There exists an infinite family of graphs G1, G2, G3, . . . such that:

• For any positive integer n, there exists k2 such that Gn is (4, k2)-bounded and does not have multiple edges
between any pair of vertices.

• There is a sequence of 2-partitions Pn1 and Pn2 of Gn such that

lim
n→∞

|∂Pn1 |
|∂Pn2 |

= lim
n→∞

Prµ? [Pn1 ]

Prµ? [Pn2 ]
= 0.
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Figure 4: A family of graphs Gn that are almost (4, 4)-bounded (there are two bad faces f0 instead of only one)
for which Theorem 3.1 fails. The instance shown is G2.

Proof. Let G1, G2, G3, . . . be the family of graphs illustrated in Figure 4, where

A(n) :=


0 if n = 0

1 if n = 1

4A(n− 1)−A(n− 2) for n ≥ 2

.

Note that A(n) is the number of spanning trees of a 2× n grid graph.5 Let Pn1 be the 2-partition defined by the
curved light blue line, and let Pn2 be the 2-partition defined by the horizontal dark red has line. Then

lim
n→∞

|∂Pn1 |
|∂Pn2 |

= lim
n→∞

3

2n
= 0.

Furthermore, it is easy to verify that Pn1 has a spanning tree score of A(n)2A((n− 1)A(n)2/2), whereas Pn2 has
a spanning tree score of ((n− 1)A(n)2 + 2)A((n− 1)A(n)2/2). Therefore,

Prµ? [Pn1 ]

Prµ? [Pn2 ]
=

sp(Pn1 )/sp(Gn)

sp(Pn2 )/sp(Gn)
=

sp(Pn1 )

sp(Pn2 )
=

A(n)2

(n− 1)A(n)2 + 2
≤ 1

n− 1
,

which vanishes as n→∞.

Theorem 3.3. There exists an infinite family of graphs G1, G2, G3, . . . such that:

• For any positive integer n, there exists k1 such that Gn is (k1, 7)-bounded and does not have multiple edges
between any pair of vertices.

• There is a sequence of 2-partitions Pn1 and Pn2 of Gn such that

lim
n→∞

|∂Pn1 |
|∂Pn2 |

= lim
n→∞

Prµ? [Pn1 ]

Prµ? [Pn2 ]
= 0.

For Theorem 3.2, the main idea is to start with a large cycle, so a natural approach for Theorem 3.3 would
be to start with the dual of a large cycle; but this is a bundle of multiple edges between the same pair of vertices,
which does not satisfy the conditions of the theorem. Due to this obstacle, the construction for Theorem 3.3 is
much more involved, so we defer it to the Appendix.

5See: http://oeis.org/A001353
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4 Conclusion

Typically, for a heuristic sampling algorithm to be useful in practice it is not necessary to have theoretical
guarantees; it merely has to “just work.” Unfortunately, this is clearly not the case for a problem so hotly
contentious as political redistricting. One can imagine a plethora of creative ways to efficiently construct an
ensemble of random graph partitions, but unless one is able to understand the distribution from which the
samples are drawn, the properties of the ensemble may be meaningless from a statistical standpoint, and possibly
from a legal standpoint as well.

For example, the 2017 gerrymandering court case League of Women Voters of Pennsylvania v. Commonwealth
of Pennsylvania heard expert testimony from multiple mathematicians and political scientists using similar
ensemble-based algorithms. In rebutting the use of an algorithm by Professor Jowei Chen [5] to statistically
conclude that the current map was gerrymandered, Professor Wendy K. Tam Cho [9] writes, “Chen purports to
have an algorithm that randomly generates maps. He has never evaluated this claim in any rigorous way. In
my assessment of this ‘random’ framework algorithm on a very small toy redistricting data set, I found that the
strategy generated a biased set of maps that oversamples some maps while undersampling other maps.”

The ReCom algorithm is remarkable in that it simultaneously runs quickly and samples from a distribution
that can be explicitly described. However, the description in terms of spanning trees still leaves much to be
desired, and while we are not legal experts, we believe that trying to explain the concept to a court would be a
nontrivial task. Our result provides the first known link between the spanning tree score and a more intuitive
measure of compactness. We believe that understanding such relationships from a theoretical perspective is of
great importance, especially given the fact that theorems have increasingly been playing a major role in the legal
debate surrounding redistricting.
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Appendix

Figure 5: A family of graphs Gn that are each (k1, 7)-bounded for increasing k1, on which Theorem 3.1 fails. The
triangular subgraphs near the center can be arbitrary, and can be used to ensure the red partition is balanced. As
n→∞, the red circular 2-partition will simultaneously have many more cut edges and a much greater probability
of being sampled than the blue straight 2-partition. The particular instance shown is G3.

Proof. [Proof of Theorem 3.3] Let Gn be as depicted in Figure 5, let Pn1 be the 2-partition defined by the blue
straight line, and let Pn2 be the 2-partition defined by the red circle. It is possible to fill in the two triangular
subgraphs so that both partitions are balanced and each Gn is (k1, 7)-bounded for some k1, since all faces except
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the outer face have degree at most 7. Also,

lim
n→∞

|∂Pn1 |
|∂Pn2 |

= lim
n→∞

2n+ 1

2bn4/3c
= 0.

Thus, all that remains is to bound the probabilities of each partition being sampled, i.e., the ratio of their spanning
tree scores. For this, we apply the same counting technique as in the proof Theorem 3.1.

We begin with Pn1 . Imagine a run of Algorithm 1 on Gn in which we delete every edge in ∂Pn1 except for the
central edge. Let the effective resistances computed by the algorithm be r1,r2, . . . ,r2n. Since each deleted edge is
incident to a vertex of degree 2, by Lemma 2.4 we know that ri ≥ 1

2 for all i. Thus,

sp(Pn1 )

sp(Gn)
=

2n∏
i=1

(1− ri)

≤
2n∏
i=1

(
1− 1

2

)
=

1

4n

For Pn2 , we imagine a run of Algorithm 1 on Gn in which we delete edges intersecting the red circle in clockwise
order, starting from where the red circle intersects the blue line (e.g., 12:00 in Figure 5). Label the edges in the
order of deletion,

ebn4/3c−1, ebn4/3c−2, ebn4/3c−3, . . . , e2, e1, e0, e
′
bn4/3c−1, e

′
bn4/3c−2, e

′
bn4/3c−3, . . . , e

′
2, e
′
1,

and let e′0 be the final edge in the circle, which is not deleted. Let ri and r′i denote the respective effective
resistances of ei and e′i in the graph obtained by removing all previously deleted edges.

Since e0 is contained within a cycle of length 5 when deleted, we know by Lemma 2.3 that r0 ≤ 1 − 1
5 , so

(1 − r0) ≥ 1
5 . All that remains is to compute upper bounds on ri and r′i for i ≥ 1. For both cases, we apply

Lemma 2.2, deleting all edges except for the subgraph containing half of the outer ring, i.e., the subgraph on the
left of Figure 6. By symmetry, the analysis for bounding r′i is the same as for ri, so we only consider ri.

Figure 6: We compute the effective resistance ri by replacing subgraphs with single edges whose effective
resistances in those subgraphs are already known.

We claim that, for all i,

ri ≤
2

min
{
i,
⌊√

n
2

⌋}
+ 2

.
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We proceed by induction on i (in order of increasing i, which is the reverse of the order in which we actually
delete the edges). For the base case, i = 0, this states that ri ≤ 1, which is always true. There are two inductive
cases to consider.

First suppose the claim holds for i − 1, where 1 ≤ i ≤
⌊√

n
2

⌋
. Then, using standard series/parallel laws, we

can replace subgraphs of unit resistors by non-unit resistors according to their effective resistances, as illustrated
in Figure 6. In the final graph, we then have

ri =
1

1 + 1
ri−1+ 2

n

≤ 1

1 + 1
2

i+1 + 2
n

(by the inductive hypothesis)

=
1

1 + n(i+1)
2n+2i+2

=
2n+ 2i+ 2

ni+ n+ 2n+ 2i+ 2

≤ 2

i+ 2
,

where the final equality follows from cross-multiplying:

i ≤
√
n

2
=⇒ i2 + i ≤ n

=⇒ 2i2 + 2i ≤ 2n

=⇒ 2ni+ 2i2 + 2i+ 4n+ 4i+ 4 ≤ 2ni+ 6n+ 4i+ 4

=⇒ (2n+ 2i+ 2)(i+ 2) ≤ 2(ni+ 3n+ 2i+ 2).

Now instead suppose i >
⌊√

n
2

⌋
. In this case, observe that, when we compute the effective resistance in the

final graph in Figure 6,

ri =
1

1 + 1
ri−1+ 2

n

≤ 1

1 + 1
2√
n
2

+2
+ 2

n

(by the inductive hypothesis)

=
1

1 + 1
2+ 1√

n
+ 4

n√
n
2

+2

=
1

1 +
√

n
2 +2

2+ 1√
n

+ 4
n

=
2 + 1√

n
+ 4

n
√
n

2 + 4 + 1√
n

+ 4
n

≤ 2
√
n

2 + 2
,
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where the final equality follows from cross-multiplying:

1√
n
≤ 1 =⇒ 2√

n
≤ 3.5

=⇒
√
n+

1

2
+

2√
n

+ 4 +
2√
n

+
8

n
≤
√
n+ 8 +

2√
n

+
8

n

=⇒
(

2 +
1√
n

+
4

n

)(√
n

2
+ 2

)
≤ 2

(√
n

2
+ 4 +

1√
n

+
4

n

)
.

By induction, the claim holds for all i.

Note that, as long as n is sufficiently large, for 1 ≤ i ≤
⌊√

n
2

⌋
this implies that ri, r

′
i ≤ 2

3 , and for⌊√
n

2

⌋
+ 1 ≤ i ≤ bn4/3c − 1 this implies that

ri, r
′
i ≤

2⌊√
n

2

⌋
+ 2
≤ 4√

n
.

Putting these bounds all together, we have

sp(Pn2 )

sp(Gn)
=

 bn4/3c−1∏
i=b
√
n/2c+1

(1− ri)

b√n/2c∏
i=1

(1− ri)


· (1− r0)

 bn4/3c−1∏
i=b
√
n/2c+1

(1− r′i)

b√n/2c∏
i=1

(1− r′i)


≥

 bn4/3c−1∏
i=b
√
n/2c+1

(
1− 4√

n

)b√n/2c∏
i=1

(
1− 2

3

)
·
(

1

5

) bn4/3c−1∏
i=b
√
n/2c+1

(
1− 4√

n

)b√n/2c∏
i=1

(
1− 2

3

)
≥ 1

5

((
1− 4√

n

)n4/3 (
1

3

)n1/2/2
)2

=
1

5


(1− 4√

n

)√n
4

n4/3
√

n
4
(

1

3

)n1/2/2


2

=
1

5


(1− 4√

n

)√n
4

4n5/6 (
1

3

)n1/2/2


2

≥ 1

5

(1− 4√
n

e

)4n5/6 (
1

3

)n1/2/2
2

≥ 1

5

((
1

3

)4n5/6 (
1

3

)n1/2/2
)2

(for large enough n)

=
1

5
· 1

38n5/6+n1/2

≥ 1

5
· 1

49n5/6
.
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It follows that

Prµ? [Pn1 ]

Prµ? [Pn2 ]
=

sp(Pn1 )/sp(Gn)

sp(Pn2 )/sp(Gn)
≤

1
4n

1
5 ·

1

49n5/6

=
5 · 49n5/6

4n
= 5 · 49n5/6−n,

which vanishes as n→∞.
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