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Abstract

The prevalent approach to problems of credit assignment in
machine learning — such as feature and data valuation — is
to model the problem at hand as a cooperative game and ap-
ply the Shapley value. But cooperative game theory offers a
rich menu of alternative solution concepts, which famously
includes the core and its variants. Our goal is to challenge the
machine learning community’s current consensus around the
Shapley value, and make a case for the core as a viable al-
ternative. To that end, we prove that arbitrarily good approx-
imations to the least core — a core relaxation that is always
feasible — can be computed efficiently (but prove an impos-
sibility for a more refined solution concept, the nucleolus).
We also perform experiments that corroborate these theoreti-
cal results and shed light on settings where the least core may
be preferable to the Shapley value.

1 Introduction
As machine learning systems become more capable, they are
increasingly used in our society to automate tasks and gen-
erate value. This has lead to a surge in the attention given to
explainability for machine learning: how features and data
contribute to the performance of ML models. To ensure ML
models are functioning as intended, much work has been de-
voted to studying feature attribution: how the features used
to represent the data influence the model’s predictions (Co-
hen, Dror, and Ruppin 2007; Štrumbelj and Kononenko
2010; Datta et al. 2015; Datta, Sen, and Zick 2016; Lund-
berg and Lee 2017; Chen et al. 2019). Related to feature
attribution is data valuation (Ghorbani and Zou 2019; Jia
et al. 2019a,b; Ohrimenko, Tople, and Tschiatschek 2019;
Agarwal, Dahleh, and Sarkar 2019), which studies how data
points contribute to model performance. With ML models
now generating profit for enterprises, this understanding is
important in order to fairly compensate data suppliers for
their training data. Central to both pursuits is an equitable
means of credit assignment.

Virtually all papers, including every single paper cited
above, deem the Shapley value (or close variants thereof) to
be the “right” way to carry out credit assignment. The Shap-
ley value is a solution concept from cooperative game theory
in which players — in this case features or data points — are
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assigned payoffs in a way that satisfies four axioms; roughly
speaking, a player’s payoff is their average marginal contri-
bution to a coalition consisting of other players.

This intense focus on the Shapley value is surprising,
however, as — once we have accepted that problems of
credit assignment in machine learning can be modeled as
cooperative games — there are a plethora of other solution
concepts (Peleg and Sudhölter 2007). In particular, there is
a seminal solution concept in cooperative game theory that
is as prominent as the Shapley value: the core. This solu-
tion concept seeks to achieve maximal stability amongst all
possible coalitions of the players in the game — an idea that
dates back to the writings of Edgeworth on market equilib-
rium theory in 1881. Since then, it has found extensive ap-
plications in economics and beyond (Telser 1994).

Specifically, according to the core, the total payoff to each
coalition should be at least its value. When this is not possi-
ble, the maximum deficit (difference between value and pay-
off) of any coalition should be minimized — this is known
as the least core. The (least) core can be seen as a notion
of group fairness, in that each group of players (or coali-
tion) gets its dues. Moreover, it is especially apt in the val-
uation setting, where the data vendors or feature annotators
are paid in a way that disincentivizes (to the extent possi-
ble) any coalition of vendors from choosing to opt out and
not contribute; if a coalition S if not paid at least its value
v(S) then the coalition would be better off separating from
the so-called grand coalition. Indeed, the core values may
be seen as the set of all economically plausible payoffs to
participants that compensate them for their contributions.

In this paper, we aim to show that the (least) core is, prac-
tically and conceptually, an attractive alternative to the Shap-
ley value for credit assignment in machine learning. In do-
ing so, we hope to raise awareness of the core as a natu-
ral solution concept for fair credit assignment, challenge the
wide-ranging usage of the Shapley value and inspire a closer
examination of cases where one solution concept should be
preferred over the other. It is worth emphasizing that, to the
best of our knowledge, we are the first to consider using the
core for explainability of machine learning models.

1.1 Our Results
Much like the Shapley value, the primary obstacle in apply-
ing the concept of least core is computational complexity.



Indeed, it is the solution to a linear program whose number
of constraints is exponential in the number of players. Nev-
ertheless, we construct a Monte Carlo algorithm that runs in
polynomial time and (with given confidence) outputs a pay-
off allocation in the δ-probable least core — a slightly re-
laxed version of the least core where the payoff constraints
may be violated by up to a δ-fraction of coalitions. When
the number of players is large, though, this may still be in-
tractable; we therefore show that it is possible to find a solu-
tion in the (ε, δ)-probably approximate least core — whose
constraints are additionally relaxed by ε each — in time that
is polylogarithmic in the number of players.

We also study a well-known refinement of the least core
called the nucleolus. However, it turns out that results that
are analogous to those for the least core are essentially
unattainable. Informally, we prove that any algorithm would
have to require access to the values of an exponentially large
number of coalitions to compute a payoff allocation in the
(ε, δ)-probably approximate nucleolus, which again relaxes
all relevant constraints by ε and allows a δ-fraction of the
constraints to be violated. The juxtaposition of the positive
computational results for the least core and the negative re-
sult for the nucleolus provides a strong endorsement of the
former (somewhat coarser) notion over the latter.

In our experiments, we verify these theoretical results and
confirm that our algorithm can compute the least core eas-
ily and that the nucleolus is difficult to compute. Next, we
compare algorithms one would use to compute the Shapley
value against our least core algorithm in data valuation tasks.
Our results suggest that the least core algorithm compares
favorably with those of the Shapley value in low-resource
settings that are typical of analysts without access to large-
scale computational resources.

1.2 Related Work
There is an entire area of algorithmic game theory devoted to
the computation of solutions of cooperative games (Chalki-
adakis, Elkind, and Wooldridge 2011). In particular, a slew
of papers have studied the complexity of the core, the least
core, and the nucleolus in specific classes of cooperative
games (Deng and Papadimitriou 1994; Conitzer and Sand-
holm 2006; Bachrach and Rosenschein 2008; Elkind and
Pasechnik 2009; Elkind et al. 2009).

Our work is most closely related to that of Balkanski et
al. (2017). They study settings where solutions to cooper-
ative games — specifically, the Shapley value and the core
— are learned from samples consisting of coalitions and
their values. Like Balcan et al. (2015), they are motivated
by the observation that in classical applications of coop-
erative games values of coalitions cannot be accessed via
queries; for example, if the game represents company em-
ployees working together to complete tasks, it is impossi-
ble to know which tasks would be completed had a specific
coalition worked alone. Importantly, they do not consider
explainability at all. Under the assumption that the underly-
ing game has a nonempty core, Balkanski et al. (2017) give
bounds on the sample complexity of three approximations
of the core.

On a technical level, our definition of approximate notions

of least core (Theorems 1 and 2) follow those of Balkanski et
al. (2017) for the core, by eschewing the assumption that the
core is nonempty; our proofs of these results directly build
on theirs. Our interpretation of these results is quite differ-
ent, though, because in our setting coalition values can be
queried — for example, one can run a black-box predictor
with a specific subset of features and measure its accuracy —
so we think of our results as guarantees on the performance
of Monte Carlo algorithms. Balkanski et al. (2017) did not
study the nucleolus, so our negative result for the nucleo-
lus (Theorem 3) — which we view as our main theoretical
result — is entirely new and has no analog in their work. Fi-
nally, the work of Balkanski et al. (2017) is purely theoreti-
cal, whereas our empirical results study and demonstrate the
applicability of the least core to credit assignment in ma-
chine learning.

2 Preliminaries
A cooperative game consists of a set of players N =
{1, . . . , n} and a characteristic function v : 2N → R which
assigns a value to each coalition S ⊆ N , such that v(∅) = 0;
we assume that v(S) ≥ 0 and v(S) ≤ 1 for all S ⊆ N for
ease of exposition. We think of v(S) as the payoff the coali-
tion S could obtain if it went it alone. Given such a game,
we are interested in finding a payoff allocation (also known
as an imputation) x = (x1, . . . , xn), where xi is the payoff
of player i ∈ N . The payoff allocation must be efficient, that
is, ∑

i∈N
xi = v(N).

A payoff allocation is in the e-core if and only if the total
payoff of each coalition is at least its value, up to e:

∀S ⊆ N,
∑
i∈S

xi + e ≥ v(S).

The core itself, by this definition, satisfies these con-
straints with e = 0. Unfortunately, there are coopera-
tive games whose core is empty. But clearly the e-core is
nonempty if e is large enough.

The idea behind the least core (Maschler, Peleg, and
Shapley 1979) is to choose the smallest e possible. It may
be defined as the set of all solutions to the following linear
program.

min e
s.t.

∑
i∈N xi = v(N)∑
i∈S xi + e ≥ v(S) ∀S ⊆ N

(1)

One can think of the least core as the set of payoff allocations
that require the smallest subsidy e? (the value of e in the
optimal solution to (1)) to each coalition so that, if the payoff
to each coalition was boosted by e?, the allocation would be
in the core. The core is nonempty if and only if e? ≤ 0.

We next consider a refinement of the least core, the nu-
cleolus, first proposed by (Schmeidler 1969). Define the
deficit of a payoff allocation x for a coalition S ⊆ N to
be v(S) −

∑
i∈S xi. The nucleolus is the payoff allocation

whose sorted list of deficits across all coalitions lexicograph-
ically dominates the list of deficits for any other payoff al-
location. That is, the largest deficit (which will be positive



if the core is empty) should be as small as possible; sub-
ject to that, the second largest deficit should be as small as
possible, and so on. Notice that, in particular, the nucleolus
minimizes the largest deficit and so its allocation does lie in
the least core. In contrast to the least core, which may con-
tain multiple payoff allocations, the nucleolus is known to
be unique (Schmeidler 1969).

3 Theoretical Results
Exact computation of the least core and the nucleolus re-
quires solving linear programs with as many constraints as
there are coalitions, which would typically be prohibitively
expensive. Our strategy, therefore, is to sample a relatively
small number of coalitions from an underlying distribution,
and compute the desired solution concept on the sampled
coalitions — this can be done in time that is polynomial in
the number of samples, via the linear program (1) for the
least core, and via a sequence of such linear programs for the
nucleolus (Kopelowitz 1967). The hope is that this Monte
Carlo algorithm would give us a payoff allocation that ap-
proximates the desired one with respect to the underlying
distribution.

3.1 Computing the Least Core
We know from the work of Balkanski et al. (2017) that com-
puting the least core exactly is a nonstarter — they prove an
impossibility even for the core, under the assumption that it
is nonempty. We therefore consider approximate versions of
the least core.

Given a cooperative game, let D be a distribution over
2N , and let e? be the subsidy defined by the least core — the
optimal solution to Equation (1). A payoff allocation x is in
the δ-probable least core if and only if

Pr
S∼D

[∑
i∈S

xi + e? ≥ v(S)

]
≥ 1− δ.

That is, the least core constraint is violated with probability
at most δ when coalitions are drawn from D.

We have the following result, whose proof appears in Ap-
pendix A.
Theorem 1. Given a cooperative game (N, v), distribu-
tion D over 2N , and δ,∆ > 0, solving the linear program
(1) over O((n+ log(1/∆))/δ2) coalitions sampled from D
gives a payoff allocation in the δ-probable least core with
probability at least 1−∆.

It may seem surprising that solving the linear program (1)
with respect to a subset of the coalitions gives a guarantee
with respect to the unknown subsidy e?. But the estimated
deficit ê with respect to a subset of coalitions (that is, a sub-
set of constraints) satisfies ê ≤ e? due to monotonicity.

Also note that the choice of D rests with the algorithm
designer. In other words, we can sample coalitions from any
distribution D and compute an allocation in the least core
on the sample; the probable least core guarantee would then
hold with respect to that sameD. In particular, if the uniform
distribution over coalitions is used, the guarantee holds with
respect to a (1− δ)-fraction of all coalitions.

While Theorem 1 is encouraging, a potential drawback is
that the algorithm’s running time is polynomial in the num-
ber of players n. While this is an exponential improvement
over naı̈ve least core computation, it can still be a nonstarter
when the players are features in a high-dimensional space or
data points. We therefore define the (ε, δ)-probably approx-
imate least core to be payoff allocations such that

Pr
S∼D

[∑
i∈S

xi + e? + ε ≥ v(S)

]
≥ 1− δ.

With this additional relaxation, we can obtain running
time that is polynomial in log(n); the proof is relegated to
Appendix B.
Theorem 2. Given a cooperative game (N, v), distribution
D over 2N , and δ,∆, ε > 0, solving the linear program (1)
over

O

(
τ2
(
log n+ log

(
1
∆

))
ε2δ2

)
coalitions sampled from D, where τ = maxS v(S)

minS 6=∅ v(S) , gives
a payoff allocation in the (ε, δ)-probably approximate least
core with probability at least 1−∆.

We note that τ may be considered a constant in general.
For example, in multiclass classification it is no bigger than

1
1/m = m, where m is the number of classes.

3.2 Computing the Nucleolus
The probably approximate least core can be seen as requir-
ing the deficit of “most” coalitions to be approximately at
most the maximum deficit e? that defines the least core. In
the (unique) nucleolus, though, that deficit is associated only
with the worst-off coalition. It is natural to ask, instead, that
the deficit of “most” coalitions be approximately their own
deficit under the nucleolus allocation.

Formally, as before fix a cooperative game and a distri-
bution D. Denote by d?(S) the deficit of coalition S ⊆ N
under the unique nucleolus allocation. A payoff allocation x
is in the (ε, δ)-probably approximate nucleolus if and only if

Pr
S∼D

[∣∣∣∣∣∑
i∈S

xi + d?(S)− v(S)

∣∣∣∣∣ ≤ ε
]
≥ 1− δ.

Unfortunately, it turns out that any algorithm that com-
putes the probably approximate nucleolus requires a num-
ber of samples that is exponential in the number of players
n — a doubly exponential increase over the probably ap-
proximate least core! — as the following theorem shows.
Theorem 3. Let n ≥ 9, ε < 1/50, δ < 1/200 and ∆ < 4/5.
Then any deterministic algorithm that for all games (N, v)
on n players, and all distributions D on N , computes a pay-
off allocation in the (ε, δ)-probably approximate nucleolus
with probability at least 1−∆ requires access to the values
of Ω(2n/3) coalitions sampled from D.

The importance of Theorem 3 lies in the practical guid-
ance it provides. Indeed, the stark contrast between The-
orem 2 and 3 suggests that we should focus on approxi-
mations of the least core, as natural approximations of the



(stronger notion of) nucleolus are essentially beyond reach.
Even though the theoretical result is worst-case in nature, we
show in Section 5 that its implication holds in practice.

We also note that the theorem statement deals with algo-
rithms that are deterministic, up to the random sampling of
coalitions from D. However, it is not difficult to extend the
theorem to deal with randomized algorithms too, at the cost
of complicating the proof further. Moreover, the constants in
the theorem statement can certainly be improved, but we do
not view their exact values as being important.

4 Interlude: A Comparison of the Core and
the Shapley Value

Now that we have established that it is viable to compute the
least core, we turn to the conceptual part of our argument.
Before going into how the least core and the Shapley value
differ (we include a comment on when the two are known to
coincide in Section 5), one thing to note about the least core
is that it is a set of solutions, whereas the Shapley value is
a point solution concept. To compare the two conceptually
(and experimentally as well), we break ties by selecting the
payoff allocation in the least core with the smallest `2 norm.
This is known as the egalitarian least core.
Axiomatic Properties. The Shapley value has almost
always been justified through its four axiomatic prop-
erties (Cohen, Dror, and Ruppin 2007; Štrumbelj and
Kononenko 2010; Datta, Sen, and Zick 2016; Lundberg and
Lee 2017; Chen et al. 2019): (i) efficiency (ii) symmetry (iii)
null player (iv) linearity. If we accept this argument, then the
egalitarian least core is quite attractive in satisfying all but
the last axiom (linearity).

While the least core’s lack of linearity is ostensibly a dis-
advantage, it is unclear to us why it is an essential prop-
erty for importance scores. The necessity of linearity is com-
monly justified by defining a cooperative game for each test
point with the coalitional value being the model accuracy
with respect to that point. And so, one would desire that
summing the importance scores across these games would
yield the score of the game corresponding to the entire test
set. But one can simply define the latter game, with the
coalitional value being the model accuracy with respect to
the entire test set, in the very beginning, thus obviating the
need for this property to hold.1 Further questions regarding
the usefulness of the linearity axiom are raised by Kumar et
al. (2020), who highlight the uninformativeness of Shapley
for explaining non-additive models.

By contrast, the stability axiom, which the egalitarian
least core does satisfy, is crucial if we are to adopt the eco-
nomic motivation behind data valuation, as described in data
market papers such as that of Ghorbani and Zou (Ghorbani
and Zou 2019). Put another way, if the goal is to output
scores that reflect and may be interpreted as economically

1We do note that the core satisfies “approximate linearity” in
the following sense: An e1-core under coalition function v1 and
an e2-core under coalition function function v2 can be combined
into an allocation that satisfies the (e1 + e2)-core under coalition
function v1 + v2 (though certainly the least core could be better
than just summing the least core allocations across the two games).

plausible payments in a competitive market, then the scores
should be such that every coalition is compensated for at
least its market value. This is so that the agents in the coali-
tions, who are rational, do not elect to leave the grand coali-
tion. Contrast this with the Shapley value, which confers
only a generic notion of “importance” (where relatively big-
ger means more “important”) and may not necessarily corre-
spond to an economically feasible set of payoffs (as we will
see in the experiments).
Behavioral Studies. Studies in behavioral game theory have
found the core to be predictive of payment distribution in
market settings, suggesting that people perceive the core as
a fair scheme for dividing up the total payoffs; by contrast,
the Shapley value has received “weaker empirical support”
(Williams 1988). This is an especially compelling reason to
prefer the core over the Shapley value: since the stakehold-
ers involved with machine learning are often people, it is im-
perative to employ a solution concept that is consistent with
their behavior and intuition (Bhatt et al. 2019) (Kumar et al.
2020). Indeed, while much is still unclear as to how to as-
sign “importance scores” in interpretability so as to truly aid
stakeholders, there exists ample economic literature on how
to equitably pay people and the core is one such prominent
concept, which we champion as a principled way to assign
these scores in the valuation setting.
Negative Computational Results for Shapley. Similar to
our negative result for the nucleolus in Theorem 3, prior
work has also produced negative results for the compu-
tation of the Shapley value. Indeed, the Shapley value is
difficult to approximate, not to mention compute exactly.
Informally, Bachrach et al. (Bachrach et al. 2010) show
that no polynomial-time randomized algorithm can build a
confidence interval with small accuracy. And Balkanski et
al. (Balkanski, Syed, and Vassilvitskii 2017) show that there
exist games such that the Shapley value cannot be approxi-
mated from samples over the uniform distribution.

In light of these negative results, the latest state of the art
algorithms for computing the Shapley value (Ghorbani and
Zou 2019; Jia et al. 2019a) either turn to simpler Monte-
Carlo approaches that do not enjoy theoretical guarantees
(e.g on convergence) (Ghorbani and Zou 2019) or more
complicated algorithms that leverage assumptions such as
sparsity to obtain sizable savings in sample complexity (Jia
et al. 2019a). By contrast, we provide a simpler algorithm for
computing the approximate least core with probable guaran-
tees.

But do these theoretical results translate into practice? In
the next section we show, among other things, that in low-
resource settings (where the algorithm has limited computa-
tional power) our least core algorithm outperforms state-of-
the-art algorithms for the Shapley value, thereby bolstering
the computational case in favor of the least core.

5 Empirical Results
The purpose of this section is twofold. First, We empirically
verify our theoretical conclusions about the computability of
the least core and nucleolus (which are worst case in nature).
Second, we compare the algorithms that one would use to
approximate the Shapley value with that for least core.
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Figure 1: Top Panel: Least core accuracy (satisfaction of the
core constraint) over coalitions. Bottom Panel: Nucleolus
accuracy (satisfaction of the core constraint) over coalitions
(ε = 0.01).

Our experiments are conducted on feature valuation and
data valuation tasks. Following previous work in the area,
our primary aim is to use these tasks to confirm that least
core values are predictive of importance, albeit in an indirect
way (as the ultimate test of human-centered AI must be how
the system interacts with people).

5.1 Feature Valuation
We choose three smaller-scale UCI datasets (Dua and Graff
2017) that have 10–14 features: this makes it computation-
ally feasible to train a logistic regression classifier on all pos-
sible subsets of features and to compute the exact Shapley
and least core values. To define the cooperative game, the
players are the features and the value of a coalition is the test
accuracy of a logistic regression classifier that is trained on
those features. The three real-world datasets are of different
domains: house (classifying the party of Congressmen based
on their votes on issues), medical (predicting the presence
of breast cancer based on features of images, and chemical
(classifying the origin of wine based on chemical analysis).

To empirically verify Theorem 1 from Section 3 (which
deals with the probable least core), we sample a small frac-
tion of coalitions uniformly at random from all possible
coalitions, and compute the least core by restricting Equa-
tion (1) to these coalitions. We then determine what fraction
of all coalitions satisfy the least core constraints with respect
to the true deficit e? — that gives us accuracy 1−δ, which, in
turn, leads to δ-probable least core. To obtain error bars, we
repeat this ten times. As can be seen in Figure 1, even with

a small fraction of sampled coalitions, the resultant alloca-
tions are δ-probable least core allocations with very small
δ.

Theorem 3, by contrast, asserts that many samples are
needed to compute the probably approximate nucleolus.
Since this is a worst-case result, one may wonder whether it
holds in practice. To check this, we apply the same method-
ology as above. As can be seen in Figure 1, even when a
sizable fraction of samples are used to compute the (ε, δ)-
probably approximate nucleolus , most coalitions do not sat-
isfy its constraints.

5.2 Data Valuation
Our second set of experiments deals with data valuation. We
focus on low-resource settings in which we assume the an-
alyst who is looking to understand data importance has ac-
cess to limited computational resources (e.g., few cores, no
pun intended). We examine the performance of existing al-
gorithms that one would use. To compare, we elect to fix
the sample complexity (the number of v(S) queries) that
the algorithms are permitted to use. This sidesteps compar-
ing the actual runtimes of the algorithms, which may vary
depending on the details of the implementation. The two
data valuation Shapley algorithms we compare against are
TMC (Ghorbani and Zou 2019) and Group Testing (Jia et al.
2019a).
Data Removal. We emulate the data removal experiments
as described in (Ghorbani and Zou 2019). In this set of ex-
periments, the data is ranked from most valuable to the least
valuable using the solution concepts, and the model perfor-
mance is charted as the most valuable/least valuable five per-
cent of the data is removed at a time. In addition to the two
Shapley algorithms we also include two baselines: leave one
out (LOO), defined as v(N)− v(N \ {i}) for each player i,
and random score assignment.

For the synthetic data generation, we sample 200 data
points from 50-dimensional Gaussian, the 50-dimensional
parameters are sampled from a uniform distribution and the
feature-label relationship is set to be linear. To define the
cooperative game, we take the players to be the data and
the value of a coalition to be the test accuracy of the model
trained only on the data in the coalition. The model used here
is logistic regression; we relegate results for neural networks
to Appendix E.2. We repeat the procedure 20 times and ob-
tain 95 percent confidence intervals for the mean model per-
formance.

For the natural dataset, we use the dog-vs-fish classifica-
tion dataset as in the work of Koh and Liang (2017) and
Ghorbani and Zou (2019). We randomly sample 600 data
points and obtain features of the images using Inception net-
work. The model used for training is logistic regression and
we vary the budget as before. This entire process is repeated
five times to obtain the error bars.

We experiment with a budget of 5K, 10K, 25K, 50K for
samples as in a low-resource setting. As a point of reference,
for the synthetic data experiment, computing the exact least
core uses 2200 samples. The TMC Algorithm with a stopping
threshold of less than one percent change in the estimated
Shapley value uses 2.17M samples when run until conver-
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(a) Synthetic data, remove best, 10K samples
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(b) Synthetic data, remove best, 50K samples
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(c) Natural data, remove best, 10K samples
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(d) Natural data, remove best, 50K samples
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(e) Synthetic data, remove worst, 10K samples
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(f) Synthetic data, remove worst, 50K samples
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(g) Natural data, remove worst, 10K samples
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(h) Natural data, remove worst, 50K samples

Figure 2: Curves of logistic regression test performance when the best and worst data points ranked according to the solution
concepts are removed. In (a)–(d) the best data points are removed: the steeper the drop, the better. In (e)–(h) the worst data
points are removed: the sharper the rise, the better.
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Figure 3: Plotting noise level against percentage of total util-
ity assigned to clean data.

Figure 4: Test performance as we correct more and more
training data guided by the least core vs. random selection.

gence. For the Group Testing Algorithm, using the sample
complexity derived, running till convergence uses 11.05M
samples.

As can be seen in Figure 2 (with similar figures for other
parameter settings given in Appendix E.2), the least core al-
gorithm compares favorably with the Shapley algorithms in
terms of predicting the most and least important (in a sense)
data points in these settings. Specifically, the least core’s per-
formance is significantly better than the baselines in the syn-
thetic setting, whereas in the natural setting it is slightly bet-
ter than Shapley value computation via the stronger of the
two algorithms.

It is worth pointing out that the formulation of least core is
such that it captures a group measure of value, whereas the
Shapley value is more of an individual measure. Therefore,
this data removal setup should conceptually favor Shapley,
and yet the least core outperforms it to some degree.

As one more sanity check, we conduct an experiment
studying the percentage of utility allocated by the core to

noisy data. We divide the dataset into two: a clean portion
and a noised portion. We increase the Gaussian noise added
to the noised portion and compute the percentage of utility
allocated by the core to the clean data. As expected and seen
in Figure 3, with higher noise, the noised data become less
“valuable” and are thus allocated a lower percentage of the
overall utility by the core.
Fixing Mislabeled Data. We perform another set of exper-
iments to verify that the magnitude of the least core values
strongly correlate with the importance of the data point. In
this experiment, we assume we have a dataset with flipped
labels and would like to use the importance scores assigned
to expedite the correction of “flipped” data points, which
should correspond to the lower scores. The specific dataset
we use is the Enron Dataset, as in previous work (Ghor-
bani and Zou 2019; Koh and Liang 2017). In total, 1000
data points are used for training a Naive Bayes model which
takes as input a bag-of-words representation of emails. We
randomly flip the label for twenty percent of the data and
allot a budget of 5000 samples for computing the solution
concepts. The coalitional values are defined as performance
on the validation set, and then the final performance in the
plot is assessed on the test set. As can be seen in Figure 4,
the least core values are much better at picking out lower
quality data points than random selection.
Is the Approximate Shapley value in the Approximate
Least Core? It is known that the Shapley value coincides
with the egalitarian core for convex games, where there is
a super-additive effect in players coming together. This ef-
fect is not typically present in what we call “supervised-
learning” games, in which there are diminishing returns as
more and more data or features are added and used. How-
ever, in theory it may still be the case that the two solu-
tions usually coincide, which would make it redundant to
discuss the core. We therefore test, in the valuation experi-
ments mentioned above, whether approximate Shapley val-
ues are close to being in the approximate least core. Our
results suggest that this is not the case and therefore the ap-
proximate Shapley cannot serve as a proxy for the least core.
Details are relegated to Appendix E.2

6 Conclusion
In our paper, we demonstrate that the least core can be ap-
proximated in a computationally tractable manner, and ques-
tion the broad usage of the Shapley value with the hope of
invoking further discussion on when and why one solution
concept is to be preferred.

Our theoretical and empirical results, taken together with
our conceptual arguments (Section 4), suggest that the least
core is a principled alternative means of doing credit assign-
ment in ML. Currently, it appears that virtually all papers
on feature and data valuation use the Shapley value for this
purpose. In light of the many uses of the core as an econom-
ically plausible method of payoff assignment, we introduce
this alternative approach to the AI community in the hope
that researchers and practitioners would take a closer look.
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A Proof of Theorem 1
This proof is a direct extension of the proof of Theorem 1 of Balkanski et al. (Balkanski, Syed, and Vassilvitskii 2017). Like
them, we employ the following known lemmas (Shalev-Shwartz and Ben-David 2014).
Lemma 1. Let H be a function class from X to {−1, 1}, and let f be the true underlying function. If H has VC-dimension d,
then with

m = O

(
d+ log

(
1
∆

)
δ2

)
i.i.d. samples x1, ...,xm ∼ D, ∣∣∣∣∣ Pr

x∼D
[h(x) 6= f(x)]− 1

m

m∑
i=1

1h(xi) 6=f(xi)

∣∣∣∣∣ ≤ δ
for all h ∈ H and with probability 1−∆ over the samples.
Lemma 2. The function class {x 7→ sign(w · x) : w ∈ Rn} has VC-dimension n.

We now turn to the proof. Given a coalition S sampled from D, we convert it into a vector yS = (xS ,−v(S), 1) where
xSi = 1 if i ∈ S and xSi = 0 otherwise.

Consider a linear classifier h define by wh = (z, 1, e) where z ∈ Rn and e ∈ R. If sign(wh · yS) = 1 then
∑
i∈S zi −

V (S) + e ≥ 0. And if there exist a linear classifier h that satisfies this property for all coalitions S ∈ 2N , and in addition z is
efficient, then it represents a payoff allocation in the e-core. This allows us to define a class of functions that contains the e-core
for all e. This class is:

H =

{
y 7→ sign(w · y) : w = (z, 1, e), z ∈ Rn, e ∈ R,

n∑
i=1

zi = v(N)

}
.

This class H is a subset of the class of all linear classifiers of dimension n + 2 and thus, by Lemma 2, it has VC-dimension at
most n+ 2.

Now, suppose that we run the linear program (1) on our samples S1, . . . , Sm, which gives us a payoff allocation ẑ and a value
ê. Define the corresponding classifier ĥ; notice that ĥ(ySi) = 1 for all i = 1, . . . ,m. In addition, let z? be a payoff allocation in
the least core, and e? the required subsidy, and define the corresponding classifier f?. It holds that f?(yS) = 1 for all S ∈ 2N .

By Lemma 1 we have uniform convergence for all classifiers with probability 1−∆, and in particular for ĥ it holds that

Pr
S∼D

[∑
i∈S

ẑi − v(S) + e? ≥ 0

]
≥ Pr
S∼D

[∑
i∈S

ẑi − v(S) + ê ≥ 0

]
= 1− Pr

S∼D

[
sign(wĥ · yS) = −1

]
= 1− Pr

S∼D

[
ĥ(yS) 6= f?(yS)

]
= 1−

(
Pr
S∼D

[
ĥ(yS) 6= f?(yS)

]
− 1

m

m∑
i=1

1ĥ(ySi ) 6=f?(ySi )

)
≥ 1− δ

where the first transition holds because ê ≤ e? and the fourth transition holds because ĥ and f? agree on S1, . . . , Sm.

B Proof of Theorem 2
This proof directly extends the proof of Theorem 5 of Balkanski et al. (Balkanski, Syed, and Vassilvitskii 2017). Like them, we
use the following result (Shalev-Shwartz and Ben-David 2014).
Lemma 3. Let H = {w : ||w||1 ≤ B} be the hypothesis class, and Z = X × Y be the examples domain. Suppose DZ is a
distribution over Z s.t ||x||∞ ≤ R. Let the loss function ` : H×Z → R be of the form `(w, (x, y)) = φ(〈w,x〉, y) and φ : R×
Y → R is such that for all y ∈ Y , the scalar function a→ φ(a, y) is ρ-Lipschitz and such that maxa∈[−BR,BR] |φ(a, y)| ≤ c.
Then for any ∆ ∈ (0, 1), with probability of at least 1−∆ over the choice of an iid sample of size m, (x1, y1), ..., (xm, ym):

E(x,y)∼DZ
[`(w, (x, y))] ≤ 1

m

m∑
i=1

`(w, (xi, yi)) + 2ρBR

√
2 log(2d)

m
+ c

√
2 log(2/∆)

m
.

for all w ∈ H.



We also require the observation that if an (ε, δ)-probably approximate least core holds in expectation, then it is likely to hold.
Lemma 4. For any ε > 0, δ < 1 and e-core allocation x computed from samples,

E
S∼D

[[
1−

∑
i∈S zi + e

v(S)

]
+

]
≤ εδ

1 + ε
⇒ Pr

S∼D

[∑
i∈S

zi + e? + ε ≥ v(S)

]
≥ 1− δ.

Proof. Recall Markov’s inequality: for a > 0, random variable X ≥ 0,

Pr[X ≤ a] ≥ 1− E[X]

a
.

To use it, let a = ε
1+ε and define a nonnegative random variable

X =

[
1−

∑
i∈S zi + e

v(S)

]
+

.

Then event X ≤ a is such that

X ≤ a⇔ 1−
∑
i∈S zi + e

v(S)
≤ ε

1 + ε

⇔
∑
i∈S

zi + e ≥ 1

1 + ε
v(S)

⇔
∑
i∈S

zi + e+
ε

1 + ε
v(S) ≥ v(S)

⇒
∑
i∈S

zi + e+ ε ≥ v(S)

⇒
∑
i∈S

zi + e? + ε ≥ v(S)

where the penultimate step uses v(S) ≤ 1 for all S ⊆ N , and the last step uses that e? ≥ e since e is the least core value
obtained from only a sample of all coalitional constraints.

We conclude that

Pr

[∑
i∈S

zi + e? + ε ≥ v(S)

]
≥ Pr[X ≤ a] ≥ 1− E[X]

a
≥ 1− δa

a
= 1− δ.

Turning to the theorem’s proof, in order to use Lemma 3, we begin by bounding the L1 norm of every allocation and e in the
e-core to obtain B.

Suppose z is an allocation in the e-core, then ||(z, e)||1 = v(N) + e. This holds because zi ≥ 0 for all i ∈ N and, by
efficiency, ||z||1 = v(N). Therefore:

||(z, e)||1 = v(N) + e ≤ v(N) + max
S

v(S) ≤ 2 max
S

v(S)

Then, we can take our hypothesis class to be:

H =
{
z ∈ Rn : ||z||1 ≤ 2 max

S
v(S)

}
Given S ∼ D, define the corresponding xS = (1i∈S

v(S) ,
1

v(S) ) and the label to be yS = 1. This allows us define to DZ to be the
uniform distribution over all (xS , yS) pairs. Next, suppose we obtain m samples S1, . . . , Sm from D, the uniform distribution
over all coalitions, we may again run the linear program (1) on the m samples, which gives us a payoff allocation ẑ and a value
ê. We take our classifier to be of the form w = (ẑ, ê) and we may define its loss ` to be:

`(w, (xS , yS)) = `

(
(ẑ, ê),

((
1i∈S

v(S)
,

1

v(S)

)
, yS
))

=

[
yS − (ẑ, ê) ·

(
1i∈S

v(S)
,

1

v(S)

)]
+

=

[
1−

∑
i∈S ẑi + ê

v(S)

]
+

.

(2)



Now, we may utilize Lemma 3 with the remaining variables being R = 1
minS 6=∅ v(S) , B = 2 maxS v(S), φ(a, y) = [y− a]+,

ρ = 1 and c = 1 + 2τ . This is legal because, ignoring the empty set, by definition of xS , ||xS ||∞ ≤ 1
minS 6=∅ v(S) . By definition

of the hypothesis class, ||(z, e)||1 ≤ 2 maxS v(S) for all (z, e) ∈ H. φ(a, y) = [y − a]+ is 1-Lipschitz as:

[y − a1]+ − [y − a2]+ = max{y − a1, 0} −max{y − a2, 0}

=
|y − a1|+ y − a1

2
− |y − a2|+ y − a2

2

=
|y − a1| − |y − a2|+ a2 − a1

2

≤ |y − a1 − (y − a2)|+ a2 − a1

2
≤ |a2 − a1|

Lastly, because our example domain Z is such that Y = {1}. We may obtain upper bound c:
c = maxa∈[−BR,BR] |φ(a, y)| = maxa∈[−BR,BR][1− a]+ ≤ (1−−BR) = 1 +BR = 1 + 2τ .
Moreover, since for all St in our sample it holds that

∑
i∈St

ẑi + ê ≥ v(S), Equation (2) implies that

1

m

m∑
t=1

`

(
(ẑ, ê),

((
xSt ,

1

v(St)

)
, 1

))
= 0.

Therefore by Lemma 3,

E(x,y)∼D[l(w, (x, y))] = ES∼D

[[
1−

∑
i∈S ẑi + ê

v(S)

]
+

]

≤ 0 + 2 · 1 · 2τ
√

2 log(2(n+ 1))

m
+ (1 + 2τ)

√
2 log(2/∆)

m

(3)

Using Lemma 4, we need the number of samples m to be such that

4τ

√
2 log(2(n+ 1))

m
+ (1 + 2τ)

√
2 log(2/∆)

m
≤ δε

1 + ε
,

and we get that

O

(
τ2
(
log n+ log

(
1
∆

))
ε2δ2

)
samples suffice.

C Proof of Theorem 3
On a high level, we will construct a set of cooperative games G over the same set of players N , and a distribution D over
the coalitions, such that no deterministic algorithm can compute a payoff allocation in the (ε, δ)-approximate nucleolus with
probability 1−∆ using m ≤ 1

6 · 2
n/3+1 samples with respect to every game in G.

The idea of the proof is as follows. We construct the class of games G in a way that it is likely to observe v(Si) = 0 for
the coalitions S1, . . . , Sm sampled from D. Lemma 5 shows that at least half of the games in our class are consistent with
such an observation. But Lemma 7 asserts that any payoff allocation would be in the (ε, δ)-probably approximate nucleolus of
only a small fraction of the games in G. Intuitively, then, when such an input is observed, the algorithm does not have enough
information about the underlying game and is likely to violate the (ε, δ)-probably approximate nucleolus requirement. In the
theorem’s proof itself, we formalize this intuition by first assuming that the game itself is drawn from a uniform distribution
over G; the theorem statement follows from an averaging argument.

Formally, the class of games G is defined as follows. Let N be a set of n players; we assume without loss of generality
that n is divisible by 3. Let C1 be a set of 3 players {i, j, k}. Define C2, C3, C4 to be sets of n/3 − 1 players such that
C1 ∪ C2 ∪ C3 ∪ C4 = N . Each cooperative game GC1,C2,C3,C4 in our class G is such that v(S) = 1 if {i, j} ∪ C2 ⊆ S or
{i, k}∪C3 ⊆ S or {j, k}∪C4 ⊆ S; v(S) = 0 otherwise. The important thing to note is that all coalitions of size n/3 + 1 have
value 0, except for exactly three that have value 1: {i, j}∪C2, {i, k}∪C3, and {j, k}∪C4. We call C1 the critical set of game
GC1,C2,C3,C4

.
Next, we define the distribution D to be the uniform distribution over all coalitions of size n/3 + 1.



Lemma 5. For any m coalitions S1, . . . , Sm of size n/3 + 1, at least half of the games in G satisfy v(Si) = 0 for all
i = 1, . . . ,m.

Proof. To count the number of such games, we can count the number of games in which the value of Si is 1. By symmetry, the
number of games in which a coalition S has value 1 is the same for all coalitions S of size n/3 + 1. Moreover, for each game
in G there are three coalitions of size n/3 + 1 with value 1. Therefore, for each Si, the number of games in G with v(Si) = 1
is 3|G|/

(
n

n/3+1

)
. It follows that the number of games for which it does not hold that v(Si) = 0 for all i = 1, . . . ,m is at most

3m|G|/
(

n
n/3+1

)
. Since

(
n

n/3+1

)
≥ 2n/3+1, by our choice of m this is at most |G|/2.

We next characterize the nucleolus of games in G.

Lemma 6. For every game GC1,C2,C3,C4
∈ G and every S ⊆ N ,

d∗(S) =


1/3 S ∈ {{i, j} ∪ C2, {i, k} ∪ C3,

{j, k} ∪ C4}
− |S∩{i,j,k}|3 otherwise

Proof. Let us compute the least core first since we know the nucleolus lies within it. Summing the constraints of linear program
(1) for the coalitions {i, j} ∪ C2, {i, k} ∪ C3, {j, k} ∪ C4, we get that∑

t∈N
xt + (xi + xj + xk) ≥ 3− 3e.

Since 1 =
∑
t∈N xt ≥ xi + xj + xk, we have that 2 ≥ 3 − 3e, and hence e ≥ 1/3. Moreover, e = 1/3 is achieved if

xi = xj = xk = 1/3.
We claim that this payoff allocation is the only one that achieves e = 1/3. Indeed, the total payoff to each of the coalitions

{i, j} ∪ C2, {i, k} ∪ C3, {j, k} ∪ C4 must be at least 2/3, which means that the payoff of players at the intersection of each
pair of these coalitions must be at least 1/3. But the intersection of each pair is exactly one of the players i, j, k.

Since the payoff allocation x is the unique solution to the least core program, it must be the nucleolus. The statement of the
lemma directly follows.

Lemma 6 implies that two games GC1,C2,C3,C4
and GC′1,C′2,C′3,C′4 have the same nucleolus if and only if C1 = C ′1. Let us,

therefore, partition G into equivalence classes, where the games in an equivalence class have the same critical set.

Lemma 7. Any payoff allocation is in the (ε, δ)-probably approximate nucleolus for games from at most one equivalence class.

Proof. Let x be a payoff allocation. We consider two cases, based on the number of players i ∈ N with xi > ε.
Case 1: There are at least three players with xi > ε. Let those three players be {i, j, k}, and consider a game in G whose

critical set is not {i, j, k}. Then there exists a player ` not in the critical set such that x` > ε.
Consider all coalitions of size n/3 + 1 containing ` but no player from the critical set. By Lemma 6, under the nucleolus of

the game, all such coalitions have deficit 0, but under x they would have a deficit of at at most −xa′ < −ε. There are
(
n−4
n/3

)
such coalitions, which accounts for the following portion of all coalitions of size n/3 + 1:(

n−4
n/3

)(
n

n/3+1

) =
(n/3 + 1)(2n/3− 1)(2n/3− 2)(2n/3− 3)

n(n− 1)(n− 2)(n− 3)

> (1/3 · 1/2 · 1/2 · 1/2) =
1

24
≥ δ.

Case 2: There are less than three players with xi > ε.
In this case, for any game in G, x is such that there exists at least one player in its critical set with allocation at most ε. We

show that this means x cannot satisfy the (ε, δ)-probably approximate nucleolus property with respect to the game.
Fix a game in G, let the critical set of the game be {i, j, k}, and let xi ≤ ε. Assume for the sake of contradiction that x

satisfies the (ε, δ)-probably approximate nucleolus property for this game.
Consider the set of all coalitions of size n/3 + 1 that contain i, j but not k. There are

(
n−3
n/3−1

)
such coalitions. We know by

Lemma 6 that all but one of these coalitions have value 0 and deficit −2/3. In order for the property∣∣∣∣∣∑
i∈S

xi + d?(S)− v(S)

∣∣∣∣∣ ≤ ε (4)

to hold for such coalitions, we would need their payoff to be at least 2/3− ε.



Overall, there are at least
(
n−3
n/3−1

)
− δ
(

n
n/3+1

)
− 1 many coalitions containing i, j but not k for which Equation (4) applies

and have value 0. The middle term comes from factoring in that at most a δ fraction of all
(

n
n/3+1

)
coalitions will not satisfy

the probably approximate nucleolus property. By summing over the total payoffs of all such coalitions we have(
n− 3

n/3− 1

)
(xi + xj) +

(
n− 4

n/3− 2

) ∑
t 6∈{i,j,k}

xt


≥
((

n− 3

n/3− 1

)
− δ
(

n

n/3 + 1

)
− 1

)
(2/3− ε)

since each player that is not i, j or k shows up
(
n−4
n/3−2

)
times. Dividing by

(
n−3
n/3−1

)
and using the fact that

(
n−4
n/3−2

)
/
(
n−3
n/3−1

)
=

1/3, we have

xi + xj +
1

3

 ∑
t 6∈{i,j,k}

xt


≥

(
1−

(
n

n/3+1

)(
n−3
n/3−1

) · δ − 1(
n−3
n/3−1

)) (2/3− ε).

With n ≥ 9, 1

( n−3
n/3−1)

≤ 1
15 and so we obtain

xi + xj +
1

3

 ∑
t6∈{i,j,k}

xt

 ≥ (14

15
−

(
n

n/3+1

)(
n−3
n/3−1

)δ) (2/3− ε).

Using efficiency,
∑
t6∈{i,j,k} xt = 1− xi − xj − xk, and using the fact that(

n
n/3+1

)(
n−3
n/3−1

) =
n(n− 1)(n− 2)

(n/3 + 1)(n/3)(2n/3− 1)
≤ 27

we get
2

3
xi +

2

3
xj +

1

3
− 1

3
xk ≥

(
14

15
− 27δ

)
(2/3− ε).

Similarly, by considering the set of all coalitions that contain i, k but not j, we see that

2

3
xi +

2

3
xk +

1

3
− 1

3
xj ≥

(
14

15
− 27δ

)
(2/3− ε).

Summing both inequalities, we conclude that

4

3
xi +

1

3
(xj + xk) +

2

3
≥ 4

3
· 14

15
− 36δ − 28

15
· ε+ 54δε.

Since xj + xk ≤ 1,
4

3
xi ≥

11

45
− 36δ − 28

15
ε+ 54δε,

which is impossible for xi ≤ ε since ε < 1/50 and δ < 1/200.

We are now ready to prove the theorem.

Proof of Theorem 3. Fix the set of players N . Let U be the uniform distribution over games in G. Since N is fixed, we think of
U as a distribution over characteristic functions and write v ∼ U .

Suppose that we draw coalitions S1, . . . , Sm fromD, and v from U . LetA((S1, v(S1)), . . . , (Sm, v(Sm))) be the payoff allo-
cation returned by the given algorithm A on this input. Consider the event E that occurs when A((S1, v(S1), . . . , (Sm, v(Sm))
is in the (ε, δ)-probably approximate nucleolus of the game (N, v). We wish to upper-bound the probability of E .

To this end, instead of drawing v from U directly, it will be useful to use the following generative process. First, decide
whether it holds that v(Si) = 0 for all i = 1, . . . ,m; call this event F . If F occurred, condition U on F and draw v from this
posterior distribution. As we will see shortly, there is no need to explicitly define the process for the case where F did not occur.



Denoting the complement of F by F̄ , it holds that

Pr[E ] = Pr[E | F ] · Pr[F ] + Pr[E | F̄ ] · Pr[F̄ ]

≤ Pr[E | F ] + Pr[F̄ ].
(5)

Since for every S1, . . . , Sm, the probability of drawing v from U such that F occurs is the same by symmetry, we can
compute Pr[F ] by reversing the coin flips, first drawing v and then S1, . . . , Sm. Only three of the

(
n

n/3+1

)
coalitions of size

n/3 + 1 have non-zero value; therefore

Pr[F̄ ] = 1−

(
1− 3(

n
n/3+1

))m < 1/10, (6)

where the inequality holds for n ≥ 9 and m ≤ 1
6 · 2

n/3+1.
As for Pr[E | F ], by Lemma 5 at least half of the games in G (or, equivalently, at least half of the corresponding characteristic

functions) are in the support of U conditioned on F . But by Lemma 7, the payoff allocation A((S1, v(S1)), . . . , (Sm, v(Sm)))
can be in the (ε, δ)-probably approximate nucleolus of at most one of the

(
n
3

)
equivalence classes. It follows that

Pr[E | F ] ≤ 2(
n
3

) < 1/10. (7)

Plugging Equations (6) and (7) into Equation (5), we conclude that Pr[E ] < 1/5.
To recap, when drawing S1, . . . , Sm from D and v from U , the probability that the output of A is in the (ε, δ)-probably

approximate nucleolus of G = (N, v) ∈ G is at most 1/5. But since this is true for a random game G ∈ G, there must exist a
game G? ∈ G where the same is true when only drawing S1, . . . , Sm from D. That is, m samples are insufficient to compute a
payoff allocation in the (ε, δ)-probably approximate nucleolus with probability at least 1−∆ for ∆ < 4/5.

D Approximate Least Core Implementation
The approximate least core algorithm works as follows: compute the approximate least core value ê from the samples via linear
program (1), then minimize the `2 norm over all allocations x s.t x is in the ê−core:

min ‖x‖2
s.t.

∑
i∈N xi = v(N)∑
i∈S xi + ê ≥ v(S) ∀S ⊆ N

This may be easily done with any standard optimization library and it is not hard to argue that the resultant x satisfies null
player and symmetry in addition to efficiency.

E Additional Experimental Results
E.1 Feature Valuation
Maximum Deficit. By definition, the maximum deficit e? under the least core should be at most as large as that under the
Shapley value. However, we wish to verify that the difference is significant in practice. To that end, we compute the least core,
the Shapley value, and (as a baseline) equal payoffs on our three datasets. Figure 5 shows the difference between the maximum
deficit of each of the solution concepts (including the least core itself) and the maximum deficit of the least core. It can be seen
that there is a sizable gap between the Shapley value and the least core, considering that the maximum value of any coalition is
1. Note that no sampling (indeed, no randomness) is involved in this experiment.

Standard Deviation. On each of our three datasets, we compute the empirical standard deviation of payoff allocations
given by the least core and the Shapley value (again no sampling is involved). Interestingly, we observe that the least core has
considerably higher standard deviation and may thus be considered more discriminating; see Figure 6.
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Figure 5: Relative difference between different solution concepts’ largest deficits and the least core’s largest deficit
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Figure 6: Standard deviation of solution concepts

E.2 Data Valuation
Additional Experimental Details Below include attach plots for the synthetic and natural experiments that were not included
in the main body due to space constraints. We observe that in the synthetic settings, as depicted in Figures 7 and 8, the approx-
imate least core values are decidedly better than the other importance scores. Under the natural setting, as portrayed by Figure
9, it seems that the change in performance is small and the least core and the Shapley value are roughly comparable across all
budgets. Lastly, we note that LOO does not have an error bar in the natural experiment since all the runs are based on the same
random sample of data points, and so the error bars are only due to the randomness in the sample of v(S)’s that are drawn to
approximate the solution concepts.

Data Quality vs. Score Lastly, we repeat one more experiment that assesses data quality vs solution concept value. We
randomly sample 200 dog-vs-fish data points to form an equally balanced training set. We corrupt 20 percent of train data by
adding varying levels of white noise to the features and compute the Least Core value of clean and noisy images. The 5 noise
levels are such that it leads to a monotonic decrease in test performance. Then, we plot the percentage of total utility that is
assigned to clean scores (since the total utility goes down with noise, using the absolute scale makes it harder to interpret the
result). This procedure is repeated 20 times and a budget of 1000 is alloted for approximating the least core.

As can be seen in Figure 3, under the no-noise setting, the clean data account for roughly 80 percent of the total utility and
with increasing noise added the proportion grows bigger. The slight trend is due to the fact that the test performance does not
drop by too much, going from 96.3 to 92.7.



Is the Approximate Shapley Value in the Approximate Least Core Our test procedure is as follows: for each randomly
sampled coalition value v(S) used in approximating the least core and estimated Shapley value xS , we compute (

∑
i∈S xi +

ê)/v(S). We count the number of samples for which the ratio is below 0.95. Indeed, if we find one, then the approximate
Shapley value x is not close to being in the approximate least core. Overall, we find that in all the settings we checked, the
approximated Shapley does not lie in the approximated least core. For most experiments, at least one percent of all sampled
coalitions has its ratio below 0.95. Other trends include that Group Testing tends to produce many more violations than TMC
and that the percentage of violations decreases with a larger budget.
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Figure 7: Curves of synthetic dataset (under a logistic regression model) test performance when the best and worst data points
ranked according to the solution concepts are removed. For the left column, the steeper the drop, the better. For the right column,
the sharper the rise, the better.
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(g) Dropping best data curve at budget 50K
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(h) Dropping worst data curve at budget 50K

Figure 8: Curves of synthetic dataset (under a feedforward neural network model) test performance when the best and worst
data points ranked according to the solution concepts are removed. For the left column, the steeper the drop, the better. For the
right column, the sharper the rise, the better.
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Figure 9: Curves of natural, dog-vs-fish dataset (under a logistic regression model) test performance when the best and worst
data points ranked according to the solution concepts are removed. For the left column, the steeper the drop, the better. For the
right column, the sharper the rise, the better.


