
Axioms for Learning from Pairwise Comparisons

Ritesh Noothigattu
Carnegie Mellon University

riteshn@cmu.edu

Dominik Peters
Carnegie Mellon University
dominikp@cs.cmu.edu

Ariel D. Procaccia
Harvard University

arielpro@seas.harvard.edu

Abstract

To be well-behaved, systems that process preference data must satisfy certain
conditions identified by economic decision theory and by social choice theory.
In ML, preferences and rankings are commonly learned by fitting a probabilistic
model to noisy preference data. The behavior of this learning process from the view
of economic theory has previously been studied for the case where the data consists
of rankings. In practice, it is more common to have only pairwise comparison data,
and the formal properties of the associated learning problem are more challenging
to analyze. We show that a large class of random utility models (including the
Thurstone–Mosteller Model), when estimated using the MLE, satisfy a Pareto
efficiency condition. These models also satisfy a strong monotonicity property,
which implies that the learning process is responsive to input data. On the other
hand, we show that these models fail certain other consistency conditions from
social choice theory, and in particular do not always follow the majority opinion.
Our results inform existing and future applications of random utility models for
societal decision making.

1 Introduction

More than two centuries ago, the marquis de Condorcet [5] suggested a statistical interpretation of
voting. Each vote, Condorcet argued, can be seen as a noisy estimate of a ground-truth ranking of the
alternatives. A voting rule should aggregate votes into a ranking that is most likely to coincide with
the ground truth. Although Condorcet put forward a specific noise model, his reasoning applies to any
random noise model, which is a distribution over votes parameterized by a ground truth ranking [6, 4].

Until NeurIPS 2014, this statistical approach to voting was studied in parallel to the more common
normative approach, which evaluates voting rules based on axiomatic properties. But the two
approaches converged in a paper by Azari Soufiani et al. [1], whose key idea was to determine
whether maximum likelihood estimators (MLEs) for two noise models satisfy basic axiomatic
properties. Their results were sharpened and extended by Xia [18].

Our point of departure is that instead of random noise models we consider random utility models,
where each alternative x has a utility βx, and the probability of drawing a pairwise comparison that
puts x above y depends on βx and βy. For example, under the well-known Thurstone–Mosteller
Model [17, 12], this pairwise comparison would be generated by sampling u(x) and u(y) from
normal distributions with means βx and βy , respectively, and the same variance.

Our research question, then, is this:

For a given random utility model, consider the aggregation rule that takes pairwise
comparisons between alternatives as input and returns the ranking over alternatives
defined by the MLE; which axioms does it satisfy?



1.1 Why Is the Research Question Important?

The MLE, as an aggregation rule, is statistically well-motivated. From a voter’s perspective, though,
it is not immediately clear the the MLE is a good rule that adequately aggregates preferences. In
particular, in case the statistical assumptions of a random utility fail to capture reality, the MLE may
give a bad result. However, if we can show that the MLE satisfies standard axioms from voting theory,
this implies a certain degree of robustness. It also provides reassurance that the statistical process
cannot fall prey to pathological behavior in edge cases.

A string of recent papers [7, 15, 10, 11] proposes a sequence of systems for automated societal decision
making through social choice and machine learning. They all aggregate pairwise comparisons, by
fitting them to random utility models. As these systems are being deployed to support decisions in
non-profits and government, it becomes crucial to understand normative properties of this framework.1

The work of Freedman et al. [7] provides a concrete illustration. The paper deals with prioritization
of patients in kidney exchange. They asked workers on Amazon Mechanical Turk to decide which
of each given pair of patients with chronic kidney disease (defined by their medical profiles) should
receive a kidney, and computed the MLE utilities assuming the pairwise comparisons were generated
by a Bradley–Terry model [3]. The resulting ranking over profiles was used to help a kidney
exchange algorithm prioritize some patients over others. As is common, the authors pooled pairwise
comparisons reported by many different voters, and fit a single random utility model to the pool,
as opposed to fitting models to individual voters. This move is usually done to improve statistical
accuracy, but, to an extent, it invalidates the underlying motivation of the noise model, which imagines
a single decision maker with imprecise perception of utilities. Pooling assumes that a group of agents
can be captured by the same model. Given this leap of faith, we believe that a normative analysis of
the process becomes especially important.

Other papers apply an emerging approach called virtual democracy [10] to automate decisions in
two domains, autonomous vehicles [15] and food allocation [11]. Lee et al. [11] asked stakeholders
in a nonprofit food rescue organization to report which of each given pair of recipient organizations
should be allocated an incoming food donation. Unlike Freedman et al. [7], they fit a random utility
model (Thurstone–Mosteller) to the pairwise comparisons provided by each stakeholder individually,
and used the Borda voting rule to aggregate the predictions given by each of the individual models.
On the one hand, our axiomatic results may justify a move to the pooled approach of Freedman et
al. [7], which could improve accuracy. On the other hand, even when learning individual models,
axiomatics can convince voters that their preferences are learned using a sensible method.

1.2 Our Results

We examine four axiomatic properties, suitably adapted to our setting. Informally, they are:

• Pareto efficiency: If x dominates y in the input dataset, x should be above y in the MLE ranking.

• Monotonicity: Adding a � b comparisons to the input dataset can only help a and harm b in the
MLE ranking.

• Pairwise majority consistency: If the input dataset is consistent with a ranking over the alternatives,
that ranking must coincide with the MLE ranking.

• Separability: If a is preferred to b in the MLE rankings of two different datasets, a must also be
preferred to b in the MLE ranking of the combined dataset.

The first two properties, Pareto efficiency and monotonicity, have immediate appeal and seem crucial:
a system violating these is not faithful to input preferences. In Sections 3 and 4 we show that both
properties are satisfied by a large class of random utility models when fitted using MLEs. For
monotonicity, our main result, the proof is surprisingly involved, since we need to reason about the
optimum utility values of all alternatives simultaneously. (In contrast, for random noise models,
monotonicity is a simple consequence of the definition [1, 18].)

The latter two properties are not satisfied by MLEs, for all random utility models satisfying mild
conditions. In a way, these negative results illuminate the behavior of random utility models: The

1Previous work [1, 18] does not apply as it focuses on the aggregation of input rankings (a special case of
pairwise comparisons) through random noise models.
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case of pairwise majority consistency illustrates a trade-off, where random utility models ensure that
a strong preference is respected, even if this leads them to override a majority preference elsewhere.
While negative, we do not see the counterexamples in Sections 5 and 6 as pathological, though they
may suggest contexts in which the use of random utility models is not appropriate.

2 Model

LetX be a finite set of alternatives. For notational simplicity, we letX 2 = {(x, y) : x, y ∈ X , x 6= y}
denote the set of distinct pairs of alternatives. Let # : X 2 → N be a dataset of pairwise comparisons
between alternatives: For x, y ∈ X , #{x � y} is the number of times x beat y in the dataset.

The (pairwise) comparison graph G# = (X , E) with respect to dataset # is the directed graph with
the alternatives X as the vertices, and edges E such that there exists a directed edge (u, v) ∈ E iff
#{u � v} > 0. We say that G# is connected if its undirected form is connected, and we call it
strongly connected if for all (x, y) ∈ X 2, there is a directed path from x to y in G#.

Given a dataset, our goal is to learn a random utility model (RUM). A random utility model specifies,
for any two distinct alternatives x, y ∈ X , the probability that when asking the decision maker to
compare x and y, the answer will be x > y. (Due to noise, when repeatedly querying the same
pair, we may see different answers.) For us, a random utility model is parameterized by a vector
β ∈ RX , where βx is an unknown utility value for x ∈ X . When we ask for a comparison between
two alternatives x, y ∈ X , we model the decision maker as sampling noisy utilities u(x) and u(y)
from distributions parameterized by (and typically centered at) βx and βy . Then, the decision maker
reports the comparison x > y iff u(x) > u(y).

In this paper, we focus on random utility models with i.i.d. noise, so that u(x) = βx + ζ(x), where
ζ(x) ∼ P is i.i.d. across all alternatives. Let F be the CDF of a random variable which is the
difference between two independent random variables with distribution P . Then the probability that
alternative x beats y when they are compared is2

Pr(x � y) = Pr(u(x) > u(y)) = Pr(ζ(y)− ζ(x) < βx − βy) = F (βx − βy). (1)

We derived Equation (1) from a specific noise model, but it makes sense for any function F : R→
[0, 1] with CDF-like properties, even if it does not correspond to a noise distribution P . Indeed, we
can take any F which is non-decreasing, satisfies F (∆u) + F (−∆u) = 1 for all ∆u ∈ R, and is
such that lim∆u→−∞ F (∆u) = 0 and lim∆u→∞ F (∆u) = 1. We adopt Equation (1) as the general
definition of a random utility model for our technical results.

Two of the most common random utility models are

• the Thurstone–Mosteller (TM) model: We sample utility as u(x) = βx + ζ(x), with i.i.d. noise
ζ(x) ∼ N (0, 1/2). This is equivalent to Equation (1) with F as the Gaussian CDF Φ.

• the Bradley–Terry model (equivalent to the Plackett–Luce model restricted to pairwise compar-
isons), where Pr(x � y) = eu(x)

eu(x)+eu(y) . This is Equation (1) with F as the logistic function.

We usually assume that F is strictly log-concave, and that it is strictly monotonic and continuous,3 so
that F has an inverse on (0, 1). These conditions hold for Thurstone–Mosteller and Bradley–Terry.

For a random utility model, given a dataset #, our goal is to find parameters (βx)x∈X that best fit #.
We find these parameters by maximum likelihood estimation. The log-likelihood is given by

L(β) =
∑

(x,y)∈X 2

#{x � y} logF (βx − βy).

When the dataset # is clear from the context, we write β̂ ∈ RX for a parameter vector that maximizes
log-likelihood, and say that β̂ is the MLE. Note that if c ∈ R is a scalar, then L(β) = L(β + c) for
all β ∈ RX (since Pr(x � y) depends only on the difference βx − βy), so the MLE is only defined
up to an additive shift. For concreteness, we pick some r ∈ X , call it the reference alternative, and
fix βr = 0; then, we maximize L over D = {β ∈ RX : βr = 0}.

2We assume P to be a continuous distribution, and so we do not have to worry about ties.
3Continuity of F is guaranteed when the corresponding noise distribution P is continuous.
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A random utility model is particularly appropriate when the dataset # consists of pairwise com-
parisons which are all reported by a single decision maker. However, in many cases the dataset is
obtained by pooling reports from many agents, for instance to minimize the labeling effort of each
individual agent, or if we have the explicit aim to aggregate preferences from different agents. Some
of the axioms we study are explicitly motivated by cases where # =

∑
i∈R#i, i.e., the dataset is

obtained by pooling individual datasets, whereR is the set of agents. It then seems natural to assume
that each agent behaves in accordance with some random utility model with unknown parameters βi
and unknown CDF-like function Fi. Then the dataset #i is generated by repeatedly querying the
agent’s random utility model for a comparison.

2.1 Existence and Boundedness of MLE

Before turning to our main results, we briefly state conditions that guarantee the existence of a finite
MLE, and that guarantee uniqueness (up to a shift).

In some scenarios, no finite β maximizes likelihood, and thus the MLE may not exist. For instance,
if some alternative a beats other alternatives, but is not beaten even a single time in the dataset,
the likelihood can always be strictly increased by increasing βa (when F is strictly monotonic).
Lemma 2.1 states a condition under which an MLE exists (i.e. L(β) has a maximizer). Its proof
also provides a weak bound on one such maximizer. The proofs of the results in this section are in
Appendix A.
Lemma 2.1 (MLE exists). Suppose F is strictly monotonic and continuous. Then the MLE exists if
and only if every connected component of the comparison graph G# is strongly connected.

For alternative x, y ∈ X , we define the perfect-fit distance between x and y as

δ(x, y) := F−1

(
#{x � y}

#{x � y}+ #{y � x}

)
.

This is the difference in utilities of x and y required for the model to exactly match the observed
frequencies of #{x � y} and #{y � x} in the data. We can check that the MLE will respect this
perfect-fit distance when an alternative has only a single neighbor in the comparison graph.
Lemma 2.2. Let F be strictly monotonic and continuous. Suppose that for alternative a there is
exactly one alternative b for which #{a � b} + #{b � a} > 0. If both #{a � b} > 0 and
#{b � a} > 0, then any MLE β̂ satisfies β̂a − β̂b = δ(a, b).

We can use this result to provide a stronger bound on the MLE than the one from Lemma 2.1, which
holds under slightly stronger conditions.
Lemma 2.3. Suppose that #{x � y} > 0 and #{y � x} > 0 for all x and y, and that F is
continuous and strictly monotonic. Then for every MLE β̂ we have the bound

‖β̂‖∞ ≤ |X | · max
(x,y)∈X 2

δ(x, y).

2.2 Uniqueness of MLE

Under mild conditions on the function F and the comparison graph G#, we have seen that a bounded
MLE exists. When is the MLE unique? Note that if F is a strictly log-concave, this implies that the
log-likelihood L(β) is concave. If we additionally require that the comparison graph G# is connected,
then L(β) is in fact strictly concave, and thus the MLE is unique, as we prove in Appendix B.
Lemma 2.4. Suppose that F is strictly log-concave. Then L(β) is strictly concave and the MLE is
unique (assuming it exists), if and only if the comparison graph G# is connected.

3 Pareto Efficiency

A minimal requirement in economic theory is Pareto efficiency: if all agents prefer a to b, then in
aggregate, a should be preferred to b. A first attempt at defining this notion for the environment of
pairwise comparisons would be to say that if #{a � b} > 0 but #{b � a} = 0, then the MLE
should satisfy β̂a ≥ β̂b. However, this property is too restrictive. Consider a dataset with

#{a � b} = 100,#{b � c} = 1,#{c � a} = 1,
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and all other comparisons 0. To satisfy the mentioned property, the MLE would need to satisfy
β̂a ≥ β̂b ≥ β̂c ≥ β̂a, so they are all equal; however it seems better to have β̂a > β̂b.

A more sensible version of Pareto efficiency is motivated by the multi-agent setting described in
Section 2, where # =

∑
i∈R#i, and each individual dataset #i is generated by a random utility

model with unknown parameters βi. In this case, Pareto efficiency should say that if βia > βib for all
i ∈ R, then the MLE β̂ applied to dataset # should satisfy β̂a > β̂b as well. Our official definition of
Pareto efficiency implies this, but is phrased more generally.
Definition 3.1 (Pareto efficiency). Suppose a, b ∈ X satisfy #{a � b} > #{b � a}, and are such
that for every other alternative x ∈ X \ {a, b}, we have

#{a � x} > #{b � x} and #{x � a} < #{x � b}.

Then, Pareto efficiency requires that β̂a ≥ β̂b.

To see that this definition captures the desired behavior in the multi-agent case, note that if βia > βib,
then the dataset #i satisfies the condition of Definition 3.1 with high probability as we grow the
number of comparisons in #i, and similarly the condition holds for the pooled dataset # =

∑
i∈R#i.

This version of Pareto efficiency is feasible; in fact, it is satisfied by most random utility models.
Theorem 3.2. Maximum likelihood estimation satisfies Pareto efficiency if F is strictly monotonic.

The key idea behind the proof (given in Appendix C) is that if a, b ∈ X satisfy the condition of
Definition 3.1 but some MLE β̂ puts β̂a < β̂b, then the parameter vector β equal to β̂ except that
βa = β̂b and βb = β̂a has strictly higher log-likelihood.

4 Montonicity

If we add a pairwise comparison a � b to a dataset, we should deduce that a is stronger and b is
weaker relative to our previous estimates. It would be paradoxical if, upon seeing evidence that a is
strong and b is weak, we decided to lower a’s utility or increase b’s utility. Monotonicity requires that
this can never happen. We consider a strong form of this axiom, which requires that a is strengthened
relative to every other alternative, and not just relative to b.

Definition 4.1 (Monotonicity). Suppose that # and #̃ are two datasets with unique MLEs β̂ and β̃.
Suppose that #̃{x � y} = #{x � y} for all x, y ∈ X except that #̃{a � b} > #{a � b}. Then,
monotonicity requires that for all x ∈ X ,

β̃a − β̃x ≥ β̂a − β̂x and β̃b − β̃x ≤ β̂b − β̂x.

Equivalently, monotonicity requires that if #{a � b} decreases, then a becomes weaker relative to
other alternatives, and b becomes stronger. We can interpret monotonicity as guaranteeing a kind of
participation incentive: If we ask an agent to compare a to b, the agent is assured that the answer can
only influence our inferred utilities in the desired direction.

Monotonicity is foundational to the idea of aggregating pairwise comparisons; in a sense, it encodes
the proper meaning of a comparison “a � b”. It may be surprising, then, that it is difficult to prove
that MLEs of random utility models satisfy monotonicity.4 While it is easy to check that the difference
β̂a − β̂b is increasing in #{a � b}, it is much trickier to analyze the behavior of the log-likelihood
for the positioning of alternatives other than a and b. However, it turns out that random utility models
do satisfy the strong monotonicity axiom. Our proof depends crucially on the assumption that F is
log-concave. Due to the conceptual importance of monotonicity, we consider this our main result.
Theorem 4.2. Maximum likelihood estimation satisfies monotonicity if F is strictly monotonic,
log-concave, and differentiable.

The proof, given in Appendix D, is relatively unwieldy. For intuition, let us provide an outline of
a proof for the special case of three alternatives a, b, c. Let # and #̃ be datasets that are identical

4For the Bradley–Terry model, monotonicity is easier to check, since the first-order conditions of likelihood
maximization in that model are well-behaved [8, Prop. 6.3]; that proof does not generalize to other models.
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Figure 1: The MLE for Thurstone–Mosteller models is monotonic: with more b � c comparisons, b’s
utility increases, while c’s decreases. The vector shows the dataset # with X 2 in lexic order.

except that #{a � b} < #̃{a � b}, and let β̂ and β̃ be the respective MLEs, which are unique by
Lemma 2.4. We take a as reference, so β̂a = β̃a = 0. It is easy to see that β̂b ≥ β̃b, since otherwise
β̂ would have greater log-likelihood than β̃ for the dataset #̃, as β̂ performs better on the a vs b
comparisons, and performs no worse on other comparisons by optimality for #. To see that also
β̂c ≥ β̃c, consider first the dataset # and associated log-likelihood L(βb, βc) (with βa fixed to 0).
Now, for x ∈ R, let ψ(x) denote the value of βc that maximizes L(x, βc), i.e., maximizes likelihood
among parameters β with βa = 0 and βb = x. One can show that, since F is strictly log-concave,
ψ(x) is increasing in x.5 Notice that the number of comparisons between a and b in a dataset does
not influence the optimum position of βc, once βa and βb are fixed. Hence, the function ψ is the same
whether defined for # or for #̃, since they only differ in a vs b comparisons. We have already seen
that β̃b ≤ β̂b. Since ψ is increasing, we have β̃c = ψ(β̃b) ≤ ψ(β̂b) = β̂c, proving monotonicity.

To visualize monotonicity, consider the three examples in Figure 1. For four alternatives, we generated
random datasets by choosing #{x � y} uniformly at random between 1 and 100, and picked three
examples. In each case, we let #{b � c} vary from 0 to 100 (going horizontally from left to
right), and show how the MLE of the Thurstone–Mosteller model changes as the number of b � c
comparisons grows; we fix β̂a = 0 as reference. As predicted by Theorem 4.2, the orange line of β̂b
is increasing, while the green line of β̂c is decreasing. Note that the change in #{b � c} can affect
other alternatives; in the middle figure, the relative positions of a and d swap.

In the pooled setting # =
∑
i∈R#i of Section 2, where each agent i ∈ R is described by a random

utility model with parameters βi that generates #i, a natural notion of monotonicity is this: Suppose
we calculate the MLE β̂ for # and suppose we increase the utility βia for some agent i and some
alternative a while keeping all other parameters fixed. Then the updated MLE β̃ should satisfy
β̃a − β̃x ≥ β̂a − β̂x for all x ∈ X : the learned utility of a increases relative to other alternatives.
Theorem 4.2 implies that random utility models (subject to the theorem’s conditions) satisfy this
pooled monotonicity notion with high probability, when #i consists of many samples and when the
number of comparisons is uniform across pairs. The reason is this: with high probability, the increase
of βia increases the number of a � x comparisons in #i for all x. Assuming for now that no other
dataset #j and no other pairs in #i are affected, then successively invoking Theorem 4.2 on a � x
pairs yields the result. Now, with some probability, other parts will be affected, but not too much.
Since the MLE is continuous in # (see Appendix E), this noise will not invalidate monotonicity.

5 Pairwise Majority Consistency

Social choice theory has its root in the analysis of politics, where in many cases it is important to
use aggregation rules that respect the wishes of a majority. A famous issue is that the “majority will”
may not be coherent and in particular fail to be transitive. A minimal majoritarian requirement, thus,
would be what we call pairwise majority consistency (PMC): in cases where the majority produces a
definite ranking, the aggregate should respect it.

5Assume that F is twice differentiable. Since logF is strictly concave, its second derivative is strictly
negative. A straightforward calculation shows that then ∂2L/∂βc∂βc < 0 and that ∂2L/∂βc∂βb > 0. By
definition of ψ, for each x, (∂L/∂βc)(x, ψ(x)) = 0. Since ∂2L/∂βc∂βb > 0, the function ∂L/∂βc is
increasing in its first argument, and so (∂L/∂βc)(x+ ∆, ψ(x)) > 0 for all ∆ > 0. Since ∂2L/∂βc∂βc < 0,
the function ∂L/∂βc is decreasing in its second argument, and hence ψ(x+ ∆) > ψ(x), as desired.
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βa > βc > βb

βb > βa > βc

βa > βb > βc

%{a �
b}

%
{
b
�

c} %
{a
�
c}

Figure 2: The cube shows all datasets in the space T , in which pairwise majority consistency requires
that β̂a > β̂b > β̂c. The MLE for Thurstone-Mosteller models fails the condition in the shaded areas.

Definition 5.1. Suppose it is possible to label alternatives as X = {x1, . . . , xm} such that whenever
i < j, it holds that #{xi � xj} > #{xj � xi}. Then, pairwise majority consistency (PMC)
requires that for every MLE β̂, it holds that β̂xi

≥ β̂xj
for all i < j.

In contrast to our previous properties, PMC is violated by random utility models.

Example 5.2. Consider X = {a, b, c}, and consider the dataset

#{a � b} = 3,#{b � a} = 2,#{a � c} = 3,#{c � a} = 2,#{b � c} = 10,#{c � b} = 1.

This dataset conforms to Definition 5.1 if we label x1, x2, x3 = a, b, c. However, the unique MLE in
the Thurstone–Mosteller model is β̂a = 0, β̂b ≈ 0.217 and β̂c ≈ −0.751, so that βb > β̂a > β̂c. The
same example works for Bradley–Terry, which has MLE β̂a = 0, β̂b ≈ 0.316 and β̂c ≈ −1.256.

� � � � ��

-���

-���

-���

���

��� b↑

a

c↓

Why does the MLE not respect the majority ordering on this example?
If the number #{b � c} was slightly above 1, we would obtain an
MLE respecting the majority ordering, with a � b � c. However, as
#{b � c} increases, due to the monotonicity of MLEs (Theorem 4.2),
we find that β̂b increases and β̂c decreases. When #{b � c} becomes
sufficiently large, β̂b crosses β̂a. Thus, we find that the MLE has the
ordering b � a � c, which violates PMC. The figure on the right shows this behavior in the style of
Figure 1, as #{b � c} increases from 1 to 10; we can see that PMC is violated from about 4.

This reasoning applies more generally to other random utility models beyond Thurstone–Mosteller,
and we can construct similar counterexamples for a large class of such models; see Appendix E.

Theorem 5.3. Maximum likelihood estimation violates pairwise majority consistency whenever F is
strictly monotonic, strictly log-concave, and differentiable.

How frequent are PMC violations? Write %{x � y} = #{x � y}/(#{x � y}+ #{y � x}) for
the fraction of x vs y comparisons that x wins. For X = {a, b, c}, let T be the space of datasets with

0.5 < %{a � b},%{a � c},%{b � c} ≤ 1.

For all datasets in T , PMC requires that β̂a > β̂b > β̂c. In Figure 2, we draw the cube T and show
the regions where the MLE for Thurstone–Mosteller fails PMC. Example 5.2, suitably normalized,
falls in the upper orange region. Sampling uniformly over T , we find that Thurstone–Mosteller fails
PMC in 17.8% of datasets, while Bradley–Terry fails in 16.6% of datasets.
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6 Separability

We close by considering the separability axiom [16, 19]. It requires that when we merge two datasets,
then wherever the MLE agreed on the datasets, this agreement is preserved in the combined dataset.

Definition 6.1. Consider two datasets #1 and #2, and let β̂1 and β̂2 be MLEs. Suppose there exist
two alternatives a, b ∈ X such that β̂1

a > β̂1
b and β̂2

a > β̂2
b . Separability requires that for every

MLE β̂ for the pooled dataset # = #1 + #2, it also holds that β̂a > β̂b.

Separability is also called consistency, and seems particularly desirable in cases where we combine
pairwise comparisons from different sources. While perhaps on first glance innocuous, separability is
an extremely strong requirement, and few rules satisfy it; one can prove in general that separability
constrains rules to be linear [14]. Since likelihood maximization is not linear, it is no surprise that
MLEs for random utility models fail separability.

Example 6.2. Let X = {a, b, c}, and consider the two datasets

#1{a � c} = 6, #1{c � a} = 4, #1{c � b} = 100,#1{b � c} = 1, and

#2{a � c} = 6, #2{c � a} = 4, #2{b � a} = 100,#2{a � b} = 1,

with 0 counts on all unspecified pairs. The unique MLEs for Thurstone–Mosteller on #1 and #2 are

β̂1
a = 0, β̂1

b ≈ −2.58, β̂1
c ≈ −0.253; and β̂2

a = 0, β̂2
b ≈ 2.330, β̂2

c ≈ −0.253.

We have both β̂1
a > β̂1

c and β̂2
a > β̂2

c . However, the unique MLE on # = #1 + #2 is β̂a = 0,
β̂b ≈ 0.987 and β̂c ≈ 1.973. Thus. β̂a < β̂c, and so Thurstone–Mosteller violates separability. (The
same example shows that Bradley–Terry violates separability.)

Intuitively, in both #1 and #2 there is a weak tendency to rank a above c, and the MLE can implement
this tendency without incurring any cost on other pairs (since Lemma 2.2 applies). However, once we
combine the datasets, a strong consensus for c � b � a emerges, and overriding this consensus to
ensure a � c is not worth it. While failing separability, the MLE’s behavior seems perfectly sensible,
and we prove in Appendix F that all random utility model do the same on this kind of example.

Theorem 6.3. Maximum likelihood estimation violates separability whenever F is strictly monotonic,
strictly log-concave, and differentiable.

Like for PMC, we can again ask on what percentage of (pairs of) datasets the MLE fails separately.
Since we sample over pairs, we might guess the answer to be of lower order than in the case of PMC,
and this is borne out by the data. For m = 3 alternatives, sampling uniformly over the space of
datasets for which each pair of distinct alternatives is compared equally often, we find that on about
1.5% of dataset pairs, Thurstone–Mosteller fails separability. This fraction increases as m increases,
since there are more pairs of alternatives for which separability can be violated.

7 Discussion

To recap, we have established (under very mild assumptions) that the aggregation of pairwise
comparisons via the MLE of a random utility model satisfies Pareto efficiency and monotonicity, and
does not satisfy pairwise majority consistency and separability.

Our positive results deal with central properties that are required for an aggregation procedure:
it does not override unanimous opinions (Pareto efficiency) and it incorporates new information
(monotonicity). The latter property can be seen as a participation incentive, guaranteeing agents that
each additional pairwise comparison will move the aggregate. Separability and pairwise majority
consistency are not satisfied by random utility models, but arguably these properties are not as
universally desirable. An analogy to the world of ranking-based voting rules is instructive, where
separability characterizes a specific class of aggregators (positional scoring rules) [19], but none of
them satisfies pairwise majority consistency [13].

Overall, we view our results as lending normative support to — and a more nuanced understanding
of — existing and future applications of random utilities models for societal decision making.
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A Appendix for Section 2.1

A.1 Proof of Lemma 2.1

In this proof, we also show that under the given conditions, there exists an MLE β̂ satisfying

‖β̂‖∞ ≤ −(|X | − 1) F−1
(

2−K/η
)
,

where K =
∑

(x,y)∈X 2 #{x � y} and η = min(x,y):#{x�y}>0 #{x � y}.6

Suppose the comparison graph G# is such that each of its connected components is strongly connected.
First, we show that moving any connected component (keeping all other distances fixed) does not
change the likelihood. In particular, let C be an arbitrary connected component that does not have the
reference alternative r. The likelihood function can then be rewritten as

L(β) =
∑
x,y∈C

#{x � y} logF (βx − βy) +
∑
x,y/∈C

#{x � y} logF (βx − βy),

as there are no edges between C and its complement. For any vector β ∈ D, define β∆ ∈ D for any
∆ ∈ R as follows

β∆
x =

{
βx + ∆ ; if x ∈ C
βx ; otherwise.

That is, β∆ is the same as β, except with utilities changed by the constant ∆ for C. The likelihood at
this point for any ∆ is

L(β∆) =
∑
x,y∈C

#{x � y} logF (βx + ∆− βy −∆) +
∑
x,y/∈C

#{x � y} logF (βx − βy) = L(β).

Hence, adding any ∆ to a connected component does not affect the likelihood. In particular, for
any maximizer, we could set ∆ such that an alternative (of choice) in the connected component C
has zero beta value, giving us a new maximizer. And this holds for every connected component.
Hence, we just need to consider β vectors which have a reference alternative in each of the connected
components in order to find a maximizer. Let r1, r2, . . . , rk denote the references we set in each
of the connected components C1, C2, . . . , Ck respectively (where k denotes the total number of
connected components).

Define
B := −(|X | − 1)F−1

(
2−K/η

)
,

where K and η are as defined at the beginning of the proof. Consider an arbitrary beta vector
(obeying the reference alternative constraints) with ‖β‖∞ > B. Then, there exists alternative
a /∈ {r1, r2, . . . , rk} such that |βa| > B. Without loss of generality, let βa > B. Let Ct be the
connected component that a lies in, with the reference alternative rt. Consider all alternatives in Ct
whose β value lies between that of rt and a. The total number of these alternatives (including the end
points rt and a) is at most |X |. Hence, the number of pairwise segments encountered starting from
rt and ending at a is at most (|X | − 1).7 And since all these pairwise distances make up the total
distance βa − βrt > B, it implies that there exists at least one pairwise distance that is strictly larger
than B/(|X | − 1). Let (b, c) denote the ends of this pairwise segment. That is, b, c ∈ Ct such that
βc − βb > B

|X |−1 and there is no alternative in Ct with a β value lying in the segment (βb, βc). Let U
denote the set of alternatives of Ct that lie to the left of b, i.e., U = {x ∈ Ct|βx ≤ βb}, and V be the
set of alternatives of Ct that lie to the right of c, i.e., V = {x ∈ Ct|βx ≥ βc}. Since no alternative in
Ct lies in between b and c, (U ,V) is a partition of Ct. Next, as every connected component is strongly
connected, Ct is also strongly connected. Hence, there has to be at least one edge going from U to
V (otherwise, there would be no paths from alternatives in U to alternatives in V breaking strongly

6That is, K denotes the total number of comparisons in the dataset, and η denotes the smallest positive
comparison number in it (or equivalently, the smallest positive weight in G#). Also note that, F−1 exists in
(0, 1) as F is strictly monotonic and continous.

7assuming all alternatives of Ct are placed on the real line according to their β values.
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connectedness). Let this edge be given by (u, v) ∈ U × V . This implies that βu ≤ βb, βv ≥ βc and
#{u � v} > 0. Hence, we have

βv − βu ≥ βc − βb >
B

|X | − 1
.

The log-likelihood can be rewritten as

L(β) = #{u � v} logF (βu − βv) +
∑

(x,y)6=(u,v)

#{x � y} logF (βx − βy)

≤ #{u � v} logF (βu − βv)

< #{u � v} logF

(
− B

|X | − 1

)
, (2)

where the first inequality holds because #{x � y} ≥ 0 and logF (βx − βy) ≤ 0 (as F (·) ≤ 1),
and the second inequality holds because #{u � v} > 0, βu − βv < − B

|X |−1 and logF is strictly
increasing. Next, consider the log-likelihood of the zero vector. We have,

L(0) =
∑
x 6=y

#{x � y} logF (0) = K logF (0),

as K is the total number of comparisons in the dataset. Recall the definition of B, we have,

B = −(|X | − 1)F−1
(

2−K/η
)

=⇒ logF

(
− B

|X | − 1

)
=
K

η
log

(
1

2

)
.

Combining this with Equation (2), we have

L(β) < #{u � v} logF

(
− B

|X | − 1

)
= #{u � v}K

η
log

(
1

2

)
≤ K log

(
1

2

)
= K logF (0) = L(0),

where the inequality holds because η = min(x,y):#{x�y}>0 #{x � y} ≤ #{u � v} and
log (1/2) < 0, and the next equality holds as F (0) = 1/2. Hence, this shows that L(β) < L(0) for
any β with ‖β‖∞ > B. In other words, such a β vector cannot be a maximizer of L. Therefore, to
maximize L(β) we just need to consider β vectors in [−B,B]|X |−k. And since this is a closed space,
a maximizer always exists. Further, this maximizer satisfies ‖β̂‖∞ ≤ B.

Next, to prove the converse of the theorem statement, suppose there exists a connected component of
G# that is not strongly connected. Denote this connected component by C. Consider all the strongly
connected components of C; they form a DAG (as the condensation of a graph is always acyclic).
Hence, there exists a strongly connected component in this DAG that has no incoming edge (from
the rest of C). Let this strongly connected component be denoted by S. Further, as C itself is a
connected component, this implies that there exists at least one edge going from S to C \ S. Putting
all this together, we have strongly connected component S such that there is no (incoming) edge from
X \ S to S, and there is at least one (outgoing) edge from S to X \ S. Now, suppose for the sake
of contradiction that L(β) has a maximizer. And, let β̂ denote an MLE. The log-likelihood can be
written as

L(β) =
∑
x,y∈S

#{x � y} logF (βx − βy) +
∑

x∈S,y/∈S

#{x � y} logF (βx − βy)

+
∑
x,y/∈S

#{x � y} logF (βx − βy).
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Consider another beta vector β̃ ∈ D that is the same as β̂ except that it has beta values increased by a
constant for alternatives in S.8 For instance,

β̃x =

{
β̂x + 1 ; if x ∈ S
β̂x ; otherwise.

The likelihood at this point is

L(β̃) =
∑
x,y∈S

#{x � y} logF (β̂x + 1− β̂y − 1) +
∑

x∈S,y/∈S

#{x � y} logF (β̂x − β̂y + 1)

+
∑
x,y/∈S

#{x � y} logF (β̂x − β̂y)

>
∑
x,y∈S

#{x � y} logF (β̂x − β̂y) +
∑

x∈S,y/∈S

#{x � y} logF (β̂x − β̂y)

+
∑
x,y/∈S

#{x � y} logF (β̂x − β̂y)

= L(β̂),

where the inequality holds because #{x � y} ≥ 0, logF (β̂x − β̂y + 1) > logF (β̂x − β̂y) for
all (x, y) ∈ S × SC as logF is strictly increasing, and there exists at least one (x, y) ∈ S × SC
with #{x � y} > 0 (because of the presence of the outgoing edge from S to SC). This leads to
a contradiction as β̃ has strictly higher likelihood than the MLE β̂. Therefore, an MLE does not
exist.

A.2 Proof of Lemma 2.2

Let a be an alternative such that there is exactly one other alternative b for which #{a � b}+ #{b �
a} > 0. The log-likelihood function is

L(β) =
∑
(x,y)

#{x � y} logF (βx − βy)

=

 ∑
(x,y)

x 6=a,y 6=a

#{x � y} logF (βx − βy)

+ #{a � b} logF (βa − βb) + #{b � a} logF (βy − βx)

= G(β−a) + #{a � b} logF (βa − βb) + #{b � a} logF (βb − βa),

where G is the part of the likelihood function not containing βa. Maximizing L(β) is equivalent to
first maximizing with respect to βa and then with respect to the rest, β−a.9 Hence, we maximize

#{a � b} logF (βa − βb) + #{b � a} logF (βb − βa) (3)

with respect to βa.
Claim A.1 (Coin flip likelihood). For h, t > 0 and p ∈ (0, 1), the function f(p) = h · log(p) + t ·
log(1− p) is strictly concave with the maximum uniquely attained at

p̂ =
h

h+ t

Proof. f ′(p) = h
p −

t
1−p , and f ′′(p) = − h

p2 −
t

(1−p)2 . Hence, f ′′(p) < 0 for all p ∈ (0, 1) making
f a strictly concave function. Further, f ′(p̂) = 0. Hence, p̂ as defined in the claim is the point where
the maximum is attained.

8In the case when S has the reference alternative r, the exact effect can be achieved by instead decreasing
the beta values of all alternatives in X \ S by the same constant.

9In the case when a was set as the reference, we could always perform this optimization by placing the
reference on some other alternative, and then shifting the complete learned vector back such that a is the
reference again. Observe that this does not affect the learned distance of (β̂a − β̂b), for which we are proving
the desired property.
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Equation (3) can be rewritten as

#{a � b} logF (βa − βb) + #{b � a} logF (βb − βa) = f(F (βa − βb)),

where f is the function from Claim A.1 with h = #{a � b} > 0 and t = #{b � a} > 0, as
F (βb − βa) = 1− F (βa − βb). Applying Claim A.1, we have

f(F (βa − βb)) ≤ f(p̂),

for all βa, βb, where p̂ = #{a�b}
#{a�b}+#{b�a} . Further, this upper bound can be achieved by setting

F (βa − βb) = p̂, which is possible as F is invertible in (0, 1) by strict monotonicty and continuity.
Therefore, Equation (3) is uniquely maximized at βa = βb + F−1(p̂). And hence, every MLE
satisfies

β̂a = β̂b + F−1

(
#{a � b}

#{a � b}+ #{b � a}

)
= β̂b + δ(a, b).

A.3 Proof of Lemma 2.3

The initial part of this proof is similar to the proof of Lemma 2.1. Let B denote the bound |X | ·
max(x,y) δ(x, y). And, recall that r denotes the alternative set as the reference, i.e. βr = 0. Suppose
for the sake of contradiction that there exists an MLE β̂ with ‖β̂‖∞ > B. This implies that there
exists an alternative a such that |β̂a| > B. WLOG, suppose β̂a > B. The number of alternatives
whose β value lies between that of a and the reference r (including both these points) is at most
|X |. Hence, the number of pairwise segments encountered starting from r and ending at a is at
most (|X | − 1).10 And since all these pairwise distances make up the total distance β̂a − β̂r > B, it
implies that there exists at least one pairwise distance that is strictly larger than B/(|X | − 1). Let
(b, c) denote the ends of this pairwise segment. That is, β̂c − β̂b > B

|X |−1 , and there is no alternative

with a β value lying in the segment (β̂b, β̂c). Construct a new beta vector β̃ ∈ D, such that β̃ is the
same as β̂ for alternatives to the left of alternative b, while is decreased by a small positive constant ε
for all the other alternatives. That is,

β̃x =

{
β̂x ; if β̂x ≤ β̂b
β̂x − ε ; if β̂x ≥ β̂c.

In particular, choose ε such that the distance between b and c is still bigger than max(x,y) δ(x, y).
This is possible because the original distance between b and c (i.e. β̂c − β̂b) is strictly larger than
B
|X |−1 = |X |

|X |−1 max(x,y) δ(x, y). Hence, one can choose ε > 0 such that the new distance between b

and c (i.e. β̃c − β̃b) is say the mid point of |X |
|X |−1 max(x,y) δ(x, y) and max(x,y) δ(x, y). This would

imply that we have

β̃c − β̃b > max
(x,y)

δ(x, y). (4)

Next, we show that in fact, L(β̃) > L(β̂). The log-likelihood function is given as

L(β) =
∑

(x,y)∈X 2

#{x � y} logF (βx − βy)

=
∑

{x,y}⊆X

[
#{x � y} logF (βx − βy) + #{y � x} logF (βy − βx)

]
=

∑
{x,y}⊆X

fxy(F (βx − βy)),

where fxy is the function from Claim A.1 with h = #{x � y} > 0 and t = #{y � x} > 0.
Hence, from the claim, this function fxy is strictly concave with a maximum attained at p̂xy =

10assuming all the alternatives are placed on the real line according to their β values.
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#{x�y}
#{x�y}+#{y�x} . Let’s call U as the set of alternatives x with β̂x ≤ β̂b (i.e. the alternatives with β

value unchanged), and V as the set of alternatives x with β̂x ≥ β̂c (i.e. the alternatives whose β value
is decreased by ε). Observe that neither of these sets in empty, and they partition X . Therefore, the
log-likelihood at β̃ is

L(β̃) =
∑

{x,y}⊆X

fxy

(
F (β̃x − β̃y)

)
=

∑
{x,y}⊆U

fxy

(
F (β̃x − β̃y)

)
+

∑
{x,y}⊆V

fxy

(
F (β̃x − β̃y)

)
+

∑
(v,u)∈V×U

fvu

(
F (β̃v − β̃u)

)
.

Note that, for x, y ∈ U , the distance (β̃x − β̃y) is the same as (β̂x − β̂y) as the β values are
unchanged. In the case of x, y ∈ V , again the distance (β̃x − β̃y) is the same as (β̂x − β̂y) as both
β values (of x and y) are decreased by the same ε. Finally, for any pair (v, u) ∈ V × U , we have
β̃v− β̃u = β̂v− β̂u−ε, i.e. this pairwise distance decreases by ε. Hence, the likelihood at β̃ becomes

L(β̃) =
∑

{x,y}⊆U

fxy
(
F (β̂x − β̂y)

)
+

∑
{x,y}⊆V

fxy
(
F (β̂x − β̂y)

)
+

∑
(v,u)∈V×U

fvu
(
F (β̂v − β̂u − ε)

)
.

Let’s look at the terms fvu
(
F (β̂v − β̂u − ε)

)
for (v, u) ∈ V × U . We have

β̂v − β̂u > β̂v − β̂u − ε = β̃v − β̃u ≥ β̃c − β̃b > max
(x,y)

δ(x, y) ≥ δ(v, u),

where the second inequality holds because v ∈ V is to the right of c while u ∈ U is to the left of
b, and the third inequality holds from Equation (4). Rewriting this equation keeping only the main
components, we have

β̂v − β̂u > β̃v − β̃u > δ(v, u).

As F is a strictly increasing function, applying it to this equation gives us

F (β̂v − β̂u) > F (β̃v − β̃u) > F (δ(v, u)) = p̂vu,

where the equality holds by definition of the perfect-fit distance and p̂vu. Hence, by changing from
F (β̂v − β̂u) to F (β̃v − β̃u), we move closer to the maxima of fvu (or alternatively, F (β̃v − β̃u) is a
convex combination of F (β̂v − β̂u) and the maxima p̂vu). But, as fvu is strictly concave, it means
that this change leads to an increase in its value. That is,

fvu

(
F (β̂v − β̂u)

)
< fvu

(
F (β̃v − β̃u)

)
,

and this holds for every (v, u) ∈ V × U . Hence, the log-likelihood at β̃ becomes

L(β̃) =
∑

{x,y}⊆U

fxy

(
F (β̂x − β̂y)

)
+

∑
{x,y}⊆V

fxy

(
F (β̂x − β̂y)

)
+

∑
(v,u)∈V×U

fvu

(
F (β̃v − β̃u)

)
>

∑
{x,y}⊆U

fxy

(
F (β̂x − β̂y)

)
+

∑
{x,y}⊆V

fxy

(
F (β̂x − β̂y)

)
+

∑
(v,u)∈V×U

fvu

(
F
(
β̂v − β̂u

))
= L(β̂).

That is, L(β̃) > L(β̂), leading to a contradiction. Hence, for every MLE β̂, we must have ‖β̂‖∞ ≤
|X | ·max(x,y) δ(x, y).

B Proof of Lemma 2.4

The log-likelihood function is given as

L(β) =
∑

(x,y)∈X 2

#{x � y} logF (βx − βy).
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Consider β 6= γ ∈ D and θ ∈ (0, 1). Then,

L(θβ + (1− θ)γ) =
∑
(x,y)

#{x � y} logF (θβx + (1− θ)γx − θβy − (1− θ)γy)

=
∑
(x,y)

#{x � y} logF (θ(βx − βy) + (1− θ)(γx − γy))

≥
∑
(x,y)

#{x � y}
[
θ logF (βx − βy) + (1− θ) logF (γx − γy)

]
= θ

∑
(x,y)

#{x � y} logF (βx − βy) + (1− θ)
∑
(x,y)

#{x � y} logF (γx − γy)

= θL(β) + (1− θ)L(γ),

where the inequality holds because logF is concave, and #{x � y} ≥ 0 for every (x, y) ∈ X 2.
Hence, L is a concave function.

Next, suppose the comparison graph G# is connected. Recall, r denotes the reference alternative set
to zero. As β 6= γ, this implies that there exists an alternative a 6= r such that βa 6= γa. We know
that the graph G# is connected, hence, there exists an undirected path from a to r in G#. Let this
(undirected) path be given as

a = v0 → v1 → v2 → · · · → vt → vt+1 = r.

As βa − βr 6= γa − γr, this implies that there exists (l, l + 1) such that βvl − βvl+1
6= γvl − γvl+1

.
Because if this difference was equal for all l ∈ [0, t], it would imply that βa − βr = γa − γr. As
there’s an edge between vl and vl+1, it implies that either #{vl � vl+1} > 0 or #{vl+1 � vl} > 0.
Without loss of generality, let #{vl � vl+1} > 0. The log-likelihood is then

L(θβ + (1− θ)γ) = #{vl � vl+1} logF (θ(βvl − βvl+1
) + (1− θ)(γvl − γvl+1

))

+
∑

(x,y) 6=(vl,vl+1)

#{x � y} logF (θ(βx − βy) + (1− θ)(γx − γy))

> #{vl � vl+1}
[
θ logF (βvl − βvl+1

) + (1− θ) logF (γvl − γvl+1
)
]

+
∑

(x,y) 6=(vl,vl+1)

#{x � y} [θ logF (βx − βy) + (1− θ) logF (γx − γy)]

= θL(β) + (1− θ)L(γ)

where the strict inequality holds because #{vl � vl+1} > 0, θ ∈ (0, 1), βvl − βvl+1
6= γvl − γvl+1

and logF is strictly concave. Therefore, L is strictly concave, and, it has unique maximizers.

For the converse, suppose the comparison graph G# is not connected (in the undirected form). As
there is only one reference alternative r, let C be a connected component that does not contain r. The
log-likelihood can then be rewritten as

L(β) =
∑
x,y∈C

#{x � y} logF (βx − βy) +
∑
x,y/∈C

#{x � y} logF (βx − βy),

as there are no edges between C and its complement. Similar to proof of Lemma 2.1, for any vector
β ∈ D, define β∆ ∈ D for any ∆ > 0 as follows

β∆
z =

{
βz + ∆ ; if z ∈ C
βz ; if z /∈ C.

The likelihood at this point for any ∆ is

L(β∆) =
∑
x,y∈C

#{x � y} logF (βx + ∆− βy −∆) +
∑
x,y/∈C

#{x � y} logF (βx − βy) = L(β).

(5)

Consider any θ ∈ (0, 1). Then,

(θβ∆ + (1− θ)β)z =

{
θ(βz + ∆) + (1− θ)βz = βz + θ∆ ; if z ∈ C
θβz + (1− θ)βz = βz ; if z /∈ C,
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and hence implying that θβ∆ + (1− θ)β = βθ∆. In particular, this gives us

L(θβ∆ + (1− θ)β) = L(βθ∆) = L(β) = θL(β∆) + (1− θ)L(β),

where the second equality holds because Equation (5) holds for any ∆ > 0 (including θ∆). But, as
β∆ 6= β and θ ∈ (0, 1), this implies that L is not strictly concave. Note that, this also shows that if
an MLE β̂ existed, it would not be unique. As, β̂∆, with say ∆ = 1, would have the same likelihood
as β̂ making it an MLE as well.

Hence, concluding the proof that L(β) is strictly concave and the MLE is unique, iff the comparison
graph G# is connected.

C Proof of Theorem 3.2

Suppose the dataset is such that it satisfies the properties given in Definition 3.1, i.e., #{a � b} >
#{b � a}, and for every other alternative x ∈ X \ {a, b}, we have

#{a � x} > #{b � x} and #{x � a} < #{x � b}.

Suppose for the sake of contradiction that there exists an MLE β̂ such that β̂a < β̂b. Construct β̃
such that it is the same as β̂, except with a’s and b’s utilities swapped.11 That is,

β̃x =


β̂x; if x /∈ {a, b}
β̂b; if x = a

β̂a; if x = b.

The log-likelihood at the MLE β̂ is given as

L(β) =
∑

(x,y)∈X 2

#{x � y} logF (βx − βy)

=
∑

x,y/∈{a,b}

#{x � y} logF (β̂x − β̂y)

+
∑

y/∈{a,b}

#{a � y} logF (β̂a − β̂y) +
∑

y/∈{a,b}

#{b � y} logF (β̂b − β̂y)

+
∑

x/∈{a,b}

#{x � a} logF (β̂x − β̂a) +
∑

x/∈{a,b}

#{x � b} logF (β̂x − β̂b)

+ #{a � b} logF (β̂a − β̂b) + #{b � a} logF (β̂b − β̂a). (6)

Before proceeding with the proof, we prove a simple claim.

Claim C.1. Let c, d, e, f > 0 such that c > d and e > f . Then ce+ df > cf + de.

Proof of Claim C.1.

ce+ df = c(f + (e− f)) + df

= cf + c(e− f) + df

> cf + d(e− f) + df

= cf + de,

where the inequality holds because c > d and (e− f) > 0.

11In case either a or b is the reference alternative, shift β̃ after swapping these two alternatives’ utilities
such that the reference is restored. Rest of the proof remains the same as the shifted beta vector has the same
likelihood as the unshifted one.
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By Claim C.1, for any x, y ∈ X , we have,

#{a � y} logF (β̂a − β̂y) + #{b � y} logF (β̂b − β̂y)

< #{a � y} logF (β̂b − β̂y) + #{b � y} logF (β̂a − β̂y),

#{x � a} logF (β̂x − β̂a) + #{x � b} logF (β̂x − β̂b)
< #{x � b} logF (β̂x − β̂a) + #{x � a} logF (β̂x − β̂b),

#{a � b} logF (β̂a − β̂b) + #{b � a} logF (β̂b − β̂a)

< #{a � b} logF (β̂b − β̂a) + #{b � a} logF (β̂a − β̂b),

using the property on the counts in the dataset, the fact that β̂a < β̂b and F is strictly monotonic.
Hence, using these expressions in Equation (6), we obtain

L(β̂) <
∑

x,y/∈{a,b}

#{x � y} logF (β̂x − β̂y)

+
∑

y/∈{a,b}

#{a � y} logF (β̂b − β̂y) +
∑

y/∈{a,b}

#{b � y} logF (β̂a − β̂y)

+
∑

x/∈{a,b}

#{x � b} logF (β̂x − β̂a) +
∑

x/∈{a,b}

#{x � a} logF (β̂x − β̂b)

+ #{a � b} logF (β̂b − β̂a) + #{b � a} logF (β̂a − β̂b)

=
∑

x,y/∈{a,b}

#{x � y} logF (β̃x − β̃y)

+
∑

y/∈{a,b}

#{a � y} logF (β̃a − β̃y) +
∑

y/∈{a,b}

#{b � y} logF (β̃b − β̃y)

+
∑

x/∈{a,b}

#{x � b} logF (β̃x − β̃b) +
∑

x/∈{a,b}

#{x � a} logF (β̃x − β̃a)

+ #{a � b} logF (β̃a − β̃b) + #{b � a} logF (β̃b − β̃a)

=
∑
x 6=y

#{x � y} logF (β̃x − β̃y)

= L(β̃),

implying that β̃ has a strictly higher log-likelihood than the MLE β̂, leading to a contradiction.
Therefore, every every MLE β̂ must satisfy β̂a ≥ β̂b under this condition.

D Proof of Theorem 4.2

Let # and #̃ be two datasets as defined in Definition 4.1, with (unique) MLEs β̂ and β̃. That is, #̃ is
the same as #, except with α > 0 comparisons of a � b added to it. We prove that for all alternatives
x ∈ X , we have

β̃a − β̃x ≥ β̂a − β̃x.
The proof for the b part (β̃b − β̃x ≤ β̂b − β̃x) is completely symmetric.

Let the log-likelihood function with respect to # be denoted by L, while the log-likelihood function
with respect to #̃ be denoted by L̃. Any alternative could be set as the reference, but we use a as
the reference alternative in this proof for ease of exposition. As #̃ is the same as #, except with α
additional a � b comparisons, we have

L̃(β) = L(β) + α logF (βa − βb).
Let U denote the set of alternatives u ∈ X \ {a} for which β̃u − β̃a ≤ β̂u − β̂a.12 And, let V
denote the set of alternatives v ∈ X \ {a} for which β̃v − β̃a > β̂v − β̂a. Our goal is to show that
U = X \ {a}, or equivalently that V = φ.

12Even though β̃a = β̂a = 0 as a is the reference, we do not omit it in some parts for better clarity.
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First, we show that b ∈ U . Suppose for the sake of contradiction, that β̃b − β̃a > β̂b − β̂a. Then, this
implies that α logF (β̃a − β̃b) < α logF (β̂a − β̂b) as both log and F are strictly monotonic, and α >
0. Further, as β̂ maximizes L, we have L(β̃) ≤ L(β̂). This implies that L(β̃) + α logF (β̃a − β̃b) <
L(β̂) + α logF (β̂a − β̂b). Or, L̃(β̃) < L̃(β̂), which is a contradiction as β̃ is the maximizer of L̃.
This proves that β̃b − β̃a ≤ β̂b − β̂a, i.e. b ∈ U .

Next, suppose for the sake of contradiction that V 6= φ. We can rewrite the log-likelihood function
L(β) as

L(β) =
∑

(x,y)∈X 2

#{x � y} logF (βx − βy)

=
∑

{x,y}⊆X

[
#{x � y} logF (βx − βy) + #{y � x} logF (βy − βx)

]
,

where the latter summation is over unordered pairs of alternatives {x, y} with x 6= y. Denote each
term in this expression by `xy(βx − βy), i.e.

`xy(η) = #{x � y} logF (η) + #{y � x} logF (−η).

As F is log-concave, logF is a concave function. And since linear transformations, positive scalar
multiplication and addition preserve concavity, each of these functions `xy is also concave.

Let us define operator ∆xy to be such that when it is applied to a β vector, it returns the difference
in β values of alternatives x and y. That is, ∆xyβ := βx − βy. Using this notation to rewrite the
log-likelihood function, we have

L(β) =
∑
{x,y}

`xy(∆xyβ)

=
∑
u∈U

`ua(∆uaβ) +
∑
v∈V

`va(∆vaβ) +
∑

{u,p}⊆U

`up(∆upβ)

+
∑

{v,q}⊆V

`vq(∆vqβ) +
∑

(u,v)∈U×V

`vu(∆vuβ),

where the first two terms are the paired terms with a, the third is pairs within U , the fourth is pairs
within V , and the last is for pairs across U and V . For each v ∈ V , we know β̃v − β̃a > β̂v − β̂a.
Hence, we can write ∆vaβ̃ = ∆vaβ̂+ δv ,13 where δv > 0 for each v ∈ V . Recall, β̂ is the maximizer
of L. Hence, L(β̂U , β̃V) < L(β̂U , β̂V),14 as the MLE β̂ is unique, and V 6= φ. This implies that∑

u∈U

`ua(∆uaβ̂) +
∑
v∈V

`va(∆vaβ̃) +
∑

{u,p}⊆U

`up(∆upβ̂) +
∑

{v,q}⊆V

`vq(∆vqβ̃) +
∑

(u,v)∈U×V

`vu(β̃v − β̂u)

<
∑
u∈U

`ua(∆uaβ̂) +
∑
v∈V

`va(∆vaβ̂) +
∑

{u,p}⊆U

`up(∆upβ̂) +
∑

{v,q}⊆V

`vq(∆vqβ̂) +
∑

(u,v)∈U×V

`vu(β̂v − β̂u).

Cancelling terms that appear on both sides (because of the same β̂U ), and plugging in ∆vaβ̃ =

∆vaβ̂ + δv , we have∑
v∈V

`va(∆vaβ̂ + δv) +
∑

{v,q}⊆V

`vq(∆vqβ̂ + δv − δq) +
∑

(u,v)∈U×V

`vu(∆vuβ̂ + δv)

<
∑
v∈V

`va(∆vaβ̂) +
∑

{v,q}⊆V

`vq(∆vqβ̂) +
∑

(u,v)∈U×V

`vu(∆vuβ̂).

Or in other words,∑
(u,v)∈U×V

`vu(∆vuβ̂ + δv)−
∑

(u,v)∈U×V

`vu(∆vuβ̂) (7)

< −

∑
v∈V

`va(∆vaβ̂ + δv) +
∑

{v,q}⊆V

`vq(∆vqβ̂ + δv − δq)−
∑
v∈V

`va(∆vaβ̂)−
∑

{v,q}⊆V

`vq(∆vqβ̂)

 .
13Equivalently, this could be written as β̃v = β̂v + δv , as β̃a = β̂a = 0.
14Recall that alternative a has been set as the reference, and hence it zero in both these terms.
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Intuitively, it says that if you increase each β̂v by their δv, the increase in likelihood because of the
cross terms `vu is less than the loss because of the exclusive v terms (or vice versa, i.e. the loss in
likelihood because of `vu is higher than the increase because of the exclusive v terms).

For each u ∈ U , we know β̃u − β̃a ≤ β̂u − β̂a. Hence, we can write ∆uaβ̃ = ∆uaβ̂ − λu,15 where
λu ≥ 0 for each u ∈ U . We now compare L̃(β̃U , β̃V) and L̃(β̃U , β̂V).16 In other words, we compare∑
u∈U

`ua(∆uaβ̃) +
∑
v∈V

`va(∆vaβ̃) +
∑

{u,p}⊆U

`up(∆upβ̃)

+
∑

{v,q}⊆V

`vq(∆vqβ̃) +
∑

(u,v)∈U×V

`vu(∆vuβ̃) + α logF (∆abβ̃)

vs∑
u∈U

`ua(∆uaβ̃) +
∑
v∈V

`va(∆vaβ̂) +
∑

{u,p}⊆U

`up(∆upβ̃)

+
∑

{v,q}⊆V

`vq(∆vqβ̂) +
∑

(u,v)∈U×V

`vu(β̂v − β̃u) + α logF (∆abβ̃).

Note that the last term α logF (∆abβ) appears with a β̃ in both the equations because we know
b ∈ U . Cancelling terms that appear on both sides (because of the same β̃U ), and plugging in
∆vaβ̃ = ∆vaβ̂ + δv for v ∈ V , as well as ∆uaβ̃ = ∆uaβ̂ − λu for u ∈ U , we are comparing∑

v∈V
`va(∆vaβ̂ + δv) +

∑
{v,q}⊆V

`vq(∆vqβ̂ + δv − δq) +
∑

(u,v)∈U×V

`vu(∆vuβ̂ + λu + δv)

vs∑
v∈V

`va(∆vaβ̂) +
∑

{v,q}⊆V

`vq(∆vqβ̂) +
∑

(u,v)∈U×V

`vu(∆vuβ̂ + λu).

And, rearranging this, we compare∑
(u,v)∈U×V

`vu(∆vuβ̂ + λu + δv)−
∑

(u,v)∈U×V

`vu(∆vuβ̂ + λu)

vs (8)

−

[∑
v∈V

`va(∆vaβ̂ + δv) +
∑

{v,q}⊆V

`vq(∆vqβ̂ + δv − δq)−
∑
v∈V

`va(∆vaβ̂)−
∑

{v,q}⊆V

`vq(∆vqβ̂)

]
.

If λu were zero, we know that the left hand side (i.e. the equation placed above in (8)) is smaller (than
the one placed below) because of equation (7). But, we now show that this holds even for λu ≥ 0 by
concavity of the functions `vu. For each (u, v) ∈ U × V , we can write

`vu(∆vuβ̂ + λu + δv)− `vu(∆vuβ̂ + λu) =

∫ ∆vuβ̂+λu+δv

∆vuβ̂+λu

`′vu(t)dt,

where `′vu is the derivative of `vu.17 Changing the variable of intergration,

`vu(∆vuβ̂ + λu + δv)− `vu(∆vuβ̂ + λu) =

∫ ∆vuβ̂+δv

∆vuβ̂

`′vu(s+ λu)ds.

15Equivalently, this could be written as β̃u = β̂u − λu, as β̃a = β̂a = 0.
16That is, we are again keeping the U part fixed, while changing the V part from β̃V to β̂V .
17which exists, as F is differentiable.
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But, we know that `vu is a concave function, implying that `′vu is monotonically decreasing. Hence,
`′vu(s+ λu) ≤ `′vu(s) for every s, as λu ≥ 0. This gives us

`vu(∆vuβ̂ + λu + δv)− `vu(∆vuβ̂ + λu) =

∫ ∆vuβ̂+δv

∆vuβ̂

`′vu(s+ λu)ds

≤
∫ ∆vuβ̂+δv

∆vuβ̂

`′vu(s)ds

= `vu(∆vuβ̂ + δv)− `vu(∆vuβ̂).

Taking a summation of the left hand side over all (u, v) ∈ U × V , shows that this summation is less
than or equal to the left hand side of Equation (7). Hence, this summation is strictly smaller than the
right hand side of Equation (7) (because of Equation (7) itself). This in turn implies that the equation
placed above in (8) is strictly smaller than the one placed below. In other words, L̃(β̃) < L̃(β̃U , β̂V),
contradicting the fact that β̃ is the maximizer of L̃. Hence, V = φ. In other words, for each
x ∈ X \ {a}, β̃x − β̃a ≤ β̂x − β̂a.

E Proof of Theorem 5.3

Consider X = {a, b, c}, and let the dataset be as follows. #{a � b} = 5+ ε,#{b � a} = 5,#{a �
c} = 5 + ε,#{c � a} = 5,#{b � c} = 100 and #{c � b} = 1. Here, ε is a constant lying in [0, 1].
Observe that for any ε > 0, this dataset conforms to Definition 5.1 if we label x1, x2, x3 = a, b, c. To
show violation of PMC, we show that there exists εo ∈ (0, 1] for which the (unique) MLE β̂ violates
the corresponding requirement of β̂a ≥ β̂b ≥ β̂c.
The log-likelihood function for this data is given by

Lε(β) = (5 + ε) logF (βa − βb) + 5 logF (βb − βa) + 100 logF (βb − βc) + logF (βc − βb)
+ (5 + ε) logF (βa − βc) + 5 logF (βc − βa).

Observe that every alternative has been compared with every other alternative, and hence, the
comparison graph G# is strongly connected. Further, as F is strictly monotonic, continuous and
strictly log-concave, the MLE exists and is unique for any ε ∈ [0, 1] (by Lemmas 2.1 and 2.4). Further,
the log-likelihood Lε(β) is a strictly concave function (for each ε ∈ [0, 1]). Any alternative could be
set as the reference, but we use c as the reference alternative in this proof for ease of exposition. That
is, our domain is D = {β ∈ RX : βc = 0}. The (unique) maximum likelihood estimator is given by

β̂(ε) = argmax
β∈D

Lε(β).

We first show that β̂(ε) is a continuous function of ε. As F is strictly monotonic and continuous, for
each ε ∈ [0, 1], Lemma 2.3 tells us that the MLE is bounded as

‖β̂(ε)‖∞ ≤ |X | · max
(x,y)∈X 2

δε(x, y),

where δε is the perfect-fit distance, but is now dependent on ε. For the dataset at hand, these perfect-fit
distances are given by

δε(a, b) = F−1

(
5 + ε

10 + ε

)
, δε(b, c) = F−1

(
100

101

)
and δε(a, c) = F−1

(
5 + ε

10 + ε

)
.

And, δε(b, a) = −δε(a, b), δε(c, b) = −δε(b, c) and δε(c, a) = −δε(a, c), as F−1(1 − x) =
−F−1(x). Further, the first three distances are non-negative (making the remaining three non-
positive) as F−1(x) ≥ 0 for x ≥ 1

2 . Hence, the bound on the MLE simplifies to

‖β̂(ε)‖∞ ≤ 3 ·max

(
F−1

(
5 + ε

10 + ε

)
, F−1

(
100

101

))
.

As F is strictly monotonic, it implies that F−1 is also strictly increasing. Applying this, we have

F−1

(
5 + ε

10 + ε

)
≤ F−1

(
6

11

)
< F−1

(
100

101

)
,
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as ε ∈ [0, 1]. Therefore, the bound on the MLE further simplifies to

‖β̂(ε)‖∞ ≤ 3 F−1

(
100

101

)
,

for any ε ∈ [0, 1]. Hence, the MLE optimization problem can be rewritten as

β̂(ε) = argmax
β∈D:‖β‖∞≤3 F−1( 100

101 )
Lε(β).

This shows that we are optimizing over a compact space. Hence, by the Theorem of the Maximum
[2, 9], both the maximum likelihood and the corresponding maximizer β̂(ε) are continuous in the
parameter ε, for all ε ∈ [0, 1].

Next, we analyze the MLE at ε = 0. The log-likelihood function for this value of ε is

L0(β) = 5 logF (βa − βb) + 5 logF (βb − βa) + 100 logF (βb − βc) + logF (βc − βb)
+ 5 logF (βa − βc) + 5 logF (βc − βa). (9)

For ease of exposition, we use β† to denote the MLE when ε = 0, i.e.

β† := β̂(0) = argmax
β∈D

L0(β).

Recall that we used c as the reference alternative, and hence, β†c = 0. Our goal is to show that
β†b > β†a > β†c . To this end, we first show that β†a = β†b/2, i.e. in terms of β values, a lies at the
mid-point of b and c. Suppose for the sake of contradiction that β†a 6= β†b/2. Consider another vector
β̃ ∈ D that is the same as β†, except with the distances between β values of b & a and a & c swapped.
This can be achieved by setting

β̃x =

{
β†x ; if x ∈ {b, c}
β†b − β†a ; if x = a.

Then, we have β̃a − β̃c = β†b − β†a and β̃b − β̃a = β†a − β†c . Hence, the log-likelihood at this point is
given by

L0(β̃) = 5 logF (β̃a − β̃b) + 5 logF (β̃b − β̃a) + 100 logF (β̃b − β̃c) + logF (β̃c − β̃b)
+ 5 logF (β̃a − β̃c) + 5 logF (β̃c − β̃a)

= 5 logF (β†c − β†a) + 5 logF (β†a − β†c) + 100 logF (β†b − β
†
c) + logF (β†c − β

†
b )

+ 5 logF (β†b − β
†
a) + 5 logF (β†a − β

†
b )

= L0(β†).

That is, swapping these distances does not change the likelihood, because of symmetry. Now, consider
a new vector β̄ = (β† + β̃)/2. Note that, as β†a 6= β†b/2, it implies that β†a 6= β†b − β†a = β̃a. In other
words, β̃ 6= β†. Therefore, applying strict concavity of L0, we have

L0(β̄) = L0

(
β† + β̃

2

)
>
L0(β†) + L0(β̃)

2
= L0(β†),

which is a contradiction as β† is the maximizer of L0. This proves that β†a = β†b/2. In other words,
β† is of the form (β†b/2, β

†
b , 0). Hence, β† continues to be the maximizer of L0 among the vectors

A = {(α/2, α, 0) : α ∈ R} ⊆ D. Rewriting the log-likelihood (9) for vectors in A, we have

L0((α/2, α, 0)) = 5 logF
(
−α

2

)
+ 5 logF

(α
2

)
+ 100 logF (α) + logF (−α)

+ 5 logF
(α

2

)
+ 5 logF

(
−α

2

)
= 10 logF

(α
2

)
+ 10 logF

(
−α

2

)
+ 100 logF (α) + logF (−α).

21



Overloading notation, we denote this log-likelihood by L0(α), and this is maximized at α = β†b .
For ease of exposition, denote the composition of log and F by G, i.e. G := logF . As F is strictly
monotonic, differentiable and strictly log-concave, G is also strictly monotonic and differentiable,
and is strictly concave.18 Rewriting the log-likelihood with this notation, we have

L0(α) = 10G
(α

2

)
+ 10G

(
−α

2

)
+ 100G (α) +G (−α) .

We show that this function is not maximized at any α ≤ 0. In other words, β†b > 0. Computing the
derivative of L0, we have

L′0(α) = 5G′
(α

2

)
− 5G′

(
−α

2

)
+ 100G′ (α)−G′ (−α) .

As G is strictly concave, it implies that G′ is strictly decreasing. Hence, for α ≤ 0, it implies that
G′(α2 ) ≥ G′(−α2 ) and G′(α) ≥ G′(−α). This shows that for α ≤ 0, we have

L′0(α) ≥ 99G′ (α) > 0,

where the last inequality holds as G is a strictly increasing function, leading to G′ being positive.19 In
other words, if α ≤ 0, the log-likelihood can be strictly increased by taking an infinitesimally small
step in the direction

[
1
2 , 1, 0

]
. Hence, none of these points maximizes L0, and β†b > 0. Also, recall

that β† was of the form (β†b/2, β
†
b , 0); this proves that β†b > β†a > β†c .

Finally, recall that we need ε > 0 for the dataset to conform to Definition 5.1 with the labelling
x1, x2, x3,= a, b, c. To be able to find such a value of ε, we use continuity of β̂(ε). By continuity,
we know that for every γ > 0, there exists δ > 0 such that ‖β̂(ε)− β̂(0)‖∞ < γ for all |ε− 0| < δ.
Define θ := β†b − β†a > 0. Then, choose γ = θ/3, and let δo denote the corresponding value of δ.
Hence, choose εo = min(δo/2, 1) > 0. For this value of εo, we indeed have ‖β̂(εo)− β̂(0)‖∞ < θ/3.
That is,

β̂(εo)b > β†b −
θ

3
and β̂(εo)a < β†a +

θ

3
.

Hence,

β̂(εo)b − β̂(εo)a > β†b − β
†
a −

2θ

3
= θ − 2θ

3
> 0.

Therefore, at ε = εo ∈ (0, 1], the MLE satisfies β̂(εo)b > β̂(εo)a. Hence, the dataset with ε = εo
satisfies the PMC condition, but the corresponding MLE does not conform to the corresponding
ordering, proving violation of pairwise majority consistency.

F Proof of Theorem 6.3

Consider X = {a, b, c}, and let the two datasets be as follows. The first dataset is such that
#1{a � c} = 5 + ε,#1{c � a} = 5− ε,#1{c � b} = 100,#1{b � c} = 1, and has zero counts
otherwise. The second dataset is such that #2{a � c} = 5 + ε,#2{c � a} = 5− ε,#2{b � a} =
100,#2{a � b} = 1, and has zero counts otherwise. Here, ε is a constant lying in (0, 1].

First, we analyze the MLE for the dataset #1. As the comparison graph G#1 is strongly connected,
and F is strictly monotonic, continuous and strictly log-concave, the MLE β̂1 exists and is unique
(by Lemmas 2.1 and 2.4). Further, the pair (a, c) satisfies the condition of Lemma 2.2, similarly does
the pair (b, c). Applying the lemma for the pair (a, c) says that the MLE satisfies

β̂1
a = β̂1

c + F−1

(
5 + ε

10

)
> β̂1

c ,

18This part of the proof does not require concavity of G, but we use it nevertheless as it simplifies the proof.
19Strictly speaking, a function might be strictly increasing and have a derivative that is not strictly positive

at every point (in particular, the derivative might be zero at stationary points). But in our case, as G′ is also a
strictly decreasing function, it cannot be zero at any point, because that would make it negative at larger points,
violating strict monotonicity of G.
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as (5 + ε)/10 is larger than 1/2. Similarly, applying Lemma 2.2 for the pair (b, c) says that the MLE
satisfies

β̂1
b = β̂1

c + F−1

(
1

1 + 100

)
< β̂1

c ,

as 1/101 is smaller than 1/2. Putting these equations together, we have β̂1
a > β̂1

c > β̂1
b .

Next, we analyze the MLE for the dataset #2. As the comparison graph G#2 is strongly connected,
and F is strictly monotonic, continuous and strictly log-concave, the MLE β̂2 exists and is unique
(by Lemmas 2.1 and 2.4). Further, the pair (c, a) satisfies the condition of Lemma 2.2, similarly does
the pair (b, a). Applying the lemma for the pair (c, a) says that the MLE satisfies

β̂2
c = β̂2

a + F−1

(
5− ε

10

)
< β̂2

a,

as (5 − ε)/10 is smaller than 1/2. Similarly, applying Lemma 2.2 for the pair (b, a) says that the
MLE satisfies

β̂2
b = β̂2

a + F−1

(
100

1 + 100

)
> β̂2

a,

as 100/101 is larger than 1/2. Putting these equations together, we have β̂2
b > β̂2

a > β̂2
c . Hence, both

datasets #1 and #2 have MLEs β̂1 and β̂2 such that β̂1
a > β̂1

c and β̂2
a > β̂2

c .

Finally, we analyze the MLE for the dataset # = #1 + #2 obtained by pooling both datasets #1 and
#2. Recall that the proof so far holds for any constant ε ∈ (0, 1]; but, from this point on, we allow ε
to take the value of zero as well, i.e. ε ∈ [0, 1]. The log-likelihood function for the pooled data # is
given by

Lε(β) = 100 logF (βc − βb) + logF (βb − βc) + 100 logF (βb − βa) + logF (βa − βb)
+ (10 + 2ε) logF (βa − βc) + (10− 2ε) logF (βc − βa).

Observe that every alternative has been compared with every other alternative, and hence, the
comparison graph G# is strongly connected. Further, as F is strictly monotonic, continuous and
strictly log-concave, the MLE exists and is unique for any ε ∈ [0, 1] (by Lemmas 2.1 and 2.4). Further,
the log-likelihood Lε(β) is a strictly concave function (for each ε ∈ [0, 1]). Any alternative could be
set as the reference, but we use a as the reference alternative in this proof for ease of exposition. That
is, our domain is D = {β ∈ RX : βa = 0}. The (unique) maximum likelihood estimator is given by

β̂(ε) = argmax
β∈D

Lε(β).

Similar to the proof of Theorem 5.3, we first show that β̂(ε) is a continuous function of ε. As F is
strictly monotonic and continuous, for each ε ∈ [0, 1], Lemma 2.3 tells us that the MLE is bounded as

‖β̂(ε)‖∞ ≤ |X | · max
(x,y)∈X 2

δε(x, y),

where δε is the perfect-fit distance, but is now dependent on ε. For our pooled dataset, these perfect-fit
distances are given by

δε(b, a) = F−1

(
100

101

)
, δε(c, b) = F−1

(
100

101

)
and δε(a, c) = F−1

(
10 + 2ε

20

)
.

And, δε(a, b) = −δε(b, a), δε(b, c) = −δε(c, b) and δε(c, a) = −δε(a, c), as F−1(1 − x) =
−F−1(x). Further, the first three distances are non-negative (making the remaining three non-
positive) as F−1(x) ≥ 0 for x ≥ 1

2 . Hence, the bound on the MLE simplifies to

‖β̂(ε)‖∞ ≤ 3 ·max

(
F−1

(
100

101

)
, F−1

(
10 + 2ε

20

))
.

As F is strictly monotonic, it implies that F−1 is also strictly increasing. Applying this, we have

F−1

(
10 + 2ε

20

)
≤ F−1

(
12

20

)
< F−1

(
100

101

)
,
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as ε ∈ [0, 1]. Therefore, the bound on the MLE further simplifies to

‖β̂(ε)‖∞ ≤ 3 F−1

(
100

101

)
,

for any ε ∈ [0, 1]. Hence, the MLE optimization problem can be rewritten as

β̂(ε) = argmax
β∈D:‖β‖∞≤3 F−1( 100

101 )
Lε(β).

This shows that we are optimizing over a compact space. Hence, by the Theorem of the Maximum,
both the maximum likelihood and the corresponding maximizer β̂(ε) are continuous in the parameter
ε, for all ε ∈ [0, 1].

Next, we analyze the MLE at ε = 0. The log-likelihood function for this value of ε is

L0(β) = 100 logF (βc − βb) + logF (βb − βc) + 100 logF (βb − βa) + logF (βa − βb)
+ 10 logF (βa − βc) + 10 logF (βc − βa). (10)

For ease of exposition, we use β† to denote the MLE when ε = 0, i.e.

β† := β̂(0) = argmax
β∈D

Lε(β).

Recall that we used a as the reference alternative, and hence, β†a = 0. Our goal is to show that
β†c > β†b > β†a. To this end, we first show that β†b = β†c/2, i.e. in terms of β values, b lies at the
mid-point of c and a. Suppose for the sake of contradiction that β†b 6= β†c/2. Consider another vector
β̃ ∈ D that is the same as β†, except with the distances between c & b and b & a swapped. This can
be achieved by setting

β̃x =

{
β†x ; if x 6= {a, c}
β†c − β

†
b ; if x = b.

Then, we have β̃b − β̃a = β†c − β
†
b and β̃c − β̃b = β†b − β†a. Hence, the likelihood at this point is

given by

L0(β̃) = 100 logF (β̃c − β̃b) + logF (β̃b − β̃c) + 100 logF (β̃b − β̃a) + logF (β̃a − β̃b)
+ 10 logF (β̃a − β̃c) + 10 logF (β̃c − β̃a)

= 100 logF (β†b − β
†
a) + logF (β†a − β

†
b ) + 100 logF (β†c − β

†
b ) + logF (β†b − β

†
c)

+ 10 logF (β†a − β†c) + 10 logF (β†c − β†a)

= L0(β†).

That is, swapping these distances does not change the likelihood, because of symmetry. Now, consider
a new vector β̄ = (β† + β̃)/2. Note that, as β†b 6= β†c/2, it implies that β†b 6= β†c − β

†
b = β̃b. In other

words, β̃ 6= β†. Therefore, applying strict concavity of L0, we have

L0(β̄) = L0

(
β† + β̃

2

)
>
L0(β†) + L0(β̃)

2
= L0(β†),

which is a contradiction as β† is the maximizer of L0. This proves that β†b = β†c/2. In other words,
β† is of the form (0, β†c/2, β

†
c). Hence, β† continues to be the maximizer of L0 among the vectors

A = {(0, α/2, α) : α ∈ R} ⊆ D. Rewriting the log-likelihood (10) for vectors in A, we have

L0((0, α/2, α)) = 100 logF
(α

2

)
+ logF

(
−α

2

)
+ 100 logF

(α
2

)
+ logF

(
−α

2

)
+ 10 logF (−α) + 10 logF (α)

= 200 logF
(α

2

)
+ 2 logF

(
−α

2

)
+ 10 logF (α) + 10 logF (−α).
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Overloading notation, we denote this log-likelihood by L0(α), and this is maximized at α = β†c .
For ease of exposition, denote the composition of log and F by G, i.e. G := logF . As F is strictly
monotonic, differentiable and strictly log-concave, G is also strictly monotonic and differentiable,
and is strictly concave.20 Rewriting the log-likelihood with this notation, we have

L0(α) = 200G
(α

2

)
+ 2G

(
−α

2

)
+ 10G (α) + 10G (−α) .

We show that this function is not maximized at any α ≤ 0. In other words, β†c > 0. Computing the
derivative of L0, we have

L′0(α) = 100G′
(α

2

)
−G′

(
−α

2

)
+ 10G′ (α)− 10G′ (−α) .

As G is strictly concave, it implies that G′ is strictly decreasing. Hence, for α ≤ 0, it implies that
G′(α2 ) ≥ G′(−α2 ) and G′(α) ≥ G′(−α). This shows that for α ≤ 0, we have

L′0(α) ≥ 99G′
(α

2

)
> 0,

where the last inequality holds as G is a strictly increasing function, leading to G′ being positive.21 In
other words, if α ≤ 0, the log-likelihood can be strictly increased by taking an infinitesimally small
step in the direction

[
0, 1

2 , 1
]
. Hence, none of these points maximizes L0, and β†c > 0. Also, recall

that β† was of the form (0, β†c/2, β
†
c); this proves that β†c > β†b > β†a.

Finally, recall that the initial part of the proof (analyzing the MLE for the individual datasets) works
only for 0 < ε ≤ 1. Hence, we need to use an ε value strictly larger than zero even for the pooled
dataset. To be able to find such a value of ε, we use continuity of β̂(ε). By continuity, we know
that for every γ > 0, there exists δ > 0 such that ‖β̂(ε)− β̂(0)‖∞ < γ for all |ε− 0| < δ. Define
θ := β†c − β†a > 0. Then, choose γ = θ/3, and let δo denote the corresponding value of δ. Hence,
choose εo = min(δo/2, 1) > 0. For this value of εo, we indeed have ‖β̂(εo)− β̂(0)‖∞ < θ/3. That
is,

β̂(εo)c > β†c −
θ

3
and β̂(εo)a < β†a +

θ

3
.

Hence,

β̂(εo)c − β̂(εo)a > β†c − β†a −
2θ

3
= θ − 2θ

3
> 0.

Therefore, at ε = εo ∈ (0, 1], the MLE (on the pooled data) satisfies β̂(εo)c > β̂(εo)a. Hence, for
ε = εo, the two datasets #1 and #2 have MLEs β̂1 and β̂2 such that β̂1

a > β̂1
c and β̂2

a > β̂2
c , but the

MLE β̂ on the pooled dataset # = #1 + #2 satisfies β̂a < β̂c, proving violation of separability.

20This part of the proof does not require concavity of G, but we use it nevertheless as it simplifies the proof.
21Strictly speaking, a function might be strictly increasing and have a derivative that is not strictly positive

at every point (in particular, the derivative might be zero at stationary points). But in our case, as G′ is also a
strictly decreasing function, it cannot be zero at any point, because that would make it negative at larger points,
violating strict monotonicity of G.
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