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Abstract

We consider the problem of selecting fair divisions of a
heterogeneous divisible good among a set of agents. Re-
cent work (Cohler et al., AAAI 2011) focused on de-
signing algorithms for computing maxsum—social welfare
maximizing—allocations under the fairness notion of envy-
freeness. Maxsum allocations can also be found under alter-
native notions such as equitability. In this paper, we examine
the properties of these allocations. In particular, we provide
conditions for when maxsum envy-free or equitable alloca-
tions are Pareto optimal and give examples where fairness
with Pareto optimality is not possible. We also prove that
maxsum envy-free allocations have weakly greater welfare
than maxsum equitable allocations when agents have struc-
tured valuations, and we derive an approximate version of this
inequality for general valuations.

1 Introduction
How does one fairly divide a cake? This question has long
been studied by mathematicians, economists, and political
scientists (Brams and Taylor 1996; Robertson and Webb
1998), who view it as both a mathematical challenge and
a metaphor for prominent real-word problems that involve
the division of a divisible good. Such problems arise in the
context of, e.g., land disputes and divorce settlements. In re-
cent years, the rigorous study of cake cutting has gained sig-
nificant traction within the AI community (Procaccia 2009;
Chen et al. 2010; Caragiannis, Lai, and Procaccia 2011;
Cohler et al. 2011; Bei et al. 2012), in part because it is seen
as an important ingredient in the design of superior multia-
gent resource allocation methods (Chevaleyre et al. 2006).

Most of the cake cutting literature focuses on the design of
algorithms that compute fair cake divisions, under different
interpretations of fairness. The notion of envy-freeness (EF)
is perhaps the most prominent interpretation of fairness; an
allocation is EF if each agent weakly prefers its own piece to
the piece of cake allocated to any other agent. Note that the
cake is usually heterogeneous (players prefer some parts of
the cake to others, and different players may assign different
values to the same piece of cake), so simply allocating pieces
of equal size is not sufficient to guarantee EF. The notion of
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equitability offers an alternative, incomparable, interpreta-
tion of fairness; an allocation is equitable (EQ) if all agents
assign the same value to their own pieces.1 The existence of
allocations satisfying EF and EQ is guaranteed under very
mild assumptions and, in fact, both can be satisfied simulta-
neously (Alon 1987).

Fixing one of the two fairness criteria, cake cutting algo-
rithms identify fair allocations. However, in general, mul-
tiple fair allocations exist, and some may be “better” than
others (in ways to be specified). Recent work by Cohler et
al. (2011) addresses this issue by adding an optimization ob-
jective. Specifically, they wish to maximize the (utilitarian)
social welfare, that is, the sum of values the agents assign
to their allocated pieces. Cohler et al. design algorithms that
compute a maxsum (i.e., social-welfare-maximizing) alloca-
tion among all EF allocations. Their techniques can also be
leveraged to compute a maxsum EQ allocation.2

Intuitively, an overall maxsum EF (resp., EQ) allocation
is superior to an arbitrary EF (resp., EQ) allocation. Never-
theless, we do not know how good maxsum EF or EQ allo-
cations are; can one argue that they are truly more desirable
than other allocations? Moreover, there are two notions of
fairness to choose from; under which notion should one op-
timize social welfare?

Our approach and results. In economics, the quality of an
allocation is often determined (in a binary fashion) via the
criterion of Pareto optimality (PO): an allocation is PO if
there is no Pareto-dominating allocation that gives at least as
much value to all agents, and strictly more value to at least
one agent. Note that a maxsum allocation is always PO, be-
cause a Pareto-dominating allocation would have higher so-
cial welfare . However, it is a priori unclear whether a max-

1Proportionality is another notion of fairness; a proportional di-
vision of a cake is one where the value of each of the n participating
agents for its piece of cake is at least 1/n of its value for the entire
cake. This relatively weak property is implied by EF (if the entire
cake is allocated) and is not studied in this paper.

2Any study of social welfare must assume interpersonal com-
parisons of utility among agents. Note though that EQ also makes
this assumption, therefore our extension to social welfare is consis-
tent with the literature on EQ cake cutting (see e.g., (Brams, Jones,
and Klamler 2012)). In contrast, EF does not require this assump-
tion, because with EF, agents compare their utility with the utility
they themselves would obtain from the pieces of the other players.
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sum EF or EQ allocation is PO among all possible alloca-
tions. Indeed, the answer depends on the notion of fairness.

We first observe that, if there are only two agents, PO is
guaranteed for maxsum EF allocations, maxsum EQ alloca-
tions, and even maxsum EF and EQ allocations (i.e., allo-
cations that are maxsum among allocations that are both EF
and EQ).

Our other results are more subtle and hinge on the struc-
ture of agents’ valuation functions. As in previous pa-
pers (Chen et al. 2010; Cohler et al. 2011), we consider
the special classes of piecewise uniform valuations, under
which agents are simply interested in receiving as large a
fraction as possible of a desired piece of cake; and the more
general class of piecewise constant valuations, under which
agents uniformly value certain pieces of cake. We show
that under piecewise uniform valuations, maxsum EF alloca-
tions are always PO whereas there are cases where all max-
sum EQ and maxsum EF+EQ allocations are not PO. Under
piecewise constant valuations, there are examples with three
agents such that all maxsum EF allocations are also not PO.

A second challenge we address compares the social wel-
fare under maxsum EF and maxsum EQ allocations. We
show that under piecewise linear valuations the social wel-
fare of a maxsum EF allocation is at least as great as the
social welfare of a maxsum EQ allocation. We also extend
this result to general valuation functions albeit only approxi-
mately, in that (i) we optimize among allocations that are EF
up to ε, and (ii) the inequality holds up to ε.

2 Preliminaries
A cake is represented by the interval [0, 1], and a piece of
cake X is a finite union of disjoint subintervals. There is
also a set of agents N = {1, . . . , n}. The preferences of
the agents over the cake are represented via valuation func-
tions Vi, that map a given piece of cake to its value for
the agent. The value is calculated as the integral of a non-
negative Riemann integrable value density function, denoted
by vi. Formally, an agent’s value Vi(X) for a piece of cake
X is given by

∑
I∈X

∫
I
vi(x)dx. This definition guarantees

that the agent valuations are additive, i.e. Vi(X ∪ Y ) =
Vi(X) + Vi(Y ) if X and Y are disjoint, and non-atomic,
i.e., Vi([x, x]) = 0. Non-atomicity means that we do not
have to pay special attention to the endpoints of intervals;
we can therefore treat open and closed intervals as equiv-
alent. As is standard in the cake-cutting literature, we also
assume that agents’ valuation functions are normalized so
that the entire cake gives each agent value 1, that is, for all
i ∈ N , Vi([0, 1]) = 1, or equivalently,

∫ 1

0
vi(x)dx = 1.

While some of the cake-cutting literature assumes that
valuations are absolutely continuous (see e.g., Brams, Jones,
and Klamler 2012), i.e., that if any agent attaches zero value
to a portion of the cake, then all other players do, the current
paper does not employ this assumption.

Most of our results assume that the valuation functions
have a specific structure. We say that a valuation function is
piecewise constant if its corresponding value density func-
tion is piecewise constant, i.e., if the cake can be partitioned
into a finite number of subintervals such that the density

0 0.5 1
0

1

2

(a) Value density function for a piecewise con-
stant valuation that is not piecewise uniform.

0 0.5 1
0

1

2

(b) Value density function for a piecewise uni-
form valuation.

Figure 1: An illustration of special value density
functions.

function is a constant function on each subinterval, and simi-
larly that a valuation function is piecewise linear if the corre-
sponding value density function is piecewise linear. An addi-
tional restriction is imposed by piecewise uniform valuation
functions: on each subinterval, the density function is either
zero or some constant ci, where the constant ci is the same
across different intervals. See Figure 1 for an illustration.

Piecewise constant and piecewise uniform valuation func-
tions were the focus of several recent papers on cake cut-
ting (Chen et al. 2010; Cohler et al. 2011). Piecewise uni-
form valuations have a natural interpretation: players have a
desired piece of cake, and they value this piece uniformly,
in the sense that they wish to receive as large a portion as
possible of their desired piece. This is realistic, for exam-
ple, when the cake represents access time to a shared backup
server, and agents require as much time as possible but only
when their computers are idle. Piecewise constant valuations
are misleadingly simple, but they are in fact quite powerful;
as we see in Section 5, general valuation functions can be
approximated to arbitrary precision by piecewise constant
valuation functions.

An allocation A = (A1, . . . , An) is an assignment of
a piece of cake Ai to each agent i such that the pieces
A1, . . . , An are disjoint.3

We wish to focus on allocations that are fair; we consider
two well-known notions of fairness. Given V1, . . . , Vn, an
allocation is envy-free (EF) if Vi(Ai) ≥ Vi(Aj) for all i, j ∈
N , and equitable (EQ) if Vi(Ai) = Vj(Aj) for all i, j ∈
N . Envy-freeness guarantees that no agent wants to swap
the piece that it is given with any other agent. Equitability
ensures that each agent obtains the same value for its piece
as all other agents obtain for their pieces.

A third criterion for allocations will help us gauge their

3Note that this definition allows for intervals to be discarded.
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quality. We say that an allocation A = (A1, . . . , An) is
Pareto dominated by another allocation A′ = (A′1, . . . , A

′
n)

if Vi(A′i) ≥ Vi(Ai) for all i ∈ N , and there exists i ∈ N
such that Vi(A′i) > Vi(Ai). An allocation is Pareto optimal
(PO) if it is not Pareto dominated by any other allocation.

Under normalization (which implicitly implies an inter-
personal comparison of utility) it is meaningful to con-
sider the sum of the agent valuations in a given alloca-
tion. The (utilitarian) social welfare of an allocation A is
given by sw(A) =

∑n
i=1 Vi(Ai). An allocation A is max-

sum among a set of possible allocations S if sw(A) =
maxA′∈S sw(A

′). In particular, we shall be interested in the
properties of maxsum allocations when S is the set of EF
allocations, EQ allocations, and allocations that are both EF
and EQ. These allocations will be referred to as maxsum EF,
maxsum EQ, and maxsum EF+EQ allocations, respectively.

Throughout the paper, some proofs are only sketched or
omitted due to space limitations.

3 Pareto Optimality of Maxsum Allocations
In this section, we study the Pareto optimality of maxsum al-
locations. In particular, we establish the Pareto optimality of
maxsum EF, EQ, and EF+EQ allocations in the case of two
agents and general valuations, and complement this result by
showing that for three agents or more, these allocations are
not necessarily Pareto optimal.

Two Agents, General Valuations
The two-agent case has special significance (for example, in
the context of divorce settlements), and indeed the main re-
sult of Caragiannis et al. (2011) captures only the two agent
case.

Theorem 1. For general valuations and two agents, every
maxsum EF, EQ, or EF+EQ allocation is PO.

Before proving Theorem 1, we introduce the notion of
ratio-based allocations for the two-agent setting. These allo-
cations have been used by Cohler et al. (2011) to find max-
sum EF allocations.

For a given pair of valuation densities v1, v2, let Yi op j =
{x : vi(x) op vj(x)}. For instance, Y1≥2 gives all intervals
where agent 1’s value density function is weakly greater than
agent 2’s, and Y1>2 gives all intervals where agent 1’s value
density function is strictly greater than agent 2’s. Addition-
ally, let Y1, Y2 denote intervals that are only desired by agent
1 and only desired by agent 2, respectively. Denote the ratio
of the value density functions by R1(x) = v1(x)/v2(x) and
R2(x) = v2(x)/v1(x). Let

YR1 op r = {x : v1(x) ≤ v2(x), v2(x) > 0, R1(x) op r}
YR2 op r = {x : v2(x) ≤ v1(x), v1(x) > 0, R2(x) op r},

where op ∈ {>,=}.
Definition 2. An allocation A = (A1, A2) is ratio-based if
Y1 ⊆ A1, Y2 ⊆ A2 and either one of the following holds:

• There exists an r∗ ∈ [0, 1] such that

A1 = Y1>2 ∪ YR1>r∗ ∪ C,

where C ⊆ YR1=r∗ .

• There exists an r∗ ∈ [0, 1] such that

A2 = Y2>1 ∪ YR2>r∗ ∪ C,

where C ⊆ YR2=r∗ .

We refer to agent 1 as the receiving agent in the first case
and agent 2 as the receiving agent in the second case. We
refer to r∗ as the critical ratio.

In a ratio-based allocation, the receiving agent is always
allocated intervals that it strictly desires, as well as some in-
tervals weakly desired by the other agent. For the special
case where the critical ratio is 1, both agents can be seen
as receiving agents. In this case, the allocation is maxsum
since all intervals are allocated to agents who weakly desire
the interval. When the critical ratio is less than 1, there is a
unique receiving agent i that receives all intervals it weakly
desires (Yi≥3−i) along with some intervals strictly desired
by the other agent. This necessarily results in a loss of wel-
fare relative to the maxsum allocation. However, ratio-based
allocations minimize the obtained loss. This is formalized in
the following lemma.

Lemma 3. Let A = (A1, A2) be a ratio-based allocation
with agent 1 as the receiving agent such that v = V1(A1) ≥
V1(Y1≥2). It holds that:

1. For every allocation A′ = (A′1, A
′
2) such that V1(A′1) =

v, sw(A) ≥ sw(A′).
2. For every allocation A′ = (A′1, A

′
2) such that V1(A′1) >

v, sw(A) > sw(A′).

The analogous assertion holds for agent 2.

Proof sketch. The proof of the lemma closely resembles the
proof of Theorem 3 in Cohler et al. (2011). Among all allo-
cations that grant agent 1 value v, the allocation that max-
imizes welfare is one in which agent 1 is first allocated all
the intervals it strictly desires, and then, possibly, intervals
that are strictly desired by agent 2, in a decreasing order of
Ri(x). The first part entails no loss in welfare. The second
part may entail some loss, but allocating these intervals in a
decreasing order ofRi(x) ensures that this is the lowest pos-
sible loss. In addition, if agent 1 receives value greater than
v, it must come from additional intervals that are strictly de-
sired by agent 2. This entails a greater loss in welfare.

The following is an immediate corollary of Lemma 3.

Lemma 4. Every ratio-based allocation is PO.

We require one additional lemma for the proof of Theo-
rem 1.

Lemma 5. Every maxsum EF allocation allocates all inter-
vals that are desired by some agent.

Proof sketch. Any allocation that discards intervals that are
desired by some agent can be concatenated by an EF division
of the discarded interval, maintaining EF while increasing
social welfare. The discarded interval can be allocated, e.g.,
through the cut-and-choose method, where one agent splits
the interval into equi-value pieces (according to its valua-
tion) and the other agent chooses the preferred piece.
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Proof of Theorem 1. We address the three different alloca-
tion types.
Maxsum EF. Cohler et al. (2011) establish the existence of
a ratio-based maxsum EF allocation.4 We distinguish be-
tween two cases, as follows. If there exists an EF alloca-
tion that is maxsum among all allocations, then every max-
sum EF allocation is trivially PO. Otherwise, it is shown by
Cohler et al. (2011) that there must exist an agent i such that
Vi(Yi≥3−i) < 1/2. Wlog, suppose V1(Y1≥2) < 1/2. Cohler
et al. (2011) establish the existence of a ratio-based alloca-
tion that gives agent 1 value of exactly 1/2 and is maxsum
EF. Let A = (A1, A2) be such an allocation. By Lemma 4,
allocation A is PO. Let A′ = (A′1, A

′
2) be another maxsum

EF allocation. In what follows we show that A′ is PO. We
distinguish between three cases.

1. If V1(A′1) = 1/2, then, since A′ is maxsum EF, it follows
that V2(A′2) = V2(A2). In this case, the fact that A is PO
implies that A′ is PO as well.

2. If V1(A′1) < 1/2, then V1(A′2) < 1/2 (otherwise, contra-
dicting EF). It follows by Lemma 5 thatA′ is not maxsum
EF, a contradiction.

3. If V1(A′1) > 1/2, then we get V1(A′1) > 1/2 >
V1(Y1≥2). It follows by Lemma 3 that sw(A′) < sw(A),
in contradiction to A′ being a maxsum EF allocation.

Maxsum EQ. We distinguish between two cases.

• V1(Y1≥2) ≥ V2(Y2>1) and V2(Y2≥1) ≥ V1(V1>2). In
this case we show that there exists a maxsum EQ alloca-
tion that is maxsum among all allocations. This, in turn,
implies that every maxsum EQ allocation is PO. In par-
ticular, allocate Y1>2 to agent 1, Y2>1 to agent 2, and
split Y1=2 such that the agents’ values for their pieces are
equal. To see why this is feasible, note that if we give
Y1=2 to agent 1 in its entirety, then agent 1 has a greater
value. On the other hand, if we give all of Y1=2 to agent
2, then agent 2 has a greater value. Therefore, there must
exist some allocation of Y1=2 that equalizes their values.
This allocation is maxsum among all allocations.

• Wlog, suppose V1(Y1≥2) < V2(Y2>1). We claim that in
this case there exists a ratio-based allocation with agent
1 as the receiving agent that is EQ. To see this, note that
as the critical ratio decreases from 1 to 0, agent 1 goes
from receiving all of Y1≥2 to receiving the entire cake,
i.e., from a value of V1(Y1≥2) to a value of 1. On the other
hand, agent 2 goes from receiving all of Y2>1 to receiving
none of the cake, i.e., from value V2(Y2>1) > V1(Y1≥2)
to 0. Therefore, the agents’ values must cross at some
point, and the assertion follows. By Lemma 4 this alloca-
tion is PO, and hence maxsum EQ. Clearly, any maxsum
EQ allocation must grant each agent the same value as
in the ratio-based maxsum EQ allocation. It follows that
every maxsum EQ allocation is PO.

Maxsum EF+EQ. In every maxsum EQ allocation, both
agents receive value at least 1/2. If this were not true, then

4While they focus on piecewise linear valuation functions, their
proof holds for general valuation functions.

the agents could swap allocations and obtain a maxsum EQ
allocation with greater social welfare. Since both agents re-
ceive value at least 1/2, the maxsum EQ allocation is also
EF. It follows that for two agents, the set of maxsum EF+EQ
allocations coincides with the set of maxsum EQ allocations,
for which the assertion of the theorem is proved above.

Any Number of Agents, Restricted Valuations
We next turn to investigate maxsum EF, maxsum EQ, and
maxsum EF+EQ allocations under restricted valuations, but
for any number of agents. As it turns out, at least under
piecewise uniform valuation functions, maxsum EF allo-
cations are always PO whereas maxsum EQ and maxsum
EF+EQ allocations may not be.

Theorem 6. For piecewise uniform valuations, every max-
sum EF allocation is PO.

Proof sketch. When agent valuations are piecewise uniform,
a sufficient condition for PO is that all intervals desired by
at least one agent are allocated to an agent that has posi-
tive density on the entire interval. To see why this is true,
recall that when agents have piecewise uniform valuations,
their total value is exactly determined by the total length of
desired intervals they receive. If all desired intervals are allo-
cated to agents with positive density, then a Pareto-dominant
allocation cannot exist because this would require additional
desired lengths to be created. It remains to show that a max-
sum EF allocation must have this property.

Suppose that a maxsum EF allocation A = (A1, . . . , An)
allocates some intervals to agents that do not desire them or
discards intervals altogether. Let X ′ denote these intervals.
Under piecewise uniform valuations, we can split X ′ into
subintervals on which agent densities are constant, and then
give each agent a 1/n share of each of these subintervals.
We can append this allocation of X ′ to A. Envy is not cre-
ated, because each agent i has value exactly (1/n)Vi(X

′) for
every piece in this allocation, but social welfare increases,
contradicting the assumption that A is maxsum.

Theorem 7. For piecewise uniform valuations and three
agents, there are valuation functions where all maxsum EQ
and EF+EQ allocations are not PO.

Proof. Consider the following valuations. Agents 1 and 2
desire [0, 0.1] and agent 3 desires all of [0, 1]. A maxsum
EQ or maxsum EQ+EF allocation must split [0, 0.1] between
agents 1 and 2 and allocate [0, 1] to agent 3 so that agent 3
receives value exactly 0.5. This is not PO because we can
split [0, 0.1] between agents 1 and 2 and give agent 3 all of
[0.1, 1].

While there are cases where no maxsum EQ or EF+EQ al-
location is PO under piecewise uniform valuations, we need
to move to piecewise constant valuations in order to find
cases where no maxsum EF allocation is PO.

Theorem 8. For piecewise constant valuations and three
agents, there are cases where no maxsum EF allocation is
PO.
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Figure 2: Value density functions for example
where maxsum EF is not PO.

We view Theorem 8 as one of our main results because
of the significance of maxsum EF allocations (Cohler et
al. 2011). Finding an initial example required automated
search, and proving that (a modified version of) this example
admits a unique maxsum EF allocation relies on reasoning
about the linear programming formulation of the problem.

Proof (sketch) of Theorem 8. Consider the following valu-
ations for three agents. The cake is split into three equal in-
tervals, i.e., [0, 1/3], [1/3, 2/3], [2/3, 1]. Each agent’s value
densities are constant on each of these intervals. Agent 1
values interval 1 at 51/101 and interval 2 at 50/101, i.e., has
densities 153/101 on interval 1 and 150/101 on interval 2.
Agent 2 values interval 1 at 50/101 and interval 2 at 51/101.
Agent 3 values interval 1 at 51/111, interval 2 at 10/111, and
interval 3 at 50/111 (Figure 2).

The maxsum solution gives interval i to agent i. However,
this allocation is not EF because agent 3 envies agent 1.

It can be shown via the LP formulation for the compu-
tation of a maxsum EF allocation that to reduce this envy,
there is a maxsum EF allocation that gives agent 1 a share
of intervals 1 and 2, agent 2 a share of intervals 1 and 2,
and agent 3 all of interval 3. Further, an examination of this
LP shows that this allocation is the unique maxsum EF al-
location. However, this allocation is not PO because agent 1
receives shares of interval 2 (where agent 2 has higher den-
sity) while agent 2 receives shares of interval 1 (where agent
1 has higher density). As a result, there is a way to swap
agent 1’s shares of interval 2 with agent 2’s shares of inter-
val 1 that leaves both agents better off.

4 Maxsum EQ vs. Maxsum EF Allocations
In this section, we show that for piecewise linear valuations,
a maxsum EF allocation has social welfare at least as large
as any maxsum EQ allocation. We obtain an approximate
version of this result for general valuation functions.

Denote the social welfare of a maxsum EF (resp., EQ)
allocation by OPTEF (resp., OPTEQ). Note that the two-agent
version of the inequality OPTEQ ≤ OPTEF, for any valuation
functions, follows from the fact that a maxsum EQ allocation
is also EF, which was established in passing in the proof of
Theorem 1. As a recap, both agents receive value at least
1/2 in a maxsum EQ allocation, and for two agents, this is a
sufficient condition for envy-freeness.

For three agents, this argument no longer holds, even in
the case of piecewise constant valuations: a maxsum EQ al-
location must give utility at least 1/3 to each agent, but this
does not imply EF.

For example, consider the piecewise uniform valuations
where agents 1 and 2 value the whole cake (with density 1)
and agent 3 only values [0.8, 1] (with density 5). A maxsum
EQ allocation would be to give agent 1 [0, 5/11], agent 2
[5/11, 10/11], and agent 3 [10/11, 1]. Each agent receives
value 5/11, yet agent 3 envies agent 2.

Another interesting (but common) feature of this exam-
ple is that OPTEQ < OPTEF, with a strict inequality. One
EF allocation is to give [0.8, 1] to agent 3 and split [0, 0.8]
between agents 1 and 2. This has social welfare of 1.8 com-
pared to the maxsum EQ welfare of 15/11 ≈ 1.364.

Having built some intuition, we next present the main
result of this section. An ε-EF allocation is one where
Vi(Ai) ≥ Vi(Aj) − ε for all i, j ∈ N . Let OPTε-EF denote
the social welfare under a maxsum ε-EF allocation.
Theorem 9. For piecewise linear valuations,

OPTEQ ≤ OPTEF.

Moreover, for general valuation functions and any ε > 0,

OPTEQ ≤ OPTε-EF + ε.

The proof of Theorem 9 relies on a connection between
piecewise linear valuation functions and market equilibria
for a collection of divisible goods inspired by the work of
Reijnerse and Potters (1998). Before we begin the proof, we
draw this connection and cite the relevant results from the
market equilibria literature required in the proof.

A linear Fisher market is a market where agents N =
{1, . . . , n} have additive, linear utility functions for a set
G = {1, . . . ,m} of divisible goods. Each agent i ∈ N is
given a budget ei and has a utility uij for each good j ∈ G.
A feasible allocation gives a fraction xij of good j to agent i
such that no good is over-allocated. The agent’s total utility
from an allocation xij is

∑
j uijxij . When agent valuations

are piecewise linear, utilities in a feasible Fisher market al-
location can be replicated in the cake cutting setting.
Lemma 10. Let A1, . . . , An be an allocation in the cake
cutting setting. Define a Fisher market with the same agents,
and a good j corresponding to each Aj and uij = Vi(Aj).
Let xij be a feasible allocation of goods in the Fisher
market. There exists an allocation A′1, . . . , A

′
n such that

Vi(A
′
j) = uijxij . In other words, we can replicate agent

utilities in the Fisher market with an allocation of the cake.

Proof. Given a feasible allocation xij in the Fisher market,
create an allocationA′1, . . . , A

′
n as follows. For each original

piece Aj , split Aj into subintervals on which every agent’s
value density function is linear (this is possible since agent
value densities are piecewise linear).

We would like to give each agent i a piece of Aj that
it values at xijVi(Aj). Since the valuations are linear, this
can be achieved by giving agent i two equally-sized pieces
from each linear subinterval. Starting from the leftmost and
rightmost endpoints of the interval, give a xij

2 fraction of the
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interval starting from the left and moving right, and a xij

2
fraction starting from the right and moving left. Since the
linear utilities are symmetric, agent i’s value from its share
ofAj is xijVi(Aj) = xijuij , and summing over all intervals
establishes the assertion of the lemma.

Linear Fisher markets have the following very special
properties (see e.g., Vazirani 2007).

Theorem 11. Consider a linear Fisher market where agent
i has budget ei,

∑
i∈N ei = 1, and each good gives at

least one agent positive utility. There exists a price vector
p = (p1, . . . , p|G|), pj > 0,

∑
j∈G pj = 1, and a feasible

allocation xij such that:

1. ∀j ∈ G,
∑
i∈N xij = 1,

2. ∀i ∈ N, j ∈ G, If xij > 0, then j ∈ argmaxj′(uij′/pj′),

3. ∀i ∈ N,
∑
j∈G pjxij = ei.

Leveraging this result, we prove Theorem 9.

Proof of Theorem 9. Begin with a maxsum EQ allocation
A∗ = (A∗1, . . . , A

∗
n). Construct a Fisher market where good

j corresponds to A∗j , uij = Vi(A
∗
j ) and each agent has bud-

get ei = 1/n. Let p, xij be the price vector and feasible
allocation guaranteed by Theorem 11. Consider the alloca-
tion A′1, . . . , A

′
n described in Lemma 10. We need to show

that this allocation is EF and yields total welfare weakly
greater than that of the original maxsum EQ allocation. Due
to Lemma 10, we can relate the values forA′1, . . . , A

′
n to the

utilities in the Fisher market.
The proof that A′1, . . . , A

′
n is EF appears in Reijnerse and

Potters (1998); the next equation replicates it for complete-
ness. Let u∗i = maxk(uik/pk).

Vi(A
′
i) =

∑
k

uikxik =
∑
k

uik
pk
pkxik

=
∑
k

u∗i pkxik = u∗i /n

Vi(A
′
j) =

∑
k

uikxjk =
∑
k

uik
pk
pkxjk

≤
∑
k

u∗i pkxjk = u∗i /n

It remains to show that
∑
i Vi(A

′
i) ≥

∑
i Vi(A

∗
i ). Suppose

Vi(A
∗
i ) = C for all i ∈ N ; then OPTEQ =

∑
i Vi(A

∗
i ) =

nC. u∗i maximizes uik/pk, so u∗i is at least uii/pi, the utility
to price ratio for the good in the Fisher market corresponding
to A∗i . Therefore, Vi(A′i) = u∗i /n ≥ uii/(npi) = C/(npi).

Then,

OPTEF ≥
∑
i

Vi(A
′
i) ≥

∑
i

C

npi
=
C

n

∑
i

1

pi
.

Since
∑
i pi = 1,

∑
i(1/pi) is minimized by pi = 1/n for

each i and is at least n2. Therefore,

OPTEF ≥
C

n

∑
i

1

pi
≥ C

n
n2 = nC = OPTEQ.

Next we establish our result for general valuation func-
tions V1, . . . , Vn (with Riemann integrable value density
functions). For ε > 0, Riemann integrability of v1, . . . , vn
implies that for all i ∈ N there are 0 = x1 < · · · < xm = 1
such that the upper Darboux sum of vi satisfies

1 =

∫ 1

x=0

vi(x)dx

≤
m∑
k=1

[
(xk − xk−1) ·

(
sup

x∈[xk−1,xk]

vi(x)

)]
≤ 1 +

ε

n
.

(1)

For every k = 1, . . . ,m and every y ∈ [xk−1, xk], let
v′i(y) = supx∈[xk−1,xk]

vi(x). We claim that the correspond-
ing piecewise constant valuation functions V ′1 , . . . , V

′
n ap-

proximate the original valuation functions in the sense that
for every piece of cake X ,5

Vi(X) ≤ V ′i (X) ≤ Vi(X) +
ε

n
. (2)

Indeed, the left hand side of the inequality is trivial, and the
right hand side follows from Equation (1) and the fact that
v′i(x) ≥ vi(x) for all x ∈ [0, 1]:

V ′i (X)− Vi(X) =

∫
X

(v′i(x)− vi(x))dx

≤
∫ 1

x=0

(v′i(x)− vi(x))dx ≤
ε

n
.

Assume as before that the maxsum EQ allocation A∗ sat-
isfies Vi(A∗i ) = C for all i ∈ N . It therefore holds that
V ′i (A

∗
i ) ≥ C for all i ∈ N . Using the same arguments as

before (and the fact that piecewise constant valuations are
in particular piecewise linear), there exists an allocation A′
that is EF with respect to V ′1 , . . . , V

′
n and satisfies∑

i∈N
V ′i (A

′
i) ≥ nC =

∑
i∈N

Vi(A
∗
i ) = OPTEQ.

Equation (2) directly implies that the allocation A′ is ε-EF
(in fact, (ε/n)-EF) with respect to the valuations V1, . . . , Vn.
Therefore, it holds that

OPTε-EF ≥
∑
i∈N

Vi(A
′
i) ≥

∑
i∈N

(
V ′i (A

′
i)−

ε

n

)
=
∑
i∈N

V ′i (A
′
i)−

∑
i∈N

ε

n
≥ OPTEQ − ε.

5 Discussion
Our work can be seen as another step on the path to iden-
tifying the most desirable allocations of divisible goods. In
recent work, Brams et al. (2012) coined the term perfect al-
locations to describe allocations that are PO, EF, and EQ.
Unfortunately, they show that such allocations may not exist
when there are three or more agents, however many cuts are

5It may be the case that V ′
i ([0, 1]) > 1.
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allowed. We therefore argue that maximizing social welfare
under a subset of these three properties provides an espe-
cially appealing solution, but as we discuss below, there are
trade-offs among the different properties.

One may wonder, in light of Theorem 9, whether a max-
sum EF allocation is superior to a maxsum EQ alloca-
tion. While we believe that this is often true, we wish to
add a caveat. Consider an example where there are three
agents with value density functions v1(x) = v2(x) = 1,
v3(x) = 2x. A maxsum EF allocation gives [0, 1/3] to agent
1, [1/3, 2/3] to agent 2, and [2/3, 1] to agent 3, for a sum of
1/3+ 1/3+ 5/9 ≈ 1.22. This allocation also happens to be
PO. But there is a maxsum EQ allocation that is also EF (by
dividing the left portion of the cake between agents 1 and 2
in a way that 3 does not envy either) and gives each agent a
value of roughly 0.39, for a slightly lower sum of 1.17. The
latter allocation seems more desirable, because it maximizes
the minimum value to the agents. Indeed, the EF allocation
creates significant inequity between agents 1 and 2, on the
one hand, and agent 3 on the other (1/3 vs. 5/9); this 67%
difference in values in exchange for only a 4% higher social
welfare, compared with EQ (1.22 vs. 1.17), arguably tips the
balance in favor of the maxsum EQ allocation: it not only
gives all agents the same “fair share,” unlike the maxsum EF
allocation, but it is also EF.

We have shown that maxsum EF allocations may not be
PO, and hence one may consider choosing an allocation that
Pareto-dominates the maxsum EF allocation. However, in
the examples that we have been able to construct where the
maxsum EF allocation is indeed not PO, the difference in
social welfare between the maxsum EF allocation and its
Pareto-dominating allocation is very small. Bounding this
difference (or ratio) remains an open question (which is
somewhat related to work on the so-called price of fair-
ness (Caragiannis et al. 2009)), but if it is indeed always
small, we would argue that preserving EF is more important
than a small gain in social welfare.

Another alternative is to satisfy PO by taking the max-
sum over both EF and PO. Reijnierse and Potters (1998)
designed an elaborate algorithm that computes EF and PO
allocations. However, these allocations are not maxsum nec-
essarily. The techniques of Cohler et al. (2011) enable the
computation of maxsum EF allocations, which are not nec-
essarily PO. Our most important, and presumably quite chal-
lenging, open problem is finding a (tractable) algorithm that
computes maxsum EF and PO allocations.

An extension of our work is to drop the typical cake cut-
ting assumption that agent valuations are normalized, i.e.,
all agents have value 1 for the cake. Maxsum EF, EQ, and
EF+EQ allocations are still sensible even when agents have
different values for the entire cake. We believe most of our
results can be generalized (e.g. the proof of the exact part of
Theorem 9 does not make use of normalized valuations), but
this should be verified.

We have shown that maxsum cake divisions are imperfect,
and we have crystallized some of the trade-offs among them.
Our contributions inform the discussion of good methods for
resource allocation by (i) ruling out the possibility that max-
sum EF allocations are always superior to other allocations

(by showing that they may not be PO), and (ii) demonstrat-
ing that moving from EF to the egalitarian notion of EQ can
only decrease the utilitarian social welfare.
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