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Abstract Implementation theory tackles the following problem given a social choice
correspondence (SCC), find a decentralized mechanism such that for every constel-
lation of the individuals’ preferences, the set of outcomes in equilibrium is exactly
the set of socially optimal alternatives (as specified by the correspondence). In this
paper we are concerned with implementation by mediated equilibrium; under such
an equilibrium, the players’ strategies can be coordinated in a way that discourages
deviation. Our main result is a complete characterization of SCCs that are imple-
mentable by mediated strong equilibrium. This characterization, in addition to being
strikingly concise, implies that some important SCCs that are not implementable by
strong equilibrium are in fact implementable by mediated strong equilibrium.

Keywords Social choice · Implementation · Strong equilibrium · Mediators ·
Effectivity functions · Game forms

1 Introduction

A social choice correspondence (SCC) is a mapping from the preferences of individ-
uals in a society to subsets of optimal social alternatives. A SCC gives a centralized
representation of the society’s morals, but in practice directly eliciting the individuals’
preferences may lead to lying and manipulation.
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1.1 Implementation theory

Having in mind a specific SCC, the social planner might wish for a decentralized
mechanism (formally, a game form) that gives rise to the same set of outcomes as
the SCC, while allowing for the individuals’ strategic behavior. The implementa-
tion problem can be described as follows: given a SCC, find a game form such
that for any preference profile, the game’s outcomes in equilibrium are exactly the
socially optimal alternatives. Such a game form, which specifies the individuals’ strat-
egy spaces and the outcome given every combination of strategies, is said to implement
the given SCC.

As is common in game theory, different equilibrium concepts can be used to capture
the nature of the individuals’ strategic reasoning. The implementation problem was
first introduced by Maskin (1999) (although early papers by Hurwicz (1960, 1972) laid
the foundations), who considered the obvious candidate: Nash equilibrium. Maskin
demonstrated that two properties (of SCCs) are sufficient for implementation by Nash
equilibrium: monotonicity and No Veto Power. A second prominent achievement, in
the context of implementation by Nash equilibrium, is the necessary and sufficient
condition (strong monotonicity) put forward by Danilov (1992).

Some research has also been devoted to implementation by strong equilibrium.
Under strong equilibrium, no coalition of players is motivated to deviate in a way that
benefits all its members. This line of research was again initiated by Maskin (1979),
who proved that monotonicity is a necessary condition for implementability by strong
equilibrium. Moulin and Peleg (1982) introduced the concept of effectivity functions,
which describe the distribution of power among the individuals in a society, and used
this notion to provide sufficient conditions for implementability. Dutta and Sen (1991),
and later Fristrup and Keiding (2001), gave complete characterizations.

1.2 Mediated equilibria

Mediated Equilibria were first introduced by Monderer and Tennenholtz (2009), as
a solution concept for games in normal form; this concept is strongly related to
Aumann’s c-acceptable points (Aumann 1959). Under mediated strong equilibria, the
players may choose to give a mediator the right of play. The mediator then proceeds
to set the empowering players’ strategies; the exact choice of strategies depends on
the identity of the players who have chosen to use the mediator’s services. The idea is
that, in case a coalition decides not to give the mediator to right of play, the mediator
can set the other players’ strategies in a way that punishes the rebellious coalition.

Rozenfeld and Tennenholtz (2007) considered, again in the context of games in
normal form, mediators with different levels of available information. In particular, it
is possible to imagine mediators that are fully aware of the strategies of the players
who have not chosen to give them the right of play. This situation might arise, for
example, in routing domains.

Peleg and Procaccia (2007) applied the ideas behind mediated equilibria to game
forms. In the spirit of Rozenfeld and Tennenholtz (2007), we distinguished between
two types of mediated strong equilibria: simple mediated strong equilibria, where each
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coalition has a strategy such that no matter how the other players play, they cannot
improve the outcome; and informed mediated strong equilibria, where every coalition
can respond to the strategies of the other players in a way that guarantees that the other
players do not obtain a better outcome. Note that informed mediated strong equilibria
are also closely related to equilibria of type II of Pattanaik (1976a). We proceeded to
design social choice functions with the property that truthtelling is always a strong
mediated equilibrium.

1.3 Our approach and results

We explore the power of implementation by the two types of mediated equilibria:
simple/informed mediated strong Equilibria (SMSE and IMSE). Our results suggest
that mediators can be quite powerful. We present two characterization of implement-
able SCCs, the first of which being strikingly simple compared to characterizations of
SCCs that are implementable by strong equilibrium. Furthermore, our characteriza-
tions imply that important SCCs, such as the Pareto correspondence, are implementable
by IMSE and not by strong equilibrium.

1.4 Structure of the paper

In Sect. 2 we give some preliminary definitions and notations. In Sect. 3 we reintro-
duce mediated strong equilibrium; we further discuss this concept and its relation to
implementation theory. In Sect. 4, we present our main results. In Sect. 5, we study the
relation between implementation by strong equilibria and implementation by mediated
strong equilibria. We conclude in Sect. 6.

2 Preliminaries

In this section we elaborate on some notations and definitions that will be required in
this paper. A more detailed discussion of these notions can be found in the book of
Peleg (1984).

For a set K , we denote by P(K ) the powerset of K (the set of all subsets of K ), and
by P0(K ) the set of all nonempty subsets of K . Throughout this paper, we deal with a
finite set of players N = {1, 2, . . . , n}, and a finite (unless explicitly stated otherwise)
set of alternatives A = {x1, . . . , xm}. Each player i ∈ N holds a quasi-order Ri over
A, i.e., Ri is a binary relation over A that satisfies reflexivity, antisymmetry, transitivity
and totality. We let Pi be the strict preference relation associated with Ri : x Pi y iff
x Ri y and x �= y. The set L = L(A) is the set of all such (linear) quasi-orders, so for all
i ∈ N , Ri ∈ L throughout. A preference profile RN is a vector 〈R1, . . . , Rn〉 ∈ L N .
We sometimes use RS to denote the preferences of a coalition S ∈ P0(N ); x RS y
means that x Ri y for all i ∈ S. Similarly, x P S y means that x Pi y for all i ∈ S. In
addition, given a ∈ A, we denote the lower contour set at a according to player i
by L(a, Ri ) = {x ∈ A : a Ri x}.
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A social choice correspondence, in its basic form, is a function H : L N → P0(A),
which maps the preferences of the voters to a desirable nonempty set of alternatives. A
social choice function (SCF) is a function F : L N → A. In some cases we shall discuss
SCCs whose domain is restricted to a set D ⊆ L N , i.e., functions H : D → P0(A).

In our investigation we shall require some properties of SCCs. Informally, attain-
ability is the set-valued equivalent of surjectivity: for every alternative there is some
profile such that the alternative is in the image of the profile. H is Maskin monotonic
if improving the position of a winning alternative does not hurt it. Finally, H is Pareto
optimal if an alternative that is less preferred than another (fixed) alternative by all the
agents cannot be a winner. Formally:

Definition 2.1 Let H : D → P0(A),D ⊆ L N .

1. H is attainable iff for every a ∈ A there exists RN ∈ D such that H(RN ) = a.
2. H is Maskin monotonic iff for all RN , QN ∈ D, a ∈ H(RN ),

[
∀i ∈ N , L

(
a, Ri

)
⊆ L(a, Qi )

]
⇒ a ∈ H

(
QN

)
.

3. H is Pareto optimal iff for all x, y ∈ A, RN ∈ D ,

[
∀i ∈ N , x Pi y

]
⇒ y /∈ H

(
RN

)
.

2.1 Game forms

In order to formalize important game theoretic ideas, we require the notion of game
forms. This notion will be readily understandable to readers familiar with very basic
game theory, as a game form is simply a normal-form game stripped of the agents’
payoffs. Instead, the result of a given strategy profile is one of the alternatives in A.

Definition 2.2 A game form (GF) is an (n + 1)-tuple � = 〈
�1, . . . , �n;π

〉
, where

�i , i = 1, . . . , n, is a nonempty finite set, and π : �N → A.

�i is called the set of strategies of player i , and π is the outcome function.

Example 2.3 (King Maker game) Let �1 = {2, 3}, and �2 = �3 = A = {a, b, c}.
The outcome function π is given by:

π(i, x, y) =
{

x i = 2
y i = 3

Less formally, player 1 is the “king maker”, deciding between players 2 and 3. The
designated king then chooses the outcome among the three alternatives in A.

In order to obtain a true game, one has to bring into the equation incentives as well.
That is, we shall consider a game to be a GF coupled with a preference profile.
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Definition 2.4 Let � = 〈
�1, . . . , �n;π

〉
be a GF, and let RN ∈ L N . The game asso-

ciated with � and RN is the n-person game in normal form

g(�, RN ) =
〈
�1, . . . , �n;π; R1, . . . , Rn

〉
.

Now we can redefine some well-known solution concepts in a way that is consistent
with our (abstract) notion of a game; these concepts should also be familiar to readers
with a basic knowledge of game theory.

The concept of Nash equilibrium (1950) is perhaps the most important concept in
game theory. A Nash equilibrium is a strategy profile such that no player can gain
by unilaterally deviating, given that the strategies of the other players stay fixed. This
provides a basic, reasonable idea of stability when the agents are rational and cannot
communicate with each other.

Aumann (1959) suggested a more powerful notion of stability. A strong equilibrium
is a strategy profile such that no coalition of players has an incentive to unilaterally
deviate. More precisely, for every coalition of agents and every possible deviation by
the coalition, there is a member of the coalition that does not gain from its participa-
tion in the deviation. Naturally, due to their restrictiveness, strong equilibria exist in
preciously few settings. We now formalize the above discussion.

Definition 2.5 Let � = 〈�1, . . . , �n;π〉 be a GF, and let RN ∈ L N .

1. σ N ∈ �N is a Nash equilibrium (NE) point of g(�, RN ) if for every i ∈ N and
every τ i ∈ �i , π(σ N )Riπ(τ i , σ N\{i}).

2. σ N ∈ �N is a strong equilibrium (SE) point of g(�, RN ) if for every S ∈ P0(N )

and every τ S ∈ �S there exists a player i ∈ S such that π(σ N )Riπ
(
τ S, σ N\S

)
.

2.2 Implementation

As discussed above, an SCC is a mapping from the preferences of individuals in a
society to subsets of optimal social alternatives. The problem of implementation is
defined thus: given an SCC, design a game form such that for any preference profile,
the game’s outcomes in equilibrium are exactly the alternatives selected by the SCC.

Denote the set of Nash equilibrium points of the game (�, RN ) by NE(�, RN ), and
the set of strong equilibrium points by SE(�, RN ). Furthermore, for a set K ⊆ �N ,
denote π(K ) = {a ∈ A : ∃σ N ∈ K s.t. π(σ N ) = a}.
Definition 2.6 The GF �=〈�1, . . . , �b;π〉 implements the SCC H : D → RN ,D ⊆
L N , by NE (resp. SE) iff for all RN ∈ D, π(NE(�, RN ))= H(RN ) (resp. π(SE(�,
RN ))= H(RN )). H is implementable by NE (resp. by SE) if there exists a GF that
implements H by NE (resp. SE).

Example 2.7 Let � be the King Maker game given in Example 2.3. Consider the SCC
defined by H(RN ) = {t1(R2), t1(R3)} for all RN ∈ L N , where t j (R) is the alternative
ranked in place j according to R. We claim that � implements H by NE.
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Indeed, let RN ∈ L N . Let σ N = 〈i, x, y〉 be a NE of (�, RN ). If π(σ N ) �= t1(Ri ),
i would want to deviate. This shows that π(NE(�, RN )) ⊆ H(RN ). Conversely, with-
out loss of generality, the strategy profile σ N = 〈2, t1(R2), t3(R1)〉 is a NE of (�, RN )

with outcome t1(R2). Consequently, H(RN ) ⊆ π(NE(�, RN )).

2.3 Effectivity functions

Effectivity functions are a mathematical construct introduced by Moulin and Peleg
(1982). An effectivity function, abstractly, represents the power distribution among
individuals in a society. Such functions map coalitions of players to sets of subsets
of alternatives. If a subset of alternatives B ∈ P0(A) satisfies B ∈ E(S), where E is
an effectivity function, we say that S is effective for B. Conceptually, this means that
the agents in B can force the outcome to be one of the alternatives in B. Effectivity
functions have proven useful in the context of Implementation Theory.

Definition 2.8 An effectivity function (EF) is a function E : P0(N ) → P(P0(A))

such that for every S ∈ P0(N ), A ∈ E(S), and for every B ∈ P0(A), B ∈ E(N ).

Different notions of what it means to “force the outcome” induce different EFs. In
this paper, we will deal with only three EFs; we first define two of them. α-effective-
ness implies that the players in S can coordinate their strategies such that, no matter
what the other players do, the outcome will be in B. If S is β-effective for B, the
players in S can counter any action profile of N\S with actions of their own such that
the outcome is in B. Clearly α-effectivity is stronger than β-effectivity.

Definition 2.9 Let � = 〈�1, . . . , �n;π〉 be a GF, S ∈ P0(N ), B ∈ P0(A).

1. S is α-effective for B if there exists σ S ∈ �S such that for all τ N\S ∈ �N\S,

π
(
σ S, τ N\S

) ∈ B.
2. S is β-effective for B if for every τ N\S ∈ �N\S there exists σ S ∈ �S such that

π
(
σ S, τ N\S

) ∈ B.

We now define the α-effectivity and β-effectivity functions associated with a game
form in the obvious way.

Definition 2.10 Let � = 〈�1, . . . , �n;π〉 be a GF such that π is onto A. The α-EF
associated with � is given by

E�
α (S) = {B ∈ P0(A) : S is α-effective for B}.

The β-EF associated with � is given by

E�
β (S) = {B ∈ P0(A) : S is β-effective for B}.

Example 2.11 Let � be the King Maker game given in Example 2.3, and denote
E = E�

α . For any player i ∈ N , it holds that E({i}) = {A}. On the other hand, for
all S ∈ P0(N ) such that |S| ≥ 2, E(S) = P0(A), i.e. S is effective for any subset
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B ∈ P0(A). Indeed, say the coalition {1, 2} wants to force the outcome to be a; then
player 1 would choose player 2, and player 2 would choose a. Alternative a would be
chosen regardless of player 3’s action. We invite the reader to compute E�

β .

Ironically, the third effectivity function we shall consider here is called the first
effectivity function. Given an SCC H , a coalition S is winning for a subset of alterna-
tives B if S can force the set of outcomes to be contained in B by placing B at the top
of their votes. The first effectivity function associates with a coalition S all the subsets
of alternatives for which S is winning.

Definition 2.12 Let H : L N → P0(A) be an attainable SCC, S ∈ P0(N ), B ∈
P0(A). S is winning for B iff for all RN ∈ L N ,

[
∀x ∈ B,∀y /∈ B, x RS y

]
⇒ H

(
RN

)
⊆ B.

The first EF associated with H is the function E∗ = E∗(H) : P0(N ) → P(P0(A))

defined by

E∗(S) = {B ∈ P0(A) : S is winning for B}.

The next definition introduces some useful properties of effectivity functions which
we shall require later. An EF E is monotonic with respect to the agents if adding more
agents to a coalition can only increase its power, and monotonic with respect to the
alternatives if, given that a coalition is effective for a set of alternatives, it is also
effective for any superset. E is superadditive if, given that one coalitions is effective
for a subset and a second coalition is effective for another subset, then the union of
the two coalitions can force an outcome in the intersection of the two subsets. E is
maximal if, given that a coalition is not effective for a subset, then its complement is
effective for the complement of the subset.

Definition 2.13 Let E : P0(N ) → P(P0(A)).

1. E is monotonic with respect to the players iff for every S ∈ P0(N ) and B ∈ E(S),
if S ⊂ T then B ∈ E(T ).

2. E is monotonic with respect to the alternatives iff for every S ∈ P0(N ) and B ∈
E(S), if B ⊂ B∗ then B∗ ∈ E(S).

3. E is monotonic iff it is monotonic with respect to both players and alternatives.
4. E is superadditive iff for every Si ∈ P0(N ), Bi ∈ E(Si ), i = 1, 2, if S1 ∩ S2 = ∅

then B1 ∩ B2 ∈ E(S1 ∪ S2).
5. E is maximal iff for every S ∈ P0(N ) and B ∈ P0(A), if B /∈ E(S) then A\B ∈

E(N\S).

The following definition, of the core of an effectivity function, is perhaps the central
definition of this section, and borrows from the same intuitions which motivate the
core of a cooperative game. Say that there exists a coalition S such that all its members
prefer any alternative in the subset B to x , and in addition S can force the outcome to
be in B; then x cannot be a stable outcome, as the agents in S would surely gain by
deviating. The core of E is the set of alternatives that are not unstable in this sense.
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Definition 2.14 Let E : P0(N ) → P(P0(A)), RN ∈ L N , x ∈ A, S ∈ P0(N ), and
B ∈ P0(A\{x}). B dominates x via S if B ∈ E(S) and B P S x . B dominates x if
there exists S ∈ P0(N ) such that B dominates x via S. The core of E is the set of
undominated alternatives in A, and is denoted by C(E; RN ).

Example 2.15 Once again, let � be the King Maker game given in Example 2.3, and
consider the preference profile:

R1 R2 R3

a a c
b b b
c c a

Then C
(
E�

α ; RN
) = {a}, as {a} dominates b and c via the coalition S = {1, 2}: the

players in S both prefer a to b or c, and S is effective for {a} (see Example 2.11).

Finally, an effectivity function is stable if its core is nonempty for any given profile.

Definition 2.16 An EF E : P0(N )→ P(P0(A)) is stable if for all RN ∈ L N , C(E;
RN ) �= ∅.

3 Mediated equilibria

In previous work, Peleg and Procaccia (2007) have defined mediated equilibria in
GFs. The idea behind mediated equilibria is that the players can commit to a course of
action. In particular, the players may commit to punishing deviating coalitions, thus
discouraging deviations from the predetermined outcome.

These ideas first appeared in Aumman’s work on acceptable strategy profiles
(Aumann 1959). Informally, a strategy profile is acceptable if a deviating coali-
tion can always be punished by its complement. However, Aumann was thinking of
infinite-horizon repeated games, where the punishment can be exacted in a future time.
This reasoning is unsuitable in our setting.

Mediation is just one possible interpretation of the ability to punish deviators. The
mediator is configured by the players or by another interested party, and plays only
for the players who give it the right of play. Other players, who do not choose to use
the mediator’s services, know how the mediator is going to play for the players who
do. This potentially aligns the incentives of all players with the option to empower the
mediator on their behalf, and leads to a mediated equilibrium.

The term mediated equilibrium was first used by Monderer and Tennenholtz (2009)
in the context of games in normal form. The distinction between mediated equilibria
and acceptable strategies is subtle: in the Monderer–Tennenholtz setting choosing the
mediator is an explicit action that can be in the support of a mixed strategy. This dis-
tinction does not survive the transition to game forms, where only pure strategies are
considered.

In the spirit of Rozenfeld and Tennenholtz (2007), we distinguish between two
levels of information available to the punishing coalition. Under Simple mediated
equilibrium, the punishment is based only on the identities of the deviators. Under
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informed mediated equilibrium, the punishment can also be based on the actions of
the deviating coalition. The latter situation arises, for example, in a communication
network: the players must pass messages; their strategies are the routes. A router is
informed of the strategies of the players, and therefore can act as a mediator (Rozenfeld
and Tennenholtz 2007).

The reader might be concerned that the interpretation of the ability to punish via
mediators may be inconsistent with the basic idea behind implementation theory, that
is, reaching the socially desirable alternatives in a decentralized way. We argue that
this is not the case. For instance, consider once again the routing domain mentioned
above. The router can be configured locally in a fully decentralized way, without the
intervention of the social planner, i.e., the designer of the entire network. In addition, as
we have noted above, there are other interpretations of the ability to punish deviators.

Indeed, a second interpretation of punishment is the idea of threats and counter-
threats, due to Pattanaik (1976a,b). The author formulates his concepts in the context
of voting; he argues that in some situations, when a coalition of deviators forms, this
is known to the complement coalition (for example, when the voting is public), and
it reacts accordingly. Thus, the complement responds to the deviators’ threat with
a counter-threat. One of Pattainaik’s solution concepts is essentially a special case
(in the voting setting) of our informed mediated equilibrium.

We presently turn to our formal definitions.

Definition 3.1 Let � = 〈�1, . . . , �n;π〉 be a GF, RN ∈ L N .

1. σ N ∈ �N is a simple mediated strong equilibrium (SMSE) point of g
(
�, RN

)
iff

∀S ∈ P0(N )∃τ S ∈ �S s.t. ∀τ N\S ∈ �N\S∃i ∈ N\S s.t. π
(
σ N

)
Riπ

(
τ N

)
.

2. σ N ∈ �N is an informed mediated strong equilibrium (IMSE) point of g
(
�, RN

)
iff

∀S ∈ P0(N ),∀τ N\S ∈ �N\S, ∃τ S ∈ �S, i ∈ N\S s.t. π
(
σ N

)
Riπ

(
τ N

)
.

In the above definition, N\S is the deviating coalition, and S is the punishing
coalition. One limitation of this definition is that we do not require the threat of the
punishing coalition to be credible, that is, given that N\S indeed deviated, some of the
players in the punishing coalition S may lose by carrying out their punishment. How-
ever, the underlying assumption is that players can commit to a course of action (e.g.,
via a mediator), hence the deviators know for a certainty that they will be punished,
and this knowledge prevents them from deviating in the first place.

The following basic characterization result is true for strong mediated equilibria.

Lemma 3.2 (Peleg and Procaccia 2007, Lemma 3.3) Let � = 〈�1, . . . , �n;π〉 be a
GF such that π is onto A. Then for all RN ∈ L N ,

1. π
(
SMSE(�, RN )

) = C
(

E�
β , RN

)
.

2. π
(
IMSE(�, RN )

) = C
(
E�

α , RN
)
.
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In the following we give a simple and direct example of implementation by mediated
equilibrium.

Example 3.3 (Implementation by IMSE) Let P be the Pareto correspondence
given by

P
(

RN
)

=
{

x ∈ A : �y ∈ A s.t. ∀i ∈ N , y Pi x
}

.

Let � be the “Modulo Game”, defined as follows. For all i ∈ N , �i = A×{1, . . . , n},
i.e., each player i picks (xi , t i ), where xi ∈ A and t i ∈ {1, . . . , n}. The outcome is
defined to be x j , where j ∈ N is the unique player satisfying j ≡ ∑

i∈N ti (mod n).
We claim that � implements P by IMSE. Indeed, let RN ∈ L N . If x /∈ P(RN ), then

the grand coalition benefits by deviating; this shows that x cannot be the outcome of
an IMSE.

Conversely, assume x ∈ P(RN ). For all S ∈ P0(A) such that S �= N , and for all
σ S ∈ �S , there exists τ S ∈ �N\S such that π(σ S, τ N\S) = x . This is true since N\S
can align their integers t i in a way that

∑
i∈N ti (mod n) ∈ N\S. Moreover, if S = N ,

there is a player who does not want to deviate. It follows that x is the outcome of
an IMSE.

As a final remark, we note that it is natural to consider the NE versions of SMSE
and IMSE, that is, simple or informed mediated equilibria in which only a single
deviating player must be punished. These notions are, of course, strictly weaker than
NE. However, in the context of implementation, the consideration of weaker solution
concepts often does not lead to more inclusive results. The reason for this is that one
requires the set of equilibria of the implementing GF to be exactly equal to the image
of the given SCC (instead of, say, asking that the latter be contained in the former).
Indeed, it is possible to prove that any SCC that is implementable by mediated NE is
also implementable by NE, using the techniques of Danilov (1992).

4 Characterization of implementable SCCs

We now turn our attention to this paper’s main result: a characterization of SCCs
implementable by either simple or informed mediated strong equilibria. Section 4.1
gives a concise, but possibly hard to verify, characterization. Section 4.2 makes this
characterization more tractable by further breaking down the conditions.

4.1 First (concise) characterization

We begin with implementation by SMSE. Notice that the theorems in this subsection
hold for SCCs H : D → P0(A), where D ⊆ L N is an arbitrary domain of preference
profiles.

Theorem 4.1 Let H : D → P0(A),D ⊆ L N , be an attainable SCC. H is implement-
able by simple mediated strong equilibrium if, and only if, there exists a monotonic and
maximal EF E : P(N ) → P(P0(A)) such that ∀RN ∈ D, H(RN ) = C(E, RN ).
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Moreover, the implementing GF can be chosen to be �F , where F is a social choice
function F : L N → A.

The GF�F , mentioned in the theorem’s statement, is given by�F = 〈L , . . . , L; F〉;
indeed, in this GF the players’ strategies are orderings of alternatives, and the outcome
is determined by F . Essentially, �F is completely equivalent to the SCF F .

In order to prove this theorem, we require two previously known results.

Lemma 4.2 (Peleg 1984, Remarks 6.1.9 and 6.1.15) Let � be a GF. Then E�
α and E�

β

are monotonic, and E�
α is superadditive.

Lemma 4.3 (Peleg and Procaccia 2007, Theorem 4.2) Let E : P(N ) → P(P0(A))

be a stable and maximal EF, and let F : L N → A such that F(RN ) ∈ C(E, RN ) for
all RN ∈ L N . Then E�F

β = E.

Proof of Theorem 4.1 Assume first that H is implementable by simple mediated
strong equilibrium. Let � = 〈�1, . . . , �n;π〉 be the implementing GF; we claim
that E�

β is as required.

We first verify that E�
β is indeed an EF. Clearly, for all S ∈ P0(N ), A ∈ E�

β (S).
Furthermore, since H is attainable and � implements H, π must be onto A. That is,
for every a ∈ A there exists σ N ∈ �N such that π(σ) = a. It follows that N is
β-effective for {a} (by using σ N ). We conclude (since E�

β is monotonic with respect

to the alternatives by Lemma 4.2) that E�
β (N ) = P0(A).

Now, we have that for all RN ∈ D ,

H
(

RN
)

= SMSE
(
�, RN

)
= C

(
E�

β , RN
)

, (1)

where the first equality is true as � is an implementation of H by SMSE, and the
second equality follows from Lemma 3.2.

Finally, we must show that E�
β is maximal. Let S ∈ P0(N ), B ∈ P0(A). If B /∈ E�

β ,

then there exists τ N\S ∈ �N\S such that for all σ S ∈ �S, π(σ S, τ N\S) ∈ A\B. Thus,
A\B ∈ E�

α (N\S), and in particular A\B ∈ E�
β (N\S).

Conversely, assume that there exists a maximal and stable EF E such that
∀RN ∈ D, H(RN )= C(E, RN ). Let H∗ : L N → P0(A) be the extension of H
to L N such that ∀RN ∈ L N , H∗(RN ) = C(E, RN ). Let F : L N → A such that
F(RN ) ∈ C(E, RN ) for all RN ∈ L N . By Lemma 4.3, E�F

β = E . Therefore, for all

RN ∈ L N ,

H∗(RN ) = C(E, RN ) = C
(

E�F

β , RN
)

= SMSE
(
�F , RN

)
,

where the first equality follows from the assumption, the second by the above-men-
tioned theorem, and the third equality is a consequence of Lemma 3.2. In particular,
for all RN ∈ D ,

H
(

RN
)

= H∗ (
RN

)
= SMSE

(
�F , RN

)
. ��
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Remark 4.4 It is possible to drop the monotonicity of E from the characterization.
We leave it in as it provides a unified interface for Theorems 4.1 and 4.5, which will
later enable us to plug in our next characterization.

The characterization of implementation by IMSE is quite similar, the only differ-
ence being that the maximality of E (which is not a weak requirement) is replaced by
superadditivity (which is).

Theorem 4.5 Let H : D → P0(A),D ⊆ L N , be an attainable SCC. H is implement-
able by informed mediated strong equilibrium if, and only if, there exists a monotonic
and superadditive EF E : P(N ) → P(P0(A)) such that ∀RN ∈ D, H(RN ) =
C(E, RN ).

We require the following additional lemma.

Lemma 4.6 (Peleg 1998, Theorem 3.5) Let E : P(N ) → P(P0(A)) be an EF. Then
E is monotonic and superadditive if, and only if, there exists a GF � such that E = E�

α .

Proof of Theorem 4.5 Assume first that H is implementable by informed mediated
strong equilibrium. Let � be the implementing GF; we will show that E�

α is as required.
As in the proof of Theorem 4.1, E�

α is an EF due to the attainability assumption. For
all RN ∈ D it holds that

H(RN ) = IMSE (�, RN ) = C
(

E�
α , RN

)
. (2)

The first equality follows from the fact that � is an implementation of H by IMSE;
the second equality is implied by Lemma 3.2. By Lemma 4.2, E�

α is monotonic and
superadditive.

In the other direction, let E be a monotonic and superadditive EF such that ∀RN ∈
D, H(RN ) = C(E, RN ). By Lemma 4.6, since E is monotonic and superadditive,
there exists a GF � such that E = E�

α ; we claim that the foregoing GF � implements
H by IMSE. Indeed, we have that for all RN ∈ D ,1

H
(

RN
)

= C
(

E, RN
)

= C
(

E�
α , RN

)
= IMSE

(
�, RN

)
,

where the first equality follows from the assumption, the second is a consequence of
the construction of �, and the third is implied by Lemma 3.2. ��

4.2 Second (tractable) characterization

Although Theorems 4.1 and 4.5 give concise necessary and sufficient conditions for
implementation by SMSE and IMSE, respectively, these conditions may still be hard
to verify. The main problem is that the conditions ask for the existence of an EF with

1 As in the proof of Theorem 4.1, one can explicitly define H∗ as the extension of H to L N , but this is not
a mathematical necessity but rather a pedagogical tool.
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certain properties. We would like to obtain a more tractable characterization, via the
observation that this EF must be chosen to be E∗(H). Indeed, the following lemma is
previously known.

Lemma 4.7 (Peleg 1984, Lemma 6.1.21) Let E : P(N ) → P(P0(A)) be a stable and
monotonic function. If H(RN ) = C(E, RN ) for every RN ∈ L N , Then E∗(H) = E.

Our next theorem yields more tractable, albeit less concise, characterizations as an
easy corollary. In contrast to Subsection 4.1, heretofore the results are formulated for
SCCs whose domain is the universal domain L N . We shall need the following defi-
nition (Peleg 1984, Definition 3.2.4): An SCC H : L N → P0(A) is core-inclusive
with respect to a function E : P0(A) → P(P0(A)) iff for all RN ∈ L N , C(E, RN ) ⊆
H(RN ).

Theorem 4.8 Let H : L N → P0(A). There exists a monotonic EF E : P(N ) →
P(P0(A)) such that ∀RN ∈ L N , H(RN ) = C(E, RN ) if, and only if, the following
conditions hold:

1. H is Pareto optimal.
2. H is Maskin Monotonic.
3. H is core-inclusive with respect to E∗ = E∗(H).

In order to prove the theorem, we require several additional lemmata.

Lemma 4.9 (Peleg 1984, Remark 5.3.12) Let E : P(N ) → P(P0(A)) be a function.
Then C(E, ·) is Maskin monotonic.

Lemma 4.10 (Peleg 1984, Lemma 6.1.20) Let E : P(N ) → P(P0(A)) be a stable
function, and let H(RN ) = C(E, RN ) for every RN ∈ L N . Then E∗(H) is monotonic.

Lemma 4.11 (Peleg 1984, Lemma 6.5.6) Let H : L N → P0(A). If H is Maskin
monotonic then for all RN ∈ L N , H(RN ) ⊆ C(E∗(H), RN ).

Proof of Theorem 4.8 Assume that there exists a monotonic EF E : P(N ) →
P(P0(A)) such that ∀RN ∈ L N , H(RN )= C(E, RN ). We first prove condition 1,
namely Pareto optimality. Let x, y ∈ A and RN ∈ L N such that for all i ∈ N , x Pi y.
Since E is an EF, {x} ∈ E(N ). Therefore, {x}dominates y via N , i.e., y /∈ C(E, RN ) =
H(RN ).

Now, condition 2 is readily satisfied by Lemma 4.9. Moreover, By Lemma 4.7,
E = E∗. Therefore, H(RN ) = C(E∗, RN ) for all RN ∈ L N , and in particular H is
core-inclusive with respect to E∗ (i.e., condition 3 is satisfied as well).

Conversely, assume conditions 1–3 hold. We will show that E∗ is as required. By
Lemma 4.11, H(RN ) ⊆ C(E∗, RN ) for all RN ∈ L N , and together with the assump-
tion that H is core-inclusive with respect to E∗ we obtain that ∀RN ∈ L N , H(RN ) =
C(E∗, RN ). Now, by Lemma 4.10, E∗ is monotonic.

We argue that since H is Pareto optimal, E∗ is an EF. Clearly for all S ∈ P0(N ), A ∈
E(S). Moreover, let a ∈ A; let RN ∈ L N such that all players rank a first. By
Pareto optimality, H(RN ) = {a}. In other words, {a} ∈ E∗(N ). We now have that
E∗(N ) = P0(A) as E∗ is monotonic with respect to the alternatives. ��
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We can now give a second characterization of SCCs that are implementable by
mediated equilibria, by combining Theorems 4.1, 4.5, and 4.8.

Corollary 4.12 Let H : L N → P0(A), be an attainable SCC

1. H is implementable by simple mediated strong equilibrium if, and only if, Theo-
rem 4.8’s conditions 1–3 hold and E∗(H) is maximal.

2. H is implementable by informed mediated strong equilibrium if, and only if, The-
orem 4.8’s conditions 1–3 hold and E∗(H) is superadditive.

Remark 4.13 Theorem 4.1 can be slightly strengthened, by removing the assumptions
that H is attainable and that E is an EF. We say that a function E : P(N )→ P(P0(A))

is a pseudo-EF if for every S ∈ P0(N ), A ∈ E(S). The following statement is true:
Let H : D → P0(A),D ⊆ L N . H is implementable by simple mediated strong equi-
librium iff there exists a monotonic and maximal pseudo-EF E : P(N ) → P(P0(A))

such that ∀RN ∈ D, H(RN ) = C(E, RN ).
Now, Theorem 4.8 can also be modified accordingly, by abandoning the condition

that H is Pareto optimal. That is, there exists a monotonic pseudo-EF E : P(N ) →
P(P0(A)) such that ∀RN ∈ L N , H(RN ) = C(E, RN ) iff H is Maskin Monotonic
and H is core-inclusive with respect to E∗ = E∗(H).

5 The power of implementation by strong mediated equilibria

In this section we will attempt to understand the power of implementation by
mediated strong equilibrium, as compared to implementation by strong equilibrium.
Previous work has given complete characterizations of implementation by strong equi-
librium (Dutta and Sen 1991; Fristrup and Keiding 2001). Alas, these characterizations
are rather hard to formulate, if not to verify. So, one immediate advantage of implemen-
tation by mediated strong equilibria is that Theorems 4.1 and 4.5 are relatively simple.

Let us discuss implementation by SMSE. On the face of it, simple mediators cannot
help. Indeed, we have the following theorem:

Theorem 5.1 Let H : L N → P0(A). If H is implementable by SMSE, then H is
implementable by SE.

The theorem follows almost immediately from the following lemma.

Lemma 5.2 (Peleg 1984, Theorem 6.4.2) Let E : P0(N ) → P(P0(A)) be a stable
and monotonic EF. Then the core C(E, ·) is implementable by SE if, and only if, E is
maximal.

Proof of Theorem 5.1 By Theorem 4.1, if H is implementable by SE, then there exists
a monotonic and maximal (and stable) EF E such that H is the core of E . By Lemma 5.2
H is implementable by SE. ��

Theorem 5.1 may come as an unpleasant surprise. However, notice that in certain
settings, even simple mediators offer a substantial advantage over implementation
by SE. Recall that Theorem 4.1 states that the implementing GF may be chosen
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to be a SCF. This is no small thing; the implementing GF is a description of a decen-
tralized mechanism the agents are expected to use in order to strategically reach a
collective decision. It is very significant that this GF be as simple as possible. The
implementing GF given in the proof of Lemma 5.2, for instance, is less intuitive. In
general, it is unknown whether implementation by SE is possible when the imple-
menting GF is a SCF. That said, we note that the implementing GF constructed in the
proof of Lemma 5.2 is defined directly from the EF E , while the one constructed in
the proof of Theorem 4.1 requires the computation of the core of an EF; this task may
prove intractable (Mizutani et al. 1993).

We move on to implementation by IMSE. The frequency of IMSEs, compared to
SEs, is not necessarily an advantage. One would expect informed mediators to help
when implementing “large” SCCs, but not when implementing “small” ones. This is
indeed the case.

As a general example, consider an EF E that is monotonic, superadditive, and stable,
but not maximal. By Theorem 4.5, C(E, ·) is implementable by IMSE; by Lemma 5.2,
C(E, ·) is not implementable by SE.

We now give two specific examples: the first is a very important SCC that is imple-
mentable by IMSE and not by SE. The second, interestingly, is of a SCC (admittedly,
a very nonintuitive one) that is implementable by SE and not by IMSE.

Example 5.3 (SCC that is implementable by IMSE and not by SE) Consider the promi-
nent Pareto correspondence given by P(RN ) = {x ∈ A : �y ∈ A s.t. ∀i ∈ N , y Pi x}.

In Example 3.3, we have shown that P is implementable by IMSE, and that the
implementing GF can be chosen to be the modulo game. However, notice that this
result also easily follows from our theorems (albeit via a more complex implementing
GF). Define an EF E by E(N ) = P0(A), E(S) = {A} for all N �= S ∈ P0(N ).
It is easily seen that for all RN , P(RN ) = C(E, RN ), and that E is monotonic and
superadditive. By Theorem 4.5, P is implementable by IMSE.

On the other hand, it is also straightforward that E is not maximal, and thus accord-
ing to Lemma 5.2 P is not implementable by SE.

Example 5.4 (SCC that is implementable by SE and not by IMSE) Let N = {1, 2, 3, 4},
A = {a, b, c}. Let β∗(a) = 1 and β∗(b) = β(c) = 2, and let RN ∈ L N . Define an EF
E∗ = E∗(β∗) by:

B ∈ E∗(S) ⇔ |S| ≥ β∗(A \ B),

where β∗(B) = ∑
x∈B β∗(x).

Now, define H : L N → P0(A) by the following rules. If there exists x ∈ A such
that

|{i ∈ N : x is ranked first in Ri }| ≥ 3,

then H(RN ) = {x}. Otherwise, H(RN ) = C(E∗, RN ).
Further, let F : L N → A be a selection from H , i.e., F(RN ) ∈ H(RN ) for all

RN ∈ L N , and let �F = 〈L , . . . , L; F〉 be the GF that is determined by F . Define
H∗ by:
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H∗ (
RN

)
= F

(
SE

(
�F , RN

))

for all RN ∈ L N .
Peleg (1984, Example 6.5.7) proves that SE(�F , RN ) �= ∅ for all RN ∈ L N , so

clearly H∗ is implementable by SE. Peleg also proves that H∗ is not the core corre-
spondence of an EF. By Theorem 4.5, H∗ is not implementable by IMSE.

Finally, we observe that implementation by mediated strong equilibrium, of either
type, implies implementation by Nash equilibrium when n ≥ 3. Indeed, Peleg and
Winter (2002) prove:

Lemma 5.5 (Peleg and Winter 2002, Lemma 3.3) Let E : P0(N ) → P(P0(A)) be a
stable EF. If n ≥ 3, then the core C(E, RN ) is implementable by NE.

Together with Theorems 4.1 and 4.5 we obtain:

Theorem 5.6 Let H : L N → P0(A), n ≥ 3. If H is implementable by SMSE or
IMSE, then H is implementable by NE.

6 Conclusions

We have considered implementation by mediated equilibria. Our main result is a
characterization of SCCs implementable by SMSE or IMSE. Informally, our concise
characterization states that an SCC is implementable by SMSE (resp. IMSE) iff it is
the core correspondence of a monotonic and maximal (resp. and superadditive) EF.
Using this characterization, we have shown that any SCC implementable by SMSE
is implementable by SE, but have noted an important distinction: the implementing
GF in the case of SMSE can be chosen to be a SCF. Crucially, we have discussed
the power of informed mediators, showing that certain SCCs (such as the important
Pareto correspondence) are implementable by IMSE and not by SE.
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