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Abstract. Algorithmic matches in fielded kidney exchanges do not typically result in an
actual transplant. We address the problem of cycles and chains in proposed matches failing
after the matching algorithm has committed to them. We show that failure-aware kidney
exchange can significantly increase the expected number of lives saved (i) in theory, on
random graph models; (ii) on real data from kidney exchange match runs between 2010
and 2014; and (iii) on synthetic data generated via a model of dynamic kidney exchange.
This gain is robust to uncertainty over the true underlying failure rate. We design a branch-
and-price-based optimal clearing algorithm specifically for the probabilistic exchange
clearing problem and show that this new solver scales well on large simulated data,
unlike prior clearing algorithms. Finally, we show that failure-aware matching can increase
overall system efficiency and simultaneously increase the expected number of transplants

to highly sensitized patients, in both static and dynamic models.
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1. Introduction

Kidney exchange is a recent innovation that allows
patients who suffer from terminal kidney failure, and
have been fortunate enough to find a willing but in-
compatible kidney donor, to swap donors. Indeed, it
may be the case that two donor-patient pairs are incom-
patible, but the first donor is compatible with the sec-
ond patient, and the second donor is compatible with
the first patient; in this case, a life-saving match is pos-
sible. As we discuss below, sequences of swaps can
even take the form of long cycles or chains.

The need for successful kidney exchanges is acute
because demand for kidneys is far greater than supply.
Although receiving a deceased-donor kidney is a pos-
sibility, 36,158 people joined the national waiting list
in 2014, while only 16,893 left it that year because they
received a kidney. With a median waiting time rang-
ing from two to five years depending on blood type,
for some patients kidney exchange is the only viable
option.

In this paper,1 we share learnings from our involve-
ment in designing and running the kidney exchange
that was set up by the United Network for Organ
Sharing (UNOS). The exchange went live in October
2010, conducting monthly match runs. Since then, the
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exchange has grown to encompass 143 transplant cen-
ters (about 61% of the transplant centers that per-
form living-donor transplantation in the United States)
and now conducts biweekly match runs. Based on
this experience, we propose a significantly different
approach as a solution to one of the main problems
kidney exchanges face today: “last-minute” failures.”
We mean failures before the transplant surgery takes
place, not failures during or after it. Amazingly, most
planned matches fail to go to transplant! In the case
of the UNOS exchange, 93% of matches fail (Kidney
Paired Donation Work Group 2012), and most matches
fail at other kidney exchanges as well (e.g., Ashlagi
etal. 2011, Leishman et al. 2013, Bray et al. 2015). There
are a myriad of reasons for these failures, as we will
detail in this paper.

To address such failures, we propose to move away
from the deterministic clearing model used by kid-
ney exchanges today into a probabilistic model where
the input includes failure probabilities on possible
planned transplants, and the output is a transplant
plan with maximum expected value. The probabilis-
tic approach has recently also been suggested by oth-
ers (e.g., Chen et al. 2012, Li et al. 2011). They used
a general-purpose integer program solver (Gurobi) to
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solve their optimization models. We show that general-
purpose solvers do not scale to today’s real kidney
exchange sizes. Then we develop a custom branch-and-
price-based (see Barnhart et al. 1998) integer program
solver specifically for the probabilistic clearing prob-
lem, and show that it scales dramatically better. We
also present new theoretical and experimental results
that show that the probabilistic approach yields signif-
icantly better matching than the current deterministic
approach. We conduct experiments both in the static
and dynamic setting with (to our knowledge) the most
realistic instance generators—one from Saidman et al.
(2006) and one that we created that uses real data from
all of the UNOS match runs conducted so far—and
simulator to date. Perhaps of greatest practical inter-
est to policymakers, we show that, even when higher
edge failure rates are correlated with other marginaliz-
ing characteristics of a vertex, failure-aware matching
can simultaneously increase both the overall number
of transplants and the number of transplants to these
marginalized patients—in both the static and dynamic
settings, on real and simulated data.

1.1. Related Work
The idea of kidney exchange was introduced
by Rapaport (1986), and ethical considerations were
discussed by Ross et al. (1997). Korea fielded the first
kidney exchange program in the 1990s (Park et al.
1999); the first organized exchange in the United States,
the New England Paired Kidney Exchange (NEPKE),
began in 2003 (see Roth et al. 2004, 2005a, 2007). The
topic has attracted—and fielded exchanges have ben-
efited from the work of—researchers from nonmed-
ical fields such as economics (e.g., Roth et al. 2004,
2005a, 2007; Unver 2010; Yilmaz 2011; Akbarpour et al.
2014; Sonmez and Unver 2014), operations research
(e.g., Bir¢ et al. 2009, Ashlagi et al. 2013, Ashlagi and
Roth 2014, Anderson 2014, Glorie et al. 2014, Manlove
and O’Malley 2015, Anderson et al. 2015a), and com-
puter science (e.g., Abraham et al. 2007; Awasthi and
Sandholm 2009; Toulis and Parkes 2015; Dickerson
et al. 2012a, b; Blum et al. 2013; Anshelevich et al.
2013; Dickerson et al. 2014b; Dickerson and Sandholm
2014; Liu et al. 2014; Li et al. 2014). The market for
kidneys is constrained by the widespread view (Leider
and Roth 2010) that exchanging money for organs is
“repugnant” (Roth 2007); thus, in nearly all countries
including the United States, it is illegal to buy or sell an
organ, which makes deceased- and living-donor dona-
tion the only option for procurement of a kidney.
There has been some prior work on the dynamics
of kidney exchange, but that work has largely focused
on the dynamics driven by pairs and altruists arriv-
ing into, and departing from, the exchange rather
than on the dynamics driven by failures (Awasthi and
Sandholm 2009, Unver 2010, Dickerson et al. 2012a,

Ashlagi et al. 2013, Akbarpour et al. 2014, Anderson
et al. 2015a). Also, the techniques developed in those
prior papers are completely different from the ones we
develop here (and deal with less general models than
those that we consider).

Analysis of kidney exchange using random graph
models is nowadays the typical method for provid-
ing theoretical guidance. Indeed, some of the dynamic
kidney exchange papers cited above work in dynamic
random graph models (Unver 2010, Ashlagi et al. 2013,
Akbarpour et al. 2014, Anderson et al. 2015a). We work
with the model of Ashlagi et al. (2012); related random
models include those of Ashlagi and Roth (2014) and
Toulis and Parkes (2015).

The work on the query-commit problem by Molinaro
and Ravi (2011) is motivated by the same issue as our
paper. They study bipartite matching (which equates
to clearing with 2-cycles only and no chains in the
kidney exchange context) where edges can be tested
to see whether they fail. In the query-commit model,
if an edge does not fail, it has to be matched. Under
certain additional theoretical assumptions, they prove
near-optimality of their proposed testing policies. Goel
and Tripathi (2012) also study matching with 2-cycles;
they provide a greedy testing algorithm for the query-
commit problem with an approximation ratio of 0.56
and show that no algorithm can obtain a better ratio
for that problem than 0.7916.

Given the ability to perform prematch tests for the
existence of up to two incident edges per patient-donor
pair (instead of the current standard of one), Blum et al.
(2013) study the problem of selecting a subset of edges
such that expected cardinality of the resulting match-
ing is maximized. They work with only unweighted
2-cycles and no chains, and provide a polynomial time
algorithm that almost surely maximizes (up to lower-
order terms) the expected number of swaps in that
model.

Subsequent to the initial posting of the present pa-
per, Anderson (2014), Anderson et al. (2015b), Blum
et al. (2015), Dickerson and Sandholm (2015), Assadi
et al. (2016), and Dickerson et al. (2016) each look at
match failures in a variety of models. Anderson (2014)
and Anderson et al. (2015b) first present a scalable
deterministic kidney exchange algorithm that is not
amenable to failure-aware matching, but also study the
problem through the lens of two-stage stochastic opti-
mization. Dickerson et al. (2016) build on that work and
give the first compact formulation—that is, a model
that is of size polynomial in the size of the input—
of kidney exchange; their model is amenable only to
failure-aware matching for constant failure rates, unlike
the present work. With similar motivation, Blum et al.
(2015) and Assadi et al. (2016) continue the work
of Blum et al. (2013) and look at nonadaptive and
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adaptive policies for selecting edges to test before per-
forming a final maximum matching; however, their
analysis caters to cycles only. Dickerson and Sandholm
(2015) build on techniques from the present paper and
from Dickerson et al. (2012a, 2014b) to learn using data
how to match in a realistic model of dynamic kidney
exchange; their framework also uses machine learning
and data to instantiate human experts” high-level goals
into a concrete objective function for optimization.
Glorie et al. (2014) present a branch-and-price solver
that, under certain assumptions, is able to solve the
pricing problem for new cycles and chains in polyno-
mial time. They do not explicitly consider postalgorith-
mic match failure. Also, the assumptions required for
their polynomial-time pricing problem solution break
under the addition of failure probabilities to edges in
chains, although they do hold for problems with cycles
only.

2. Modeling Expected Utility: Considering

Cycle and Chain Failure
In this section, we augment the standard model of kid-
ney exchange to include the probability of edge, cycle,
and chain failure. We formalize the expected utility of an
edge, cycle, and chain, which represents the expected
number of actual transplants (not just potential trans-
plants). This is used to define the expected utility of
an overall matching, which more accurately reflects its
value relative to other matchings.

2.1. The Basic Graph Model for Kidney Exchange
The standard model for kidney exchange encodes an
n-patient kidney exchange—and almost any n-partici-
pant barter exchange—as a directed compatibility graph
G(n) by constructing one vertex for each patient-donor
pair. An edge e from v; to v; is added if the patient
in v; wants, and could potentially receive, the donor
kidney (or item, in general) of v;; in this case, we say
the patient of v, is compatible with the donor from v;.
A donor is willing to give her kidney if and only if the
patient in her vertex v; receives a kidney.

The weight w, of an edge e represents the utility to v,
of obtaining v,’s donor kidney (or item). A cycle c in the
graph G represents a possible kidney swap, with each
vertex in the cycle obtaining the kidney of the previous
vertex. If ¢ includes k patient-donor pairs, we refer to
it as a k-cycle. In kidney exchange, typically cycles of
length at most some small constant L are allowed—all
transplants in a cycle must be performed simultane-
ously so that no donor backs out after his patient has
received a kidney but before he has donated his kid-
ney. In most fielded kidney exchanges, including the
UNOS kidney exchange, L =3 (i.e., only 2- and 3-cycles
are allowed).

Currently, fielded kidney exchanges gain great util-
ity through the use of chains (see, e.g., Roth et al.
2006, Montgomery et al. 2006, Rees et al. 2009, Gentry

et al. 2009, Ashlagi et al. 2011, Gentry and Segev 2011,
Dickerson et al. 2012b, Ashlagi et al. 2012). Chains
start with an altruistic donor donating his kidney to
a candidate, whose paired donor donates her kidney
to another candidate, and so on. Chains can be (and
typically are) longer than cycles in practice because it
is not necessary to carry out all of the transplants in
a chain simultaneously. Of course, there is a chance
that a bridge donor backs out of his/her commitment
to donate. In that unfortunate event, which has hap-
pened a couple of times in the United States, the chain
does not continue. Cycles cannot be executed piece-
meal because if someone backs out of a cycle, then
some pair has lost a kidney (i.e., their “bargaining
chip”). In contrast, if someone backs out of a chain, no
pair has lost their bargaining chip (although of course
it is a shame if some chain does not continue forever).

A matching M is a collection of disjoint cycles and
chains in the graph G. The cycles and chains must be
disjoint because no donor can give more than one of
her kidneys.

2.2. Including Failure Probability in the Model
In the basic kidney exchange model, the weight w, of
a cycle or chain c is the sum of its edge weights, and
the weight of a matching M is the sum of the weights
of the cycles and chains in the matching. The clearing
problem is then to find a maximum (weighted) match-
ing M. In reality, not all of the recommended matches
proceed to transplantation, because of varying levels
of sensitization between candidates and donors in the
pool (represented by a scalar factor called CPRA), ill-
ness, uncertainty in medical knowledge, or logistical
problems. As such, the weight of a cycle or chain as the
sum of its constituent parts does not fully characterize
its true worth.

Associate with each edge e = (v;, v;) in the graph G
a value g, € [0, 1] representing the probability that, if
algorithmically matched, the patient of v; would suc-
cessfully receive a kidney from v,’s donor. We will refer
to g, as the success probability of the edge, and 1 - ¢, as
the failure probability of the edge. Using this notion of
failure probability, we can define the expected (failure-
aware) utility of chains and cycles.

2.2.1. Expected Utility of a Cycle. For any transplant
in a k-cycle to execute, each of the k transplants in that
cycle must execute. Put another way, if even one algo-
rithmically matched transplant fails, the entire cycle
fails. Thus, for a k-cycle ¢, define the expected utility u(c)
of that cycle to be

=[S |e)

That is, the utility of a cycle is the product of the sum of
its constituent weights and the probability of the cycle
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executing. The simplicity of this calculation is driven
by the required atomicity of cycle execution—a prop-
erty that is not present when considering chains.

2.2.2. Expected Utility of a Chain. While cycles must
execute entirely or not at all, chains can execute incre-
mentally. For example, a 3-chain ¢ = (a,v,, v,, v5) start-
ing at altruist 2 might result in one of four numbers of
transplants:

* No transplants, if the edge (4, v,) fails.

¢ A single transplant, if (a,v,) succeeds but (v;, v,)
fails.

¢ Two transplants, if (a,v,) and (v;, v,) succeed but
(v,, v5) fails.

* Three transplants, if all edges in the chain repre-
sent successful transplants. (In this case, the donor at v,
typically donates to the deceased donor waiting list, or
stays in the pool as a bridge donor. Whether or not this
additional transplant is included in the optimization
process is decided by each individual kidney exchange
program.)

In general, for a k-chain ¢ = (vy, vy, ..., v;), where v,
is an altruist, there are k possible matches (and the
final match to, for example, a deceased donor waiting
list candidate). Let q; be the probability of edge ¢; =
(v;,v; + 1) leading to a successful transplant. Here, we
assume w, =1 for ease of exposition; in Section 5, we
show that relaxing this assumption does not compli-
cate matters.

Then, the expected utility u(c) of a k-chain c is

k-1 i-1 k=1
u(c)= Z(l_‘ii)il_[q]‘ kl_[’%‘]-
=1 j=0 i=0

+

The first portion above calculates the sum of expected
utilities for the chain executing exactly i ={1,...,k—1}
steps and then failing on the (i + 1)th step. The sec-
ond portion is the utility gained if the chain executes
completely.

2.2.3. Expected Utility of a Matching. The value of an
individual cycle or chain hinges on the interdependen-
cies between each specific patient and potential donor,
as was formalized above. However, two cycles or chains
in the same matching M fail or succeed independently.
Thus, define the expected utility of a matching M to be

u(M) = Z u(c).

ceM

That is, the expected number of transplants resulting
from a matching M is the sum of the expected number
of transplants from each of its constituent cycles and
chains.

For a (possibly weighted) compatibility graph G =
(V,E), let Ml represent the set of all legal matchings
induced by G. Then, given success probabilities g,,

Ve € E, the failure-aware clearing problem is to find M*
such that
M =argmaxu(M).
Me.

The distinction between M* and any maximum (non-
failure-aware) weighted matching M’ is important, as
we show in the rest of this paper—theoretically in
Section 3, on real data from the fielded UNOS kid-
ney exchange in Section 4, and on simulated data in
Section 7.

3. Maximum Cardinality Matching Is Far
from Maximizing the Expected Number

of Transplants

In this section, we prove a result regarding the
(in)efficacy of maximum cardinality matching in kid-
ney exchange, when the probability of a match failure
is taken into account. We show that in pools containing
equally sensitized patient—donor pairs (and not neces-
sarily equally sensitized altruistic donors), with high
probability there exists a “failure-aware” matching that
has linearly higher expected utility than all maximum
cardinality matchings. This theoretical result motivates
the rest of the paper; since current fielded kidney
exchanges perform maximum cardinality or maximum
weighted matching, many potential transplants may be
left on the table as a consequence of not considering
match failures.

3.1. Random Graph Model of Sensitization

We work with (a special case of) the model of Ashlagi
et al. (2012, section 4.2), which is an adaptation of the
standard theoretical kidney exchange model to pools
with highly and nonhighly sensitized patient-donor
pairs.

The model works with random compatibility graphs
with n + t(n) vertices, pertaining to n incompatible
patient-donor pairs (denoted by the set P), and t(n)
altruistic donors (denoted by the set A), respectively.
Edges between vertices represent not just blood-type
compatibility, but also immunological compatibility—
the sensitization of the patient. Given a blood-type-
compatible donor, let p denote the probability that an
edge exists between a patient and that donor.

Given uniform sensitization p for each of the n
patients in the pool, random graphs from this model
are equivalent to those of Erdds and Rényi (1960) with
parameters n and p. In Section 3.2, we use techniques
from random graph analysis to prove that maximum
cardinality matching in highly sensitized pools (with
altruists) does not optimize for expected number of
actual transplants.

3.2. Maximum Cardinality Matching in Highly
Sensitized Pools

Let G(n,t(n),p) be a random graph with n patient—

donor pairs, t(n) altruistic donors, and probability
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p=0(1/n) of incoming edges. Such a p represents
highly sensitized patients. Let g be the probability of
transplant success that we introduced, such that g is
constant for each edge e. Note that for a chain of
length k, the probability that t < k matches execute
is 4'(1 — q), and the probability that k matches exe-
cute is g*. There is no chain cap (although we could
impose one, which depends on g). Given a match-
ing M, let u,(M) be its expected utility in our model—
i.e., expected number of successful transplants. Denote
the set of altruistic donors by A, and denote the vertex
pairs by P.

The proof of the following theorem builds on tech-
niques used in the proof of theorem 5.4 of Ashlagi et al.
(2012), but also requires several new ideas.

Theorem 1. For every constants q € (0,1) and a, > 0,
given a large random graph G(n, an, f/n), with high prob-
ability there exists a matching M’ such that for every maxi-
mum cardinality matching M,

u (M) > u (M) +Q(n).

Proof. We consider subgraphs that we call Y-gadgets,
with the following structure. A Y-gadget contains a
path (u4,vy,...,v;) such that u € A and v; € P for i =
1,...,k for a large enough constant k, to be chosen
later. Furthermore, there is another altruistic donor
u’ € A with two outgoing edges, (u’, v;) and (u’,v’) for
some v’ € P. Finally, the edges described above are the
only edges incident on the vertices of the Y-gadget. See
Figure 1(a) for an illustration.

We first claim that it is sufficient to demonstrate
that with high probability the graph G(n, an, §/n) con-
tains cn Y-gadgets, for some constant ¢ > 0. Indeed,

Figure 1. Tllustration of a Y-Gadget with k =5

because each Y-gadget is disconnected from the rest of
the graph, a maximum cardinality matching M must
match all of the vertices of the Y-gadget, via a k-chain
and a 1-chain. Let M, be the restriction of M to the
Y-gadget (see Figure 1(b)). It holds that

k-1
u,(My)=(1-¢) > iq" +kq* +q.
i=1

We next construct a matching M, for the Y-gadget,
via two chains: (4, v,,v,) and (¥, v;,...,v,)—i.e., ver-
tex v’ remains unmatched (see Figure 1(c)). We obtain

k-3

u,(My)=(1-q) Z ig'+(k=2)g" 2 +q(1-q) + 24"

Therefore,

(M) = uy(My) = ¢* + (k =2)4" " = (k= 1)(1 - q)g"~"
—kg* > q* = (k+1)g"". (1)

Clearly if k is a sufficiently large constant, /2 >
(k + 1)g*, and hence the right-hand side of Equa-
tion (1) is at least 4%/2, which is a constant. By applying
this argument to each of the cn Y-gadgets, we obtain
a matching M’ such that u,(M’) — u,(M) > (g*/2)cn
=Q(n).

It remains to establish the existence of Q(n) Y-gad-
gets. Consider a random undirected graph with n +
an vertices. The edge probabilities are p = 2(8/n)(1 -
B/n)+(B/n)*—i.e., the probability of at least one edge
existing between a pair of vertices in P. A standard
result on sparse random graphs (see, e.g., Janson et al.
2011) states that for every graph X of constant size,
with high probability we can find ((n) subgraphs that

(b) The maximum cardinality

(a) A Y gadget

@ @

O @ @ @

matching My

N4

(¢) The matching M,

® ®
O ®
®)
@

Notes. The vertices of A are white and the vertices of P are gray. Clearly |[My| > |[M{|, but (using Equation (1)) u, (M) —u,(My) > q* - 64*; this

difference is positive for 4 < 0.41, which is a realistic value.
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are isomorphic to X and isolated from the rest of the
graph. In particular, with high probability our random
graph has Q(n) subgraphs that are isomorphic to the
undirected, unlabeled version of a Y-gadget.

There are two independent issues we need to ad-
dress. First, these subgraphs are unlabeled—i.e., we
do not know which vertices are in A and which are
in P. Second, the graph is undirected, and may have
some illegal edges between pairs of vertices in A. We
presently address the first issue. We randomly label the
vertices as A or P, keeping in mind that ultimately it
must hold that |P| =7 and |A| = an. Assume without
loss of generality that a < 1. Consider an arbitrary ver-
tex in one of the special subgraphs. This vertex is in P
with probability 1/(1 + a), and in A with probability
a/(1+a). The label of the second vertex depends on the
first. For example, if the first is in P, then the probabili-
tiesare (1-1/n)/(1-1/n+a) for Pand a/(1-1/n+a)
for A.

We sequentially label the vertices of min{cn, (an)/
10k)} gadgets, where cn is the number of Y-gadgets,
taking into account the previous labels we observed.
(Note that we are labeling a linear number of Y-gad-
gets, since k is constant.) Because we observed far
fewer than an/2 labels, in each trial the probability
of each of the two labels, conditioned on the previous
labels, is at least (a/2)/(1 + a/2), which is a constant.
This lower bound allows us to treat the labels as inde-
pendent Bernoulli trials. Thus, the probability that a
gadget has exactly the right labels (two A labels in
the correct places, and P labels everywhere else) is at
least r = ((a/2)/(1 + a/2))¥*3, which is a constant. The
expected number of correctly labeled gadgets is there-
fore at least r - min{cn, an/(10k)}—i.e., Q(n). Using
Chernoff’s inequality, with high probability we can
find Q(n) correctly labeled gadgets.

We next address the second issue: the directions of
the edges. For each of the Q(n) correctly labeled gad-
gets, each undirected edge corresponds to a directed
edge in one of the two direction with probability

(B/m-p/m) 1
2B/m) (1= B/m)+ (B/ny 2’

and corresponds to edges in both directions with the
complement (small) probability. The probability that
each edge in a Y-gadget corresponds to a single edge
in the correct direction is therefore constant, and using
similar arguments as above, with high probability a
constant fraction of the correctly labeled gadgets will
have correctly oriented edges.

Finally, note that the labels of the vertices and
the directions of the edges in each of the initially
unlabeled, undirected Y-gadgets are independently
assigned. Given one of these initial (linearly many)
Y-gadgets, we have shown that the probability of that

Y-gadget being labeled correctly is a constant. Similarly,
we have shown that the probability of that Y-gadget
having all edges in exactly the right orientations is a
constant. Thus, since these events are independent, the
probability that both events occur is a constant, and
we have a constant fraction of the linearly many ini-
tial Y-gadgets with the correct orientation of edges and
labels of nodes.

A final issue remaining to be addressed is that there
are no edges between pairs of vertices in A, and the
probability of edges (u,v) where u € A and v € P is
smaller than p. We first note that, since we are looking
at a denser graph, isolation is harder to achieve. More-
over, since a Y-gadget has no adjacent vertices in A,
we discard any such Y-gadgets, so the increased prob-
ability of edges between such pairs does not help us.
Finally, for pairs (1, v) where u € A and v € P, the prob-
ability of an edge (1, v) existing is equal to the probabil-
ity of an edge existing in the undirected graph and the
edge being in the right direction; Y-gadgets where the
edge is in the wrong direction are discarded. O

Importantly, while the proof of Theorem 1 only
explicitly discusses chains (in the construction of
the Y-gadgets), the optimal matching also contains
cycles—they are just not the driving force behind this
result. In the next section, we provide experimental
validation of this theoretical result using real data from
the UNOS nationwide kidney exchange, which we help
run.

4. Experiences from, and Experiments on,

the UNOS Kidney Exchange

Over the past decade, fielded kidney exchanges have
begun appearing in the United States. One of the
largest, run by the United Network for Organ Sharing
(UNOS), performed its first match run in October of
2010. As of July 2015, it matches on a biweekly basis,
and interacts nationwide with 143 transplant centers.
We maintain the optimization code for match runs in
the UNOS kidney exchange program, and interact fre-
quently with the medical, logistical, and support staff
for the program. In this section, we present experimen-
tal results comparing failure-aware and deterministic
matching on real data from this exchange, using mul-
tiple estimated distributions over edge failure proba-
bilities. We also perform a sensitivity analysis on the
gains realized by the algorithm when there is uncer-
tainty over the true underlying failure probabilities, as
is the case in reality.

4.1. Estimating Edge Failure Probabilities

The UNOS U.S.-wide kidney exchange computes a
maximum weighted matching at each clearing. The
function used to assign weights to edges was deter-
mined by a committee of medical professionals, and
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Figure 2. (Color online) Determining the Probability of a Match Failing Is Difficult Because Many Potential Patient-donor

Pairs Are Not Crossmatched

Successful transplant
(7%, negative CM)

Failed: Not reason for failure
(49%, unknown CM)

—

Failed: Tissue type mismatch
(16%, positive CM)

Failed transplant

(93%)

Failed: Reason for failure

(44%)

Failed: Other
(28%, unknown CM)

Note. Of the aggregate UNOS data, we are only sure that the 7% who successfully received a transplant and the 16% who explicitly failed

because of a positive crossmatch were tested.

takes into account such factors as donor and patient
location, health, and CPRA score. We have access to
these data and use them in our experiments.

However, medical knowledge is incomplete; as such,
we cannot determine the exact probability g that
a potential transplant will succeed. For our experi-
ments, we use multiple distributions of edge failure
probabilities.

First, we draw from all of the data from the match
runs conducted in the UNOS exchange to date. Fig-
ure 2 displays success and failure results for recom-
mended matches from the UNOS kidney exchange
for matches between October 27, 2010, and November
12, 2012.° Approximately 7% of matches resulted in a
transplant, while approximately 93% failed. Of the 93%
that failed:

* 49% were not the reason for failure. The cycle or
chain in which the potential transplant was involved
failed entirely (in the case of cycles) or before the pa-
tient’s turn (in the case of chains).

* 44% were the reason for failure.

—36% of these (about 16% of the total) failed
because of a positive crossmatch, signifying blood-type
incompatibility (beyond the ABO model).

—64% failed for a variety of other reasons, as dis-
cussed below.

Triggering a cycle or chain failure can occur for a
variety of reasons, including

* receiving a transplant from the deceased donor
waiting list;

* receiving a transplant from another exchange;

¢ patient or donor becoming too ill for surgery or
expiring;

e an altruistic patient “running out of patience” and
donating elsewhere, or not at all;

¢ adonor in a chain reneging (i.e., backing out after
his patient received a kidney);

¢ pregnancy or sickness changing a patient or do-
nor’s antigen incompatibilities.

In these cases, a patient and potential donor may
or may not have received a crossmatch test. In fact,
the only sureties regarding crossmatches to be derived
from the data above are that 7% crossmatched nega-
tive (those who received transplants) and 16% cross-
matched positive. Thus, roughly 7/(16 + 7) = 30% of
these crossmatches came back negative. We use this
value for our first set of simulations, setting the prob-
ability of a crossmatch failing to be a constant 70%.
This 70% expected failure is optimistic (i.e., too low) in
that it ignores the myriad other reasons for match fail-
ures. UNOS currently performs batch myopic matches,
so—for these simulations—we only simulated cross-
match failures. We take additional failure reasons into
account in Sections 7 and 8.

Second, in the UNOS exchange and in others (see.,
e.g., Ashlagi et al. 2012), patients tend to have either
very high or very low sensitization—i.e., there is a very
low or very high probability that their blood will pass
a crossmatch test with a random organ. For highly sen-
sitized patients, finding a kidney is very difficult. Draw-
ing from this and the 70% failure rate derived above,
our second set of experiments samples randomly from
a bimodal distribution: 25% of edges have a low fail-
ure rate (1 —g;) € U[0.0,0.2], while 75% have a high
failure rate (1 — g,) € U[0.8,1.0], such that the overall
expected failure rate is 70%. Third, we systematically
vary the variance of the underlying failure probability
distribution and explore its effect on the behavior of
both matching methods.

4.2. UNOS Results: Failure-Aware Matching Is
Better in Practice

We now simulate probabilistic matching on real data

from UNOS, using that exchange’s cycle length cap
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Figure 3. (Color online) Comparison of the Expected Number of Transplants Resulting from the Maximum Weighted
Matching and Failure-Aware Weighted Matching Methods, on 161 UNOS Match Runs Between October 2010 and

November 2014, with a Constant Edge Success Probability

All UNOS match runs (constant)
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of 3. We performed simulations using both the constant
70% failure rate and the bimodal failure rate. On the
former, we can compute an exact expected value for the
failure-aware matching on each real UNOS matching.
On the latter, we simulated failure probabilities at least
100 times for each UNOS match run.

Figures 3 and 4 show that, in both cases, taking failure
probabilities into account results in significantly more
expected transplants. In the constant probability case,
failure-aware matching yields many more matches than
(or in some cases the same number as) the status quo
of maximum weighted matching. (In cases where the
expected utility of both matching methods was equal,
the matchings with equivalent compositions (i.e., same
number of 2-cycles, 3-cycles, and k-chains) were
returned by both solvers.) The failure-aware matching

performed better when the maximum weighted match-
ing included long chains, a frequent phenomenon in
the UNOS pool (and other fielded exchange pools
in the United States and abroad), as discussed by
Dickerson etal. (2012b), Ashlagi et al. (2012), and Glorie
etal. (2014).

In the bimodal case, failure-aware matching shines,
often beating the maximum cardinality matching by a
factor between 2 and 5, and again never doing worse
in expectation. Here, the failure-aware matching algo-
rithm is able to pick cycles and chains that contain
edges with very high probabilities of success over those
with very low probabilities of success.

Table 1 gives aggregate match data for both the
current UNOS solver and our proposed method on
both the constant and bimodal underlying failure rate

Figure 4. (Color online) Comparison of the Expected Number of Transplants Resulting from the Maximum Weighted
Matching and Failure-Aware Weighted Matching Methods, on 161 UNOS Match Runs Between October 2010 and
November 2014, with Bimodal Edge Success Probabilities (Some Very High, Some Very Low)

All UNOS match runs (bimodal)
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Table 1. Distributional Difference Between Maximum Weighted Matching and Failure-Aware Matching

on Real UNOS Data

Current Ours t-test Wilcoxon signed-rank
Distribution Average Std. dev. Average Std. dev. t-statistic p-value Siegel’s T p-value
Constant 0.52 0.43 0.67 0.50 10.95 <1071 0 <1071
Bimodal 0.51 0.43 1.89 1.79 11.85 <1071 0 <1071

probability distributions. Across all UNOS match runs
using a constant edge failure probability of 0.7, the
failure-aware method results in an expected 0.15 more
transplants per match run over the maximum weighted
matching solver. Using the bimodal distribution, the
failure-aware method returns an expected additional
1.38 transplants per match run. Table 1 gives the results
of both a paired t-test and a Wilcoxon signed-rank
test (a nonparameteric version of the t-test); we ran
both on the expected number of transplants from the
161 paired deterministic and failure-aware optimal
matchings for each of the UNOS match runs to test
if their population means were different. Clearly, the
gains seen under both failure distributions are statisti-
cally significant.

4.3. Distributional Diversity Begets Greater Gains
Section 4.2 showed experimentally that (i) a statisti-
cally significant gain in expected matches occurs under
the consideration of match failure and (ii) a bimodal
underlying failure probability distribution resulted in
more of a gain than a constant underlying failure prob-
ability distribution. We delve deeper into this insight
in this section.

We now investigate the effect that higher variance in
edge failure probabilities has on the overall value of
both matching methods. For this section’s experiments,
we sample from a normal distribution with mean of
0.7 and varying standard deviation. If a sample returns
an illegal failure probability p (i.e., p <0 or p > 1), we
resample from the underlying distribution. In this way,
we expand the underlying distribution from a constant
0.7 toward a more uniform randomness.

Figure 5 shows the aggregate number of expected
transplants (summed over all UNOS match runs
through November 2013) for varying levels of vari-
ance 02, given a standard deviation of ¢, in the under-
lying distribution from which failure probabilities are
sampled. For convenience, we label the constant prob-
ability of 0.7 case as “o = 0.0.” Positive crossmatches
are simulated based on an edge’s sampled probability
of failure.

In the constant probability case, failure-aware match-
ing results in an average expected 18.4% increase in
expected transplants. As the standard deviation of
the underlying distribution increases, so too does this
expected boost: from 18.8% to 28.5%, respectively,

Figure 5. (Color online) Aggregate Additional Transplants
Over All UNOS Match Runs Through November 2013,

for Edge Failure Probabilities Drawn Randomly from
N(u=0.7,0€{0.1,0.2})

All UNOS match runs (unimodal)
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Note. The leftmost point “o = 0.0” represents a constant failure rate
of 70%.

for 0 = 0.10 and o = 0.20, respectively. An increase
in variance also results in the maximum cardinality
matching method frequently missing the highest utility
match by a large margin. For instance, the 80th and 95th
percentiles increase from an additional 59.8% and
154.2% in the constant probability case to 94.6% and
462.9% when o = 0.20. Higher variance results in more
opportunities for the maximum cardinality matching to
contain many matches with an extremely low probabil-
ity of execution (e.g., a 3-cycle with edges that are likely
to fail instead of a smaller 2-cycle with more reliable
edges).

4.4. Robustness to Uncertainty Over True Edge
Failure Probabilities

The previous sections assumed that the true under-
lying failure rate for each edge was known with cer-
tainty—that is, if the optimizer uses a failure rate of
0.41 for an edge e, then in reality that edge fails with
probability 0.41. In reality, any available failure prob-
abilities would be noisy estimates of the true under-
lying failure probabilities. For example, Glorie (2012)
estimate the probability of a positive crossmatch as a
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Table 2. Expected Gain in Number of Realized Transplants When Optimizing Using a
Constant Failure Rate of f’, Given a True Underlying Failure Rate of f, Compared to
Failure-Aware Matching Using the True Failure Rate

Estimated failure rate f’

True rate f 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0 — 0.00 0.00 000 -114 -114 -115 -115 -1.15 -1.15
0.1 0.00 e 0.01 001 -062 -063 -063 -063 -0.63 -0.63
0.2 -0.03 0.00 — 0.00 -031 -030 -030 -031 -030 -0.30
0.3 -0.02 0.01 0.01 — -0.07 -0.07 -0.07 -0.08 -0.07 -0.07
0.4 -0.12 -0.08 -0.07 -0.08 — 0.00 0.00 0.00 0.00 0.00
0.5 -0.17 -0.14 -0.13 -0.14 0.00 — 0.00 0.00 0.00 0.00
0.6 -0.16 -0.14 -0.14 -0.14 0.00 0.00 — 0.00 0.00 0.00
0.7 -0.14 -0.13 -0.13 -0.13 0.00 0.00 0.00 — 0.00 0.00
0.8 -0.09 -0.07 -0.07 -0.07 0.00 0.00 0.00 0.00 — 0.00
0.9 -0.02 -0.02 -0.02 -0.02 0.00 0.00 0.00 0.00 0.00 —

function of a patient’'s CPRA, and fit a probit model
to predict the crossmatch result. They are able to find
a noisy estimate of the underlying failure rate. Using
this motivation (that, in reality, it is possible to find a
reasonable but imperfect estimate of the true underly-
ing failure rate), we now perform a sensitivity analysis
to test our method’s robustness to uncertainty over the
underlying true edge failure rate.

In the following experiments, we vary two failure
rates f, f* €{0.0,0.1,...,0.9}. We use f to refer to the
true (unknown) underlying failure rate for an edge;
similarly, we use f’ to refer to the estimated failure rate
that is given to the optimizer. For example, if f’ =0.41
but f =0.2, then the optimizer uses the failure rate 0.41
to produce a failure-aware matching, but each edge
will fail (i.i.d.) in reality with probability 0.2. We then
measure the number of realized transplants (so, trans-
plants that were achieved after the true failure rate f
is applied) and compare against one of two baselines.
Experiments are performed on the real UNOS match
runs as follows. For each match run, for each true fail-
ure rate f, for each edge, simulate if that edge exists
or does not exist. Then, for each failure rate f’, run
the failure-aware matching algorithm using f’. Receive
credit only for those cycles and portions of chains that
exist given the predetermined failures in accordance
with true rate f. This is done 50 times per match run,
true rate f, and estimated rate f”.

Table 2 compares the performance of failure-aware
matching using f’ to that of failure-aware matching
using f’ = f. For example, using a failure rate of f’ =
0.6 when the true underlying failure rate is f = 0.3
results in an expected 0.07 fewer transplants realized
than using f’ = f =0.3. Intuitively, losses increase as the
distance between f and f’ increases. Experimentally,
there is a large jump in loss when using a failure rate
of f*>0.4if f <0.4, and when using f' <0.4if f >0.4.
This can be explained analytically as follows. Given a
failure probability f, consider the expected utilities of

a 2-cycle ¢, and a 3-cycle ¢5: u(c,) =2(1— f)? and u(c;) =
3(1 = f)*. When f < 1, u(c,) < u(c;), so the optimizer
favors 3-cycles over 2-cycles. When f > %, u(cy) > ulcy),
so the optimizer favors 2-cycles. So, when f and f’
are on different sides of this 1 boundary, the optimizer
will either be incorrectly optimistic—resulting in the
use of too-risky 3-cycles—or incorrectly pessimistic—
resulting in the avoidance of more valuable 3-cycles.

Table 3 uses a different underlying baseline, and
compares failure-aware matching using f” to the sta-
tus quo deterministic matching (which is equivalent
to failure-aware matching using f’ = 0). Here, we see
the 1 boundary expressed even more clearly. When the
true underlying failure rate f is above that boundary,
then failure-aware matching with any failure rate out-
performs deterministic matching. When both the esti-
mated f’ and true f are below the boundary, failure-
aware matching outperforms deterministic matching.
But, when f is below and f’ is above the bound-
ary, the failure-aware matching algorithm is too pes-
simistic and avoids 3-cycles that, in expectation, are
worth using. We note that, in practice, f ~ 0.7 > 1;
thus, these results support the failure-aware matching
method dramatically outperforming the deterministic
status quo under even large differences in estimated
failure rate f’ and true failure rate f.

Next, in Section 5, we construct a solver that is capa-
ble of optimally clearing large exchanges—larger, even,
than those currently available at UNOS or other fielded
kidney exchanges.

5. Building a Scalable Solver to Clear
Failure-Aware Exchanges

Current kidney exchange pools are small, containing
at most a few hundred patients at a time. For example,
so far the UNOS match runs never had pools larger
than 258 patients and 277 donors. However, as kid-
ney exchange gains traction, these pools will grow.
As discussed by Abraham et al. (2007), the estimated
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Table 3. Expected Gain in Number of Realized Transplants When Optimizing Using a

Constant Failure Rate of f’, Given a True Underlying Failure Rate of f, Compared to the
Deterministic Status Quo

Estimated failure rate f’

Truerate f 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0 — 0.00 0.00 000 -1.14 -114 -115 -1.15 -1.15 -1.15
0.1 — 0.00 0.00 0.01 -0.62 -0.63 -0.63 -0.63 -0.63 -0.63
0.2 — 0.03 0.03 002 -028 -027 -028 -0.28 -0.28 —0.28
0.3 — 0.04 0.03 0.02 -0.05 -0.056 -0.056 -0.06 -0.05 -0.05
0.4 — 0.04 0.04 0.03 0.12 0.11 0.11 0.11 0.12 0.11
0.5 — 0.03 0.03 0.03 0.16 0.17 0.16 0.17 0.17 0.16
0.6 — 0.02 0.02 0.02 0.16 0.16 0.16 0.16 0.16 0.16
0.7 — 0.01 0.01 0.01 0.14 0.14 0.14 0.14 0.14 0.14
0.8 — 0.01 0.01 0.01 0.08 0.08 0.09 0.09 0.09 0.09
0.9 — 0.00 0.01 0.00 0.02 0.02 0.02 0.02 0.02 0.02

steady-state size of a U.S. nationwide kidney exchange
is 10,000 patients.

Clearing pools of this size is a computational chal-
lenge. Abraham et al. (2007) showed that the de-
terministic clearing problem is NP-hard. Since the
deterministic clearing problem is a special case of the
failure-aware clearing problem (that is, it is the failure-
aware clearing problem with constant success proba-
bility g =1.0), it follows that the failure-aware clearing
problem is also NP-hard.

Proposition 1. The failure-aware clearing problem is NP-
hard.

To our knowledge, there is no solver that would
scale to the nationwide steady-state size—including
the CMU solver used by UNOS. This solver is based on
the work of Abraham et al. (2007), with enhancements
and generalizations by Dickerson and Sandholm, and
uses integer linear programming (IP) with one decision
variable x, for each cycle c no longer than L (in practice,
L =3), and constraints that state that accepted cycles
are vertex disjoint. For expository ease in the coming
sections, Equation (2) presents that IP model, written
in the context of C(L), the set of all cycles of length at
most L.

max Z u(c)x. s.t. Z x. <1 VoeV (2

ceC(L) c:vec

With specialized branch-and-price IP solving tech-
niques, Abraham et al. (2007) were able to solve the
(3-cycle, no chains, deterministic) problem at the pro-
jected steady-state nationwide scale of 10,000 patients.

In the current UNOS solver, chains are incorporated
by adding from the end of each potential chain a
“dummy” edge of weight 0 to every vertex that rep-
resents an altruist. Chains are generated in the same
fashion as cycles, and look identical to cycles to the
optimization algorithm—with one caveat. Recall that
chains need not be executed atomically, and thus, in

practice, the cycle cap of 3 is not applicable to chains.
Because of the removal of this length restriction, this
approach does not scale even remotely to the nation-
wide level—failing in exchanges of sizes as low as
200 in the deterministic case (as shown by Dickerson
etal. 2012b).

In this section, we augment the current UNOS
solver to solve the failure-aware clearing problem on
exchanges with edge failure probabilities. We first show
that a powerful tool used in the current solver—the
technique used to upper bound the objective value—
is no longer useful. We show how to adapt the cur-
rent solver’s lower bounding technique to our model.
We then significantly improve the core of the solver,
which performs column generation, to only consider
cycles and chains that are useful to the optimal failure-
aware matching, and provide failure-aware heuristics
for speeding up the column generation process.

5.1. Why We Cannot Use the Current UNOS Solver
In integer programming, a tree search that branches
on each integral decision variable is used to search
for an optimal solution. At each node, upper and lo-
wer bounds are computed to help prune subtrees and
speed up the overall search. In practice, these bounding
techniques are critical to proving optimality without
exhaustively searching the space of all assignments.

5.1.1. Computing a Good Upper Bound Is Hard. The
current kidney exchange solver uses the cycle cover
problem with no length cap as a heuristic upper bound.
This unrestricted clearing problem is solvable in poly-
nomial time by encoding the poolinto a weighted bipar-
tite graph and computing the maximum weighted per-
fect matching (see reduction by Abraham et al. 2007).
This is useful in practice because the unrestricted bound
often matches the restricted (e.g., |L| < 3) optimal objec-
tive value. Unfortunately, for the failure-aware version
of this problem, Proposition 2 shows that computing
this bound is NP-hard.
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Proposition 2. The unrestricted failure-aware maximum
cycle cover problem is NP-hard.

Proof Sketch. We build on the proof of theorem 1
from Abraham et al. (2007), which shows that decid-
ing if G admits a perfect cycle cover containing cycles
of length at most 3 is NP-complete. They reduce from
3D-matching. All of the cycles in the constructed wid-
gets in their proof are of length at least 3. Because of
edge failures, a perfect cover that uses only 3-cycles has
higher utility than any other cover, since each edge in
a 3-cycle is worth more than a vertex in a k-cycle for
k > 3 because of the all-or-nothing execution of cycles
in a world with edge failure. The reduction of Abraham
etal. (2007) has the property that there is a perfect cover
with only 3-cycles if and only if there is a 3D-matching.
Determining this is NP-complete, and thus the search
problem is NP-hard. O

Driven by this hardness result, our new solver can
use one of two looser upper bounds, solving the unre-
stricted clearing problem on a graph G’ = (V, E’) with
different edge weights or failure probabilities. In the
(standard) setting where chains are executed partially
until their first edge failure, the solver sets g, =1, for
each e € E—that is, it solves the deterministic unre-
stricted clearing problem. Our experimental results in
this paper assume partial execution of chains. For poli-
cies that allow chains to execute if and only if all edges
in the chain exist, we set w, = w,q,, then q, =1, for each
e € E, and solve the unrestricted clearing problem on
that graph.

5.1.2. Computing a Good Lower Bound Is Not Hard.
The current UNOS solver uses the 2-cycle maximum
matching problem (which is equivalent to the deter-
ministic clearing problem for L = 2) as a primal
heuristic, or lower bound. The new solver uses the
failure-aware version of the 2-cycle maximum matching
problem as a primal heuristic during the branch-and-
price search. Solving this problem is still in polynomial
time, as stated in Proposition 3.

Proposition 3. The failure-aware clearing problem with
cycle cap L =2 is solvable in polynomial time.

Proof. Given a directed compatibility graph G =(V,E),
construct an undirected graph G’ = (V, E’) such that an
edge exists between two vertices in G’ if and only if
there exists a 2-cycle between those vertices in G. Then,
set the weight of every edge ¢’ = (v;,v;) in G’ to

We =4 0,;,0)) q(v/,v,-)(w(v[,v/-) + w(v/-,v‘))-

Now find the maximum weighted matching on G/,
which can be done in polynomial time by Edmond’s
maximum-matching algorithm (1965).

5.1.3. Incremental Solving of Very Large IPs. The
number of decision variables in the integer program
formulation of the clearing problem grows linearly
with the number of cycles and chains in the pool.
Unfortunately, the number of cycles grows polynomi-
ally in the cap L, and the number of chains grows expo-
nentially! In fact, on pools generated using the state-of-
the-art kidney exchange generator from Saidman et al.
(2006), pools of size 5,000 containing no chains already
contained nearly half a billion cycles. Including chains
makes the full integer program impossible to store in
memory.

Toward this end, the current UNOS solver uses an
incremental formulation called column generation to
bring only some variables into the search tree at each
node. The basic idea behind column generation is to
start with a reduced model of the problem, and then
incrementally bring in variables (and their constraints)
until the solution value of this reduced model is prov-
ably the solution value of the full (implicitly repre-
sented) model. This is done by solving the pricing prob-
lem, which associates with each variable a real-valued
price such that, if any constraint in the full model for
a variable c is violated, then the price of that variable
is positive. In our case, the price of a cycle or chain ¢
is just the difference between the expected utility u(c)
and the dual value sum of the vertices in that cycle or
chain.

When no positive price cycles exist, we have proved
optimality at this node in the search tree. Proving this
is hard, since the solver might have to consider each
cycle and chain. We now present a method for “cutting
off” a chain after we know its expected utility is too
low to improve the reduced problem’s objective value.

5.2. Iterative Generation of Only Potentially
“Useful” Chains

Given a k-chain ¢ = (v, vy, ..., v;), with v, an altruist,

we show a technique for curtailing the generation of

additions to ¢ (while maintaining solution optimality).

Consider the (k + 1)-chain ¢’ = ¢ + {v,; }. Then the addi-

tional utility of this chain over c is just

k i-1 k
u(c’)—u(c)= (Z(l —q)i] Tg;+k+D] ] ql-)
i=1 i=0 i=0
k-1 / i-1 k-1
- (le(l —qf)iI:)[q,- +kl:)[qi)
k-1 ] k-1 k
=(1—-gk[ Ja:i—k] [a:+&k+D] Ja
i=0 i=0 i=0
k k-1
=k+D] [g:i—ak] 4
i=0 i=0

k k k
=k+1)] Jq.-k] Ja:=] 4
i=0 i=0 i=0
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That is, the additional utility is just the probability of
¢’ executing perfectly from start to finish (times the
weight of the new edge, if w; #1).

Now, assume we are given some maximum success
(minimum failure) probability g,,,, of the edges left in
the remaining total pool of patients V' (so for G=(V,E),
the remaining pool is V' = V'\¢). Then, an upper bound
on the additional utility of extending c to an infinitely
long chain ¢ is just the geometric series:

0 j k-1 o ]
u(coo) - M(C) < Z qi I—[ Omax = l—[ qi (Z l_[ qmax)'

j=k i=0  i=k i=0

k-1

Since g, < 1, this converges to

qmax

H qi. 3)

u(cm) - u(c) koo 7 - 1— q
max j=(Q

An upper bound on the expected utility of a (possi-
bly infinite) chain ¢’, extended from some base k-chain
¢ =(vy,vy,...,7), is given in Equation (3) above. We
are interested in using this computed value to stop
extending c.

Let the dual value of a vertex v be d,. Furthermore,
let d,;, be the minimum dual value of any vertex in
V' =V —c. Then a lower bound on the “cost” of using
this extended chain ¢’ is given by d,,, + > d.

By taking the optimistic upper bound on the utility
of an infinite extension ¢’ and the lower bound on the
“cost” of using c’, a criterion for ¢’ not being useful is

k
( B ]_[q ) +u(c)+l—( +Zd,.) <0. (4
1= Gmax =0 i=0
Here, | is the utility derived from the final donor in a
chain donating his or her kidney to the deceased donor
waitlist. This is set by each individual kidney exchange.

Note that the sum of any finite subsequence of the
infinite geometric series is less than the sum of the
infinite series. Then, the first segment of Equation (4)
can be only lower for any finite extension of c. Thus, if
the inequality holds for the infinite extension, it must
also hold for the finite extension.

Proposition 4. Given a k-chain c, if the infinite extension
c® is not promising (i.e., Equation (4) holds), then no finite
extension is promising, either.

We use Proposition 4 to stop generating exten-
sions of chains during our solver’s iterative chain (col-
umn) generation routine. We incrementally maintain
the expected utility of the chain u(c) and the sum
of the dual values of vertices in that chain, and compute
the infinite series’ convergence of the infinite chain
whenever an extension is considered. If Equation (4)
holds, from Proposition 4, we know no finite (or infi-
nite) extension of c¢ can have positive price, and the
solver cuts off generating additions to c.

5.3. Heuristics for Generating Positive Price
Chains and Cycles

During the column generation process, the optimizer
iteratively brings positive price cycles and chains into a
reduced linear program (LP). Once no cycles or chains
outside the reduced LP have positive price, where the
price of a cycle/chain c is defined to be u(c) — X ,c. 4,
we can determine optimality from the reduced LP for
the full LP.

In practice, the order in which positive price cycles
and chains are brought into the reduced problem
drives solution time. One approach is to try to generate
those cycles and chains with lowest price. In our solver,
we heuristically order the edges from which we start
cycle or chain generation toward this end.

5.3.1. Ordering the Cycle Generation. For cycles, where
v is a patient-donor vertex and v’ is the vertex in v’s
outgoing neighbors with maximum failure-aware edge
weight, we sort in descending order of v:

Vy = q;nq(v,v’)w(v,v’) - dv'

Here, g is the average success probability of all incom-
ing edges to v. Note that, for each vertex v, the
30,0 W0, term can be computed exactly once (at
cost O(|V]?)), since these values do not change. Then,
at each iteration of column generation, we perform an
O(|V|log|V|) sort on the difference between this term
and the current dual values.

Proposition 5. For any nonaltruist v and next step v’, such
that (4, o)W, ) — d,) < 0, we need not initiate cycle gener-
ation from v (which still guarantees all cycles are generated).

Proof. A cycle c involves at least two vertices, includ-
ing v. If v has a nonpositive dual-discounted weight,
then at least one other vertex v’ in the cycle must have
positive dual-discounted weight. If not, the cycle will
have nonpositive price and will not be considered in
the column generation. Starting a search from v’ will
generate c.

5.3.2. Ordering the Chain Generation. For chains, where
a is an altruist and v is the vertex corresponding to the
initial edge from that altruist, we sort in descending
order of v:

Va,0 =9@a,0)Wa,0) ~ dﬂ'

The intuition here is that chains with a high utility
outgoing edge (at low cost, from d,) are more likely to
be included in the final solution than those with low
initial utilities. Note that we must consider all first hops
out of all altruists, including those such that v, , < 0.
Because of this, each iteration of column generation
requires an O(|A||V|log(|A||V])) sort. With |A| small,
as in the UNOS exchange, this is an allowable cost.
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6. Scalability Experiments

In this section, we test the ability of our new solver on
kidney exchange compatibility graphs that are larger
than current fielded kidney exchange pools, with an
eye toward the future where kidney exchanges will be
larger. We use data generated by the current state of
the art kidney exchange instance generator by Saidman
et al. (2006), augmented to include altruistic donors.
These graphs are significantly denser than current
kidney exchange pools. For a discussion on this, see
Ashlagi et al. (2012) and Dickerson et al. (2012b). We
test in the static (that is, myopic batch matching) setting
here; in the next section, we expand to dynamic match-
ing. For the experiments in this section, we assume
a constant failure probability of 0.7 for each donor-
patient edge.

We compare our novel solver against IBM ILOG
CPLEX 12.2 (2010), a recent version of a state-of-the-art
integer linear programming solver. Since CPLEX does
not use branch-and-price, it must solve the full integer
program (with one decision variable per possible cycle
and chain).

Table 4 shows runtime and completion results for
both solvers on graphs of varying size. Each graph has
|V| patient-donor pairs and 0.1|V| altruistic donors.
For example, a row labeled |V| =50 corresponds to
a graph with 50 patient-donor pairs and 5 altruists.
We generated 128 such graphs for each value of |V].
Each solver was allocated 8 GB of RAM and 1 hour of
solution time on Blacklight, a large cc-NUMA shared-
memory supercomputer at the Pittsburgh Supercom-
puting Center. (Blacklight was used solely to par-
allelize multiple runs for experimental results; our
solver does not require any specialized hardware. In
fact, the current version of our solver that runs the
weekly matches at UNOS runs on commodity hard-
ware.) CPLEX was unable to solve instances of size 100
(except once) in under an hour, while our solver was
able to solve (at least some) instances of size 900.

To test how much speed was added by each of
the improvements in this paper to the current UNOS
solver, we deactivated the cycle and chain generation
ordering heuristics (Section 5.3), as well as the solver’s
ability to cut off chain generation after the initial por-
tion of a chain has been proven not to be in an opti-
mal match (Section 5.2). Interestingly, removing the
cycle and chain ordering heuristics did not noticeably
affect the runtime or number of instances solved by
our solver. Their low impact on performance is caused
by the weak upper bounding performed during the
IP solve; since the bounding is weak, often optimality
must be proved by considering all (failure-discounted,
possibly “good”) chains and cycles, as opposed to
being proved via bounding in the search tree. We
believe these ordering heuristics, or ones like them,
will hold greater merit when better bounding tech-
niques are developed in the future. However, turning
off the solver’s ability to reason about the maximum
additional expected utility of a chain did significantly
affect overall runtime and number of instances solved;
in fact, without this technique, only a single instance
with 500 patient-donor pairs finished within the one
hour time limit.

Table 4 also lists runtime results for those instances
that did complete. When a solver was able to solve an
instance within an hour, the solution time was typically
quite low. This is a function of the upper and lower
bounds becoming tight early on in the search tree.
Overall, our method of incrementally generating cycles
and chains results in dramatically increased comple-
tion percentages and lower runtimes than CPLEX.

7. A Model for Experimental Dynamic
Kidney Exchange

In this section, we explore failure-aware matching in

the context of dynamic kidney exchange. Kidney ex-

change is a naturally dynamic event, with patients,

paired donors, and altruists arriving and departing

Table 4. Scaling Results for Our Method versus CPLEX, Timeout of 1 Hour, Reported Times in Seconds

CPLEX Ours Ours without chain curtailing

4 Solved Time (solved) Solved Time (solved) Solved Time (solved)
10 127/128 0.044 128/128 0.027 128/128 0.052
25 125/128 0.045 128/128 0.023 128/128 0.049
50 105/128 0.123 128/128 0.046 125/128 0.057
75 91/128 0.180 126/128 0.072 123/128 0.066
100 1/128 1.406 121/128 0.075 121/128 0.071
150 0/128 — 114/128 0.078 95/128 0.098
200 0/128 — 113/128 0.135 76/128 0.096
250 0/128 — 94/128 0.090 48/128 0.133
500 0/128 — 107/128 0.264 1/128 0.632
700 0/128 — 115/128 1.071 0/128 —
900 0/128 — 38/128 2.789 0/128 —
1,000 0/128 — 0/128 — 0/128 —
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Table 5. Reasons for the Arrival and Departure of Vertices and Edges

Vertex —

Edge — Vertex/Edge +

Transplant, this exchange

Transplant, deceased donor waitlist
Transplant, other exchange (“sniped”)
Death or illness

Altruist runs out of patience

Bridge donor reneges

Matched, positive crossmatch
Matched, candidate refuses donor
Matched, donor refuses candidate
Pregnancy, sickness changes HLA*

Normal entrance

*We do not consider edge removal due to pregnancy/sickness because there are a variety of ways in
which pregnancy and sickness can affect the immune system.

the pool over time. Section 4 enumerated some of
the reasons we have seen in our experiences with the
UNOS nationwide exchange. Formally, a dynamic kid-
ney exchange can be explained by the evolution of its
graph—that is, the addition and removal of its vertices
and edges.

Table 5 formalizes the evolution of a compatibility
graph over time. The only vertex and edge additions
to the graph come in the form of new patients and
donors arriving over time. Edges are removed because
of, e.g., crossmatch failures or donor refusals. Vertices
are removed if the patient or her respective donor must
leave the pool, for reasons ranging from a successful
transplantation to patient expiration.

Figure 6 provides a snapshot of a compatibility
graph over three points in time. The pool at time ¢ con-
sists of unmatched patients and donors from time f -1,
any new pairs and altruists entering the pool, and any
vertices who were waiting for a successful match, but
whose match failed (because of, e.g., a positive cross-
match). Note that these patients are still formally in the

pool, just marked temporarily “inactive” until the sta-
tus of their pending transplant is known. At each time
period t, vertices leave the pool permanently through
any of the reasons in the first column of Table 5, or
are temporarily marked “inactive” through a pending
match.

7.1. Failure-Aware Matching in Dynamic
Kidney Exchange

We now present experimental results on dynamic kid-
ney exchanges, taking transplant success probabilities
into account. We built a simulator that mimics the evo-
lutionary diagram of Figure 6, and used parameters
learned from our work with UNOS. We vary the num-
ber of patient-donor pairs and altruists entering the
pool over time, and match on a weekly basis for 24
weeks. We use the bimodal distribution of failure prob-
abilities described in Section 4, as it more accurately
represents current kidney exchanges. The deceased-
donor waitlist donation at the end of a chain is counted
in the expected number of transplants.

Figure 6. (Color online) The Evolution Dynamics of a Kidney Exchange
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Figure 7. Expected Number of Transplants per Week for Graphs of Different Sizes
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Note. From left to right, five pairs and one altruist, 20 pairs and four altruists, and 25 pairs and five altruists (on expectation) appear every

week.

In our experience with UNOS, typically the time
between a match offer and successful transplant is
about 8 weeks. Thus, whenever a match is offered in
our simulator, involved patients and donors become
inactive in the pool but can still be removed from the
match for a variety of reasons (“sniping” by another
exchange, patient illness, etc.). Of the 610 patients who
had ever been listed in the UNOS exchange program
when these experiments were run (over a period of
106.7 weeks), 192 left for reasons other than receiving
a kidney through UNOS. Thus, for each time period, a
vertex has a probability of 1 — e(In418/610/1067 ~ 0,003536
chance of leaving (for a non-UNOS transplant reason).
As in real kidney exchange, if a cycle fails, or part of
a chain fails, then the affected patients and donors are
returned to the pool. However, if the reason for failure
was that patient-donor pair’s exit from the exchange,
that vertex is removed permanently, along with all inci-
dent edges. Results from crossmatches that were done
as part of a failed cycle or chain are maintained in the
pool; if a crossmatch was negative, then future cross-
matches performed on that edge will also be negative.
We assume that all crossmatches are done simultane-
ously for cycles and incrementally from the initiating
nondirected donor until the first failure for chains.

Figure 7 shows the number of expected transplants
per week on graphs of three different sizes, each gener-
ated from the Saidman et al. (2006) distribution of com-
patibility graphs. (In the following section, we generate
graphs from the UNOS distribution.) In expectation, 5,
20, or 25 pairs and 1, 4, or 5 altruists appear weekly in
each of the three graphs. Failure-aware matching typi-
cally results in roughly twice as many expected trans-
plants than maximum cardinality matching. The slight
increase in weekly expected matches for both matching
techniques is due to the buildup of unmatched patient-
donor pairs and altruists in the pool over time; larger
pools typically admit larger matchings.

Figure 8. Expected Aggregate Transplants Over 24 Weeks,
for Increasing |V| (and |A| =0.1|V])
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Figure 8 gives aggregate results for total number of
expected transplants over 24 weeks, for graphs of vary-
ing size, for both failure-aware and maximum cardi-
nality matching. Graphs have 10% as many altruists
on top of the patient-donor pool. The gap between
failure-aware and non-failure-aware matching widens
as the activity level of the dynamic kidney exchange
increases. For our largest graphs, failure-aware match-
ing improved expected transplants by a factor of three
over maximum cardinality matching. In the following
section, we will explore how these global efficiency
gains change as we prioritize highly sensitized patients
and on graph distributions that more closely mimic
presently fielded exchanges.

8. Balancing Efficiency and Fairness in

Failure-Aware Kidney Exchange
So far, we have motivated a move to failure-aware
kidney exchange optimization from a global efficiency
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perspective. One might ask how this affects fairness.
For example, a proposed transplant to a highly sensi-
tized patient might intuitively fail with higher prob-
ability than one to a patient of low sensitization due
to coupled health issues (e.g., chronic illness) in the
former, and thus the failure-aware approach could
disfavor highly sensitized patients. While data from
the UNOS kidney exchange (Kidney Paired Dona-
tion Work Group 2013) do not show a correlation
between postmatch failure and CPRA, data from other
exchanges do show such a correlation (e.g., Ashlagi
et al. 2011, Glorie 2012). Regardless, prioritizing of
highly sensitized patients is currently done explic-
itly or implicitly in fielded kidney exchanges, so we
address that here.

In general, striking a balance between fairness and
efficiency in kidney exchange is an increasingly impor-
tant line of work combining medical policy, economics,
and optimization. Roth et al. (2005b) define a fair mech-
anism to be one that equalizes, to the greatest extent
possible, patients’” chances of getting a match. While
this is almost certainly too strict a fairness criterion to
be fielded in practice, the notion of prioritizing some
patients—possibly at the cost of overall efficiency in the
exchange—is common (and is performed in the cur-
rent UNOS exchange as well). Recent and parallel work
by Bertsimas et al. (2011, 2012) and by Caragiannis
et al. (2012) studies the price of fairness, a measure of
the trade-off between fairness and efficiency, in general
resource allocation problems. Hooker and Williams
(2012) provide general Rawlsian equity optimization
models that maximize the minimum utility of any one
agent or set of agents. Bertsimas et al. (2013) design a
realistic method for maximizing, given a set of user-
defined fairness constraints, some notion of efficiency
in the deceased-donor kidney transplantation problem,
where patients on a waiting list are allocated cadaveric
kidneys. In general, accurate quantification of the theo-
retical and empirical advantages and disadvantages of
various fairness definitions would be of great value to
policymakers in the kidney exchange community.

In this work, we adapt a fairness criterion from
Dickerson et al. (2014b), who investigated the price of
fairness in kidney exchange. They proved analytically
that the price of fairness in a static, deterministic, sim-
plified model of kidney exchange is low. In the rest of
this section, we show (experimentally) that the price
of fairness in both static and dynamic failure-aware
models is also typically low. More importantly, we
show that failure-aware matching under well-chosen
fairness criteria results in more expected transplants
to both the global pool and highly sensitized patients
than maximum cardinality matching. We conclude that
there is an enormous “price of using the wrong model”
that is potentially more harmful to all patients.

8.1. Weighted Fairness as a Prioritization Scheme
for Sensitized Patients

One simple method to emphasize a certain class of
patient-donor pairs—for us, those in the set of highly
sensitized vertices Vy—is to increase the weight of
edges with a sink in V. This definition generalizes
the policy UNOS currently applies to highly sensitized
patients in the fielded kidney exchange, where incom-
ing edges to patients above a certain CPRA threshold
are given a positive constant additive weight increase.
We adopt a parameterized form of this rule here.

To implement this rule, Dickerson et al. (2014b) build
on the standard kidney exchange integer programming
formulation and rewrite the objective as follows:

max Z va(0)x,.
C

Here, v,(c) is the value of a cycle or chain ¢ (either
the weight in the deterministic model or the expected
utility in our failure-aware model) such that the weight
of each edge e € ¢ is adjusted by some reweighting
function A: E = R.

A simple example reweighting function is multi-
plicative:

AB(e) = {(1 +pB)w, ifeendsin Vy,

w, otherwise.

Intuitively, for some f > 0, this function scales the
weight of edges ending in highly sensitized vertices by
(1 + B). For example, if B = 0.5, then the optimization
algorithm will value edges that result in a highly sensi-
tized patient receiving a transplant at 50% above their
initial weight (which may then be discounted by other
factors like failure probability and chain position, as in
our paper’s current model).

For any M € Jl, let M’ be the matching such that
every cycle ¢ € M has augmented weight v, (c)—that s,
M’ is the same set of cycles included in the initial
matching M, only with utilities associated with those
cycles in accordance with reweighting function A. Then
define the weighted fairness rule u, in terms of the util-
itarian rule u applied to the augmented matching M’,
such that u, (M) = u(M’). Thus, the clearing problem is
rewritten as finding M* = argmax,,_, u,(M).

In the rest of this section, we explore the effect that
this weighted fairness rule has on the expected number
of transplants performed in the pool as a whole and
by highly sensitized patients in V;, under a variety of
modeling assumptions.

8.2. Experiments in the Static Setting

We begin by studying the weighted fairness rule in
the context of static kidney exchange. We do this both
on the 161 individual UNOS match runs to date and
on generated graphs that mimic the UNOS graphs.
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The generator runs by loading all pairs and altruistic
donors that have ever been present in the UNOS pool
into a set of vertices V, then drawing with replace-
ment vertices from that pool and running the UNOS
edge existence algorithm on the sampled vertices to
create a compatibility graph. We test these real or sam-
pled graphs under three probability distributions: con-
stant and bimodal as above, as well as a differently
distributed bimodal family that draws failure proba-
bilities in accordance with those rates published by
Ashlagi et al. (2011). Critically, this last distribution
correlates edge failure rate with patient CPRA; incom-
ing edges to highly sensitized patients are much more
likely to fail than incoming edges to the rest of the pool.
Specifically, they state that patients with a CPRA above
75 have a crossmatch failure probability of 0.5, while
those with lower CPRA values (reported in ranges
[0-24], [25-49], and [50-74]) have much lower probabil-
ities of crossmatch failure (0.05, 0.2, and 0.35, respec-
tively). They also experiment with an additional addi-
tive exogenous failure rate varied between 0 and 0.16;
we use 0.08 in our experiments.

8.2.1. Constant Failure Rate. We begin by assuming
that every edge fails with the same constant probabil-
ity, as in previous sections. This assumption, while not
likely to hold in practice, is easily parameterized and
allows us to explore the differences in models as match-
ings become less reliable. Different exchanges have dif-
ferent failure rates, and this exploratory analysis might
serve as a useful tool to quantify the marginal gains of
decreasing edge failure rates.

Figure 9 compares the weighted fairness rule u,
applied to the failure-aware model against the utili-
tarian rule applied to the deterministic model, which

computes a maximum cardinality disjoint cycle cover
without regard for edge failure. The left-hand panel
of Figure 9 shows that the efficient failure-aware
matching always results in at least as many (typically
more) expected transplants as the efficient determin-
istic matching. However, interestingly, even matchings
under the fair rule u, in the failure-aware model often
result in significant overall gains when compared to
the utilitarian deterministic matching. The right-hand
panel of Figure 9 shows that even the fully efficient
matching rarely results in a loss of highly sensitized
transplants, and that even slightly prioritizing sensi-
tized patients results in large gains (at low cost to
global efficiency).

For example, for g = 1.0 (that is, when highly sensi-
tized patients are valued twice as much as lowly sensi-
tized patients), we see a drop of only a couple of per-
centage points of expected transplants when there is 70
probability of edge failure. This is countered by a very
large (over 30%) gain in the expected number of highly
sensitized transplants. In fact, when the probability of
edge failure is at least 45%, valuing highly sensitized
transplants at 11x (8 = 10.0) that of a lowly sensitized
patient results in more expected total transplants than
deterministic matching that does not consider fairness.

Also, we see that efficient failure-aware match-
ing almost always results in more expected sensi-
tized transplants than deterministic matching, with
the exception of a small relative drop at failure rates
around 35%-45%. This can be explained by compar-
ing, given a failure probability p, the relative expected
utilities of a 2-cycle ¢, (u(c,) =2(1 - p)?) and 3-cycle
c5 (u(c;) = 3(1 = p)®). When p < 1, u(c,) < u(cs), so
the optimizer favors 3-cycles over 2-cyles. When p > 3,
u(c,) > u(cs), so the optimizer favors 2-cycles. Highly

Figure 9. (Color online) Percentage Change in Expected Number of Transplants (Left) and Sensitized Transplants (Right)
for Actual UNOS Match Runs Using Failure-Aware Matching—Possibly with Fairness Constraints—Instead of Maximum

Cardinality Matching
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Figure 10. (Color online) Percentage Change in Expected Number of Transplants (Left) and Sensitized Transplants (Right)
for Generated UNOS Match Runs Using Failure-Aware Matching—Possibly with Fairness Constraints—Instead of Maximum

Cardinality Matching

UNOS generator, VI = 250 (constant)

o—e Failure-aware

+30 | = Max cardinality
--B=1
— B=2
-- B=5

+20

+10

Expected transplants (%)

0 0.2 0.4 0.6 0.8 1.0
Failure probability

UNOS generator, [V| =250 (constant)
+100 T T T T

+80
+60
+40

+20

Expected sensitized transplants (%)

0 0.2 0.4 0.6 0.8 1.0
Failure probability

Note. The x axis varies constant edge failure probability from zero to near one.

sensitized patients are often matched in 3-cycles; intu-
itively, if a highly sensitized pair’s donor can donate
to another pair, it is more likely that this pair will not
be able to connect back to the highly sensitized pair
directly (by virtue of that initial pair being highly sen-
sitized and thus having low in-degree) via a 2-cycle
but will rather connect back through a lowly sensitized
pair via a 3-cycle). So, for p < 1, failure-aware gains are
only realized by rearranging the low-probability tails
of chains into 2- and 3-cycles, while for p > %, failure-
aware optimization may start to cannibalize 3-cycles
(that likely contain highly sensitized pairs). Empiri-
cally, this is only an issue for p € (},0.45]; once p > 0.45,
the efficient objective’s gains outweigh these losses.
Furthermore, we see that a small prioritization (even
B = 1) results in both global and sensitized gains even
forp e (%, 0.45] (and for other values of p).

This general behavior is supported in Figure 10,
which shows the same experiments on generated data
that mimic the UNOS distribution, for pools of size
250—roughly the size of the current UNOS pool. We
include these results because, in Section 8.3, we run
dynamic experiments on data that mimic the UNOS
pool (unlike the results in Section 7, which used the
Saidman et al. 2006 generator). The similarity of Fig-
ures 9 and 10 serves as validation of the simulator.

It may be difficult to accurately estimate failure prob-
abilities on edges in practice. Indeed, in extreme cases,
it may even be deemed unethical to allow vastly dif-
ferent failure probabilities to be included in the opti-
mization process, as the probabilities act as a prior-
itization tool. As these experiments show, one could
simply set all of the probabilities in the optimization
to be equal in order to not disfavor patients with high

failure probabilities. Even with this extreme approach,
the failure-aware framework strikes good endogenous
trade-offs between short chains, long chains, short
cycles, and long cycles—unlike the current determinis-
tic approach.

8.2.2. Bimodal Failure Rate. We now consider the
weighted fairness rule in the static setting with
bimodal failure probabilities. We will refer to the prior
bimodal failure distribution derived in Section 4, where
edge failure rates are not correlated with patient CPRA,
as the “UNOS Bimodal” distribution. We also perform
experiments on a distribution derived from published
failure rates from a different exchange, the Alliance for
Paired Donation (APD), where edge failures are corre-
lated with patient CPRA (Ashlagi et al. 2011). We refer
to this distribution as “APD Bimodal.” This difference in
correlations could be due to highly sensitized patients
being less likely to find a match outside of the exchange
(e.g., on the deceased-donor wait list or another
exchange) but more likely to have a match fail because of
medical reasons such as crossmatch incompatibility—
whereas an easy-to-match patient might quickly find
a living donor elsewhere but be less likely to have a
match fail for medical reasons. UNOS has a slower
matching cadence than some other exchanges like the
National Kidney Registry (NKR), which matches when-
ever the underlying compatibility graph changes, so
easily matched patients may be “sniped” by such faster-
moving exchanges. By lowering these nonmedical rea-
sons for failure (e.g., by merging all exchanges into a sin-
gle program to reduce interexchange competition), the
overall failure rate for highly sensitized patients would
probably become higher than that of other patients.
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Figure 11. Change in the Expected Number of Transplants on Average for Actual UNOS Match Runs When Using
Failure-Aware Matching Instead of Maximum Cardinality Matching, Assuming Bimodal Edge Failure Rates Derived
from UNOS (Left) and APD (Right)
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Figure 11 shows expected gains in both the num-
ber of overall transplants (dashed line) and sensitized
transplants (dotted line) relative to a baseline of deter-
ministic matching (solid line). The expected number
of failure-aware overall and highly sensitized trans-
plants are compared against the expected number
of deterministic overall and highly sensitized trans-
plants, respectively, as the fairness factor g is increased
from 0 (fully efficient matching) to 10 (highly biased
matching).

Immediately visible is that, when failure rates are
not correlated to CPRA, the gains seen by failure-aware
matching are quite large across the board. This aligns
with our Saidman-generated results from Section 7, as
well. However, when failure rates are highly correlated
with patient CPRA, the situation becomes more deli-
cate. Failure-aware matching without fairness consid-
erations does result in a large gain in overall expected
transplants, but harms highly sensitized patients. We
can identify a “sweet spot” that balances these con-
flicting objectives; empirically, this is approximately
when § € [2,4]. When § is toward the lower end of this
interval, the loss in marginalized transplants is zero
while the gain in global expected transplants is posi-
tive (approximately 10%). When f is toward the higher
end of this range, the global gain in transplants is zero
while the gain in marginalized transplants is positive
(approximately 25%). Within the interval, we realize
gains in both objectives—a clear win.

As in the constant failure probability case, Figure 12
shows similar results on generated UNOS compatibil-
ity graphs, under both failure rate distributions, for
| V| =250. This provides validation for our simulator. In
the rest of the section, we further explore the correlated

failure rate setting in the realistic dynamic kidney
exchange simulator presented in Section 7 using these
equally realistic compatibility graphs, and show that
this same balance of fairness and efficiency can be
struck so that both global efficiency and the expected
number of transplants to highly sensitized patients
increases.

8.3. Experiments in the Dynamic Setting

We now continue our exploration of the correlated
failure probability case into a dynamic model. This is
important because, although we showed that a balance
can be struck between efficiency and fairness in the
static case such that failure-aware matching results in
gains in both objectives, it is possible that this balance
comes at the cost of matching “easier” hard-to-match
pairs in the now and leaving the “hardest” hard-to-
match pairs for later. We show that this is not the case.
Specifically, the same winning balance can be struck in
the dynamic setting. (In the interest of space, we do
not include experiments in the noncorrelated bimodal
failure case, because even failure-aware matching with-
out fairness considerations results in large increases in
both global and marginalized transplants over time. In
this sense, the experiments in this section on the corre-
lated APD distribution give a conservative estimate of
the gains seen by failure-aware matching in dynamic
kidney exchange.)

We perform experiments in the same dynamic model
as Section 7, only this time using the realistic UNOS
graph generator validated above. We vary arrival rates
over 24 time periods with {12, 16, ..., 32} pairs or altru-
istic donors arriving per time period, as sampled from
the real pairs and altruists. Tables 6 and 7 show the
median overall absolute and percentage gains and
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Figure 12. Change in the Expected Number of Transplants on Average for Generated UNOS Match Runs When Using
Failure-Aware Matching Instead of Maximum Cardinality Matching, Assuming Bimodal Edge Failure Rates Derived

from UNOS (Left) and APD (Right)
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losses in number of transplants and number of sensi-
tized transplants, respectively, aggregated over all time
periods by failure-aware matching for g € {0,1,...,5}
compared against deterministic matching.

Mirroring the static experiments above, we see that
for low values of §, failure-aware matching results
in global gains and marginalized losses. However, as
above, for f = 2, a winning balance is struck, with

nonnegative gains in expected overall transplants and
significant gains in number of highly sensitized trans-
plants. Perhaps most excitingly, for higher values of §,
the number of highly sensitized transplants increases
markedly (reaching +20%-+40% over deterministic
matching for higher arrival rates), while the overall
effect on global efficiency is negligible. In reality, kid-
ney exchanges are often seen as a “last hope” for

Table 6. Gains in Expected Number of Transplants Overall, for Increasing Values of Fairness  and for Different Arrival Rates

[V| =300

[V] =400 [V] =500 V] =600 [V] =700 [V] =800

Gain (%) Gain (%) Gain (%) Gain (%) Gain (%) Gain (%)
Efficient +0 (0.0) +5 (5.9) +1 (1.9) +2 (2.5) +9 (7.1) +5 (3.6)
Fair, =1 +2 (4.2) +5 (6.7) +1 (1.0) +8 (8.1) +8 (6.2) +11 (7.3)
Fair, p =2 +0 (0.0) +3 .1 +0 (-1.3) +3 (2.4) +2 (1.8) +5 (3.4)
Fair, =3  +2 (4.3) -1 (-2.1) -1 (-1.1) -1 (-1.3) +3 (2.8) +2 (1.5)
Fair, p = 4 +2 4.3) +2 (2.5) +2 (2.5) -1 (-1.3) +1 (0.9) +3 (2.3)
Fair, =5  +0 (-0.1) +1 (2.0) +3 (4.0) +0 (-0.5) -1 (-0.8) ) (-1.7)

Table 7. Gains in Expected Number of Highly Sensitized Transplants, for Increasing Values of § and for Different Arrival

Rates
|[V] =300 |V| =400 |V] =500 |[V] =600 |V =700 |V| =800
Gain (%) Gain (%) Gain (%) Gain (%) Gain (%) Gain (%)

Efficient —4 (—40.0) -2 (-21.4) -3 (-15.4) —4 (-21.4) -5 (-23.4) -6 (-19.1)
Fair, =1 -2 (-26.1) +0 0.0) -1 (-10.0) +0 (0.0) +0 (-1.3) -1 (—4.4)
Fair, =2 +1 9.5) +3 (18.8) +0 (1.2) +2 9.9 +2 (11.2) +5 (15.5)
Fair, =3 +0 (5.6) +1 (10.8) +1 (11.7) +7 (35.1) +8 (33.2) +6 (20.3)
Fair, p =4 +0 (5.6) +3 (29.0) +2 (11.0) +8 (46.2) +6 (23.9) +8 (29.3)
Fair, =5 +0 0.0) +2 (22.6) +2 (12.1) +8 (43.7) +6 (24.0) +8 (23.9)
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highly sensitized patients; even with a higher likeli-
hood of pretransplant match failure, we have shown
that failure-aware matching can increase successful
match rates for these highly prioritized patients at no
cost to the global system efficiency.

9. Conclusions and Future Work

In this paper, we addressed the problem of edges in
a matching (e.g., recommended transplants in a kid-
ney exchange) failing after a matching algorithm has
committed to them. This is a timely problem; in the
UNOS nationwide kidney exchange, only 7% of algo-
rithmically matched patients actually receive a trans-
planted kidney through the exchange, and similar rates
apply to other kidney exchanges. We introduced a fail-
ure probability to each edge in a compatibility graph,
and defined an expected utility of edges, cycles, chains,
and matches. This model drives our main theoretical
result, that (with high probability, in a random graph
model) there exists a nonmaximum cardinality match-
ing that provides linearly more utility than any maxi-
mum cardinality matching. We then ran simulations on
real data from all UNOS match runs between 2010 and
late 2014, and found that our failure-aware matching
increases the number of expected transplants dramati-
cally. Critically, we also found that this result is robust
to uncertainty over the true underlying failure rates—
an uncertainty that exists in reality.

Armed with this new model, we showed that the
current state-of-the-art kidney exchange solver (used
in the UNOS kidney exchange) cannot be used for this
problem because now each edge has both a weight
and a failure probability, and simply multiplying them
to get a revised weight would make the algorithm
incorrect. We designed a branch-and-price-based opti-
mal clearing algorithm specifically for the probabilistic
exchange clearing problem. It has many enhancements
over the prior best kidney exchange clearing algorithm.
For one, we designed a failure-aware column gener-
ator that incrementally brings only “possibly good”
chains into consideration. We showed experimentally
that this new solver scales well on large simulated data.
We then developed a realistic model of dynamic kid-
ney exchange based on our experiences with, and data
from, UNOS, and showed that failure-aware match-
ing in dynamic graphs increases expected transplants
significantly. Finally, we explored the effect of failure-
aware matching on marginalized patients. This led
to the main practical result of this paper: that it is
possible to strike a balance between fair and efficient
failure-aware matching that results in more expected
transplants both globally and to marginalized patients
specifically, in both the static and dynamic cases, in a
variety of graph distributions.
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Endnotes

"This paper is a significant extension of Dickerson et al. (2013a),
and includes new computational ideas, techniques, and results
on real kidney exchange data from the UNOS nationwide kidney
exchange from its inception in 2010 through November of 2014 and
on simulated data at sizes greater than any current fielded kidney
exchange. It also benefits from extensive discussion with surgeons
and economists at the 2013 American Transplant Congress and 2014
World Transplant Congress (especially regarding work by Leishman
et al. 2013 and Dickerson et al. 2013b, 2014a).

2 Another challenge in kidney exchanges is that transplant centers
hide some of their donor—patient pairs and altruistic donors from
the exchange and instead try to match them locally. This is a major
problem in practice. For example, of the pairs revealed to the UNOS
exchange from its beginning in October 2010 to May 2012, none could
have been locally matched in their transplant centers (Stewart et al.
2013). In other words, the centers did not reveal any of their pairs
that could be locally matched to the exchange. There is no perfect
mechanism design solution to that problem (see, e.g., Ashlagi and
Roth 2014, Ashlagi et al. 2015, Sonmez and Unver 2013). Still, the
only way to motivate the centers to fully reveal their pairs and altru-
ists is by mandate, and it is not clear that is politically viable. This
paper does not address this problem, except to the extent that better
matching generally speaking gives more motivation for the centers to
participate because success chances for their patients become better
and wait times shorter.

3The aggregate match data from which we infer crossmatch failure
probabilities is available in a report from the Kidney Paired Dona-
tion Work Group (2012) and summarized by Leishman et al. (2013).
Updated aggregate data are now available in a report from the Kid-
ney Paired Donation Work Group (2013); these most recent data were
not incorporated into our experiments, but they are very similar to
those that were.
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