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Abstract
The cake cutting problem models the fair divi-
sion of a heterogeneous good between multiple
agents. Previous work assumes that each agent
derives value only from its own piece. How-
ever, agents may also care about the pieces as-
signed to other agents; such externalities natu-
rally arise in fair division settings. We extend
the classical model to capture externalities, and
generalize the classical fairness notions of pro-
portionality and envy-freeness. Our technical
results characterize the relationship between
these generalized properties, establish the ex-
istence or nonexistence of fair allocations, and
explore the computational feasibility of fair-
ness in the face of externalities.

1 Introduction
Cake cutting is a fundamental model in fair division; it
represents the problem of allocating a divisible heteroge-
neous resource – such as land, time, or computer mem-
ory – among agents with different preferences. Formu-
lated by Steinhaus [1948] while in hiding during World
War II, the model has been studied since then in a large
body of literature in mathematics, economics, and polit-
ical science (including several books by Robertson and
Webb [1998] and Brams and Taylor [1996]). In re-
cent years, cake cutting has received significant attention
in computer science, as problems in resource allocation
(and fair division in particular) are central to the design
of multiagent systems [Chevaleyre et al., 2006].

The most notable definitions of fairness are propor-
tionality and envy-freeness. Informally, proportionality
requires that each of the n agents involved in the divi-
sion of the resource receive at least 1/n of the total value.
Envy-freeness is a much stronger notion, which stipu-
lates that no agent prefer another agent’s allocation to
their own. On a closer look, it becomes clear that the two
notions of fairness are fundamentally different. While
proportionality requires each agent to only evaluate the

quality of their own allocation (compared to their best
possible), the very idea of envy assumes that agents natu-
rally compare their own allocations with those of others.
This latter notion is derived from psychology research
and conveys the more general concept that agents are in-
fluenced not only by their own state, but also by the states
of other agents. Such influences are called externalities.

Generally speaking, externalities are costs or benefits
that are not transmitted through prices, and may be in-
curred by a party that was not involved in a transaction.
For example, vaccination reduces the risk of illness not
only for the individual receiving the vaccine, but for all
others around them. In network formation games exter-
nalities are known as network effects, and play an impor-
tant role during the adoption of new technologies [Easley
and Kleinberg, 2010]. For example, when the phone was
introduced, the value of the phone for a potential cus-
tomer depended on how many other people were also us-
ing a phone.

Externalities play a role in resource allocation settings,
where the allocation of one agent can affect the others.
These circumstances are particularly relevant in the con-
text of social networks, where agents derive value from
the allocations of others due to the existence of syner-
gies. For example, consider the scenario in which each
agent is trying to carry out an online project and is al-
located slots of working time on a server. The agents
may be able to use portions of their collaborators’ idle
time to run additional experiments and improve the qual-
ity of the project. Similarly, the exploitation of land (e.g.
crop harvesting or road construction) can be done more
efficiently by the agents with the most advanced equip-
ment, and their efforts can benefit everyone else. Our
goal here is to model externalities in cake cutting; in par-
ticular, addressing the conceptual challenge of defining
fairness and understanding the existence and computabil-
ity of fair allocations in this model.

1.1 Related Work
Theories of externalities are widely studied in economics
[Ayres and Kneese, 1969; Katz and Shapiro, 1985], but



recently have also been receiving increasing attention in
the computer science literature. Such studies include the
analysis of externalities in coalitional games [Michalak
et al., 2009], auctions [Krysta et al., 2010; Haghpanah
et al., 2011], voting [Alon et al., 2012], and matchings
[Brânzei et al., 2013].

A stream of recent AI papers study the cake cut-
ting problem [Procaccia, 2009; Caragiannis et al., 2011;
Cohler et al., 2011; Bei et al., 2012; Brams et al., 2012;
Cavallo, 2012; Brânzei and Miltersen, 2013; Chen et al.,
2013]. However, none of these papers study externalities.

Velez [2011] considers externalities in the fair divi-
sion of indivisible goods and money (e.g., tasks and
salary). On the conceptual side, among other contribu-
tions he (independently) introduces the notion of swap
envy-freeness, which we discuss below. On the technical
side his intriguing results can be mapped to the cake cut-
ting setting, but the outcome is rather restricted. Specifi-
cally, in the cake cutting context his results only capture
contiguous allocations (a piece is specified by its “posi-
tion” and size), and only externalities that are “anony-
mous”, that is, each agent cares about allocations to oth-
ers only insofar as they affect its own allocation, and is
indifferent to the identities of the other agents that re-
ceive various pieces.

2 Our Model
We introduce a general model for cake cutting with ex-
ternalities, in which each agent i has multiple valuation
functions, to reflect the influence of every other agent
j on agent i. We naturally extend the notion of pro-
portionality to the setting with externalities and formal-
ize two notions of envy-freeness, namely swap envy-
freeness and swap stability. Under the former notion, an
agent cannot benefit by swapping its allocation with an-
other agent; under the latter notion, no agent is better off
when any two agents swap their allocations.

Formally, the cake is represented by the interval [0, 1];
there is also a set N = {1, . . . , n} of agents. A piece
of cake X is a set of disjoint intervals of [0, 1]. In
the context of externalities, we will sometimes discuss
the existence of infinite allocations, in which a piece of
cake is a countable union of intervals.1 Each agent i
has n integrable, non-negative value density functions,
such that vi,j(x) defines the value that i receives when
x is allocated to agent j. The value that agent i de-
rives from a piece X that is allocated to agent j is
Vi,j(X) =

∫
X
vi,j(x)dx. This definition assigns zero

value to singleton intervals, therefore we allow “disjoint”
pieces to intersect at boundaries of intervals. In the clas-
sical model of cake cutting, Vi,j(X) = 0 for all pieces

1Such allocations can also appear in the classical cake cut-
ting model, for example when dividing a cake among two
agents to achieve an irrational ratio [Robertson and Webb,
1998].

X and agents i 6= j.
An allocation A = (A1, . . . , An) is an assignment

of a piece of cake Ai to each agent i, such that the
pieces are disjoint and

⋃
i∈N Ai = [0, 1]. Moreover,

each piece Ai is a possibly infinite set of disjoint inter-
vals of [0, 1]. The value of agent i under allocation A is:
Vi(A) =

∑n
j=1 Vi,j(Aj).

Similarly to the classical model, utilities are normal-
ized so that all the agents have equal weight. That is, for
each agent i, Vi(Ãi) = 1, where Ãi is the best possible
allocation for agent i (note that in general this may not be
giving the whole cake to i). For our results this assump-
tion is merely for ease of exposition and without loss of
generality.

Even before generalizing the classical fairness criteria
it is immediately apparent that our model is fundamen-
tally different from the standard model. Indeed, we note
that computing the optimal allocation for a single agent
can require infinitely many cuts, as the following exam-
ple shows. In contrast, in the standard model, the optimal
allocation for any given agent requires no cuts and can be
obtained by giving the entire cake to that agent.

Example 1. For every agent i ∈ N , let: vi,1(x) = x
4 and

vi,2(x) = x sin
(
1
x

)
, ∀x ∈

[
0, 1

n

]
, vi,2(x) = n(1−w)

n−1 ,

∀x ∈
(
1
n , 1
]
, where w =

∫ 1
n

0
max

(
x
4 , x sin

(
1
x

))
dx.

For every agent i, the optimal allocation requires giving
alternating pieces of cake in the interval

[
0, 1

n

]
to agents

1 and 2, respectively. However v1,1(x) and v1,2(x) inter-
sect infinitely many times on this interval, and so the op-
timal allocation for agent i requires infinitely many cuts.

2.1 Fairness Criteria
As noted above, the two most commonly used fairness
criteria are proportionality and envy-freeness. Propor-
tionality has a very natural interpretation in our model.

Definition 1 (Proportionality). An allocation A is pro-
portional if for every agent i ∈ N , Vi(A) ≥ 1

n .

In words, each agent must receive at least 1/n of the
value it receives under the optimal allocation from its
point of view. Note that this definition directly gener-
alized the classical definition: when there are no exter-
nalities, each agent simply receives a piece of cake that
it values at 1/n of the whole cake.

In contrast, the notion of envy-freeness lends itself to
several possible interpretations.

Definition 2 (Swap Envy-Freeness, see also [Velez,
2011]). An allocation A = (A1, . . . , An) is swap envy-
free if for any two agents i, j ∈ N , Vi,i(Ai)+Vi,j(Aj) ≥
Vi,i(Aj) + Vi,j(Ai).

That is, an agent cannot improve by swapping its
allocation with that of another agent. This definition
generalizes and implies the classical definition of envy-
freeness when there are no externalities. We also define
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an even stronger version of swap envy-freeness, in which
an agent cannot benefit from a swap between any pair of
agents.

Definition 3 (Swap Stability). An allocation A =
(A1, . . . , An) is swap stable if for every three agents
i, j, k ∈ N , Vi,j(Aj)+Vi,k(Ak) ≥ Vi,j(Ak)+Vi,k(Aj).

Note that swap stable allocations are always swap
envy-free, but the converse may not be true.

3 Relationship Between Fairness
Properties

In the classical cake cutting model, proportionality coin-
cides with envy-freeness when n = 2, and envy-freeness
is strictly stronger than proportionality when n > 2.
Of course, implications that do not hold in the classical
model are also false in our more general model (as our
notions of fairness reduce to the classical notions). How-
ever, it may be the case that some classical implications
are no longer true.

Focusing first on the case of two agents, we imme-
diately see that proportionality and swap envy-freeness
are no longer equivalent. Indeed, the following example
constructs an allocation that is proportional but not swap
envy-free (and, therefore, not swap stable).

Example 2. Consider the value density functions:
v1,1(x) = v2,2(x) = v2,1(x) = 1, ∀x ∈ [0, 1]; v1,2(x) =
1
3 , ∀x ∈

[
0, 12
]
, and v1,2(x) = 1

4 , ∀x ∈
[
1
2 , 1
]
. The

allocation A = (A1, A2), where A1 =
[
0, 12
]

and
A2 =

[
1
2 , 1
]

is proportional, but not swap envy-free,
since agent 1 would improve by swapping its piece with
that of agent 2.

In addition, swap envy-freeness does not imply pro-
portionality when n > 2, as the next example shows.

Example 3. Let N = {1, 2, 3} and define the inter-
vals I1 =

[
0, 13
]
, I2 =

[
1
3 ,

2
3

]
, and I3 =

[
2
3 , 1
]
. Let

v1,2(x) = 3
2 , ∀x ∈ I3; v1,3(x) = 3

2 , ∀x ∈ I2;
v2,2(x) = 3, ∀x ∈ I2; and v3,3(x) = 3, ∀x ∈ I3.
All the other densities are set to zero. Then the allo-
cation A = (I1, I2, I3), where agent i receives the in-
terval Ii, has utilities: V1(A) = V1,1(I1) = 0, while
V2(A) = V2,2(I2) = 1 and V3(A) = V3,3(I3) = 1.
The allocation is swap envy-free, but not proportional,
as agent 1 only receives a value of zero.

So far we have not determined whether swap envy-
freeness implies proportionality in the case of two
agents. Our main positive result in this section estab-
lishes a much stronger statement: swap stability implies
proportionality for any number of agents whenever the
entire cake is allocated (this assumption is also required
for the classical implication). In particular, for only two
agents (where our two notions of envy-freeness coin-
cide), swap envy-freeness does imply proportionality.

Theorem 1. Every swap stable allocation that contains
the entire cake is proportional.

Proof. LetA = (A1, . . . , An) be any swap stable alloca-
tion that contains the entire cake. By definition of swap
stability, we have that for all i, j, k ∈ N :

Vi,j(Aj) + Vi,k(Ak) ≥ Vi,j(Ak) + Vi,k(Aj)

By summing over all j ∈ N , we obtain:
n∑

j=1

Vi,j(Aj) +

n∑
j=1

Vi,k(Ak) ≥
n∑

j=1

Vi,j(Ak) +

n∑
j=1

Vi,k(Aj)

Since Vi(A) =
∑n
j=1 Vi,j(Aj), we have:

Vi(A) + nVi,k(Ak) ≥
n∑

j=1

Vi,j(Ak) + Vi,k([0, 1]) (1)

By summing Inequality (1) over all k ∈ N , we get:
n∑

k=1

Vi(A) + n

n∑
k=1

Vi,k(Ak)

≥
n∑

k=1

n∑
j=1

Vi,j(Ak) +

n∑
k=1

Vi,k([0, 1])

=

n∑
j=1

n∑
k=1

Vi,j(Ak) +

n∑
k=1

Vi,k([0, 1])

=

n∑
j=1

Vi,j([0, 1]) +

n∑
k=1

Vi,k([0, 1])

Equivalently,

2nVi(A) = nVi(A) + nVi(A)

≥
n∑

j=1

Vi,j([0, 1]) +

n∑
k=1

Vi,k([0, 1]) ≥ 1 + 1

Thus Vi(A) ≥ 1
n , and so A is proportional.

As noted above, swap stability also implies swap envy-
freeness by definition. In contrast, the next example
shows that proportionality and swap envy-freeness, even
combined, do not imply swap stability, that is, there exist
proportional and swap envy-free allocations that are not
swap stable.

Example 4. Consider the value density functions:
v2,2(x) = v3,3(x) = 1, ∀x ∈ [0, 1]; v1,1(x) = 1,
∀x ∈

[
0, 13
]
; v1,3(x) = 1, ∀x ∈

(
1
3 ,

2
3

)
; and v1,2(x) = 1,

∀x ∈
[
2
3 , 1
]
; all remaining densities are zero. Let

A = (A1, A2, A3), where A1 =
[
0, 13
]
, A2 =

[
1
3 ,

2
3

]
,

and A3 =
[
2
3 , 1
]
. Each agent receives a value of at least

1
3 under A, and the allocation is also swap envy-free.
However, A is not swap stable, since agent 1 would pre-
fer that agents 2 and 3 swap pieces, which would bring
agent 1’s utility to 1 (compared to 1

3 under A).
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4 Existence of Fair Allocations
In the classical model, the case of two agents trivially ad-
mits an envy-free (and therefore proportional) allocation:
simply divide the cake into two pieces that agent 1 values
equally, and let agent 2 choose its favorite piece. It turns
out that the analogous result also holds in the presence of
externalities.2

Theorem 2. Let n = 2. Then there exists a proportional
and swap envy-free allocation that requires a single cut.

In the classical cake cutting model envy-free (and
hence proportional) allocations that require only n − 1
cuts are guaranteed to exist [Stromquist, 1980]. Of
course, at least that many cuts are required because each
agent must receive a piece. In stark contrast, in our model
there are instances where zero cuts are needed to achieve
a swap stable allocation of the whole cake! To see this,
simply consider an instance where all agents derive value
only from allocating the cake to agent 1.

On the other hand, a proportional and swap envy-
free allocation can require strictly more than n− 1 cuts.
Note that swap stability implies both proportionality and
swap envy-freeness, hence this lower bound also holds
for swap stability.
Theorem 3. A proportional and swap envy-free alloca-
tion may require strictly more than n− 1 cuts.

Proof. Informally, we consider an instance where each
agent has exactly one “representative” agent. The idea
is that each agent can obtain a value of approximately 1
only by giving the entire cake to their representative. In
addition, different agents require different regions of the
cake. Formally, for each i ∈ N , let ri be the representa-
tive of i, where ri = 1 if i is odd and ri = 2 if i is even.
Define the value density functions as follows:

vi,ri(x) =

{
n(1− ε) x ∈

[
i−1
n
, i
n

]
nε
n−1

x ∈
[
0, i−1

n

)
∪
(

i
n
, 1
]

and for all x ∈ [0, 1],

vi,j(x) =

{
ε j ∈ N \ {r1, r2}
0 j ∈ {r1, r2} \ {ri}

Note that vi,r2 = 0 for all odd i, and vi,r1 = 0 for all
even i. That is, an agent does not receive utility from both
representatives. Any proportional allocation of the cake
requires at least n − 1 cuts, since it would have to give
agent r1 a piece in each of the intervals

[
i−1
n , in

]
, where

i is odd, and agent r2 a piece in each of the intervals[
i−1
n , in

]
, where i is even. However, an allocation with

n − 1 cuts cannot be swap envy-free in this example,
since every agent i ∈ N \ {r1, r2} will want to swap
with the other representative. Thus each agent i ∈ N \

2The proof is excluded due to space constraints and can
be found in the full version of the paper, available on:
http://www.cs.cmu.edu/ arielpro/papers.html.

{r1, r2}, where i is odd, requires a piece of length equal
to that of r2, and each agent i ∈ N \ {r1, r2}, where
i is even, requires a piece of length equal to that of r1.
We conclude that any swap envy-free and proportional
allocation requires at least n cuts.

In contrast, our main result for this section shows that a
swap stable allocation (which is in particular swap envy-
free and proportional) necessarily exists under mild as-
sumptions, and also gives an upper bound on the number
of required cuts.
Theorem 4. Assume that the value density functions are
continuous. Then a swap stable allocation is guaranteed
to exist and requires at most (n− 1)n2 cuts.

Our main tool is the following lemma that is due to
Alon [1987].
Lemma 1 (Alon 1987). Let µ1, µ2, . . . , µt be t contin-
uous probability measures on the unit interval. Then it
is possible to cut the interval in (k − 1) · t places and
partition the (k−1) · t+1 resulting intervals into k fam-
ilies F1,F2, . . . ,Fk such that µi (

⋃
Fj) = 1/k, for all

1 ≤ i ≤ t, 1 ≤ j ≤ k. The number (k − 1) · t is best
possible.

Proof of Theorem 4. Let
Ψ = {(i, j) ∈ N ×N | vi,j 6= 0}.

Define a normalized instance of each value density func-
tion: v′i,j(x) =

vi,j(x)
Vi,j([0,1])

, ∀(i, j) ∈ Ψ. Note that the de-
nominator is strictly positive for all (i, j) ∈ Ψ. Then the
functions v′i,j(x) are continuous probability measures on
the unit interval. By Lemma 1, there exists a partition
of the cake into n pieces, A = (A1, . . . , An), where the
number of cuts is bounded by (|Ψ| − 1)n2 ≤ (n− 1)n2,
such that V ′i,j(Ak) = 1/n for all (i, j) ∈ Ψ and k ∈ N .

Consider the allocation given by A, where agent i re-
ceives the piece Ai, ∀i ∈ N . By construction of A, we
have that: Vi,j(Ak) =

Vi,j([0,1])
n , for all i, j, k ∈ N (the

identity trivially holds for all (i, j) 6∈ Ψ), and so:

Vi,j(Aj) + Vi,k(Ak) =
Vi,j([0, 1])

n
+
Vi,k([0, 1])

n
= Vi,j(Ak) + Vi,k(Aj)

Thus A is swap stable, with at most (n− 1)n2 cuts.

Even more generally, it can be shown that fair allo-
cations are guaranteed to exist when the value density
functions are piecewise continuous.

5 Complexity Considerations
An important question in cake cutting is how protocols
operate and what can be achieved depending on the type
of operations allowed. The standard query model in
cake cutting – which captures all the classical discrete
cake cutting protocols — was proposed by Robertson
and Webb [1998]; it models the interaction between the
protocol and the agents using two types of queries:
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1. Evaluatei(x, y):
Agent i outputs α such that Vi([x, y]) = α.

2. Cuti(x, α):
Agent i outputs y such that Vi([x, y]) = α.

In the presence of externalities, the Robertson-Webb
query model naturally generalizes to the following types
of queries:

1. Evaluatei,j(x, y):
Agent i outputs α such that Vi,j([x, y]) = α.

2. Cuti,j(x, α):
Agent i outputs y such that Vi,j([x, y]) = α.

We can show that under this extended form of the
Robertson-Webb communication model, it is possible to
guarantee a value of 1

n2 to all the agents. This relies on
the observation that for each agent i, there exists a “rep-
resentative” that holds at least 1

n of the value for agent
i. Then by running any of the classical proportional pro-
tocols while querying only the representatives, we obtain
an allocation that gives at least 1

n2 to each agent. The full
proof is omitted due to lack of space.

Theorem 5. An allocation in which every agent receives
utility at least 1

n2 can be computed with O(n2) queries
in the extended Robertson-Webb model.

However, one cannot significantly improve this re-
sult. Specifically, we show that no proportional protocol
can be obtained even for two agents under the extended
Robertson-Webb communication model. The proof idea
is reminiscent of the technique used to show that no finite
protocol can compute an exact allocation in the standard
cake cutting model [Robertson and Webb, 1998].

Theorem 6. There exists no finite protocol that can com-
pute a proportional allocation of the entire cake even for
two agents in the extended Robertson-Webb model.

Proof. Consider an instance where the two agents have
symmetric valuations. That is, v1,1(x) = v2,2(x) and
v1,2(x) = v2,1(x), ∀x ∈ [0, 1]. Moreover, let V1,1([0, 1])
= 2

3 and V1,2([0, 1]) = 1
3 . Note that it is possible to set

the value density functions such that each agent still ob-
tains a value of 1 in the optimal allocation over [0, 1].
However, by giving the entire cake only to agent 1 or
agent 2, agent 1 obtains 2

3 or 1
3 , respectively.

We first claim that it is sufficient to restrict attention
to cut and evaluate queries to agent 1. Indeed, let A =
(A1, A2) be any proportional allocation that contains the
entire cake. Then it must be the case that V1,1(A1) +
V1,2(A2) ≥ 1

2 and V2,2(A2) + V2,1(A1) ≥ 1
2 . By choice

of the valuations, we have:

V1,1(A1) + V1,1(A2) + V1,2(A1) + V1,2(A2) = 1

and

V2,2(A1) + V2,2(A2) + V2,1(A1) + V2,1(A2) = 1

The inequalities can be rewritten as:

V1,1(A1) + V1,2(A2) ≥ 1

2
(V1,1(A1) + V1,1(A2)

+ V1,2(A1) + V1,2(A2))

and

V2,2(A2) + V2,1(A1) ≥ 1

2
(V2,2(A1) + V2,2(A2)

+ V2,1(A1) + V2,1(A2))
(2)

Equivalently,

V1,1(A1) + V1,2(A2) ≥ V1,1(A2) + V1,2(A1) (3)

and

V1,1(A2) + V1,2(A1) ≥ V1,1(A1) + V1,2(A2) (4)

where Inequality (4) is obtained from (2) by symmetry
of the valuations. From Inequality (3) and (4) we get:

V1,1(A1) + V1,2(A2) = V1,1(A2) + V1,2(A1) (5)

By definition of the valuations, we have: V1,1(A1) +
V1,1(A2) = V1([0, 1]) = 2

3 and V1,2(A1) + V1,2(A2) =

V1,2([0, 1]) = 1
3 , thus Equation (5) can be rewritten as:

V1,1(A1)− V1,2(A1) =

(
2

3
− V1,1(A1)

)
−
(

1

3
− V1,2(A1)

)
=

1

3
− V1,1(A1) + V1,2(A1)

Thus to achieve proportionality it must hold that
V1,1(A1) − V1,2(A1) = 1

6 . By symmetry, the allocation
of agent 2 must also verify: V2,2(A2)− V2,1(A2) = 1

6 .
We prove the theorem by tracing an infinite path

through the algorithm tree and proceed by induction on
the number of Cut queries. Note that the given instance
requires at least two pieces, since giving the entire cake
to either agent results in a utility of 1

3 for the other
one. Assume that after k − 1 steps we arrived at a non-
terminating vertex, where the pieces W1, . . . ,Wk have
been cut and the values Vi,j(Wl) have been provided,
∀i, j{1, 2}, ∀l ∈ {1, . . . , k}. This is all that is known
about the value density functions at this stage. Based on
this information, the protocol decides which piece is cut
next, according to which valuation, and the sizes of the
pieces that should be produced. Recall that since the val-
uations are symmetric, it is sufficient to query agent 1.

By the induction hypothesis, a proportional and swap
envy-free allocation cannot be obtained with the pieces
W1, . . . ,Wk. That is, for any allocation Ai1 of agent 1,
which can be obtained from the set of already demar-
cated pieces, we have: V1,1(Ai1) − V1,2(Ai1) = 1

6 + δi,
where δi 6= 0, ∀i. Assume the protocol can query inside
some interval Wj such that a proportional allocation is
obtained in the next step. We illustrate the case where
the query is made with respect to V1,1. The other case,
when the query is made with respect to V1,2, is similar.
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Let α denote the value of the query with respect to the
left interval ofWj . That is,Wj is divided into two pieces,
W 1
j and W 2

j , such that V1,1(W 1
j ) = α and V1,1(W 2

j ) =
V1(Wj)− α. In order for a proportional allocation to be
obtained in the next step, it should be the case that one
of the allocations of agent 1 from the previous step Ai1,
which does not contain piece Wj , becomes proportional
when agent 1 obtains the piece W 1

j and agent 2 obtains
the piece W 2

j , or vice versa. That is,

V1,1(Ai
1 ∪W 1

j )− V1,2(Ai
1 ∪W 1

j ) =
1

6
or

V1,1(Ai
1 ∪W 2

j )− V1,2(Ai
1 ∪W 2

j ) =
1

6
The identities are equivalent to:(
(V1,1(Ai

1) − V1,2(Ai
1)
)

+ V1,1(W 1
j )− V1,2(W 1

j )

=

(
1

6
+ δi

)
+ V1,1(W 1

j )− V1,2(W 1
j ) =

1

6
or(
V1,1(Ai

1) − V1,2(Ai
1)
)

+ V1,1(W 2
j )− V1,2(W 2

j )

=

(
1

6
+ δi

)
+ V1,1(W 2

j )− V1,2(W 2
j ) =

1

6

Recall that V1,1(W 1
j ) = α, V1,1(W 2

j ) = V1,1(Wj)− α,
V1,2(W 2

j ) = V1,2(Wj)− V1,2(W 1
j ). Rewriting, we get:

V1,2(W 1
j ) = δi + α (6)

or
V1,2(W 1

j ) = V1,2(Wj)− V1,1(Wj) + α− δi (7)

However, there exist at most 2k different values of δi
(which correspond to different allocations), and so an
adversary can report a value of V1,2(W 1

j ) such that all
the equalities (6) and (7) fail simultaneously, for every
value of i. That is, there exists w, where 0 ≤ w ≤
V1,2(Wj), such that by setting V1,2(W 1

j ) = w, we have:
V1,2(W 1

j ) 6= δi + α and V1,2(W 1
j ) 6= V1,2(Wj) −

V1,1(Wj) + α − δi, for all i. Thus the protocol requires
at least one more step before terminating, which shows
the existence of an infinite path in the algorithm tree.

Note that at the k-th step, the values of the demarcated
pieces sum up to 2/3 with respect to V1,1 and 1/3 with
respect to V1,2. Thus at the k-th cut, the adversary must
respect the condition that the valuations for the two sub-
sets of Wj sum up to V1,1(Wj) and V1,2(Wj), respec-
tively. This can be done by having interleaved value den-
sity functions, such that v1,1(x) > 0 ⇒ v1,2(x) = 0,
and vice versa. We can partition any interval whose val-
ues are known into two such disjoint subintervals and set
the densities to recover the known values.

Intuitively, the protocol is severely restricted if valua-
tions can only be accessed one at a time. However, by
allowing simultaneous access, it becomes possible to ob-
tain proportional allocations in finite time. The commu-
nication model we consider instead is the following:

1. Evaluate Optimali(x, y): Agent i outputs a pair
(α, Ãα) such that Ãα is an optimal allocation for
i on the interval [x, y] and gives the agent exactly
α: Vi(Ãα) = α.

2. Cut Optimali(x, α): Agent i outputs y such that i’s
optimal allocation on [x, y], Ãα, gives the agent ex-
actly α: Vi(Ãα) = α.

The queries reduce to Cut and Evaluate from
Robertson-Webb in the absence of externalities. Note
that the optimal allocation may contain an unbounded
number of cuts, and so it is not known apriori how much
information the agent may send. However, this is also
true of the classical Robertson-Webb model; there, the
agents can communicate infinitely long strings in O(1)
(for example, if the value returned by an evaluate query
is an irrational number).
Theorem 7. Every proportional protocol from the stan-
dard cake cutting model translates to a proportional
protocol with externalities when the Cut and Evaluate
queries are replaced by Cut Optimal and Evaluate Opti-
mal, respectively.

6 Discussion
This paper lays the foundations of externalities in cake
cutting. One of the main open questions is the design
of a query model and computationally efficient proto-
cols for the computation of swap envy-free and swap sta-
ble allocations for any number of agents. The existence
result of Theorem 4 relies on a non-constructive result
(Lemma 1), and so it does not give a bounded algorithm.
In addition, we conjecture that both proportionality and
swap envy-freeness can be computed with at most n− 1
cuts when required separately.

A separate direction for future work is the study of
negative externalities. One can certainly imagine rele-
vant settings where externalities are negative; for exam-
ple, when allocating time slots for advertising, it hurts
Coca Cola if Pepsi is allocated the best slots. Negative
externalities invalidate some of our positive results, and
present a nice challenge for future work.
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8 Appendix
Proof of Theorem 2: Define D : [0, 1] → R such
that for all x ∈ [0, 1], D(x) = V1,1([0, x]) +
V1,2([x, 1])−V1,1([x, 1])−V1,2([0, x]).Note thatD(0) =
V1,2([0, 1]) − V1,1([0, 1]) and D(1) = V1,1([0, 1]) −
V1,2([0, 1]). It holds that D(0) + D(1) = 0, and since

7



D is continuous it follows from the intermediate value
theorem that there exists x̃ ∈ [0, 1] such that D(x̃) = 0.
We claim that the allocation in which agent 2 takes its
favorite piece among {[0, x̃], [x̃, 1]} — giving the other
piece to agent 1 – is proportional and swap envy-free.

Without loss of generality, assume agent 2 chooses
the piece [x̃, 1]. Then the resulting allocation is A =
(A1, A2), where A1 = [0, x̃] and A2 = [x̃, 1]. By
optimality of agent 2’s choice, we have: V2,2([x̃, 1]) +
V2,1([0, x̃]) ≥ V2,2([0, x̃]) + V2,1([x̃, 1]), and so agent 2
is not swap-envious. Assume for contradiction that agent
2 obtains less than 1

2 . Then we have

1

2
> V2(A) = V2,2([x̃, 1]) + V2,1([0, x̃])

≥ V2,2([0, x̃]) + V2,1([x̃, 1])

and so

1 > V2,2([x̃, 1]) + V2,1([0, x̃]) + V2,2([0, x̃]) + V2,1([x̃, 1])

= V2,1([0, 1]) + V2,2([0, 1]) ≥ 1

This is a contradiction, thus V2(A) ≥ 1
2 .

We next show that A also satisfies fairness for agent
1. By the choice of x̃, V1,1([0, x̃]) + V1,2([x̃, 1]) =
V1,1([x̃, 1]) + V1,2([0, x̃]), and so agent 1 is not swap-
envious. Moreover,

2V1(A)

= V1,1([0, x̃]) + V1,2([x̃, 1]) + V1,1([x̃, 1]) + V1,2([0, x̃])

= V1,1([0, 1]) + V1,2([0, 1]) ≥ 1,

and so V1(A) ≥ 1
2 . Thus A is proportional, swap envy-

free, and requires one cut.
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