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A Lower Bound for Equitable Cake Cu�ing

ARIEL D. PROCACCIA and JUNXING WANG, Carnegie Mellon University

We are interested in the problem of dividing a cake — a heterogeneous divisible good — among n players, in a

way that is ε-equitable: every pair of players must have the same value for their own allocated pieces, up to a

di�erence of at most ε . It is known that such allocations can be computed using O (n ln(1/ε )) operations in

the standard Robertson-Webb Model. We establish a lower bound of Ω(ln(1/ε )/ ln ln(1/ε )) on the complexity

of this problem, which is almost tight for a constant number of players. Importantly, our result implies that

allocations that are exactly equitable cannot be computed.

1 INTRODUCTION
While in hiding during World War II, the Polish mathematician Hugo Steinhaus initiated the

study of fair division. His model [27] involves a single, in�nitely divisible, heterogeneous good —

the cake, represented by the interval [0, 1] — and a set of players 1, . . . ,n with possibly di�erent

valuation functions v1, . . . ,vn over the cake. Although mathematical models for everyday fair

division problems like spli�ing rent or allocating indivisible goods have proven more directly

practical [11, 18], cake cu�ing is still considered to be the paradigmatic model of fair division, and

gives rise to some of the most fundamental problems in the �eld.

From the computational viewpoint, the key challenges have to do with the complexity of com-

puting allocations of the cake that satisfy certain fairness properties. For example, we say that an

allocation A1, . . . ,An of the cake, where Ai is the piece of cake given to player i , is proportional if

each player receives a piece of cake that he values at least at 1/n of his value for the entire cake. It

has long been known that a proportional allocation can be computed usingO (n lnn) operations [17].

(Allowable operations are speci�ed by the standard Robertson-Webb model [25], which we discuss

in Section 2.) A decade ago, Edmonds and Pruhs [16] proved that this bound is tight: Any algorithm

that computes a proportional allocation requires Ω(n lnn) operations in the worst case.

While the complexity of proportional cake cu�ing is well understood, other fairness properties

are more enigmatic. Envy-freeness, in particular, has a�racted much a�ention over the years; it

requires that for every two players i, j, vi (Ai ) ≥ vi (Aj ), that is, each player must (weakly) prefer

his own piece to the piece allocated to any other player. In a breakthrough result, Brams and Taylor

[8] designed a discrete envy-free cake cu�ing algorithm. But it is unbounded, in the sense that the

number of operations cannot be bounded as a function of the number of players — for any k ∈ N,

one can set the valuation functions so that the algorithm would require at least k operations. For

two decades, the existence of bounded envy-free cake cu�ing algorithms had arguably been one of

the most important open questions in theoretical computer science, until it was answered last year

in the positive by Aziz and Mackenzie [3].
1
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However, their algorithm’s running time is astronomical even for small n, and the only unconditional lower bound currently

known is Ω(n2) [22].
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�e third major fairness property studied in the cake cu�ing literature is equitability [6, 7].

It requires that for every two players i, j, vi (Ai ) = vj (Aj ), that is, every two players must have

the same value for their pieces (compare with envy-freeness, which requires that the value of

player i for his piece be at least as high as his own value for the piece of j). Herreiner and Puppe

[20] demonstrate empirically that equitability, or the lack thereof, has a major impact on whether

people perceive allocations as fair; this conclusion is supported by the recent work of Gal et al. [18].

Equitability also plays a key role in the study of fair divorce se�lements (where spite can lead to

acrimony); it underlies the design of the Adjusted Winner algorithm of Brams and Taylor [9] for

dividing homogeneous divisible goods, which can be viewed as a special case of cake cu�ing with

so-called piecewise constant [14] valuations, between two players. �is algorithm was deployed on

the fair division website Spliddit2
[19] between November 2014 and May 2016.

To develop some intuition about the computational aspects of equitable cake cu�ing, it is

instructive to understand why an equitable allocation even exists. Consider the case of two players,

and assume for convenience that both players have value 1 for the entire cake [0, 1]. Let f (x ) =
v1 ([0,x]) − v2 ([x , 1]), and note that f is continuous (this follows from standard assumptions

listed in Section 2), f (0) = −1, and f (1) = 1. By the intermediate value theorem, there is x∗

such that f (x∗) = 0, that is, the allocation A1 = [0,x∗],A2 = [x∗, 1] is equitable. As observed by

Cechlárová and Pillárová [12], this argument can be used to compute an ε-equitable allocation —

which guarantees that for all i, j, |vi (Ai ) −vj (Aj ) | ≤ ε — using O (ln(1/ε )) operations, via binary

search for x∗. �is approach extends to the case of n players [13], leading to an upper bound of

O (n ln(1/ε )) on the complexity of ε-equitable cake cu�ing.

By contrast, very li�le is known about lower bounds on the complexity of this problem. Cechlárová

and Pillárová [13] show that there is no algorithm that computes (exactly) equitable allocations,

but under two restrictive assumptions: the allocated pieces must be connected,
3

and the allocation

must satisfy an additional property called Pareto e�ciency, which greatly reduces the space of

equitable allocations [6].

In this paper, we establish a lower bound of Ω(ln(1/ε )/ ln ln(1/ε )) on the complexity of ε-equitable

cake cu�ing (in the Robertson-Webb model), for any number of players. Note that this bound is

almost tight — up to a ln ln(1/ε ) factor — for a constant number of players. More importantly, it

directly implies the nonexistence of cake cu�ing algorithms — even unbounded ones — that are

exactly equitable (see Section 5 for additional discussion of this point).

It is natural to ask whether the lower bound can be improved in a way that grows with n. We

answer this question in the negative by establishing a new upper bound of O ((1/ε ) ln(1/ε )), which

implies that the complexity of ε-equitable cake cu�ing need not depend on n at all. Nevertheless,

for n ≥ 1/ε , we leave open a signi�cant gap between the upper bound of O ((1/ε ) ln(1/ε )), and the

lower bound of Ω(ln(1/ε )/ ln ln(1/ε )).

2 PRELIMINARIES
Let N = {1, . . . ,n} be the set of players. �e cake is represented as the interval [0, 1]; a piece of cake
is a �nite union of disjoint intervals. Each player i ∈ N is associated with a valuation function vi
which assigns a non-negative value to any given piece of cake. Like almost all of the cake cu�ing

literature [24], we assume that the valuation functions satisfy the following standard properties for

all i ∈ N :

2http://www.spliddit.org
3
One way to see that this assumption is indeed very restrictive is that envy-free allocations with connected pieces cannot be

computed even for three players [28], whereas the classic Selfridge-Conway algorithm easily computes envy-free allocations

for three players, which may consist of disconnected pieces.
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• Additivity: For two disjoint pieces of cake X and Y , vi (X ∪ Y ) = vi (X ) +vi (Y ).
• Divisibility: For any interval [x , z] ⊆ [0, 1] and λ ∈ [0, 1] there exists a point y ∈ [x , z] such

that vi ([x ,y]) = λ · vi ([x , z]).
• Normalization: vi ([0, 1]) = 1.

�e normalization assumption is without loss of generality for the purposes of this paper. Also note

that divisibility implies that the valuation functions are non-atomic, in the sense that vi ([x ,x]) = 0

for any x ∈ [0, 1]. We can therefore consider two intervals that overlap only at the boundary as

disjoint.

A cake cu�ing algorithm outputs an allocation A = (A1, . . . ,An ), where Ai is the piece of cake

allocated to i ∈ N , and the pieces form a partition of the cake (they are disjoint and their union is

the entire cake).

2.1 Fairness Properties
In Section 1 we discussed three fairness properties; here we de�ne them formally. We say that an

allocation A1, . . . ,An is

• proportional if for all i ∈ N , vi (Ai ) ≥ 1/n,

• ε-envy free if for all i, j ∈ N , vi (Ai ) ≥ vi (Aj ) − ε , and simply envy free if it is 0-envy free,

• ε-equitable if for all i, j ∈ N , |vi (Ai ) −vj (Aj ) | ≤ ε , and simply equitable if it is 0-equitable.

2.2 The Robertson-Webb Model
Over the years, the Robertson-Webb (RW) model [25] has emerged as the standard model in which

the complexity of cake cu�ing algorithms is analyzed [3–5, 10, 15, 16, 21–24, 29]. In this model, a

cake cu�ing algorithm is allowed to interact with the players via two types of queries:

• Evaluation: An evali (x ,y) query returns vi ([x ,y]).
• Cut: A cuti (x , β ) query returns a point y such that vi ([x ,y]) = β .

Consider, for example, the classic Cut and Choose algorithm for two players, where player 1 cuts

the cake into two pieces that he values equally, and player 2 chooses the piece that he prefers. �is

algorithm is envy free and proportional, but, for obvious reasons (if one already believes our lower

bound), it is not equitable. Cut and Choose can be simulated using two queries in the RW model:

y = cut1 (0, 1/2), and then eval2 (0,y). More generally, all classic discrete cake cu�ing algorithms

can be simulated in this model.

�e goal of an algorithm in the RW model is to gather enough information about the valuation

functions of the players to guarantee a certain property — ε-equitability in our case. Formally,

we say that an algorithm in the RW model is ε-equitable if, when it terminates, there exists an

allocation A such that for any valuation functions v1, . . . ,vn that are consistent with the answers
to the algorithm’s queries, it holds for all i, j ∈ N that |vi (Ai ) − vj (Aj ) | ≤ ε . Note that the actual

computation of the allocation A is “free”.

As usual, the complexity of an algorithm is its worst-case running time, and the complexity of a

problem is the complexity of the best algorithm that solves the problem. We are interested in the

complexity of the ε-equitable cake cu�ing problem.

3 MAIN RESULT
As the reader is surely aware by now, our main result is the following theorem.
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Theorem 3.1. For any number of players n ≥ 2, the complexity of ε-equitable cake cu�ing in the
RW model is

Ω

(
ln(1/ε )

ln ln(1/ε )

)
.

�e rest of this section is devoted to the theorem’s proof, divided into three parts: de�ning a

variant of the RW model that simpli�es the exposition (and proving that a lower bound in the

adjusted model implies a lower bound in the standard model); proving the theorem for the case of

two players; and extending the proof to the general case.

Before jumping into the details of the proof, we give an overview of the main ideas. �e adjusted

RW model allows us to view the cake cu�ing process as a process of spli�ing indivisible goods
(i.e., any allocation must give each of these goods to a single player) into smaller indivisible goods

(Lemma 3.2). For the case of two players, we design an adversary that answers the algorithm’s

queries in a way that whenever a good is split into two goods, the ratio of the two player’s values

for each of the new goods is close to the ratio of these values for the old good (Lemma 3.5). But we

do create some discrepancy in the values, and the degree of discrepancy is carefully chosen so that

we can upper-bound the number of non-zero digits in the base 3 representation of v̄ (a), where a
belongs to a certain subset of the goods, and v̄ (a) = v1 (a) +v2 (a) is the total value of a (Lemma 3.6).

We show that this implies an upper bound on the number of ones in the base 3 representation of

v̄ (A1) (Lemmas 3.7 and 3.8). But it is easy to see that, when players’ values for the entire cake

are normalized to 1/2 (which they are throughout the proof), ε-equitability is equivalent to the

condition |v̄ (A1) − 1/2| ≤ ε (Lemma 3.3), and 1/2 is 0.111 · · · in base 3. We can therefore �nd a

su�ciently signi�cant digit in which v̄ (A1) disagrees with 1/2, and the 2-player case of the theorem

(stated as Lemma 3.9) follows. Finally, we prove the theorem by (essentially) reducing the 2-player

case to the n-player case (using Lemma 3.10).

3.1 The Adjusted Robertson-Webb Model
Instead of directly analyzing algorithms that operate in the RW model, we de�ne a related model,

and show that a lower bound in the alternative model holds, up to a constant factor, in the standard

model.

In the adjusted RW model, we keep track of a partition of the cake into disjoint intervals. We

think of these intervals as indivisible goods, which are denoted by small le�ers such as a and b. An

allocation A may only allocate these indivisible goods. Initially there is only one good — the entire

cake [0, 1]. �e algorithm may create new goods using a single type of query:

• spliti (a, β ): Replace good a with two goods a′ and a′′ such that vi (a
′) = β ≤ vi (a), and

return the value vj (a
′) for each other player j ∈ N \ {i}.

Note that in the adjusted RW model, the algorithm always knows the value of each good to each

player. Indeed, if vi (a) and vi (a
′) are both known, then vi (a

′′) = vi (a) −vi (a
′) is also known.

Lemma 3.2. Suppose there is an algorithm that �nds an ε-equitable allocation using at most f (n, ε )
queries in the RW model. �en there is an algorithm that �nds an ε-equitable allocation using at most
2 · f (n, ε ) queries in the adjusted RW model.

Equivalently, the lemma says that a lower bound of 2 · f (n, ε ) in the adjusted RW model implies

a lower bound of f (n, ε ) in the RW model. In other words, any asymptotic lower bound established

in the adjusted model also holds in the standard model.

Proof of Lemma 3.2. Consider algorithm B that �nds an ε-equitable allocation using f (n, ε )
queries in the RW model. Imagine that each query makes two marks in the cake. An evali (x ,y)
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A Lower Bound for Equitable Cake Cu�ing 1

query makes marks at x and y, whereas a cuti (x , β ) query makes marks at x and at the point y
such that vi ([x ,y]) = β . Initially there are two marks at 0 and 1.

We �rst claim that for any allocation A that is guaranteed to be ε-equitable when algorithm

B terminates, there is an allocation A′′ that is guaranteed to be ε-equitable and never splits any

interval between adjacent marks in the cake, i.e., each such interval is entirely allocated to a single

player.

Indeed, let I be an interval between adjacent marks that is split by A between several players,

including player i∗; let J ( I be the subinterval allocated to i∗. De�ne an allocation A′ that is

identical to A, except that I ⊆ A′i∗ , i.e., the entire interval I is allocated to player i∗.
Now, let v1, . . . ,vn be valuations consistent with the answers to the queries of algorithm B;

we know that A is ε-equitable according to v1, . . . ,vn (as the allocation is guaranteed to have this

property). Create v ′
1
, . . . ,v ′n by modifying each vi so that v ′i (J ) = vi (I ) for all i ∈ N , i.e., each

player thinks the value of I is concentrated entirely in J . Note that

∀i ∈ N , v ′i (Ai ) = v
′
i (A
′
i ). (1)

Indeed, for all i ∈ N it holds that v ′i (I \ J ) = 0, player i∗ gets J either way, and the two allocations

Ai and A′i are identical except on I . Furthermore,

∀i ∈ N , vi (A
′
i ) = v

′
i (A
′
i ). (2)

�is equality holds because i∗ receives the entire interval I either way, so it does not ma�er how

the valuations of the players are distributed on I (which is the only di�erence between the two sets

of valuations).

Crucially, v ′
1
, . . . ,v ′n are also consistent with the answers to the queries, as B has no information

about how value is distributed between adjacent marks. �erefore, A must be ε-equitable according

tov ′
1
, . . . ,v ′n . It follows from Equation (1) thatA′ is ε-equitable according tov ′

1
, . . . ,v ′n . We conclude

using Equation (2) that A′ is ε-equitable according to v1, . . . ,vn . We have constructed an allocation

A′ that does not split one of the intervals split by A, and is ε-equitable for any valuation functions

that are consistent with the queries of B. Finally, we can repeat this argument for any interval

between adjacent marks that is split, ultimately obtaining the desired allocation A′′.
So far we have shown that we can assume that the ε-equitable algorithmB does not split intervals

between adjacent marks, i.e., we can treat these intervals as indivisible goods. In the remainder of

the proof we construct an Algorithm C in the adjusted RW model, which simulates Algorithm B.

At each step Algorithm C receives the next (cut or evaluation) query of Algorithm B, and then

issues at most two split queries that provide enough information to answer the original query.

An invariant that is maintained throughout the execution of Algorithm C is that each interval

between adjacent marks [z, z ′] is associated with an indivisible good (and vice versa), andvj ([z, z
′
])

is known to the algorithm for all j ∈ N .

Let us now turn to the details of the simulation. First, suppose the next query of Algorithm

B is a cuti (x , β ) query. If x is an existing mark, let z and z ′ be the adjacent marks such that

vi ([x , z]) < β and vi ([x , z
′
]) ≥ β ; note that these values are known by the invariant mentioned

above. If vi ([x , z
′
]) = β , Algorithm C returns the point z ′ as the answer to the cut query issued

by Algorithm B. Otherwise (a strict inequality holds), let y = (z + z ′)/2. Algorithm C issues a

spliti ([z, z
′
], β − vi ([x , z])) query, which splits the good [z, z ′] into two goods [z,y] and [y, z ′],

such that vi ([z,y]) = β − vi ([x , z]). Note that the query reveals the values of the new goods for

all players, hence the invariant is maintained (this is also true for the other cases discussed below,

although we do not mention it explicitly). Finally, Algorithm C returns the point y as the answer

to the cut query issued by Algorithm B.
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If x is not an existing mark, let z and z ′ be the adjacent marks such that x ∈ (z, z ′). Algorithm C

starts by issuing a spliti ([z, z
′
], 0) query that splits [z, z ′] into two goods [z,x] and [x , z ′], such

thatvi ([z,x]) = 0. Now x coincides with one of the existing marks (equivalently, with the boundary

of one of the existing goods), and algorithm C requires only one additional split query, as described

above.

Second, suppose the next query of Algorithm B is an evali (x ,y) query. Using the procedure just

described, we can assume that x is an existing mark. If y is an existing mark, Algorithm C returns

vi ([x ,y]) as the answer to the evaluation query issued by Algorithm B. Otherwise, let z and z ′

be the adjacent marks such that y ∈ (z, z ′). Algorithm C issues a spliti ([z, z
′
], 0) query, which

splits the good [z, z ′] into two goods [z,y] and [y, z ′], such that vi ([z,y]) = 0. Finally, Algorithm

C returns the value vi ([x ,y]) = vi ([x , z]) as the answer to the cut query issued by Algorithm B.

By assumption, Algorithm B terminates a�er f (n, ε ) queries (hence Algorithm C issues at most

2 · f (n, ε ) queries). At that point, there exists an allocation A that is ε-equitable with respect to

all valuation functions v1, . . . ,vn that are consistent with the answers to the queries of Algorithm

B. By the �rst part of this proof, we can assume that A does not split intervals between adjacent

marks.

To complete the proof, we claim that the same allocation A — which can be seen as an allocation

of the indivisible goods created by Algorithm C — is ε-equitable with respect to all valuation

functions v1, . . . ,vn that are consistent with the answers to the queries of Algorithm C. �e reason

is simple: At each step the answer to the query of Algorithm B is deduced from the answers to

the queries of Algorithm C, which means that any valuation functions that are consistent with

the answers to the queries issued by the la�er algorithm are also consistent with respect to those

issues by the former. �

3.2 The Case of Two Players
In this subsection we assume that there are exactly two players, i.e., n = 2. We will show how to

relax this assumption in Section 3.3.

It will be somewhat easier to consider an equivalent formulation of ε-equitability. Let v̄ (a) be

the total value of good a. For our current case of n = 2, it is v̄ (a) = v1 (a) +v2 (a). For a set of goods

(piece of cake) X , let v̄ (X ) =
∑

a∈X v̄ (X ) be the total value of X . We also deviate a bit from the

standard cake cu�ing formulation (Section 2) by normalizing the value of the whole cake to 1/2 for

both players, i.e., v1 ([0, 1]) = v2 ([0, 1]) = 1/2. �is is purely for ease of exposition — it allows us to

work with numbers in base 3 and cleanly achieve the desired result.

Lemma 3.3. �e allocation A = (A1,A2) is ε-equitable if and only if

|v̄ (A1) − 1/2| ≤ ε .

Proof. It holds that

|v̄ (A1) − 1/2| = |v1 (A1) +v2 (A1) − 1/2|

= |v1 (A1) − (1/2 −v2 (A1)) |

= |v1 (A1) −v2 (A2) | .

�

Next, we introduce an adversary framework. (Recall that we aim to design an adversary to

frustrate an algorithm trying to achieve ε-equitability.) For a good a and i ∈ {1, 2}, let

ρi (a) =
vi (a)

v3−i (a)
,
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A Lower Bound for Equitable Cake Cu�ing 1

and

ρ̃ (a) = min

{
ρ1 (a), ρ2 (a)

}
.

�e framework can now be described as in Algorithm 1.

Algorithm 1 Adversary framework with parameters ~γ = (γ1, . . . ,γK ) ∈ [0, 1]
K

.

For k = 1, 2, · · · ,K (the number of rounds):

(1) Receive the query spliti (a, β ), where i ∈ {1, 2}. It splits a into a′ and a′′ such that

vi (a
′) = β . Assume without loss of generality that 0 < β ≤ vi (a)/2, otherwise we can

reverse the roles of a′ and a′′.
(2) Choose a value for the other player, v3−i (a

′), so that

vi (a
′) · ρ3−i (a) · (1 − γk ) ≤ v3−i (a

′) ≤ vi (a
′) · ρ3−i (a). (3)

Lemma 3.4. Suppose that queries are answered in a way that is consistent with Algorithm 1. �en
for each good a generated in the �rst k rounds, it holds that

ρ̃ (a) ≥
k∏
i=1

(1 − γi ).

Proof. We prove the lemma by induction on the number of rounds. �e lemma is clearly true

at round 0, because ρ̃ ([0, 1]) = 1, and the empty product equals 1 by convention.

Suppose that the lemma holds a�er k − 1 rounds, and in round k we get a spliti (a, β ) query

that splits a into a′ and a′′. By the induction assumption, it is su�cient to show that ρ̃ (a′) and

ρ̃ (a′′) satisfy the desired inequality. By Equation (3), we have that

ρ3−i (a
′) =

v3−i (a
′)

vi (a′)

≥
vi (a

′) · ρ3−i (a) · (1 − γk )

vi (a′)

≥ ρ̃ (a) · (1 − γk )

≥ *
,

k−1∏
i=1

(1 − γi )+
-
· (1 − γk )

=

k∏
i=1

(1 − γi ),

(4)

where the fourth transition follows from the induction assumption. In addition,

ρi (a
′) =

vi (a
′)

v3−i (a′)
≥

vi (a
′)

vi (a′) · ρ3−i (a)
=

1

ρ3−i (a)
= ρi (a) ≥ ρ̃ (a) ≥

k−1∏
i=1

(1 − γi ). (5)

Using Equations (4) and (5),

ρ̃ (a′) = min

{
ρ3−i (a

′), ρi (a
′)
}
≥

k∏
i=1

(1 − γi ).

For the other newly generated good a′′, we have that

ρi (a
′′) =

vi (a
′′)

v3−i (a′′)
=

vi (a
′′)

v3−i (a) −v3−i (a′)
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≥
vi (a

′′)

vi (a) · ρ3−i (a) −vi (a′) · ρ3−i (a) · (1 − γk )

=
vi (a

′′)

vi (a′′) · ρ3−i (a) +vi (a′) · ρ3−i (a) · γk

≥
vi (a

′′)

vi (a′′) · ρ3−i (a) +vi (a′′) · ρ3−i (a) · γk

=
1

ρ3−i (a) · (1 + γk )

≥ ρ̃ (a) · (1 − γk )

≥

k∏
i=1

(1 − γi ),

where the third transition follows from the de�nition of ρ and Equation (3), and the ��h holds due

to the assumption that 0 < vi (a
′) ≤ vi (a)/2, which implies that vi (a

′) ≤ vi (a
′′). Furthermore,

ρ3−i (a
′′) =

v3−i (a
′′)

vi (a′′)

=
v3−i (a) −v3−i (a

′)

vi (a′′)

=
vi (a) · ρ3−i (a) −vi (a

′) · ρ3−i (a)

vi (a′′)

= ρ3−i (a)

≥ ρ̃ (a) ≥
k−1∏
i=1

(1 − γi ).

As before, it follows that ρ̃ (a′′) = min{ρi (a
′′), ρ3−i (a

′′)} ≥
∏k

i=1
(1 − γi ). �

Our next step is to instantiate the adversary framework of Algorithm 1 as Algorithm 2. We show

that the algorithm is indeed consistent with the abstract framework.

Lemma 3.5. Algorithm 2 with parameters ~γ is consistent with the framework of Algorithm 1 with
parameters ~γ , i.e., it satis�es Equation (3) for all k .

Proof. First, let us prove the correctness of the le� inequality of (3), that is,

vi (a
′) · ρ3−i (a) · (1 − γk ) ≤ v3−i (a

′). (6)

Denoteψ = vi (a
′) +vi (a

′) · ρ3−i (a). We have that

ψ − v̄ (a′) = vi (a
′) +vi (a

′) · ρ3−i (a) − (vi (a
′) +v3−i (a

′)) = vi (a
′) · ρ3−i (a) −v3−i (a

′). (7)

We also know that

ψ − v̄ (a′) =
(
0.00 · · · 0dt+`kdt+`k+1 · · ·

)
3

. (8)
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Algorithm 2 Adversary protocol with parameters ~γ = (γ1, . . . ,γK ) ∈ [0, 1]
K

.

For k = 1, 2, · · · ,K (the number of rounds):

(1) Receive the query spliti (a, β ), where i ∈ {1, 2}. It splits a into a′ and a′′ such that

vi (a
′) = β . Assume without loss of generality that 0 < β ≤ vi (a)/2, otherwise we can

reverse the roles of a′ and a′′.
(2) Let

δk =
ρ3−i (a) · γk
1 + ρ3−i (a)

and

`k =
⌈
log

3
δ−1

k

⌉
+ 1.

(3) Compute the base-3 representation of the expression vi (a
′) +vi (a

′) · ρ3−i (a). (Intuition:

�is expression is the total value of a′ that would guarantee that ρ̃ (a′) = ρ̃ (a).) Denote

this representation by (0.d1d2d3 · · ·)3 where di ∈ {0, 1, 2} for all i .

(4) Let v̄ (a′) =
(
0.00 · · · 0dtdt+1 · · ·dt+`k−1

)
3

, where dt is the �rst non-zero digit among

d1,d2, . . .
(5) Determine the valuation of player 3 − i via v3−i (a

′) = v̄ (a′) −vi (a
′).

Sinceψ = (0.d1d2d3 · · ·)3, we can deduce that(
0.00 · · · 0dt+`kdt+`k+1 · · ·

)
3

≤
ψ

3
`k−1

=
ψ

3

⌈
log

3
δ−1

k

⌉

≤ ψ · δk

= ψ ·
ρ3−i (a) · γk
1 + ρ3−i (a)

= (vi (a
′) +vi (a

′) · ρ3−i (a)) ·
ρ3−i (a) · γk
1 + ρ3−i (a)

= vi (a
′) · ρ3−i (a) · γk .

(9)

Combining Equations (7), (8), and (9), we conclude that

vi (a
′) · ρ3−i (a) −v3−i (a

′) ≤ vi (a
′) · ρ3−i (a) · γk .

By rearranging, we immediately obtain Equation (6).

We now turn to the right inequality of Equation (3),

v3−i (a
′) ≤ vi (a

′) · ρ3−i (a). (10)

Clearly v̄ (a′) ≤ ψ , because (according to Algorithm 2) the positive digits of v̄ (a′) in base 3

representation are a subset of those ofψ . Using the de�nitions, we can rewrite this inequality as

vi (a
′) +v3−i (a

′) ≤ vi (a
′) +vi (a

′) · ρ3−i (a), which is equivalent to Equation (10). �

Suppose that in round k we split good a into a′ and a′′, as in Algorithms 1 and 2. Let us denote

the good a′ by a (k ) , and the good a (the one that will be split in this round) by b (k ) . In particular,

a (0) is the entire cake.

Lemma 3.6. Let
γ ∗k =

1

K − k + 1
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for k = 1, . . . ,K . �en under Algorithm 2 with parameters ~γ ∗, the total number of non-zero digits in
the base-3 representations of v̄ (a (0) ), v̄ (a (1) ), · · · , v̄ (a (K ) ) is O (K lnK ).

Proof. It is clearly su�cient to show that

K∑
k=1

`k = O (K lnK ),

because for all k = 1, . . . ,K , v̄ (a (k ) ) has at most `k non-zero digits (by Algorithm 2).

By Lemma 3.4, we have that

ρ̃
(
b (k )

)
≥

k−1∏
i=1

(1 − γ ∗i ).

It follows that

δk =
ρ3−i

(
b (k )

)
· γ ∗k

1 + ρ3−i
(
b (k )

) ≥ ρ̃
(
b (k )

)
· γ ∗k

1 + ρ̃
(
b (k )

) ≥ γ ∗k ·
∏k−1

i=1
(1 − γ ∗i )

2

, (11)

where the �rst inequality holds because h(x ) = γ ∗k · x/(1 + x ) is monotone non-decreasing, as

h′(x ) = γ ∗k/(1 + x )
2

≥ 0, and the second holds because ρ̃ (a) ≤ 1 for any a.

Next, let us bound the expression we are interested in.

K∑
k=1

`k =

K∑
k=1

(⌈
log

3
δ−1

k

⌉
+ 1

)
≤ 2K +

K∑
k=1

log
3
δ−1

k

≤ 2K +
K∑
k=1

log
3

*
,

2

γ ∗k ·
∏k−1

i−1
(1 − γ ∗i )

+
-

≤ 3K −
K∑
k=1

log
3

*
,
γ ∗k

k−1∏
i=1

(
1 − γ ∗i

)+
-

= 3K −
K∑
k=1

*
,
log

3
γ ∗k +

k−1∑
i=1

log
3
(1 − γ ∗i )

+
-

= 3K −
K∑
k=1

log
3
γ ∗k −

K∑
k=1

k−1∑
i=1

log
3
(1 − γ ∗i )

= 3K −
K∑
k=1

log
3
γ ∗k −

K∑
k=1

(K − k ) · log
3
(1 − γ ∗k )

= 3K −
K∑
k=1

(
log

3
γ ∗k + (K − k ) · log

3
(1 − γ ∗k )

)
= 3K −

K∑
k=1

fK−k (γ
∗
k ),

where the third transition follows from Equation (11), and ft (x ) = log
3
x + t · log

3
(1 − x ) in the last

line.
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Let us consider the function ft . On the domain x ∈ (0, 1), it is maximized when

d ft (x )

dx
=

1

ln 3

·

(
1

x
−

t

1 − x

)
= 0,

or, equivalently, 1 − x − tx = 0. Hence, the function value is maximized at 1/(t + 1) — which

explains our choice of γ ∗k . We have that

ft

(
1

t + 1

)
= log

3

(
1

t + 1

)
+ log

3

(
1 −

1

t + 1

)t
≥ log

3

(
1

t + 1

)
+ log

3
(1/e )

= −log
3
(t + 1) −

1

ln 3

.

(12)

Plugging (12) into our upper bound on

∑K
k=1
`k , we get

K∑
k=1

`k ≤ 3K −
K∑
k=1

fK−k

(
1

K − k + 1

)

≤ 3K −
K∑
k=1

(
−log

3
(K − k + 1) −

1

ln 3

)

≤ 4K +
K∑
k=1

log
3
(K − k + 1)

≤ 4K + K · log
3
(K + 1)

= O (K lnK ).

�

�e next lemma formalizes a simple fact about numbers represented in base 3. It is useful because

Lemma 3.6 already gives us a bound on the number of non-zero digits in the total values of the

goods we are interested in.

Lemma 3.7. For any t real numbers x1,x2, · · · ,xt ∈ R, if they havem non-zero digits in total in
their base-3 representation, then their sum

∑t
i=1

xi has at most 2m ones in its base-3 representation.

Proof. We assume without loss of generality that the numbers are integers (otherwise we can

multiply them by a su�ciently large power of 3). Our strategy is to sum up the integers one

non-zero digit at a time, and check that the number of ones in the sum increases by at most two in

each step.

Suppose that at some point in this process we have a positive partial sum, and we add to it a

single positive digit, i.e., a number of the form (10 · · · 0)3 or (20 · · · 0)3 in base 3. �is possibly results

in a sequence of addition operations, as each one can create a carry to the next digit. Crucially, we

get a new digit that is 1 only from 1 + 0 or from 2 + 2. Now, since the carry is at most 1, 2 + 2 can

only happen in the initial addition. Any additional ones will be created in a 1 + 0 operation, but

this operation has no carry, hence the process ends. Overall this process creates at most two ones.

Next, suppose we have a positive partial sum, and we add to it a single negative digit. Again, this

may lead to a sequence of subtraction operations with a borrow. In this case, a 1 is generated only

from 0−2 and 2−1. As before, 0−2 can only happen once, as the borrow is at most 1. Moreover, the

process ends a�er a 2 − 1 operation, which has no borrow. Overall, at most two ones are generated.
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�e remaining two cases (negative partial sum and positive digit, negative partial sum and

negative digit) are analogous to the two cases analyzed above. �

�e next lemma may seem unrelated at �rst glance, but its application will become clear momen-

tarily.

Lemma 3.8. Consider a binary tree where each node is colored either red or blue, each internal node
has one red child and one blue child, and the root is red. Furthermore, each leaf i is labeled with a
number xi , and the label of each internal node is the sum of the labels of its two children. �en for any
subset of leaves S , the sum

∑
i ∈S xi can be represented as a weighted sum of the labels of red nodes,

where the weights are in {−1, 0, 1}.

Proof. Given the subset of leaves S , we can compute the weight vector ~w via Algorithm 3.

Algorithm 3 Computing weights given a subset S of leaves

1: ~w ← ~0

2: while there are at least two nodes in the tree do
3: j,k ← two sibling leaves (j is red)

4: i ← parent of j and k
5: if j,k ∈ S then
6: S ← S ∪ {i}
7: end if
8: if j ∈ S and k < S then
9: w j ← 1

10: end if
11: if j < S and k ∈ S then
12: w j ← −1

13: S ← S ∪ {i}
14: end if
15: S ← S\{j,k }
16: remove nodes j and k from the tree

17: end while
18: if S = {i} then . S contains only the root

19: wi ← 1

20: S ← ∅
21: end if

Denoting the set of red nodes by R, it holds throughout the execution of the algorithm that the

sum

∑
i ∈S xi +

∑
i ∈R wixi remains constant (here we are assigning weight 0 unless the algorithm

explicitly assigns a weight of 1 or −1). Moreover, initially this sum is equal to

∑
i ∈S xi for the given

S , and when the algorithm terminates it is equal to

∑
i ∈R wixi , as at that point S = ∅. �

Finally, we have all the machinery in place to prove �eorem 3.1 for the case of two players.

Lemma 3.9. For two players, the complexity of ε-equitable cake cu�ing in the RW model is

Ω

(
ln(1/ε )

ln ln(1/ε )

)
.
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Proof. A�er K rounds of the adversary protocol given by Algorithm 2, the cake is partitioned

into K + 1 goods, as in each round the number of goods increases by one (one good is split into

two). By Lemmas 3.2 and Lemma 3.3, it is su�cient to guarantee that no subset of these K + 1

goods provides total value within ε of 1/2.

In order to show this, we think of the execution of Algorithm 2 as building a binary tree. Indeed,

initially there is a red root associated with the entire cake, and its label is the total value 1/2+1/2 = 1.

Each query splits the good a into a′ and a′′, and splits its total value v̄ (a) into v̄ (a′) and v̄ (a′′);
note that v̄ (a) = v̄ (a′) + v̄ (a′′). We associate a red child with a′ and label it with v̄ (a′), and label

another blue child with v̄ (a′′). Now, Lemma 3.8 implies that there is a subset of goods (where the

total value of each good is the label of the corresponding leaf) whose total value is within ε of 1/2
if and only if there are w0, . . . ,wk ∈ {−1, 0, 1} such that

������

K∑
k=0

wi · v̄ (a
(k ) ) −

1

2

������
≤ ε .

By Lemma 3.6, we know that if the adversary follows Algorithm 2 with parameters ~γ ∗, the total

number of non-zero digits in the base-3 representation of v̄ (a (0) ), . . . , v̄ (a (K ) ) can be upper-bounded

by O (K lnK ). �erefore, Lemma 3.7 implies that the base-3 representation of

∑K
k=0

wi · v̄ (a
(k ) ) has

at most O (K lnK ) ones.

Note that 1/2 = (0.111 · · ·)
3
. By contrast, a number with no more than m ones in its base-3

representation must have a zero in the �rstm + 1 positions. Takingm = O (K lnK ), it follows that

������

K∑
k=0

wi · v̄ (a
(k ) ) −

1

2

������
≥ 3

−O (K lnK ) .

Consequently, a necessary condition to guarantee ε-equitability is

3
−O (K lnK ) ≤ ε .

�e lemma directly follows by solving for K . �

3.3 Extension to Any Number of Players
At this point, it only remains to extend the lower bound for two players to a lower bound for n
players, i.e., to show that ε-equitable cake cu�ing for n players is at least as hard as for two players.

�is is not as trivial as it sounds. Indeed, one’s �rst thought might be that it is possible to just focus

on players 1 and 2; if the n-player allocation is ε-equitable, then, in particular, |v1 (A1) −v2 (A2) | ≤ ε .
However, the allocation to players 1 and 2 is only a partial allocation, i.e., the union of A1 and A2

may not be the entire cake.

A slightly more sophisticated approach reduces the 2-player case to the n-player case by creating

copies of the two players. �is approach only takes us halfway: We obtain an initial lower bound

that decreases as n increases.

Lemma 3.10. For any number of players n ≥ 2, the complexity of ε-equitable cake cu�ing in the
RW model is

Ω

(
ln(1/(nε ))

ln ln(1/(nε ))

)
.

Proof. Assume for ease of exposition that the number of players n is even (the proof for odd

n is very similar, but a bit more cumbersome notation-wise). Our goal is to use an algorithm for

ε-equitable cake cu�ing in the n-player case to compute an ε ′-equitable allocation in the 2-player
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case for ε ′ = nε/2. �is means that the former problem is at least as hard as the la�er, and using

Lemma 3.9 with ε ′, we get the stated bound.

Turning to the reduction, we start from a 2-player instance, consisting of two players {1, 2} with

valuation functions v1 and v2. Now create an n-player instance with a set N1 of n/2 players with

valuation function v1, and a set N2 of n/2 players with valuation function v2. Suppose we have an

ε-equitable allocation A for the la�er instance, then for all i ∈ N1 and j ∈ N2, |v1 (Ai ) −v2 (Aj ) | ≤ ε .
Now let A′

1
=

⋃
i ∈N1

Ai , and A′
2
=

⋃
i ∈N2

Ai . Let σ : N1 ↪→→ N2 be a bijection (meaning we simply

pair up players from N1 and N2); then

|v1 (A
′
1
) −v2 (A

′
2
) | ≤

∑
i ∈N1

|v1 (Ai ) −v2 (Aσ (i ) ) | ≤
n

2

· ε .

�

Even though Lemma 3.10 does not quite give us �eorem 3.1, we only need one additional idea

to complete the theorem’s proof.

Proof of Theorem 3.1. Our strategy is to prove an additional (trivial) lower bound on the

complexity of ε-equitable cake cu�ing, by focusing on the case where all players have the same

valuation function. We will combine it with the lower bound of Lemma 3.10 to obtain the theorem.

Consider �rst the case where n < 1/ε . Because we have assumed that vi = vj for all i, j ∈ N , and

using the additivity of the valuation functions, for any allocation A there must exist a player i such

that vi (Ai ) ≥ 1/n > ε . �erefore, in order for A to be ε-equitable, each player must receive a piece

with positive value. It follows that ε-equitability requires at least n − 1 split queries in the adjusted

RW model, as we must generate at least n goods. Combining this lower bound with the bound of

Lemma 3.10, we get a lower bound of

max

{
Ω

(
ln(1/(nε ))

ln ln(1/(nε ))

)
,n − 1

}
≥ max

{
Ω

(
ln(1/ε )

ln ln(1/ε )

)
−O (ln(n)) ,n − 1

}
. (13)

�e right hand side of Equation (13) is minimized when n = n∗, where

Ω

(
ln(1/ε )

ln ln(1/ε )

)
−O (ln(n∗)) = n∗ − 1.

Clearly it holds that

n∗ = Ω

(
ln(1/ε )

ln ln(1/ε )

)
,

and it follows that the lower bound of Equation (13) is Ω(ln(1/ε )/ ln ln(1/ε )), as desired.

Next consider the other case, where n ≥ 1/ε . Similarly to the previous case, the number of

players receiving pieces with nonzero value must be at least 1/ε — otherwise one of those players

would have value greater than ε (recall that the players are identical), and some others would have

value 0. It follows that at least 1/ε − 1 split queries are required. Of course,

1

ε
− 1 = Ω

(
ln(1/ε )

ln ln(1/ε )

)
.

�
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4 AN UPPER BOUND THAT IS INDEPENDENT OF THE NUMBER OF PLAYERS
As discussed in Section 1, Cechlárová and Pillárová [13] establish an upper bound of O (n ln(1/ε ))
on the complexity of ε-equitable cake cu�ing. By contrast, the lower bound of �eorem 3.1 is

independent of n. While it is almost tight for a small number of players, it is natural to ask whether

it is possible to prove a lower bound that grows larger with the number of players. In this section

we answer this question in the negative. Speci�cally, we prove the following theorem.

Theorem 4.1. For any number of players n, the complexity of ε-equitable cake cu�ing in the RW
model is

O
(
min

{
n,

1

ε

}
ln

(
1

ε

))
.

�e proof is quite simple and we opt for an informal exposition. Our goal is to give an algorithm

that �nds an ε-equitable allocation using O ((1/ε ) ln(1/ε )) queries; together with the upper bound

of Cechlárová and Pillárová [13], this implies the theorem.

�e intuition behind our algorithm comes from the elegant Even-Paz algorithm [17] that �nds a

proportional allocation using O (n lnn) queries. We will describe the algorithm recursively, and

assume for ease of exposition that n is a power of 2. �e input to the algorithm is a subset of players

1, . . . ,m (itself a power of 2) and a piece of cake [x , z]; initially these are N and [0, 1]. If the given

set of players is a singleton, give [x , z] to that player. Otherwise, the algorithm asks each player i
an evali (x , z) query that returns vi ([x , z]); and then a cuti (x ,vi ([x , z]/2)) query, which returns a

point yi that partitions the interval [x , z] into two subintervals that i values equally. �ese marks

are sorted so that yi1 ≤ yi2 ≤ · · · ≤ yim , and the algorithm is called recursively with the subset of

players {i1, . . . , im/2} and the piece of cake [x ,yim/2
], and the subset of players {im/2+1, . . . , im } and

the piece of cake [yim/2
, z]. �e crux of the proportionality argument is that in each recursive call

exactly half of the players that participated in the previous call share a piece of cake that they value

at least at half their value for the previous piece. �e height of the recursion tree is exactly log
2
n,

so the value of each player for his piece of cake is at least 1/2log
2
n = 1/n.

Now, suppose that n ≥ 1/ε , and assume for ease of exposition that 1/ε is a power of 2. Choose a

subset of players N ′ of size 1/ε . �e idea is to �nd an anti-proportional allocation that gives each

player in N ′ a piece that he values at most at 1/|N ′ | = ε . Since players in N \ N ′ receive empty

pieces that they value at 0, this is an ε-equitable allocation.

In order to �nd an anti-proportional allocation for N ′, we run a variant of the Even-Paz algorithm.

�e only di�erence is that we swap the pieces in the recursive calls, that is, we call the algorithm

with the subset of players {i1, . . . , im/2} and the piece of cake [yim/2
, z], and the subset of players

{im/2+1, . . . , im } and the piece of cake [x ,yim/2
]. Now in each recursive call exactly half of the

players that participated in the previous call share a piece of cake that they value at most at half

their value for the previous piece, which implies that each player in N ′ receives a piece worth at
most 1/2lg(1/ε ) = ε .

5 DISCUSSION
�e algorithm just presented (in Section 4) is clearly a very bad method for cu�ing a cake, even

though it achieves ε-equitability.
4

We mainly included it to make a technical point about the (lack

of) dependence of the problem on the number of players. But it also illustrates that equitability, in

and of itself, is not a su�ciently strong property to guarantee good outcomes — it should be sought

4
It is worth noting that there is a trivial, even worse method of achieving equitability: giving each player an empty piece (or,

equivalently, throwing away the entire cake). Being able to throw away cake is known to provide signi�cant advantages for

some cake cu�ing problems [2, 26]. However, we work in the standard cake cu�ing model, where the foregoing “algorithm”

is not valid, as the allocation A must form a partition of the cake.
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together with other desirable properties, as it has in the past [7, 9]. Of course, our main result

is a lower bound, so it holds for any combination of properties that includes ε-equitability. For

example, it implies that an allocation that is both proportional and equitable cannot be computed,

even though one always exists [1].

A somewhat subtle point has to do with the implications of �eorem 3.1 for exact equitability,

which are stronger than they may seem at �rst glance. Its statement directly implies that there is

no bounded algorithm for equitable cake cu�ing. Indeed, for any K ∈ N we can take ε to be small

enough so that our lower bound is at least K . �is approach does not rule out the existence of

an unbounded equitable algorithm, which always terminates with an equitable allocation, but has

running time that cannot be bounded as a function of the number of players. To see why such

algorithms do not exist, note that instead of choosing γ ∗k that depends on the number of rounds K
(as we did in Lemma 3.6), we can choose, e.g., γ ∗k = 1/2. �en Lemma 3.6 would still give an upper

bound (albeit not as small as before) on the number of non-zero digits in the base-3 representation

of v̄ (a (0) ), v̄ (a (1) ), · · · , v̄ (a (K ) ) for any K , which implies (by the rest of the proof of Lemma 3.9) that

|v̄ (A1) − 1/2| must be strictly positive a�er any number of rounds. In other words, Algorithm 2

maintains a gap between the values of any allocation and the values needed for equitability, which

grows smaller as the number of rounds grows larger, but always remains strictly positive. �erefore,

the adversary can keep fooling an equitable algorithm forever.

Finally, it is interesting to to note that achieving ε-envy freeness requires O (n2/ε ) queries in

the RW model [24],
5

but bounded envy-free algorithms exist [3]. By contrast, ε-equitable cake

cu�ing requires only O (n ln(1/ε )) queries, yet equitable algorithms do not exist. �is conceptual

discrepancy highlights the richness of the cake cu�ing model, and of the space of problems it gives

rise to.

ACKNOWLEDGMENTS
�is work was partially supported by the National Science Foundation under grants IIS-1350598

and CCF-1525932, by the O�ce of Naval Research, and by a Sloan Research Fellowship.

REFERENCES
[1] N. Alon. 1987. Spli�ing necklaces. Advances in Mathematics 63 (1987), 241–253.

[2] O. Arzi, Y. Aumann, and Y. Dombb. 2011. �row One’s Cake — and Eat It Too. In Proceedings of the 4th International
Symposium on Algorithmic Game �eory (SAGT). 69–80.

[3] H. Aziz and S. Mackenzie. 2016. A Discrete and Bounded Envy-Free Cake Cu�ing Protocol for Any Number of Agents.

In Proceedings of the 57th Symposium on Foundations of Computer Science (FOCS). 416–427.

[4] H. Aziz and S. Mackenzie. 2016. A Discrete and Bounded Envy-Free Cake Cu�ing Protocol for Four Agents. In

Proceedings of the 48th Annual ACM Symposium on �eory of Computing (STOC). 454–464.

[5] E. Balkanski, S. Brânzei, D. Kurokawa, and A. D. Procaccia. 2014. Simultaneous Cake Cu�ing. In Proceedings of the
28th AAAI Conference on Arti�cial Intelligence (AAAI). 566–572.

[6] S. J. Brams, M. Feldman, J. Morgenstern, J. K. Lai, and A. D. Procaccia. 2012. On Maxsum Fair Cake Divisions. In

Proceedings of the 26th AAAI Conference on Arti�cial Intelligence (AAAI). 1285–1291.

[7] S. J. Brams, M. A. Jones, and C. Klamler. 2006. Be�er Ways to Cut a Cake. Notices of the AMS 53, 11 (2006), 1314–1321.

[8] S. J. Brams and A. D. Taylor. 1995. An Envy-Free Cake Division Protocol. �e American Mathematical Monthly 102, 1

(1995), 9–18.

[9] S. J. Brams and A. D. Taylor. 1996. Fair Division: From Cake-Cu�ing to Dispute Resolution. Cambridge University Press.

[10] S. Brânzei and P. B. Miltersen. 2015. A Dictatorship �eorem for Cake Cu�ing. In Proceedings of the 24th International
Joint Conference on Arti�cial Intelligence (IJCAI). 482–488.

[11] I. Caragiannis, D. Kurokawa, H. Moulin, A. D. Procaccia, N. Shah, and J. Wang. 2016. �e Unreasonable Fairness of

Maximum Nash Product. In Proceedings of the 17th ACM Conference on Economics and Computation (EC). 305–322.

5
�is is the best known upper bound, but there is no matching lower bound.

ACM Transactions on Economics and Computation, Vol. 1, No. 1, Article 1. Publication date: January 2017.

Session 6b: Fair Division 1 EC'17, June 26–30, 2017, Cambridge, MA, USA 

494



A Lower Bound for Equitable Cake Cu�ing 1
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