
How to Make Envy Vanish Over Time

GERDUS BENADE, Carnegie Mellon University
ALEKSANDR M. KAZACHKOV, Carnegie Mellon University
ARIEL D. PROCACCIA, Carnegie Mellon University
CHRISTOS-ALEXANDROS PSOMAS, Carnegie Mellon University

We study the dynamic fair division of indivisible goods. Suppose T items arrive online and must be allocated
upon arrival to one of n agents, each of whom has a value in [0, 1] for the current item. Our goal is to design
allocation algorithms that minimize the maximum envy at time T , EnvyT , de�ned as the maximum di�erence
between any agent’s overall value for items allocated to another agent and to herself. We say that an algorithm
has vanishing envy if the ratio of envy over time, EnvyT /T , goes to zero as T goes to in�nity. We design a
polynomial-time, deterministic algorithm that achieves EnvyT ∈ Õ(

√
T /n), and show that this guarantee is

asymptotically optimal. We also derive tight (in T) bounds for a more general se�ing where items arrive in
batches.

1 INTRODUCTION
We consider the se�ing of fairly allocating indivisible goods when agents have additive valuations. It
involves a set [n] = {1, . . . ,n} of agents, and a set of items. Each agent i ∈ [n] assigns a (normalized)
value vit ∈ [0, 1] to each item t ; for a bundle of items S , the value of agent i is vi (S) =

∑
t ∈S vit . An

allocation is a partition of the items into bundles A1, . . . ,An , where Ai is assigned to agent i ∈ [n].
Ideally, we would like to guarantee a fairness property called envy-freeness — arguably, the gold

standard of fairness — which requires that each agent is at least as happy with her own allocation
as the allocation of any other agent, that is, vi (Ai) ≥ vi (Aj) for any two agents i, j ∈ [n]. Envy-free
solutions indeed always exist in other paradigmatic fair division se�ings that involve divisible goods
or a numéraire, such as cake cu�ing [Brams and Taylor, 1996, Procaccia, 2016] and rent division [Gal
et al., 2017, Su, 1999]. By contrast, in our context, envy is clearly unavoidable — just imagine a
single (indivisible) item that is desired by two agents. �at is why recent papers [Caragiannis et al.,
2016, Lipton et al., 2004] focus on the relaxed notion of envy-freeness up to one good (EF1), which,
when values are normalized as above, implies that vi (Ai) ≥ vi (Aj) − 1 for all i, j ∈ [n]. Unlike its
more stringent cousin, EF1 can always be guaranteed, and, in fact, it is quite easy to do so, e.g.,
by allocating the items in a round-robin fashion — each agent in her turn picks her favorite item
among those that are still available.

Our point of departure is that we allow items to arrive online, that is, we must choose how to
allocate an item when it arrives, without knowing the values of items that will arrive in the future.
�is setup mirrors common decision-making scenarios in humanitarian logistics. A paradigmatic
example is that of food banks [Aleksandrov et al., 2015], which receive food donations, and deliver
them to nonpro�t organizations such as food pantries and soup kitchens. Indeed, items are o�en
perishable, which is why allocation decisions must be made quickly, and donated items are typically
le�overs, leading to lack of information about items that will arrive in the future.

Suppose, then, that at each time step an item t arrives, where t = 1, . . . ,T . �e allocation
decisions made by an algorithm at each step induce an allocation A1, . . . ,An at the end of step T .
For i, j ∈ [n], let

Envyi jT = max
{
vi (Aj) −vi (Ai), 0

}

Gerdus Benade, Aleksandr M. Kazachkov, Ariel D. Procaccia, and Christos-Alexandros Psomas 2

be the envy of i for j. Note that this measure of cumulative envy increases by vit if item t is
allocated to j (which places it in Aj), and decreases by vit if item t is allocated to i (which places it
in Ai). Moreover, let

EnvyT = max
i, j ∈[n]

Envyi jT

be the maximum envy. As noted above, in the static se�ing it is possible to maintain EnvyT ≤ 1
for any number of items T , but, of course, even the round-robin allocation requires complete
information about values upfront. By contrast, in the online se�ing, one would expect EnvyT to
inevitably grow with T .

Nevertheless, we can hope to control the rate at which envy grows over time. Speci�cally, we aim
to design algorithms with vanishing envy — algorithms that lead to EnvyT ∈ o(T), or, equivalently,
we want the average per-round envy EnvyT /T to go to zero as T goes to in�nity. Our primary
research question is:

Are there online allocation algorithms with vanishing envy, and, if so, what is the

optimal average per-round envy?

1.1 Our Results
We �rst study randomized algorithms. �e most natural candidate is the “random allocation”
algorithm: allocate item t to an agent chosen uniformly at random. We analyze this algorithm
against an adaptive adversary that chooses the values vit for item t a�er seeing the (random)
allocations for items 1 through t − 1. Our �rst step is showing that the optimal strategy for an
adaptive adversary (against the random allocation algorithm) is in fact nonadaptive: the adversary
always picks values vit = 1. �is makes the random variables for the envy between any agents i
and j at steps t and t ′ independent, which enables us to use standard concentration inequalities for
bounding the overall envy. Our result for this se�ing is that the random allocation algorithm has
vanishing envy. Formally, �eorem 2.1 asserts that this algorithm achieves E [EnvyT] ∈ Õ(

√
T /n).

One may hope that it would be possible to do be�er than allocating blindly. Surprisingly, though,
we show that the random allocation algorithm is asymptotically optimal (up to logarithmic factors).
Indeed, there exists an adaptive strategy for the adversary such that any allocation algorithm
for T items accumulates envy in Ω((T /n)r/2), for any r < 1 (�eorem 2.13). However, despite its
theoretical optimality, the random allocation algorithm is intuitively unappealing. We therefore
turn our a�ention to deterministic algorithms, only to discover that simple, greedy schemes seem
to fail miserably in this se�ing. For example, one can construct counterexamples for natural
candidates, like allocating item t to minimize the maximum envy, or allocating it to the most
envious agent.

Nevertheless, we prove, in �eorem 2.6, that there exists a deterministic polynomial-time algo-
rithm with the same envy bound as the random allocation algorithm (up to logarithmic factors).
�e former algorithm is the result of derandomizing the la�er with the method of pessimistic

estimators [Raghavan, 1988]. Speci�cally, we de�ne a potential function ϕ(t) that depends on the
values of the �rst t items and the allocations of the �rst t −1 items. Out algorithm allocates item t in
a way that ϕ(t) is minimized. Our proof has three main ingredients. First, the potential function is
nonincreasing, i.e., ϕ(t+1) ≤ ϕ(t). Second, we prove that the potential at time t is an overestimation
of the probability of having large envy if in steps t + 1 through T we allocate items uniformly at
random. Formally, ϕ(t) ≥

∑
i, j ∈[n]:i,j Pr[Envyi jT > λ], where λ is the (target) performance of our

derandomized algorithm. Lastly, we show that ϕ(0) < 1. Note that characterizing the adversary’s
optimal strategy is not a hurdle here: since our algorithm is deterministic, adaptivity does not help.

Gerdus Benade, Aleksandr M. Kazachkov, Ariel D. Procaccia, and Christos-Alexandros Psomas 3

Combined, the three ingredients imply that greedily minimizing the potential function ϕ achieves
EnvyT ∈ Õ(

√
T /n).

Having completed the picture for the se�ing where one item arrives at a time, in Section 3
we proceed to study a more general model. Suppose, as before, that T items with adversarially
chosen values arrive over time. Instead of arriving one by one, as assumed in Section 2, items
arrive in batches of size m. In other words, at each time step a batch of m items arrives, for a
total of T /m batches. To motivate this, note that in the food bank se�ing it is reasonable to wait
until the end of the day before allocating all food donations that arrived that day. When batch
t arrives, the algorithm learns the values of all m items for all agents, and must allocate these
items immediately and irrevocably, before the next batch arrives. We use EnvyT ,m to denote
the envy a�er the allocation of T items, arriving in batches of size m, with the convention that
EnvyT ,1 = EnvyT . Since the allocation algorithm is less myopic in this se�ing, it is natural to
expect stronger performance guarantees than in the m = 1 case. For example, in the extreme case
wherem = T , there exist algorithms that are envy free up to one good, so EnvyT ,T ≤ 1.

�e upper bound of �eorem 2.1 whenm = 1 may be interpreted as the expected distance from
the origin of a random walk that remains stationary with probability 1 − 2/n, and increases or
decreases by 1, each with probability 1/n. �e “step size” of 1 is the maximum change in the envy
between any pair of agents a�er the allocation of a single item; the number of nonstationary steps
is expected to be 2T /n. �is interpretation informs our approach when items arrive in batches. It
is easy to �nd an EF1 allocation for every batch of items (round-robin su�ces). Under such an
allocation the maximum change in any pairwise envy due to a single batch remains 1; however, the
value of an agent’s bundle is likely to change with every batch. Since there areT /m batches (“steps”
in the random walk), we may expect a bound of the form EnvyT ,m ∈ Õ(

√
T /m). Indeed, our main

result for this se�ing, given in �eorem 3.3, is a deterministic algorithm that achieves this bound.
To realize this intuition, we �rst need to overcome a technical obstacle. Even though it is easy

to �nd an allocation with small pairwise envy for a given batch, it is not obvious how to �nd
allocations with low pairwise envy such that randomly outpu�ing one of them results in an (ex
ante) envy-free allocation. In the random walk interpretation, we need to keep the envy between
agents i and j stationary in expectation, while at the same time maintaining a small step size. �is
is a crucial argument in the analysis of the one-by-one se�ing, in which it is trivially satis�ed by
allocating each item uniformly at random.

We overcome this obstacle by leveraging a result from the literature on continuous cake cu�ing,
which allows us to show, for each batch, the existence of a fractional allocation that is entirely envy
free and can be wri�en as a convex combination of integral allocations with constant pairwise envy.
We then use ideas from the derandomization of the random allocation algorithm of Section 2.2 to
give a deterministic algorithm for the batch se�ing.1 Finally, we prove that the lower bound for the
m = 1 se�ing may be extended to show that EnvyT ,m ∈ Ω(

√
T /(mn)).

1.2 Related Work
Conceptually our paper is related to the growing literature on online or dynamic fair division [Alek-
sandrov et al., 2015, Aleksandrov and Walsh, 2017, Kash et al., 2014, Parkes et al., 2015, Walsh,
2011]. In particular, motivated by applications to the food bank domain, Aleksandrov et al. [2015]
introduce and analyze a closely related se�ing where indivisible items arrive online. However,
they generally assume that all values are in {0, 1}, i.e., each agent “likes” or “dislikes” every item.
�ey introduce two simple mechanisms, Like and Balanced Like; the former allocates the current
item uniformly at random among agents who like it, whereas the la�er allocates the current item
1Interestingly, we do not explicitly derandomize a speci�c randomized allocation algorithm as in Section 2.

Gerdus Benade, Aleksandr M. Kazachkov, Ariel D. Procaccia, and Christos-Alexandros Psomas 4

uniformly at random among agents who like it and have so far received the fewest items. �e
analysis of these mechanisms focuses on properties such as strategyproofness, envy-freeness, and
impact on welfare. Most relevant to us is the observation that Balanced Like is EF1. �is also
highlights the technical di�erences between our se�ing and theirs, because, as noted above, with
general values EF1 is impossible.

Our paper is also related to the vast body of work on online learning [Bubeck and Cesa-Bianchi,
2012]. In the quintessential se�ing, experts learning (with full-information feedback), there are T
days, and on each day the algorithm chooses to follow the advice of one of n experts. �en, the
value of each expert is revealed, and the algorithm gains the value of the expert whose advice it
chose to follow. �e algorithm’s regret is the di�erence between the total value accumulated by
the best expert in hindsight and the value it itself has accumulated; a no-regret learning algorithm

has the property that the ratio between regret and time goes to zero (vanishing regret may have
been a more accurate term). Similarly, we are also interested in the di�erence in value accumulated
over time. However, to the best of our knowledge the two problems are technically unrelated.
To appreciate the di�erence, note that in our se�ing the values of the current item to all agents
are known to the algorithm. But if the values of the di�erent experts were known in the expert
learning se�ing, the problem would be trivial — the algorithm would simply choose the expert
with maximum value. Nevertheless, some of our notations were chosen to be consistent with those
used in the online learning literature.

Finally, we can make a technical connection to the literature on vector balancing games [Spencer,
1977]. At each time step t ∈ [T], the adversary picks an n-dimensional vector with values in [−1, 1],
and the algorithm chooses to multiply this vector by either −1 or +1 and add it to a running partial
sum vector. In one version of this game, the goal of the algorithm is to minimize the maximum entry
of the partial sum vector, while the adversary wishes to maximize that quantity. For the case where
n = 2 and items arrive one by one, our se�ing can be reduced to a version of vector balancing games
equipped with a weaker adversary. �is means that the upper bound of Spencer [1977] applies to
our se�ing (and matches our results): there exists a deterministic algorithm that guarantees envy
in O(

√
T) when n = 2. Conversely, our lower bound for n = 2 matches the lower bound from that

paper, indicating that the ostensibly weaker adversary that we consider — restricted to picking
values from just one orthant — has roughly the same strength as the stronger adversary of Spencer
[1977]; consequently, our lower bound is signi�cantly more involved. For more than two agents,
the two problems appear unrelated, and, moreover, the batch se�ing has no equivalent in the vector
balancing games literature.

2 WHEN ITEMS ARRIVE ONE BY ONE
In this section, we discuss our basic se�ing, in which, at each time step, exactly one item arrives.
Proofs missing from this section may be found in Appendix A.

2.1 Random Allocation
A natural randomized algorithm for the case where items arrive one by one is to allocate each item
to an agent selected uniformly at random; we refer to this as the random allocation algorithm. We
analyze the random allocation algorithm by �rst characterizing the adversary’s optimal strategy.
We prove that for an adaptive adversary who maximizes E [EnvyT], where the expectation is with
respect to the randomness of the algorithm, the optimal strategy is integral, that is, all values are in
{0, 1}. Using this, we show that the optimal strategy, in fact, assigns vit = 1 for all i ∈ [n], t ∈ [T].
�is optimal adversary strategy is nonadaptive, and therefore, since all the randomness is coming
from the algorithm, the random variables for the envy between agents i and j at times t and t ′

Gerdus Benade, Aleksandr M. Kazachkov, Ariel D. Procaccia, and Christos-Alexandros Psomas 5

are independent. Standard concentration inequalities for the envy between any pair of agents,
combined with a union bound over all such pairs, gives an upper bound on the expected envy.

Theorem 2.1. Suppose that T ≥ n logT , where log is the natural logarithm. �en the random

allocation algorithm guarantees that E [EnvyT] ∈ O(
√
T logT /n).

Note that the assumption of T ≥ n logT is innocuous, otherwise we can give each agent at most
logT items to achieve EnvyT ≤ logT .

Proof of Theorem 2.1. Consider a game tree2 with nodes on T + 1 levels. Every node on level
1, . . . ,T has n outgoing arcs labeled 1, . . . ,n. �e leaf nodes on level T + 1 are labeled by the
maximum envy for the corresponding path. Let Ω be the set of all paths from the root to a leaf node,
so |Ω | = nT . Equivalently, Ω is the set of all possible allocations of the T items. For an allocation
ω ∈ Ω, denote by ωt ∈ [n] the agent to whom item t ∈ [T] was allocated by ω.

A fully adaptive strategy s for the adversary is de�ned by labeling every internal node u with
a value vector s(u), where s(u)i is the value of agent i for the item corresponding to node u. �e
algorithm’s strategy consists of selecting an outgoing edge, corresponding to an allocation of the
item with valuation s(u), at every node u. �e adversary’s strategy is allowed to depend on the
allocations and valuations so far, i.e., the path from the root to u.

For a given adversary strategy s and an allocation ω, let Envyi j (s,ω) denote the envy of agent i
for agent j. Denote with Envy(s,ω) = maxi, j ∈[n] Envyi j (s,ω) the maximum envy experienced by
any agent. �e objective of the adversary is to choose a strategy s that maximizes the expected envy
E[Envy(s,ω)], where the expectation is taken over allocating every item uniformly at random.

We consider the algorithm that allocates every item uniformly at random. �is is equivalent to
picking a random outgoing edge at each nodeu. �e following two lemmas show that the adversary
labels every internal node of this tree with the vector 1n . �ese lemmas are inspired by the work of
Sanders [1996] on load balancing.

Lemma 2.2. �e adversary has an optimal adaptive strategy that labels every internal node of the

game tree with a vector in {0, 1}n .

In a nutshell, Lemma 2.2 follows from the fact that under any allocation algorithm, for every
agent’s valuation of any item, it is possible to compute whether that item increases or decreases the
maximum envy (in expectation). If it increases (resp. decreases) the maximum envy, the adversary
bene�ts by increasing (resp. decreasing) the corresponding valuation to 1 (resp. to 0).

While the previous result holds for any allocation strategy, the following lemma leverages speci�c
properties of the random allocation algorithm.

Lemma 2.3. �e adversary has an optimal adaptive strategy that labels every internal node of the

game tree with the vector 1n .

Proof. By Lemma 2.2, the adversary has an optimal strategy that labels every internal node
with a vector in {0, 1}n . Let s be such an optimal strategy with the smallest number of zeros, and
suppose (for the sake of contradiction) that there exist internal nodes that are not labeled 1n . Let u
on layer ` ∈ [T] be the node closest to a leaf node for which s(u) contains a 0 and s(u ′) = 1n for all
descendants u ′ of u. Without loss of generality assume s(u)i = 0, so agent i has value 0 for item ` at
nodeu. De�ne a strategy s ′ identical to s except that s ′(u)i = 1. Let j(ω) ∈ arg maxj ∈[n] Envyi j (s,ω).
2Typically we would think of an extensive-form game with nodes associated with the algorithm or the adversary, and arcs
corresponding to actions (allocation of the current item in the case of the algorithm, value vector in the case of the adversary).
However, because we consider a �xed algorithm here, it is more convenient to imagine an unusual, adversary-oriented
game tree.

Gerdus Benade, Aleksandr M. Kazachkov, Ariel D. Procaccia, and Christos-Alexandros Psomas 6

For any �xed ω ∈ Ω, changing s to s ′ only changes the envy of agent i and only for paths
that go through u. In particular, if ω` , i , the envy of agent i toward agent ω` increases by
1, which only helps the adversary. By contrast, if ω` = i , the envy of agent i decreases by 1,
toward every agent j such that Envyi j (s,ω) > 0; the maximum envy, Envy(s,ω), is only a�ected if
Envy(s,ω) = Envyi, j(ω)(s,ω).

�us, let ω ∈ Ω be an arbitrary path going through u with ω` = i and satisfying Envy(s,ω) =
Envyi, j(ω)(s,ω) > 0. Since agent i may not have been the unique agent having envy equal to
Envy(s,ω), Envy(s ′,ω) ≥ Envy(s,ω) − 1. Now consider the path ω ′ that is identical to ω except
that ω` = j(ω). Observe that Envy(s ′,ω ′) = Envy(s,ω ′) + 1. Hence, any decrease in envy due to
allocating item ` to agent i on ω is compensated for (in the calculation of expected envy) along ω ′.
Since ω was picked arbitrarily and the mapping ω 7→ ω ′ is injective, it follows that the expected
envy under s ′ is at least the expected envy under s , and s ′ has fewer zeros than s , contradicting our
assumption on s . �

�e fact that the adversary is adaptive naturally introduces a dependence in the change in any
pairwise envy from one arrival to the next. �e value of Lemma 2.3 lies in the fact that it allows us
to circumvent this dependence as though we are dealing with a nonadaptive adversary and express
any pairwise envy as the sum of independent random variables.

Speci�cally, given this adversary strategy, de�ne independent random variables

X i j
t =


−1, with probability 1/n,
0, with probability 1 − 2/n,
1, with probability 1/n

for all t ∈ [T], i, j ∈ [n]. Clearly, Envyi jT = maxi, j ∈[n]{
∑T

t=1 X
i j
t , 0}. For each X i j

t , E[X i j
t] = 0,

E[(X i j
t)

2] = 2/n and |X i j
t | ≤ 1. We use a version of Bernstein’s inequality to bound the probability

of having large envy between any pair of agents i and j.

Lemma 2.4 (Bernstein 1946). Let X1, . . . ,XT be independent variables with E [Xt] = 0 and

|Xt | ≤ M almost surely for all t ∈ [T]. �en, for all λ > 0,

Pr
[
T∑
t=1

Xt > λ

]
≤ exp

(
−

1
2λ

2∑T
t=1 E

[
X 2
t
]
+ 1

3Mλ

)
.

When applying this result to Envyi jT (which equals
∑T

t=1 X
i j
t when envy exists), it follows that

Pr
[
Envyi jT ≥ λ

]
= Pr

[
T∑
t=1

X i j
t ≥ λ

]
≤ exp

(
−

1
2λ

2

2T
n +

1
3λ

)
= exp

(
−

3nλ2

12T + 2λn

)
.

Let λ = 10
√
T logT /n. Taking a union bound gives

Pr [EnvyT ≥ λ] = Pr
[
∃i, j ∈ [n] such that Envyi jT ≥ λ

]
≤ n2 exp

(
−

300T logT
12T + 20

√
nT logT

)
≤

1
T
,

where the last inequality uses the assumption that T ≥ n logT . Since the maximum possible envy
is T , the desired bound on expected envy directly follows. �

Gerdus Benade, Aleksandr M. Kazachkov, Ariel D. Procaccia, and Christos-Alexandros Psomas 7

2.2 Derandomization with Pessimistic Estimators
�e astute reader might have noticed that considering an adaptive adversary induces an extensive-
form game of complete information between the algorithm and the adversary. In such games,
randomization does not provide any bene�t to either agent, as the backward induction solution
is optimal [Ben-David et al., 1994]. �is implies that there exists a deterministic algorithm with
the same envy guarantee as the random allocation algorithm, i.e., EnvyT ∈ Õ(

√
T /n). However, it

is a priori unclear whether this can be achieved in polynomial time. In fact, simple deterministic
algorithms do not even lead to vanishing envy, as the following example shows.

Example 2.5. Consider the algorithm that at step t allocates the item to the agent with the
maximum envy (if she has positive value for the item, and otherwise, say, allocates to the agent
with the highest value for the item). We claim that it leads to EnvyT ∈ Ω(T).

We construct an example where each agent envies the other by t = 2. For t ≥ 3, whenever agent
i has maximum envy, we present an item with value ϵ for her, and value 1 for the other agent.
Table 1 summarizes the analysis.

Table 1. Blindly allocating to the agent with the highest envy leads to constant per-round envy.

t 1 2 3 4 5 · · ·

Value of agent 1 1/2 1 ϵ 1 ϵ · · ·

Value of agent 2 1/2 1/4 1 ϵ 1 · · ·

Envy of agent 1 −1/2 1/2 1/2 − ϵ 3/2 − ϵ 3/2 − 2ϵ · · ·

Envy of agent 2 1/2 1/4 5/4 5/4 − ϵ 9/4 − ϵ · · ·

For t ≥ 2, the envy of each agent increases by 1 every two steps. �erefore, the maximum envy
at step 2t is approximately t , and EnvyT /T approaches 1/2 as T goes to in�nity.

In Appendix A, we show that the average per-round envy is constant for another natural
algorithm, which allocates item t in a way that the maximum envy a�er allocation is as small as
possible. �ese examples show that even though a simple randomized algorithm is optimal and
there exists a deterministic algorithm with the same guarantee, simple deterministic algorithms
are not able to provide any useful bounds.

Nevertheless, we are able to match the randomized bound of �eorem 2.1 by derandomizing
the random allocation algorithm with the method of pessimistic estimators [Raghavan, 1988]. �e
outcome is an intuitively pleasing, polynomial-time, deterministic algorithm that at each step
minimizes a potential function, which is essentially a penalty function exponential in each of the
pairwise envy expressions.

Theorem 2.6. Suppose that T ≥ n logn. �en there exists a polynomial-time, deterministic algo-

rithm that achieves EnvyT ∈ O(
√
T logn/n).

�e rest of this section is devoted to the proof of �eorem 2.6.

The Algorithm
We de�ne a potential function ϕ(t) that depends on n, T , the values of the �rst t items, as well as
their allocations. When item t arrives, we allocate it to the agent for which the value of ϕ(t) is
minimized. Call this algorithmA∗. Since our algorithm is deterministic, an adversary that wants to

Gerdus Benade, Aleksandr M. Kazachkov, Ariel D. Procaccia, and Christos-Alexandros Psomas 8

maximize EnvyT does not gain from being adaptive. It therefore su�ces to analyze our algorithm
for an arbitrary choice of item values.

�eorem 2.6 follows from choosing ϕ(t) in a way that satis�es three particular properties, stated
in the following three lemmas. Given t ∈ [T], let At be the algorithm that allocates, for all ` ∈ [t],
the item ` to an agent for which ϕ(`) is minimized, and the remaining items t + 1, . . . ,T uniformly
at random. Let Envyi jT (A

t) be the envy of agent i for agent j at the end of the execution of At .

Lemma 2.7. ϕ(t) ≥
∑

i, j ∈[n] Pr
[
Envyi jT (A

t) > 10
√
T logn/n

]
.

Lemma 2.8. For all t ∈ [T − 1], ϕ(t + 1) ≤ ϕ(t).

Lemma 2.9. For T ≥ n logn, ϕ(0) < 1.

Proof of Theorem 2.6. Notice that AT is exactly the same as the algorithm A∗. Lemmas 2.8
and 2.9 imply that ϕ(T) < 1. Combining with Lemma 2.7, we get that for any choice of item values,
and therefore for the optimal adversary strategy,

Pr
[
∃i, j ∈ [n] : Envyi jT (A

T) > 10
√
T logn

n

]
≤

∑
i, j ∈[n]

Pr
[
Envyi jT (A

T) > 10
√
T logn

n

]
≤ ϕ(T) < 1.

SinceAT is deterministic — all items have been allocated a�er timeT — the inequality above implies
that, for the allocation of items by AT , there is no i, j ∈ [n] such that Envyi jT > 10

√
T logn/n, and

we conclude that

EnvyT = max
i, j ∈[n]

Envyi jT ≤ 10
√
T logn

n
∈ O

(√
T logn

n

)
. �

Setup
We now de�ne ϕ(t) and prove that it satis�es the desired properties from Lemmas 2.7, 2.8, and 2.9.
For i, j,k ∈ [n] and t ∈ [T], let yi jtk be a helper variable for the e�ect on envy between agents i and
j when item t goes to agent k , i.e.,

yi jtk =


−1, if k = i,
0, if k , i, j,
1, if k = j,

and let yi jt be the same but with the dependence on k implicit (as k is exactly determined given an
allocation). Denote with fi j (t) =

∑t
`=1 y

i j
`
vi` the net value agent i has for agent j’s allocation with

respect to her own at time t . Notice that Envyi jt = max{ fi j (t), 0}. Let C = (1 + (es + e−s − 2)/n),
where s is a damping parameter that depends only on T and n. We use

s =

√
2 log

(
1 + n logn

T

)
,

and let λ = 10
√
T logn/n be the target maximum envy that the algorithm allows.

De�ne the potential function at time t as ϕ(t) =
∑

i, j ∈[n]:i,j ϕi j (t), where for i, j ∈ [n],

ϕi j (t) = C
T−t · exp

(
s
(
fi j (t) − λ

))
.

Gerdus Benade, Aleksandr M. Kazachkov, Ariel D. Procaccia, and Christos-Alexandros Psomas 9

The Proofs
Proof of Lemma 2.7. For all ` ∈ [t], item ` has been allocated in order to minimize ϕ(`). It

su�ces to show that at any time t ≤ T , for any pair of agents i, j, with λ = 10
√
T logn/n,

Pr
[
fi j (t) +

T∑
`=t+1

X i j
`
vi` > λ

]
≤ ϕi j (t), (1)

where X i j
`

is a random variable that takes values −1 and 1 with probability 1/n each, and it takes
value 0 with probability 1−2/n. Notice that Envyi jT (A

t) = max{ fi j (t)+
∑T

`=t+1 X
i j
`
vi`, 0}; summing

up over all pairs i, j proves the lemma. Equation (1) follows from

Pr
[
fi j (t) +

T∑
`=t+1

X i j
`
vi` > λ

]
= Pr

[
e
s
(
fi j (t)+

∑T
`=t+1 X

i j
`
vi`

)
> esλ

]
≤ e−sλ · E

[
e
s
(
fi j (t)+

∑T
`=t+1 X

i j
`
vi`

)]
(Markov’s ineq.)

= es(fi j (t)−λ) · E

[
T∏

`=t+1
esX

i j
`
vi`

]
= es(fi j (t)−λ)

T∏
`=t+1

E
[
esX

i j
`
vi`

]
(independence)

= es(fi j (t)−λ)
T∏

`=t+1

(
1 − 2

n
+
esvi`

n
+
e−svi`

n

)
≤ es(fi j (t)−λ)

T∏
`=t+1

(
1 − 2

n
+
es

n
+
e−s

n

)
= es(fi j (t)−λ)

(
1 + es + e−s − 2

n

)T−t
= ϕi j (t).

�e second inequality follows from the fact that ex + e−x is nondecreasing for x ≥ 0. �

Proof of Lemma 2.8. Denote with ϕk (t + 1) the potential function a�er giving item t + 1 to
agent k . We show that (1/n)

∑
k ∈[n] ϕk (t + 1) ≤ ϕ(t), which implies the desired result, as by

de�nition of A∗ we have ϕ(t + 1) = mink ∈[n] ϕk (t + 1). Recall that, for distinct i, j,k ∈ [n], yi jtk
takes values −1, 1, and 0 depending on whether item t was allocated to agent i , j, or k . �us,
fi j (t + 1) = fi j (t) + y

i j
t+1,kvi,t+1.

1
n

∑
k ∈[n]

ϕk (t + 1) = 1
n

∑
k ∈[n]

∑
i, j ∈[n]:i,j

e
s
(
fi j (t)+y

i j
t+1,kvi,t+1−λ

)
CT−(t+1)

=
1
n
CT−(t+1)

∑
i, j ∈[n]:i,j

es(fi j (t)−λ)
∑
k ∈[n]

esy
i j
t+1,kvi,t+1

=
1
n
CT−(t+1)

∑
i, j ∈[n]:i,j

es(fi j (t)−λ)
©­«es ·(1)·vi,t+1 + es ·(−1)·vi,t+1 +

∑
k ∈[n]\{i, j }

es ·(0)·vi,t+1ª®¬

Gerdus Benade, Aleksandr M. Kazachkov, Ariel D. Procaccia, and Christos-Alexandros Psomas 10

=
1
n
CT−(t+1)

∑
i, j ∈[n]:i,j

es(fi j (t)−λ) (esvi,t+1 + e−svi,t+1 + n − 2)

≤
1
n
CT−(t+1)

∑
i, j ∈[n]:i,j

es(fi j (t)−λ) (es + e−s + n − 2)

= CT−(t+1)
∑

i, j ∈[n]:i,j
es(fi j (t)−λ) ·C = ϕ(t). �

Proof of Lemma 2.9.
ϕ(0) =

∑
i, j ∈[n]:i,j

ϕi j (0) =
∑

i, j ∈[n]:i,j
CT esfi j (0)−sλ < n2CT e−sλ = e−sλ+2 logn+T logC .

We want the above expression to be less than one, or equivalently sλ − 2 logn −T logC > 0. Using
1 + x ≤ ex implies that

C = 1 + es + e−s − 2
n

≤ e(e
s+e−s−2)/n = e2(cosh(s)−1)/n .

Furthermore, cosh(x) ≤ exp
(
x2/2

)
, so that C ≤ exp

(
2(exp

(
s2/2

)
− 1)/n

)
. �erefore,

sλ − 2 logn −T logC ≥ sλ − 2 logn − 2T
n

(
es

2/2 − 1
)

= 10

√
2 log

(
1 + n logn

T

)
T logn

n
− 2 logn − 2T

n

(
n logn
T

)
=

©­« 5
√

2

√
T

n logn log
(
1 + n logn

T

)
− 1ª®¬ 4 logn.

We factored out 4 logn for convenience; it remains to show the parenthetical expression is positive.
�e function

√
x log(1 + 1/x) is increasing for all x ≥ 0. Set x = T /(n logn), and note that the

assumption T ≥ n logn implies x ≥ 1. Observing that 5
√

log(2)/2 > 1 completes the proof. �

2.3 Lower Bound
In this section, we show that an adversary can guarantee EnvyT ∈ Ω((T /n)r/2) for any r < 1. It
follows that the deterministic algorithm we presented in Section 2.1 is optimal (up to a logarithmic
factor). We �rst prove the bound for n = 2, followed by the case of an arbitrary number of agents.

Lower Bound for Two Agents
Lemma 2.10. For n = 2 and any r < 1, there exists an adversary strategy for se�ing item values

such that any algorithm must have EnvyT ∈ Ω(T
r/2).

Proof. Label the agents L and R, and let {v0 = 1,v1,v2, . . .} be a decreasing sequence of values
that we specify later, satisfying vd −vd+1 < vd ′ −vd ′+1 for all d ′ < d . �e adversary keeps track of
the state of the game, and the current state de�nes its strategy for choosing the agents’ valuations.
�e adversary strategy that implies the lower bound is illustrated in Figure 1. Start in state 0, which
we will also refer to as L0 and R0, for which the adversary sets the value of the arriving item as
(1, 1). To the le� of state 0 are states labeled L1,L2, . . .; in state Ld , the item that arrives has value
(1,vd). To the right of state 0 are states labeled R1,R2, . . .; in state Rd , an item will arrive with value
(vd , 1). Whenever the algorithm allocates an item to agent L (resp. R), which we will refer to as
making an L (resp. R) step, the adversary moves one state to the le� (resp. right) to determine the
value of the next item.

Gerdus Benade, Aleksandr M. Kazachkov, Ariel D. Procaccia, and Christos-Alexandros Psomas 11

(1, 1)

0

(v1, 1)

R1

(v2, 1)

R2

· · ·(1,v1)

L1

(1,v2)

L2

· · ·

(1,−v3) (1,−v2) (1,−v1) (1,−1) (v1,−1) (v2,−1)

(−v3, 1)(−v2, 1)(−v1, 1)(−1, 1)(−1,v1)(−1,v2)

Fig. 1. Adversary strategy for two-agent lower bound. In state Ld , an item valued (1,vd) arrives, while in
state Rd , an item valued (vd , 1) arrives. The arrows indicate whether agent L or agent R is given the item in
each state. The arrows are labeled by the amount envy changes a�er that item is allocated.

We construct the optimal allocation algorithm against this adversary, and show that for this
algorithm the envy at some time step t ∈ [T] will be at least Ω(T r/2) for the given r < 1. �is
immediately implies Lemma 2.10: if the envy is su�ciently large at some time step t the adversary
can guarantee the same envy at time T by making all future items valued at zero by both agents.

�e intuition for the adversary strategy we have de�ned is that it forces the algorithm to avoid
entering state Ld or Rd for high d , as otherwise the envy of some agent will grow tov0+v1+ · · ·+vd ,
which will be large by our choice of {vd }. At the same time, if an L step is taken at state Ld , followed
by a later return to state Ld , the envy of R increases by at least vd −vd+1; we choose {vd } so that
this increase in envy is large enough to ensure that any algorithm which spends too many time
steps close to state 0 incurs a large cost.

By the pigeonhole principle, either the states to the le� or to the right of state 0 are visited for
at least half the time. For the rest of this section, we assume, without loss of generality, that our
optimal algorithm spends time T ′ = dT /2e in the “le�” states (L0,L1, . . .), and that T ′ is an even
number. We prove that the envy of agent R grows large at some time step t . We ignore any time the
algorithm spends in the states Rd , d ≥ 1. To see why this is without loss of generality, consider �rst
a cycle spent in the right states that starts at R0 with an item allocated to R and eventually returns
to R0. In such a cycle, an equal number of items are allocated to both agents. All of these items
have value 1 to agent R, yielding a net e�ect of 0 on agent R’s envy.3 �e other case is when the
algorithm starts at R0 but does not return to R0. �is scenario can only occur once, which means
that the algorithm has already taken T ′ steps on the le� side; the allocation of these items does not
a�ect our proof.

Let K be an integer such that K ≤
√
T ′/2, which we will show is without loss of generality.

Denote by OPT(K) the set of envy-minimizing allocation algorithms that spend the T ′ steps in
states L0, . . . ,LK (and reach LK). Note that the algorithm aims to minimize the maximum envy at
any point in its execution. LetA∗(K) be the following algorithm, starting at L0: Allocate the �rst K
items to agent L, thus arriving at state LK . For the next T ′ − 2K items, alternate between allocating
to agents R and L, thereby alternating between states LK−1 and LK . Allocate the remaining K items
to agent R. We show A∗(K) belongs to OPT(K).

Lemma 2.11. A∗(K) ∈ OPT(K).

Proof. An algorithm that starts at state 0 and spends T ′ steps in the le� states can be described
as a sequence of choices st ∈ {L,R} for t ∈ [T ′] such that s1 = L, and at every t ∈ [T ′], agent L has
received at least as many of the �rst t items as agent R (to avoid entering the right states). We refer
to the state at time t as the state a�er the algorithm choice st .
3We ignore agent L completely, as our analysis is of the envy of agent R .

Gerdus Benade, Aleksandr M. Kazachkov, Ariel D. Procaccia, and Christos-Alexandros Psomas 12

Consider any A(K) ∈ OPT(K). We show that the corresponding sequence of allocations satisfy:
(1) at time T ′ the state is L0, so agent L receives the same number of items as agent R; and (2)
there is exactly one R move at states L1, . . . ,LK−1. �is proves the lemma, since A∗(K) is the only
algorithm that satis�es these two conditions. We utilize the fact that the envy of an allocation
sequence can be calculated from the number of L and R moves in every state: at state Ld , an L move
increases the envy of agent R by vd while an R move decreases it by vd .

We start with the �rst property: suppose that the state at time T ′ is not 0. Let t be the last index
such that st = L. Allocating st = R instead (and s` = R for the remaining steps ` > t) reduces the
envy of agent R without entering state R1, a contradiction.

For the second property, it su�ces to show that if st = L and st+1 = R, then it must be that
at step t the state is LK−1 (and therefore at step t + 1 the state is LK). Assume this is not the
case, and we have such a t where the algorithm is in state LK̂−1, K̂ < K . Let ` be a step in which
the algorithm is in state LK−1, which exists by the de�nition of A(K). Assume that ` > t + 1
(an analogous argument can be applied to the case that ` < t). We divide T ′ into three phases:
(1) the �rst t − 1 items, (2) the next ` − (t + 1) items, and (3) the last T ′ − ` + 2 items and
consider s ′ = s1, . . . , st−1, st+2, . . . , s`, st , st+1, s`+1, . . . , sT ′ . Notice that s ′ is s , except the alternating
allocations L then R are now made at state LK−1 instead of at LK̂−1. By construction, sequence s ′
never goes past state LK . We now prove that, using s ′, the envy decreases with respect to s at each
time step a�er t − 1, contradicting the assumption A(K) ∈ OPT(K).

In phase (1), the envy is unchanged. For phase (2), when using A(K), the pair of moves st and
st+1 increases envy by vK̂ −vK̂−1. Hence, in comparison, s ′ has that much less envy during each
time step of phase (2). At the start of phase (3) in s ′, the alternating allocations are performed at
state LK−1, increasing envy (in s ′) by vK−1 − vK < vK̂ − vK̂+1. At all remaining steps in (3), the
envy is smaller in s ′ (compared to s) by (vK̂ −vK̂+1) − (vK−1 −vK). �is completes the proof that
A(K) must satisfy both properties; the lemma follows. �

We analyze the envy ofA∗(K) as a function of K before optimizing K . Agent R’s maximum envy
is realized at step T ′ − K , right before the sequence of R moves. EnvyT ′−K has two terms: the envy
accumulated to reach state LK , and the envy from alternating R and L moves between states LK
and LK−1, so

EnvyT ′−K =
K−1∑
d=0

vd +
T ′ − 2K

2 · (vK−1 −vK) .

Given r < 1, de�ne vd = (d + 1)r − dr . Notice that
∑K−1
d=0 vd = Kr . �is validates the initial

assumption that K ≤
√
T ′/2, as otherwise

∑K−1
d=0 vd ≥ (T

′/2)r/2 ∈ Ω(T r/2).

Lemma 2.12. vK−1 −vK ≥ r (1 − r)Kr−2
.

Applying Lemma 2.12 and distributing terms yields

EnvyT ′−K ≥ Kr − r (1 − r)Kr−1 +
T ′

2 r (1 − r)Kr−2 ≥
1
2

(
Kr +T ′r (1 − r)Kr−2) ,

where the second inequality uses the fact that r (1 − r) ≤ 1/4 < 1/2 and assumes K > 1 (otherwise
the envy would be linear in T ′). To optimize K , noting that the second derivative of the above
bound is positive for K ≤

√
T ′/2, we �nd the critical point:

∂

∂K

(
Kr +T ′r (1 − r)Kr−2) = rKr−1 −T ′r (1 − r)(2 − r)Kr−3 = 0 =⇒ K =

√
T ′(1 − r)(2 − r).

Gerdus Benade, Aleksandr M. Kazachkov, Ariel D. Procaccia, and Christos-Alexandros Psomas 13

De�ning C1 =
√
(1 − r)(2 − r) and substituting into the bound on EnvyT ′−K , we obtain

EnvyT ′−K ≥
1
2

(
Cr

1 (T
′)r/2 +T ′r (1 − r)Cr−2

1 (T
′)r/2−1

)
∈ Ω(T r/2).

�is completes the proof of Lemma 2.10. �

Lower Bound for Any Number of Agents
Theorem 2.13. For any n ≥ 2 and r < 1, there exists an adversary strategy for se�ing item values

such that any algorithm must have EnvyT ∈ Ω((T /n)
r/2).

Proof. We augment the instance of Figure 1 in the following way. In addition to the �rst two
agents, L and R, we have n − 2 other agents. Each of these other agents will not value any of the
items that arrive; hence, the nonzero values remain the same as before. State transitions work as
follows. If the algorithm allocates an item to agent L or agent R, the transitions are the same as
when n = 2. Otherwise, the adversary will remain in the same state.

Let T0 be the number of items allocated to either agent L or R. We break the analysis into two
cases. First, if T0 ∈ Ω(T /n), then, EnvyT ∈ Ω((T /n)r/2) by the analysis of Lemma 2.10. Otherwise,
T0 ∈ o(T /n) and therefore T −T0 ∈ Θ(T), i.e., agents 3 through n receive many items. �is implies
that there exists an agent i ∈ [3,n] that is allocated Ω(T /n) items. Without loss of generality,
at least half these items were allocated in the le� states, in which agent L values each item at 1,
so that agent L has Ω(T /n) value for the items received by agent i . �e value of agent L for her
own allocation is at most O(T0), i.e., o(T /n). �erefore, the envy of agent L for agent i is at least
Θ(T /n) − o(T /n) ∈ Θ(T /n). �

3 WHEN ITEMS ARRIVE IN BATCHES
In this section, we study the more general se�ing where items arrive in batches of size m, and the
values of all items in a batch are revealed simultaneously. We assumem divides T for convenience.

3.1 Upper Bound
We use the following result from the literature on the division of divisible goods.

Lemma 3.1 (Stromqist 1980). Suppose n agents have valuation functions over the interval [0, 1],
such that an agent’s value for a subinterval is the integral of her value density function. �en there

exists an envy-free division of the interval in which every agent receives a single contiguous interval.

It will be convenient to think of the n contiguous allocations as created by n − 1 cuts on the
interval [0, 1]. In the context of indivisible goods with additive valuations, this result implies that, if
the items are placed on a line (in any order), there exists a fractional envy-free allocation in which no
agent receives more than 2 fractional items. Every item corresponds to an interval of size 1/m, and
every agent’s valuation in that interval is constant and proportional to her valuation for that item.
Given the solution guaranteed to exist by Lemma 3.1, every agent’s allocation is between at most
two cuts and therefore contains no more than 2 fractional items.4 Such a near-integral envy-free
allocation is useful, since any integral allocation found by randomized rounding is guaranteed to
have small envy ex post, as the following lemma shows.

Lemma 3.2. Givenm items, there exists an envy-free fractional allocation A = A1, . . . ,An , such

that every agent receives at most 2 fractional items. Furthermore, if xi` ∈ [0, 1] is the fraction of item

4In fact only the agents who get the �rst and the last contiguous interval are adjacent to one cut; all other agents’ allocations
are between two cuts.

Gerdus Benade, Aleksandr M. Kazachkov, Ariel D. Procaccia, and Christos-Alexandros Psomas 14

` allocated to agent i , then randomly giving each item ` to each agent i with probability xi` results in
an integral allocation A′ where for all i, j ∈ [n], vi (A

′
i) ≥ vi (A

′
j) − 4.

Proof. �e �rst part of the statement, that there exists an allocation A that is envy-free and in
which each agent receives at most 2 fractional items, follows from the previous discussion. For the
second part, notice that the worst-case scenario for an agent i is to not get either of the fractional
items allocated to her in A. Furthermore, some other agent j might get both of her fractional items
from A. In this scenario, the envy of agent i for agent j is maximized and is at most 4 (since the
value for every item is at most 1). �

In Section 2, before giving a deterministic algorithm, we �rst analyzed the performance of the
random allocation algorithm. Crucially, our analysis characterized the optimal strategy for an
adaptive adversary against the random allocation algorithm, and we showed that this strategy
is in fact nonadaptive. �is allowed us to use standard concentration inequalities. Proving such
a characterization is much trickier in the batch case. Fortunately, we can bypass this step and
directly “derandomize” the algorithm that at each step outputs the (randomly-rounded) allocation
of Lemma 3.2. Our main result for this se�ing is the following:

Theorem 3.3. Suppose that T ≥ m logn. �en there exists a deterministic algorithm that achieves

EnvyT ,m ∈ O(
√
T logn/m).

Again, the assumption of T ≥ m logn is very weak, otherwise there are at most T /m ≤ logn
batches, and we can use an EF1 algorithm in each to achieve EnvyT ,m ≤ logn.

The Algorithm
We de�ne a potential function ϕ(t) that depends on n, T , the values of the items in the �rst t
batches, as well as their allocations. When batch t + 1 arrives, we �rst �nd the near-integral
envy-free allocation At+1 (of the items in batch t + 1) guaranteed to exist by Lemma 3.2 (we address
computation below). �is fractional allocation is then rounded to an integral allocation in a way
that ϕ(t+1) is minimized. Call this algorithmA∗. Since our algorithm is deterministic, an adversary
that wants to maximize EnvyT ,m does not gain from being adaptive. �erefore, there exists some
optimal (for the adversary) choice of values for items 1 throughT . We analyze our algorithm for an
arbitrary choice of item values.

Similarly to our algorithm from Section 2.2, we rely on three properties of ϕ. Given t ∈ [T /m],
let At be the algorithm that rounds A` (the allocation in batch `) in a way that ϕ(`) is minimized,
for all ` ∈ [1, t], and rounds the remaining A` for ` = t + 1, . . . ,T /m randomly. Let Envyi jT ,m(A

t)

be the envy of agent i for agent j at the end of the execution of At .

Lemma 3.4. ϕ(t) ≥
∑

i, j ∈[n] Pr
[
Envyi jT (A

t) > 100
√
T logn/m

]
.

Lemma 3.5. For all t ∈ [T /m − 1], ϕ(t + 1) ≤ ϕ(t).
Lemma 3.6. For T ≥ m logn, ϕ(0) < 1.
Proof of Theorem 3.3. Notice thatAT /m is exactly the same as the algorithmA∗. Lemmas 3.5

and 3.6 imply that ϕ(T) < 1. Combining with Lemma 3.4, we get that for any item valuations,

Pr
[
∃i, j ∈ [n] : Envyi jT (A

∗) > 100
√
T logn
m

]
≤

∑
i, j ∈[n]

Pr
[
Envyi jT (A

∗) > 100
√
T logn
m

]
≤ ϕ(T) < 1,

SinceA∗ is deterministic, the inequality above implies that there is no i, j ∈ [n] such that Envyi jT >
100

√
T logn/m, and we conclude that EnvyT ,m ≤ 100

√
T logn/m ∈ O(

√
T logn/m). �

Gerdus Benade, Aleksandr M. Kazachkov, Ariel D. Procaccia, and Christos-Alexandros Psomas 15

Setup
In batch t , de�ne At = At

1, . . . ,A
t
n as the envy-free fractional solution of Lemma 3.2, in which no

agent receives more than 2 fractional items. Let Ât = Ât
1, . . . , Â

t
n be an integral rounding of At ; Ât

is the actual allocation used in batch t . De�ne
∆t
i j (Â

t) =
(
vi (Â

t
j) −vi (Â

t
i)

)
+

(
vi (A

t
i) −vi (A

t
j)

)
and let fi j (t , Â1, . . . , Ât) =

∑t
`=1 ∆

t
i j (Â

t). To simplify notation, we write fi j (t) when the allocation
is clear from context. Notice that Envyi jT ,m ≤ fi j (T); this is an inequality because ∆t

i j is centered to
have zero mean, while vi (Ât

j) −vi (Â
t
i) may have mean less than zero. Also, observe that Ât is not

random. However, if we were to randomly round At to an integral allocation B̂t , then the resulting
random variable ∆t

i j (B̂
t) has zero mean and satis�es |∆t

i j (B̂
t)| ≤ 4, by Lemma 3.2.

Let λ = 100
√
T logn/m and s = 1

4 log(1 + λm
4T). For i, j ∈ [n], de�ne the potential function at time

t for i with respect to j as

ϕi j (t) = exp
(
s fi j (t) − sλ +

(
T

m
− t

) (
e4s − 4s − 1

))
,

and de�ne the overall potential function as ϕ(t) =
∑

i, j ∈[n]:i,j ϕi j (t).

The Proofs
�e proof of Lemma 3.4 is relegated to Appendix B. In its proof, as in the proof of Lemma 3.5, we
use the following property of bounded, centered random variables (the proof of which may also be
found in Appendix B).

Lemma 3.7. Let X be a random variable with E [X] = 0 and |X | ≤ 4. �en for all v ∈ [0, 1] it holds
that E

[
esXv

]
≤ exp

(
e4s − 4s − 1

)
.

Proof of Lemma 3.5. We prove that there exists a rounding Â∗ of the fractional allocation At+1

of batch t + 1 so that allocating according to Â∗ results in ϕ(t + 1) ≤ ϕ(t). Let x t+1
i` be the fraction

of item ` in batch t + 1 allocated to agent i in At+1. We show that allocating every item ` to agent
i with probability x t+1

i` makes the expected value of ϕ(t + 1) at most ϕ(t). We can immediately
conclude that there exists an integral allocation for which ϕ(t + 1) ≤ ϕ(t).

Let B̂t+1 be a possible (rounded) integral allocation, with corresponding probability p(B̂t+1),
and let D be the distribution where allocation B̂t+1 appears with probability p(B̂t+1). Finally, let
ϕB̂t+1 (t + 1) be the value of the potential function a�er allocating batch t + 1 according to B̂t+1.
Note that fi j (t + 1, Â1, . . . , Ât , B̂t+1) = fi j (t) + ∆

t+1
i j (B̂

t+1).

EB̂t+1∼D

[
ϕB̂t+1 (t + 1)

]
=

∑̂
Bt+1

p(B̂t+1) ·
©­«e−sλe(Tm −t−1)(e4s−4s−1)

∑
i, j ∈[n]:i,j

esfi j (t+1,Â1, ...,Ât , B̂t+1)ª®¬
=

∑̂
Bt+1

p(B̂t+1) ·
©­«e−sλe(Tm −t−1)(e4s−4s−1)

∑
i, j ∈[n]:i,j

esfi j (t)+s∆
t+1
i j (B̂

t+1)ª®¬
= e−sλe(

T
m −t−1)(e4s−4s−1)

∑
i, j ∈[n]:i,j

©­«esfi j (t)
∑̂
Bt+1

p(B̂t+1) es∆
t+1
i j (B̂

t+1)ª®¬
≤ e−sλe(

T
m −t−1)(e4s−4s−1)

∑
i, j ∈[n]:i,j

(
esfi j (t) EB̂t+1∼D

[
es∆

t+1
i j (B̂

t+1)
])
.

Gerdus Benade, Aleksandr M. Kazachkov, Ariel D. Procaccia, and Christos-Alexandros Psomas 16

∆t+1
i j (B̂

t+1) is a random variable (since B̂t+1 is random) that satis�es the conditions of Lemma 3.7, so

EB̂t+1∼D

[
ϕB̂t+1 (t + 1)

]
≤ e−sλe(

T
m −t−1)(e4s−4s−1)

∑
i, j ∈[n]:i,j

esfi j (t)ee
4s−4s−1

= e−sλe(
T
m −t)(e

4s−4s−1)
∑

i, j ∈[n]:i,j
esfi j (t) = ϕ(t). �

Proof of Lemma 3.6.

ϕ(0) =
∑

i, j ∈[n]:i,j
ϕi j (0)

=
∑

i, j ∈[n]:i,j
exp

(
s fi j (0) − sλ +

T

m

(
e4s − 4s − 1

))
< n2 exp

(
−sλ +

T

m

(
e4s − 4s − 1

))
= n2 exp

(
−
T

m

(
1 + 4s + s λm

T
− e4s

))
= n2 exp

(
−
T

m

(
1 + 4s

(
1 + λm4T

)
− e4s

))
= n2 exp

(
−
T

m

(
1 +

(
1 + λm4T

)
log

(
1 + λm4T

)
−

(
1 + λm4T

)))
= n2 exp

(
−
T

m
((1 + x) log (1 + x) − x)

)
,

where x = λm
4T . �e function h(x) = (1 + x) log (1 + x) − x satis�es h(x) ≥ x2/(2 + 2x/3). �erefore,

ϕ(0) < n2 exp ©­«−Tm ©­«
(λm4T)

2

2 + 2(λm4T)
3

ª®¬ª®¬ = n2 exp
(
−

3mλ2

96T + 8λm

)
= exp

(
2 logn − 3mλ2

96T + 8λm

)
.

Substituting in λ = 100
√
T logn/m gives: ϕ(0) ≤ exp

(
2 logn − 30000T logn

96T+800
√
Tm logn

)
, which is strictly

less than 1 for T ≥ m logn. �

Computational Issues
Lemma 3.2, just like Lemma 3.1, is existential and leaves unanswered the question of how to �nd
the nearly-integral envy-free allocation for every batch. We partially address this, at least from a
practical point of view, by formulating a mixed integer program (MIP) to compute such an allocation.

Let xi` be the fraction of item ` given to agent i . Binary variables x0
i` and x1

i` will sum to 0 when
xi` is fractional, and sum to 1 otherwise. Lemma 3.1 implies that the following MIP is feasible:

m∑̀
=1
vi`(xi` − x j`) ≥ 0, for all i, j ∈ [n] (2)

n∑
i=1

xi` = 1, for all ` ∈ [m] (3)

x0
i` ≤ xi` ≤ 1 − x1

i`, for all i ∈ [n], ` ∈ [m] (4)

Gerdus Benade, Aleksandr M. Kazachkov, Ariel D. Procaccia, and Christos-Alexandros Psomas 17

m∑̀
=1
(x0

i` + x
1
i`) ≥ m − 2, for all i ∈ [n] (5)

xi` ∈ [0, 1], for all i ∈ [n], ` ∈ [m] (6)
x0
i`,x

1
i` ∈ {0, 1}, for all i ∈ [n], ` ∈ [m] (7)

Constraint (2) ensures that the allocation is envy free, while Constraint (3) ensures every item is
fully allocated. Constraint (4) ensures that x0

i` and x1
i` sum to 0 when xi` is fractional, and sum

to 1 otherwise (using the fact that these variables are binary, by Constraint (7)). Constraint (5)
guarantees at most 2 fractional items per agent. �ese constraints may be coupled with any
objective function to �nd a near-integral fractional solution.

Unfortunately, solving a MIP is unlikely to be computationally e�cient in general. Furthermore,
known hardness results for related problems [Deng et al., 2012] suggest that producing an envy-
free (or approximately envy-free) and contiguous fractional allocation in our se�ing might be a
PPAD-hard problem. Such a hardness result does not rule out a polynomial time algorithm for
�nding an allocation with the properties of Lemma 3.2, i.e., a fractional envy-free allocation where
each agent gets at most 2 fractional items.5 In fact, we present some tractable special cases in
Appendix D. �e general problem is le� open.

Another step that may seem problematic (from a computational viewpoint) is rounding the
fractional allocation in a way that minimizes the potential function. However, since the potential
function is convex in the allocation, this can be done e�ciently.

3.2 Lower Bound
Our last result is a lower bound for the batch se�ing, which is asymptotically tight in T /m, but,
unlike the one-by-one se�ing, does leave a gap in terms of the dependence on the number of agents.

Theorem 3.8. For any n ≥ 2 and r < 1, there exists an adversary strategy for se�ing item values

such that any algorithm must have EnvyT ∈ Ω((
T
mn)

r/2).

Proof. �e theorem follows almost directly from �eorem 2.13. Indeed, assume that in each
batch there arem − 1 items that are worthless to all agents. In this case the batch se�ing reduces to
the one-by-one se�ing, and we obtain the lower bound given by �eorem 2.13, with a total number
of items equal to the number of batches, i.e., T ′ = T /m. �

4 DISCUSSION
We �nish with a discussion of several pertinent issues that have not been addressed so far.

Additivity assumption. We have assumed that agents have additive valuations for bundles of
items. �is common assumption is typically considered strong. But for the purpose of de�ning envy
in our online se�ing we consider it to be very natural. Indeed, in an online se�ing, the allocated
items would typically be used independently of each other. Consequently, we can interpret the envy
of i for j ,

∑
t ∈Ai vit −

∑
t ∈Aj

vit , as
∑T

t=1vit (It ∈Ai − It ∈Aj). Notice that this is a sum over per-round
envy. In other words, the additivity assumption actually amounts to envy being additive over time.

�e partial information model. In our model the values of agents for the current item (or batch
of items) are revealed before the item is allocated, and inform that decision. One can imagine a
natural variant — the partial information model — where the values are only revealed a�er the item
has been allocated. Notice that the randomized upper bound of �eorem 2.1 carries over, because
the algorithm ignores the values shown to it. So does the lower bound of �eorem 2.13, because it
5For our upper bound to work, even a constant number of fractional items su�ces.

Gerdus Benade, Aleksandr M. Kazachkov, Ariel D. Procaccia, and Christos-Alexandros Psomas 18

holds even against more powerful algorithms. However, the game between the algorithm and the
adversary is now an extensive-form game of incomplete information, where randomization can
potentially help. �is turns out to be the case, and, in fact, deterministic algorithms cannot have
vanishing envy in this se�ing. For more details, see Appendix C.

Is low envy fair enough? We have focused with single-minded determination on a single goal —
that of minimizing envy. A possible concern is that low envy, in and of itself, is not su�cient to
lead to intuitively fair outcomes, as has been observed in various contexts [Caragiannis et al., 2016,
Gal et al., 2017]. Be that as it may, even if one is interested in a combination of low envy and other
properties (Pareto e�ciency comes to mind), our results establish a baseline for what one could
hope for, and are therefore a crucial �rst step in any such investigation.

ACKNOWLEDGMENTS
We are grateful to Noga Alon for crucial pointers to the literature on derandomization and vector
balancing games, and to Hervé Moulin for his help with Lemma 3.2.

REFERENCES
M. Aleksandrov, H. Aziz, S. Gaspers, and T. Walsh. 2015. Online Fair Division: Analysing a Food Bank Problem. In Proceedings

of the 24th International Joint Conference on Arti�cial Intelligence (IJCAI). 2540–2546.
M. Aleksandrov and T. Walsh. 2017. Pure Nash Equilibria in Online Fair Division. In Proceedings of the 26th International

Joint Conference on Arti�cial Intelligence (IJCAI). 42–48.
S. Ben-David, A. Borodin, R. Karp, G. Tardos, and A. Wigderson. 1994. On the Power of Randomization in On-line Algorithms.

Algorithmica 11, 1 (1994), 2–14.
S. Bernstein. 1946. �e �eory of Probabilities. Gastehizdat Publishing House.
A. Bogomolnaia and H. Moulin. 2001. A New Solution to the Random Assignment Problem. Journal of Economic �eory 100

(2001), 295–328.
S. J. Brams and A. D. Taylor. 1996. Fair Division: From Cake-Cu�ing to Dispute Resolution. Cambridge University Press.
S. Bubeck and N. Cesa-Bianchi. 2012. Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems.

Foundations and Trends in Machine Learning 5, 1 (2012), 1–122.
E. Budish, Y.-K. Che, F. Kojima, and P. Milgrom. 2013. Designing Random Allocation Mechanisms: �eory and Applications.

American Economic Review 103, 2 (2013), 585–623.
I. Caragiannis, D. Kurokawa, H. Moulin, A. D. Procaccia, N. Shah, and J. Wang. 2016. �e Unreasonable Fairness of Maximum

Nash Product. In Proceedings of the 17th ACM Conference on Economics and Computation (EC). 305–322.
X. Deng, Q. Qi, and A. Saberi. 2012. Algorithmic Solutions for Envy-Free Cake Cu�ing. Operations Research 60, 6 (2012),

1461–1476.
Y. Gal, M. Mash, A. D. Procaccia, and Y. Zick. 2017. Which Is the Fairest (Rent Division) of �em All? Journal of the ACM

64, 6 (2017), article 39.
I. Kash, A. D. Procaccia, and N. Shah. 2014. No Agent Le� Behind: Dynamic Fair Division of Multiple Resources. Journal of

Arti�cial Intelligence Research 51 (2014), 579–603.
R. J. Lipton, E. Markakis, E. Mossel, and A. Saberi. 2004. On Approximately Fair Allocations of Indivisible Goods. In

Proceedings of the 6th ACM Conference on Economics and Computation (EC). 125–131.
D. C. Parkes, A. D. Procaccia, and N. Shah. 2015. Beyond Dominant Resource Fairness: Extensions, Limitations, and

Indivisibilities. ACM Transactions on Economics and Computation 3, 1 (2015), article 3.
A. D. Procaccia. 2016. Cake Cu�ing Algorithms. In Handbook of Computational Social Choice, F. Brandt, V. Conitzer,

U. Endress, J. Lang, and A. D. Procaccia (Eds.). Cambridge University Press, Chapter 13.
P. Raghavan. 1988. Probabilistic Construction of Deterministic Algorithms: Approximating Packing Integer Programs.

Journal of Computer and System Sciences 37, 2 (1988), 130–143.
P. Sanders. 1996. On the Competitive Analysis of Randomized Static Load Balancing. In Proceedings of the 1st Workshop on

Randomized Parallel Algorithms (RANDOM).
J. Spencer. 1977. Balancing Games. Journal of Combinatorial �eory Series B 23, 1 (1977), 68–74.
W. Stromquist. 1980. How to Cut a Cake Fairly. American Mathematical Monthly 87, 8 (1980), 640–644.
F. E. Su. 1999. Rental Harmony: Sperner’s Lemma in Fair Division. American Mathematical Monthly 106, 10 (1999), 930–942.
T. Walsh. 2011. Online Cake Cu�ing. In Proceedings of the 3rd International Conference on Algorithmic Decision �eory (ADT).

292–305.

Gerdus Benade, Aleksandr M. Kazachkov, Ariel D. Procaccia, and Christos-Alexandros Psomas 19

S. J. Wilson. 1998. Fair Division Using Linear Programming. Manuscript.

A PROOFS MISSING FROM SECTION 2.
A.1 Proofs missing from Section 2.1.
We use the notation de�ned in Section 2.1.

Lemma 2.2. �e adversary has an optimal adaptive strategy that labels every internal node of the

game tree with a vector in {0, 1}n .

Proof. Assume for the sake of contradiction that the adversary does not have an optimal
strategy which assigns integral vectors to the nodes of the (adversary-centric) game tree. Let s
be the optimal strategy with the smallest number of fractional values. Without loss of generality,
let u be a node on layer ` ∈ [T] for which the value assigned to player i ∈ [n] is fractional, i.e.,
0 < s(u)i < 1. �e values ` and i are �xed for the remainder of this proof. De�ne alternative
strategies s ′ and s ′′ identical to s , except that s ′(u)i = 1 and s ′′(u)i = 0. We wish to show that
E [Envy(s,ω)] ≤ E[Envy(s∗,ω)] for s∗ = s ′ or s ′′, where the expectation is over the randomness of
the allocation algorithm. Denote with Ωu all paths passing through u. �e envy associated with
paths in Ω \ Ωu is una�ected by the move from s to s ′ or s ′′ and may be safely ignored.

When agent i is not the unique agent with maximum envy, it holds that Envy(s,ω) ≤ Envy(s ′,ω)
and Envy(s,ω) ≤ Envy(s ′′,ω) as desired (recall that changing agent i’s valuation for an item does
not a�ect other agents’ envy). It remains to consider the set of paths

Ω+u =

{
ω ∈ Ω : max

j ∈[n]
Envyi j (s,ω) > max

j ∈[n]\{i }
max
k ∈[n]

Envyjk (s,ω)
}
,

in which agent i is the unique agent with maximum envy (and this envy is strictly positive). We
can further partition Ω+u according to which player gets item `; let Ω+, ju be the set of paths in Ω+u
in which player j ∈ [n] gets item `, and for any J ⊆ [n], set Ω+, Ju = ∪j ∈JΩ

+, j
u . We analyze three

di�erent cases: (1) whether the player that gets item ` is player i , (2) a player j∗ for whom player i
has maximum envy, or (3) another player. De�ne

J ∗ =

{
j∗ ∈ [n] : Envyi j∗ (s,ω) = max

j ∈[n]
Envyi j (s,ω)

}
.

Also, for convenience, set f = s(u)i and J< = [n] \ {J ∗ ∪ {i}}.
We �rst look at s ′. �e three cases are:

(1) For ω ∈ Ω+,iu : Envy(s,ω) − (1 − f) ≤ Envy(s ′,ω) ≤ Envy(s,ω).
(2) For ω ∈ Ω+, J

∗

u : Envy(s ′,ω) = Envy(s,ω) + (1 − f).
(3) For ω ∈ Ω+, J

<

u : Envy(s,ω) ≤ Envy(s ′,ω) ≤ Envy(s,ω) + (1 − f).
�e only outcomes along which envy can decrease when changing the adversary’s strategy from s
to s ′ are those in Ω+,iu .

We can compute the e�ect of changing s to s ′ on the expected maximum envy as

E[Envy(s,ω)] =
∑
ω ∈Ω

Pr[ω] · Envy(s,ω)

=
1
nT

©­­«
∑

ω ∈Ω+,iu

Envy(s,ω) +
∑

ω ∈Ω+, J
∗

u

Envy(s,ω) +
∑

ω ∈Ω+, J
<

u

Envy(s,ω)
ª®®¬

Gerdus Benade, Aleksandr M. Kazachkov, Ariel D. Procaccia, and Christos-Alexandros Psomas 20

≤
1
nT

©­­«
∑

ω ∈Ω+,iu

(Envy(s ′,ω) + (1 − f)) +
∑

ω ∈Ω+, J
∗

u

(Envy(s ′,ω) − (1 − f)) +
∑

ω ∈Ω+, J
<

u

Envy(s ′,ω)
ª®®¬

= E[Envy(s ′,ω)] + 1 − f

nT

(��Ω+,iu

�� − ��Ω+, J ∗u
��) .

If
��Ω+,iu

�� ≤ ��Ω+, J ∗u
��, it follows that E[Envy(s,ω)] ≤ E[Envy(s ′,ω)]. Assume therefore that

��Ω+,iu
�� >��Ω+, J ∗u

��. An identical analysis for s ′′ shows that
(1) For ω ∈ Ω+,iu : Envy(s ′′,ω) = Envy(s,ω) + f .
(2) For ω ∈ Ω+, J

∗

u : Envy(s,ω) − f ≤ Envy(s ′′,ω) ≤ Envy(s,ω).
(3) For ω ∈ Ω+, J

<

u : Envy(s,ω) = Envy(s ′′,ω).
Expanding the computation of the expected value as before shows

E[Envy(s,ω)] ≤ E[Envy(s ′,ω)] + f

nT

(
−
��Ω+,iu

�� + ��Ω+, J ∗u
��) .

By assumption
��Ω+,iu

�� > ��Ω+, J ∗u
��, so E[Envy(s,ω)] ≤ E[Envy(s ′′,ω)], concluding the proof. �

A.2 Simple deterministic algorithms
We complement the example in Section 2.2 by showing that the algorithm that myopically minimizes
the maximum envy with every arrival has constant per-round envy.

Example A.1. Consider the algorithm that at step t allocates the item in a way that the maximum
envy a�er allocation is as small as possible. We claim this algorithm leads to EnvyT ∈ Ω(T). Table 2
summarizes the instance which proves this bound.

Table 2. Myopically minimizing maximum envy leads does not lead to vanishing envy.

t 1 2 3 4 5 6 · · ·

Value of agent 1 1/2 1 ϵ 1/2 1 ϵ · · ·

Value of agent 2 1/2 1/4 1/4 − ϵ 1/2 1/4 1/4 − ϵ · · ·

Envy of agent 1 −1/2 1/2 1/2 − ϵ −ϵ 1 − ϵ 1 − 2ϵ · · ·

Envy of agent 2 1/2 1/4 1/2 − ϵ 1 − ϵ 3/4 − ϵ 1 − 2ϵ · · ·

�e envy of each agent increases by 1
2 − ϵ every three steps. �erefore, the maximum envy at

step 6t is approximately t , and EnvyT /T approaches 1/6 as T goes to in�nity.

A.3 Proofs missing from Subsection 2.3.
Lemma 2.12. vK−1 −vK ≥ r (1 − r)Kr−2

.

Proof. Observe that vK−1 − vK = Kr − (K − 1)r − (K + 1)r + Kr = 2Kr − (K − 1)r − (K + 1)r .
Using Newton’s generalized binomial theorem, with (r)k = r (r − 1) · · · (r − k + 1), we can expand
(K + 1)r and (K − 1)r as

(K + 1)r = Kr + rKr−1 +
(r)2
2! Kr−2 +

(r)3
3! Kr−3 +

(r)4
4! Kr−4 + · · · , and

(K − 1)r = Kr − rKr−1 +
(r)2
2! Kr−2 −

(r)3
3! Kr−3 +

(r)4
4! Kr−4 − · · · .

Gerdus Benade, Aleksandr M. Kazachkov, Ariel D. Procaccia, and Christos-Alexandros Psomas 21

Combining these identities with the fact that (r)k is negative when r < 1 for all even k , it follows
that

vK−1 −vK = −2
(
(r)2
2! Kr−2 +

(r)4
4! Kr−4 +

(r)6
6! Kr−6 + · · ·

)
= r (1 − r)Kr−2 + 2

(
|(r)4 |

4! Kr−4 +
|(r)6 |

6! Kr−6 + · · ·

)
≥ r (1 − r)Kr−2. �

B PROOFS MISSING FROM SECTION 3
Lemma 3.7. Let X be a random variable with E [X] = 0 and |X | ≤ 4. �en for all v ∈ [0, 1] it holds

that E
[
esXv

]
≤ exp

(
e4s − 4s − 1

)
.

Proof. Taking the Taylor expansion of ex at 0 we have:

E
[
esX

]
= E

[
1 + sXv +

∞∑
k=2

sk (X)k

k!

]
≤ 1 + 0 +

∞∑
k=2

skE
[
(X)k

]
k!

≤ 1 +
∞∑
k=2

4ksk
k! = 1 +

(
e4s − 4s − 1

)
≤ exp

(
e4s − 4s − 1

)
. �

Lemma 3.4. ϕ(t) ≥
∑

i, j ∈[n] Pr
[
Envyi jT (A

t) > 100
√
T logn/m

]
.

Proof. For all ` ≤ t , the fractional allocation A` in the `-th batch was rounded to the allocation
Â` which minimizes ϕ(`). Recall that, since our algorithm is deterministic, it su�ces to analyze an
arbitrary, but �xed choice of items. Let B̂`

1 , . . . , B̂
`
n be the (random) allocation that comes from a

randomized rounding of A` , for all ` ∈ [t + 1,T /m].
Let δ ti j = vi (At

j) −vi (A
t
i) for all i, j ∈ [n], t ∈ [T /m]. Note that all δ ti j ≤ 0 since the allocation is

envy free. De�ne random variables Y `
i j = vi (B̂

`
j) −vi (B̂

`
i) − δ

`
i j . �ese variables have zero mean and

satisfy |Y `
i j | ≤ 4 (Lemma 3.2). It su�ces to show that at any time t ≤ T , for any pair of agents i, j,

for λ = 100
√
T logn/m,

Pr
[
Envyi jT (A) > λ

]
≤ Pr

[
fi j (t) +

T /m∑
`=t+1

Y `
i j > λ

]
≤ ϕi j (t), (8)

where the �rst inequality results from the fact that the Y variables are centered and that fi j (t) ≥
Envyi jt . Summing up over all pairs i, j proves the claim. Equation 8 follows from

Pr
[
fi j (t) +

T /m∑
`=t+1

Y `
i j > λ

]
= Pr

[
e
s
(
fi j (t)+

∑T /m
`=t+1 Y

`
i j

)
> esλ

]
≤ e−sλ · E

[
esfi j (t)+s

∑T /m
`=t+1 Y

`
i j

]
(Markov’s ineq.)

= esfi j (t)e−sλ · E

[T /m∏
`=t+1

esY
`
i j

]
= esfi j (t)e−sλ

T /m∏
`=t+1

E
[
esY

`
i j

]
(independence)

Gerdus Benade, Aleksandr M. Kazachkov, Ariel D. Procaccia, and Christos-Alexandros Psomas 22

≤ esfi j (t)e−sλ
T /m∏
`=t+1

exp
(
e4s − 4s − 1

)
(Lemma 3.7)

= esfi j (t)e−sλe(
T
m −t)(e

4s−4s−1) = ϕi j (t). �

C PARTIAL INFORMATION
In the full information se�ing the allocation algorithm knows the value of each agent for every
item. By contrast, there may be cases where the values for an incoming item are only revealed
a�er allocation. We call this the partial information se�ing. Here, as in Section 2, we assume items
arrive one at a time.

In this se�ing we �nd that deterministic allocation mechanisms are unable to guarantee vanishing
envy. In contrast to the full information se�ing, where there is no distinction between deterministic
and randomized algorithms, allowing randomization in the partial information se�ing gives the
allocation algorithm signi�cant power and the upper bound in �eorem 2.1 carries over directly.

C.1 Randomized algorithms
�e lower bound in �eorem 2.13 shows that an adversary can ensure essentially Envy(T) ∈
Ω(

√
T /n) against a randomized algorithm which knows the item valuation before making the

allocation. A weaker randomized allocation algorithm that does not see the item valuations cannot
improve over this.

Allocating incoming items uniformly at random does not make use of item valuations and was
shown to have Envy(T) ∈ O(

√
T logT /n) in �eorem 2.1. �e next result immediately follows from

�eorems 2.1 and 2.13.

Corollary C.1. �e uniform allocation algorithm guarantees that E [EnvyT] ∈ O(
√
T logT /n)

even in the partial information se�ing. On the other hand, there exists an adversary strategy for se�ing

item values such that any algorithm must have EnvyT ∈ Ω((T /n)
r/2) for any r < 1.

C.2 Deterministic algorithms
Consider the extensive-form game tree in the partial information case. Nodes on odd layers 2` − 1
belong to the adversary, who chooses an outgoing edge corresponding to the values v1`, . . . ,vn`
for item `. Nodes on the even layer 2` belong to the algorithm, which selects an outgoing edge
corresponding to assigning item ` to one of the agents.

Let u be a node on the odd layer 2` − 1 and c(u) its children. In the partial information se�ing,
c(u) are all in the same information set. In other words, the algorithm is unable to distinguish
between being at any of the nodesv ∈ c(u), since the value of item ` is hidden, and therefore selects
the same allocation a(u) at every node v ∈ c(u). It is easy for the adversary to exploit this to create
highly imbalanced allocations.

Theorem C.2. An adaptive adversary can ensure EnvyT ∈ Ω(T /n) against a deterministic allo-

cation algorithm in the partial information se�ing, while the allocation algorithm can guarantee

EnvyT ∈ O(T /n).

Proof. We �rst show the lower bound. Let u be a node of the game tree belonging to the
adversary and denote with a(u) the allocation of the algorithm in information set c(u) consisting of
the children of node u. Recall that c(u) form an information set for the allocation algorithm.

�e allocation strategy is de�ned by selecting an agent to allocate to in each information set
belonging to the algorithm. Once the algorithm’s strategy is �xed, it is not hard for the adversary
to adapt and ensure high envy: At each node u on level 2` − 1 belonging to the adversary, select

Gerdus Benade, Aleksandr M. Kazachkov, Ariel D. Procaccia, and Christos-Alexandros Psomas 23

the edge corresponding to the assignment of values va(u), ` = 0 and vi` = 1 for all i ∈ [n] \ {a(u)}.
Consequently, every agent values her bundle at time T at 0, yet has value 1 for every item she did
not receive. SinceT items are distributed among n agents, there exists an agent j who receivedT /n
items. It follows that Envy(T) ≥ T /n.

For the upper bound, observe that allocating items in a round-robin manner gives every agent at
most dT /ne items. It follows that Envy(T) ≤ dT /ne. �

D POLYNOMIAL TIME ALGORITHMS FOR SPECIAL CASES
�e allocation algorithm presented in §3.1 relies on the solution of an integer program to �nd an
almost envy-free allocation. However, the we do not know how to implement the algorithm in
polynomial time. We explore two special cases where polynomial time algorithms can be leveraged
to guarantee EnvyT ,m ∈ O(

√
T logn/m).

In particular, when n = 2 or agents have the same preference order for every batch of items,
we show that the allocation algorithm that selects a random permutation of the agents for every
batch and allows them to select their most preferred item in a round-robin fashion achieves the
desired bound. �e se�ing where agents have the same preference order for every batch of items
is of particular interest because it captures scenarios where items have an objective and known
‘quality’ or value.

We also present a fully polynomial time algorithm with EnvyT ,m ∈ O(n2 ·
√
T logn/m), which

gives the desired asymptotic bound when n may be treated as a constant.

D.1 Repeated Random Serial Dictatorship
Random serial dictatorship (RSD), or random priority [Bogomolnaia and Moulin, 2001], is a mecha-
nism for dividing indivisible goods in which agents are ordered at random, and agents sequentially
select their most preferred item until no items remain. We study the envy of the mechanism which
executes RSD independently for every batch.

Theorem D.1. If n = 2 or all agents have the same preference ordering for every batch, executing

RSD for every batch guarantees EnvyT ,m ∈ O(
√
T logn/m) in polynomial time.

Proof. We �rst focus on the n = 2 case. Refer to the two agents as 1 and 2. Let A12 be the
allocation of an arbitrary batch resulting executing RSD in the order 1, 2 (where agent 1 �rst selects
an item, followed by agent 2, etc.); de�ne A21 similarly. Let v1(X1),v1(X2) be the value that agent 1
has for her own and agent 2’s goods under allocation X .

�e following lemma formalizes the idea that if agent 1’s envy towards 2 increases when 2 selects
�rst, then agent 1’s envy towards 2 decreases by at least as much when 1 selects �rst.

Lemma D.2. Suppose v1(A
21
1) −v1(A

21
2) = α ≥ −1.�en v1(A

12
1) −v1(A

12
2) ≥ −α .

Proof. It is well-known that round-robin, or RSD, is envy-free up to one good (EF1) for additive
valuations, so α ≥ −1. When item valuations are known, the procedure takes time polynomial in n,
T andm.

For ease of exposition assume there arem = 2k items in the batch. Label the items in the order
they are selected when doing round robin with the permutation 2, 1. In other words, agent 2 selects
items 1, 3, . . . , 2k − 1 and agent 1 selects 2, 4, . . . , 2k when performing RSD with the permutation
2, 1.

Let v2, ` (v1, `) be the value of agent B (A, respectively) for item `. �en v1(A
21
1) =

∑k
`=1v1,2` .

Since each agent selects her most preferred item among the remaining items at each step, we

Gerdus Benade, Aleksandr M. Kazachkov, Ariel D. Procaccia, and Christos-Alexandros Psomas 24

observe that
v2,1 ≥ v2, `, ` = 2, . . . , 2k
v2,3 ≥ v2, `, ` = 4 . . . , 2k
...

v2,2k−1 ≥ v2,2k ,

and similarly
v1,2 ≥ v1, `, ` = 3, . . . , 2k
...

v1,2(k−1) ≥ v1, `, ` = 2k − 1, 2k .
Note that we have inequalities for the oddly indexed items for agent 2, and for the even ones for
agent 1 since these are the items selected by the respective agents. �e following lemma establishes
that when agent 1 selects her r -th item under permutation 1, 2, she is able to choose an item she
values at at least v1,2r−1 (the value of agent 2’s r -th pick under permutation 2, 1). �is will directly
imply that v1(A

12
1) ≥ v1(A

21
2).

Lemma D.3. When agent 1 is about to select her r -th item under permutation 1, 2 (a�er 2(r − 1)
items have been selected) , either items {1, . . . , 2(r − 1)} or {1, . . . , 2(r − 1) − 1, 2(r − 1) + 1} have
been selected.

Proof. By induction on r . Base case: r = 1 is trivial, consider r = 2: For agent 1’s �rst pick she
selects item 1 or 2. If she selects 2, then agent 2 selects item 1 (her most preferred item). If agent 1
selects item 1, agent 2 selects either item 2 or 3, since v2,3 ≥ v2, ` for all ` = 4, . . . ,n. In either case
we obtain the required property.

Assume as induction hypothesis that whenever agent 1 is about to select her r -th item under
permutation 1, 2, either items {1, . . . , 2(r −1)} or {1, . . . , 2(r −1)−1, 2(r −1)+1} have been selected
for all r up to and including s .

Suppose that when agent 1 makes her s-th pick, items {1, . . . , 2(s − 1)} have been selected. Now
agent 1 selects either 2(s − 1) + 1 or 2s , since v1,2s ≥ v1,2s+` for all integer ` > 0. Assume agent 1
picks 2(s − 1) + 1, then agent 2 will select either 2s or 2s + 1, since v2,2s+1 ≥ v2,2s+1+` for ` ∈ Z+. In
either case, the induction hypothesis holds. Assume instead that agent 1 selects 2s , leaving agent 2
to pick 2(s − 1) + 1 since v2,2(s−1)+1 ≥ v2,2(s−1)+1+` for ` ∈ Z+. �e induction hypothesis holds.

Assume now that when agent 1 is about to make her s-th pick, items {1, 2, . . . , 2(s − 1) − 1, 2(s −
1) + 1} have been selected. Agent 1 selects 2s , since v1,2s ≥ v1,2s+` for ` ∈ Z+. Agent 2 selects
next, a�er items 1, . . . , 2(s − 1) + 1 have been selected. �is case has been analyzed already, and we
conclude that the induction hypothesis holds for agent 1’s (s + 1)-th selection. �

Let v1 be the total value that agent A has for all the items in the batch, so
v1(A

12
1) +v1(A

12
2) = v1 = v1(A

21
1) +v1(A

21
2). (9)

It follows from the Lemma D.3 that the item that A selects with his r -th pick under the permutation
AB has value at leastvA,2(r−1)+1.�is, together with (9), implies thatv1(A

12
1) ≥ v1(A

21
2) andv1(A

12
2) ≤

v1(A
21
1). We conclude that

v1(A
12
1) −v1(A

12
2) ≥ v1(A

21
2) −v1(A

21
1) = −α

�

Gerdus Benade, Aleksandr M. Kazachkov, Ariel D. Procaccia, and Christos-Alexandros Psomas 25

Lemma D.2 states that whatever increase in envy an agent may experience when placed last in
the permutation is more than compensated for when that agent is placed �rst. �e required bound
for n = 2 may be obtained by derandomizing the selection of a permutation in every batch in a
similar way as in �eorems 2.6 and 3.3.

Suppose now that all agents have the same preference ordering for the items in every batch.
In this case the items allocated to a speci�c agent depends only on that agent’s position in the
ordering. Any decrease in the envy of agent i towards agent j is when placed in positions k and
`, respectively, is o�set by an identical increase in envy when agent i is in position ` and agent
j in position k . A result analogous to Lemma D.2 may be established under these assumptions.
Since round-robin allocations are EF1, we can derandomize as before and conclude that that
EnvyT ,m ∈ O(

√
T logn/m). �

Unfortunately, it is possible to construct an example with three agents where this algorithm
leads to a linear growth in envy.

We remark that it is also possible to obtain the preceding result by writing bi-hierarchical
envy-freeness constraints on a matrix X in the spirit of [Budish et al., 2013], where entry Xi j
is the probability that agent i receives item j. �ese constraints end up being essentially totally
unimodular when n = 2 or agents have identical preference orders for every batch, but do not have
enough structure to enable positive results in general.

D.2 Constant Number of Agents
We conclude by showing that it is possible to �nd an envy-free fractional allocation for every batch
with no more than n2 fractional variables in polynomial time. Randomly rounding this fractional
allocation will yield an integral allocation with envyO(n2), which, a�er derandomization to take care
of the dependence between the changes in envy across batches, yields EnvyT ,m ∈ O(n2 ·

√
T logn/m).

Theorem D.4. �ere exists a polynomial-time, deterministic algorithm that guarantees EnvyT ,m ∈

O(n2 ·
√
T logn/m).

Proof. We rely on the following lemma, which plays the role of a weaker version of Lemma 3.1,
and shows how to �nd an ‘almost integral’ envy-free allocation in polynomial time. To the best of
our knowledge this result �rst appeared in [Wilson, 1998], and the proof we present here is due to
Noga Alon.

Lemma D.5. Givenm items and n agents, where vi, j is the value that agent i has for item j, there
exists an envy-free fractional allocation with no more than n2

fractional variables.

Proof. Label a batch ofm items 1, . . . ,m arbitrarily. Let Vit =
∑t

`=1vi` for i ∈ [n] and ` ∈ [m].
A�er ` of the k items have been processed, the algorithm has maintains a fractional solution xi`
for i ∈ [n], ` ∈ [m] so that:

(1) For all i, j ∈ [n],
∑m

`=1vi`xi` = Vim/n;
(2) For all ` ∈ [m],

∑n
i=1 xi` = 1 for all ` ∈ [m], and 0 ≤ xi` ≤ 1.

(3) �e number of non-integral variables is at most 2n2.
If variables satisfying these properties are retained until all items have been processed, they
represent a fractional allocation with no more than O(n2) fractional variables. �is fractional
allocation is not only envy-free but also ‘balanced’, meaning that every agent values all n bundles
identically.

�e fact that there are no more than 2n2 fractional variables imply that at most n2 items are
allocated fractionally.

Gerdus Benade, Aleksandr M. Kazachkov, Ariel D. Procaccia, and Christos-Alexandros Psomas 26

�e algorithm starts with xi,1 = 1/n for all i ∈ [n]. Assume that variables xi` have already been
assigned values that satisfy the above properties for some ` < m. We show how to update them
and allocate item ` + 1 to satisfy the properties, without changing any integral variable.

When processing item ` + 1, set xi, `+1 = 1/n for all i ∈ [n]. It is now possible that the third
property is violated and there are more than 2n2 fractional variables.

If the number of fractional variables r > 2n2, consider the system of linear equations consisting
of the n2 equations in (1), and the equations in (2) for those items ` which are fractionally assigned
in the current solution. Note that there are no more than r/2 equations of this form. Fix all integral
variables. �is leaves a system of equations with r free variables and n2 + r/2 < r equations. Since
there are more variables than equations, there is a line of solutions x ′i` = xi` +λci` , where (i, `) runs
over the indices of the free variables, some ci` , 0 and λ is a scalar. λ = 0 is a valid solution, and
we can increase λ until the �rst fractional variable becomes either 0 or 1. Picking this λ decreases
the number of fractional variables by 1. �e process can now be repeated with the new system of
equations until no more than 2n2 variables are fractional, which concludes the processing of item
` + 1. �

Using the same techniques as in the proofs of �eorems 2.6 and 3.3, we can derandomize the
algorithm which randomly rounds every near-integral envy-free allocation found by Lemma D.5 to
�nd a deterministic algorithm with EnvyT ,m ∈ O(n2 ·

√
T logn/m). �

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 When items arrive one by one
	2.1 Random Allocation
	2.2 Derandomization with Pessimistic Estimators
	2.3 Lower Bound

	3 When items arrive in batches
	3.1 Upper Bound
	3.2 Lower Bound

	4 Discussion
	References
	A Proofs missing from Section 2.
	A.1 Proofs missing from Section 2.1.
	A.2 Simple deterministic algorithms
	A.3 Proofs missing from Subsection 2.3.

	B Proofs missing from Section 3
	C Partial information
	C.1 Randomized algorithms
	C.2 Deterministic algorithms

	D Polynomial time algorithms for special cases
	D.1 Repeated Random Serial Dictatorship
	D.2 Constant Number of Agents

