
X

Harnessing the Power of Two Crossmatches

AVRIM BLUM, Carnegie Mellon University
ANUPAM GUPTA, Carnegie Mellon University
ARIEL D. PROCACCIA, Carnegie Mellon University
ANKIT SHARMA, Carnegie Mellon University

Kidney exchanges allow incompatible donor-patient pairs to swap kidneys, but each donation must pass
three tests: blood, tissue, and crossmatch. In practice a matching is computed based on the first two tests,
and then a single crossmatch test is performed for each matched patient. However, if two crossmatches
could be performed per patient, in principle significantly more successful exchanges could take place. In this
paper, we ask: If we were allowed to perform two crossmatches per patient, could we harness this additional
power optimally and efficiently? Our main result is a polynomial time algorithm for this problem that almost
surely computes optimal — up to lower order terms — solutions on random large kidney exchange instances.

1. INTRODUCTION
People who suffer from chronic kidney disease are best treated by transplanting a
healthy kidney from a live donor. However, even patients who are fortunate enough to
have a willing donor (typically a family member or a close friend) may be incompatible
with him. This is where the recent innovation of kidney exchange comes in. The basic
insight that drives kidney exchange is that two incompatible donor-patient pairs may
be able to exchange kidneys so that both patients receive a healthy kidney. To pinpoint
as many of these life-saving opportunities as possible, matching algorithms are run
(on a weekly or monthly basis) on databases that contain the information of registered
of donors and patients.

There are three hurdles that must be cleared before a donation can take place. First,
the donor and patient must pass a blood typing test. There are four blood types (O,
A, B, AB) – depending on the presence of A and B antigens — and only some are
compatible with others. For example, a donor with blood type A can donate to a patient
with blood type A or AB, but not to a patient with blood type B or O. Second, the donor
and patient must pass a tissue typing test. There are six tissue antigens; the more of
them are shared by the patient and donor, the more likely it is that the transplant
will be successful. Third, a crossmatch test is performed by (roughly speaking) mixing
the donor and patient’s blood in a tube and spinning it; depending on whether the
blood is suspended or stuck together, doctors can predict whether the patient’s body
would attack the new kidney (confusingly called positive crossmatch) or would accept
it (negative crossmatch).

The blood and tissue typing tests are fundamentally different from the crossmatch
test, in that the relevant information can be collected from each donor and each pa-
tient even before matches are made. In contrast, for a crossmatch test (samples of)
the blood of the patient and his intended donor must be physically in the same place.
Therefore, existing kidney exchanges such as the one run by the United Network for
Organ Sharing (UNOS) first compute a matching based only on blood typing and tis-
sue typing tests. Then, crossmatches are performed only for patients and donors that
were matched. Exchanges where all the relevant crossmatches are negative proceed to
the operating room, while exchanges that involved a positive crossmatch fail.

In graph-theoretic terms, each incompatible donor-patient pair is represented by a
vertex. We consider the undirected case where there is an edge between two vertices

Authors’ addresses: A. Blum, A. Gupta, A. D. Procaccia, A. Sharma, Computer Science Department,
Carnegie Mellon University, email: {avrim,anupamg,arielpro,ankits}@cs.cmu.edu.

EC’13, June 16–20, 2013, Philadelphia, PA, Vol. X, No. X, Article X, Publication date: June 2013.

X:2 A. Blum, A. Gupta, A. D. Procaccia, and A. Sharma

if each donor is compatible with the other patient in terms of blood type and tissue
type only, that is, a pairwise exchange is potentially possible if the crossmatch test is
negative1. Given a matching on this graph, a crossmatch is performed for each edge in
the matching; we model this as flipping an independent coin with some bias p for each
crossmatch to determine whether it is positive or negative.

In existing kidney exchanges each donor-patient pair is involved in at most one cross-
match test. In this case, to maximize the expected number of transplants we simply
need to compute a maximum cardinality matching M on the given graph, since the
expected number of transplants is then p|M |.

Now imagine a situation where we perform two crossmatches per donor-patient pair,
instead of one. If for example p = 0.5 then, instead of a 50% chance, a patient’s odds of
receiving a kidney could be as high as 75%. How would we use this additional power
to optimize the expected number of transplants? In technical terms, our problem is:

DOUBLE-CROSSMATCH: Given a graph G = (V,E), select a subset E′ ⊆ E
such that for every v ∈ V there are at most two edges in E′ that are incident
to v, so that after we throw a coin for each e ∈ E′ to determine whether it
exists, the expected size of the maximum cardinality matching on the edges
in E′ that exist is maximized.

We aim to construct a polynomial time algorithm that guarantees almost optimal
performance with high probability, when the compatibility graph is drawn from a re-
alistic distribution over such graphs. We believe that this practical approach — as op-
posed to the more standard approach of seeking a constant worst-case multiplicative
approximation ratio — can inform policy makers, as we discuss in Section 8.

1.1. Our Results
Before directly tackling realistic kidney exchange models, we investigate our problem
on special graphs. In these special cases we can characterize the structure of the opti-
mal solution. While these results are of independent theoretical interest, we also use
them as building blocks for our main result.

We first consider the case of a complete (undirected) graph. Note that since we con-
strain the solution subgraph to have at most two edges incident to a node, hence the
edges of the subgraph can be partitioned into cycles and paths. In a complete graph
there is no reason to use a path because it is always possible to close it and obtain a
cycle. But what is the optimal cycle length? We show that the average gain per vertex
is maximized when the selected edges form 4-cycles. In particular, if |V | is divisible
by four, then the optimal |E′| consists only of 4-cycles. Moreover, we show that this is
true not just for complete graphs. If any graph admits a cover of its vertices through
4-cycles, then every optimal solution subgraph would be a 4-cycle cover of the vertices
of the graph (Theorem 3.1). For general graphs, this means that our problem is at least
as hard as determining whether or not a graph admits a 4-cycle cover, and we lever-
age this insight to prove the NP-hardness of our problem. Interestingly, closely related
problems [Costello et al. 2012; Chen et al. 2009; Bansal et al. 2012] are not known to
be — although they are believed to be — NP-hard.

We next analyze the case of complete bipartite graphs. If the two sides of the bi-
partite graph are not equal in size, then it does not admit a 4-cycle cover. Moreover,
paths may actually be useful when they begin and end on the same larger side of the
bipartite graph. Would the optimal solution include arbitrarily long paths? We show
that, without any loss in the solution quality, we can assume that the optimal solution
would only use 4-cycles and paths of length at most 5 (Lemma 4.1).

1As we discuss in Section 8, in practice kidney exchanges also use directed 3-cycles.

EC’13, June 16–20, 2013, Philadelphia, PA, Vol. X, No. X, Article X, Publication date: June 2013.

Harnessing the Power of Two Crossmatches X:3

Using these two results, we move to tackling the case of kidney exchange graphs. As
a first step, in Section 6, we consider the case of a complete kidney exchange graph,
where every pair of nodes that are blood-type compatible share an edge, that is, we
temporarily ignore the tissue typing tests. We give a solution subgraph that is an
optimal solution, but for lower order terms, to the complete kidney exchange graph
(Theorem 6.4). Then in Section 7, to capture realistic kidney exchanges, we draw the
graph G from a distribution over compatibility graphs that was suggested by Ashlagi
and Roth [2011]. We now take tissue typing tests into account and pairs of vertices
that are blood-type compatible share an edge only if, in addition, they pass a tissue
typing test; this occurs with constant probability. Hence, every edge of the complete
kidney exchange graph exists with a constant probability in the realistic kidney ex-
change graph. Our main result (Theorem 7.1) is a polynomial time algorithm with the
following property: as the number of vertices goes to infinity, the probability (over the
realistic distribution over graphs) that the algorithm fails to select an expectation-
maximizing collection of edges, up to lower order terms, goes to zero.

1.2. Related Work
Variants of our problem have been studied under the names stochastic matching and
the query-commit problem. Costello et al. [2012] consider the following version of the
problem: Given a random graph G with known edge probabilities pe, in what order
should one query the edges in order to maximize the expected cardinality of the match-
ing? The additional constraint they have is that if on querying the edge it is found to
exist, the algorithm is obliged to include it in the matching. It is clear that the greedy
approach gives a 0.5-approximation since it finds a maximal matching. In their paper,
they present an algorithm that achieves a competitive ratio of 0.575 against an adver-
sary who knows the actual edges that exist in the graph. Furthermore, they show that
no algorithm can get a competitive ratio better than 0.896.

Chen et al. [2009] add an additional constraint to the problem and at the same
time restrict the strength of the adversary. Just as in the work of Costello et al. [2012],
the edges need to be queried in some order, and if a queried edge exists it must be
matched. The additional constraint they add is that for every node v we have a known
parameter tv, and the algorithm is not allowed to query more than tv edges that are
incident to node v. They also restrict the strength of the adversary in that now the
adversary has precisely as much knowledge of the instance as the algorithm, and in
particular, does not know which edges exist in the graph. They showed that the greedy
algorithm, which queries the edges in decreasing order of the edge probabilities, gives
a 0.25-approximation. Adamczyk [2011] later improved the analysis to show that the
greedy algorithm in fact yields a 0.5-approximation.

Bansal et al. [2012] extend the work of Chen et al. [2009] by considering the
weighted version of the problem, where in addition to edge probabilities pe, each
edge has a weight we and the objective is maximize the expected weight of match-
ing (as opposed to cardinality). They give an LP-based solution that achieves a 0.25-
approximation for the case of a weighted general graph and a 0.33-approximation for
the case of a weighted bipartite graph.

Our version of the problem cannot be said to either harder or easier than the above
problems. One aspect of our problem is harder: we are forced to commit to the set of
edges that we query upfront, and are not allowed to adaptively decide which edges
to query based on the outcome of the queried edges.2 The aspect in which it is easier
than the other version is that we are allowed to pick a maximum cardinality matching

2Note though that the solutions given in previous papers [Chen et al. 2009; Bansal et al. 2012] are non-
adaptive.

EC’13, June 16–20, 2013, Philadelphia, PA, Vol. X, No. X, Article X, Publication date: June 2013.

X:4 A. Blum, A. Gupta, A. D. Procaccia, and A. Sharma

within the set of edges that exist among the selected edges, whereas the other version
forces the algorithm to match edges as they are revealed in case they exist.

Perhaps the more important difference though lies in the type of analysis. While
previous work seeks to guarantee a worst-case approximation ratio, or a competitive
ratio against an omniscient adversary, we are looking for more practical solutions. Our
main result provides an almost optimal solution with high probability for realistic kid-
ney exchange graphs. In this sense our work is closely related to that of Molinaro and
Ravi [2011], who study the query-commit problem in kidney exchange graphs, but we
believe that the model we use is a better reflection of reality. In addition, we believe
that our version of the computational problem more closely mirrors actual kidney ex-
changes like UNOS.

Several papers study kidney exchanges using realistic random graph models [Ash-
lagi and Roth 2011; Ashlagi et al. 2012; Toulis and Parkes 2011]. In particular, Ashlagi
and Roth [2011] present a compelling model that they use to compare short and long
cycles in kidney exchange, and to design matching mechanisms that discourage strate-
gic behavior on the part of hospitals. While the focus of our results is very different,
we do use a variant of their model. However, Ashlagi and Roth do not distinguish be-
tween the three different compatibility tests, whereas we treat crossmatch tests as
fundamentally different.

2. PROBLEM STATEMENT
Given an undirected graph G = (V,E) and a subset of edges E′ ⊆ E, let δE′(v) denote
the degree of of v ∈ V in the subgraph H = (V,E′). We consider the following process:

(1) Select a subset of edges E′ ⊆ E such that δE′(v) ≤ 2 for all v ∈ V .
(2) Each selected edge e ∈ E′ is revealed to exist independently with probability p.

Denote the edges in E′ that exist by E′′.
(3) Compute a maximum cardinality matching M = M(E′′) on (V,E′′).

In the DOUBLE-CROSSMATCH problem, our goal is to select E′ to maximize the
expected size of the final matching M . Let us define opt(G) , maxH E[|M |], where
H(V,E′) is a valid subgraph of G, (i.e., ∀v ∈ V , δE′(v) ≤ 2) and the expectation is taken
over the outcomes E′′ of E′.

Before moving to describe our main results in detail, we make a couple of easy ob-
servations.

OBSERVATION 2.1. Due to the degree constraints δE′(v) ≤ 2, the subgraph H is a
collection of disjoint cycles and paths, and maybe isolated vertices.

The next observation is that cycles are better than paths.

OBSERVATION 2.2. A cycle of length l+1 has higher expected size of matching than
a path of length l (the length of a path or cycle is the number of edges in it).

An easy corollary of the above observation is the following.

COROLLARY 2.3. If in H(V,E′), there exists a path P , whose end points share an
edge in G(V,E), then adding that edge to E′ does not reduce the size of the expected
matching in H.

3. FOUR-CYCLE COVER AND COMPUTATIONAL COMPLEXITY
The main result of this section is the following theorem, which states that if the graph
has a 4-cycle cover3, then the 4-cycle cover is the unique optimal subgraph.

3A 4-cycle cover is a collection of cycles each of length 4, such that every vertex lies in exactly one cycle.

EC’13, June 16–20, 2013, Philadelphia, PA, Vol. X, No. X, Article X, Publication date: June 2013.

Harnessing the Power of Two Crossmatches X:5

THEOREM 3.1. For any 0 < p < 1, if the graph G admits a 4-cycle cover, then every
optimal H is a 4-cycle cover of G.

In order to prove the theorem, we rely on the following crucial lemma. We note that
Lemma 3.2 holds for any non-trivial value of p (i.e., p /∈ {0, 1}).

LEMMA 3.2. For any 0 < p < 1, a 4-cycle has strictly higher expected probability of
a vertex being matched than a cycle or a path of any other length.

PROOF. By Observation 2.2, it suffices to show that in a 4-cycle, the average proba-
bility of a vertex being matched is strictly higher than that in any other cycle C. Each
edge on this cycle exists independently with probability p. Let Cp be the space of out-
comes of the edges. Since all edges on a cycle have the same probability of existence p,
each vertex in the cycle has the same probability of being matched. We note that — in
our analysis — to ensure that each vertex has the same probability of being matched,
whenever there is more than one possible maximum matching in an instantiation in
Cp, we choose each of the possible maximum matchings with equal probability.

Consider a vertex v ∈ C. Let us calculate the probability that v is matched by break-
ing up the outcome space into four cases.

(1) Both edges incident to v exist. In this case v is definitely matched if |C| is even
(as is the case with a 4-cycle). For odd length cycles, v is matched with probability
strictly less than one. This event occurs with probability p2.

(2) Both edges do not exist. In this case v is definitely not matched, and this occurs
with probability (1− p)2.

(3) One of the edges incident to v exists and other does not. Each of these two cases
occurs with probability p(1− p).

To calculate the probability that v is matched in the third case, let us look at Fig-
ure 1(a) where v = a1 and n = 6. The edge (a1, a6) is is absent, while the edge (a1, a2)
is present. Clearly it holds that

Pr[a1 matched|@(an, a1),∃(a1a2)] =(1− p) · 1 + p(1− p) · 1

2
+ p2(1− p) · 1 + p3(1− p) · 1

2

+ · · ·+ pn−3(1− p) · f(n) + pn−2 · g(n),
(1)

where f(n) is 1 if n is odd and 1
2 if n is even, and g(n) is the opposite. In Equation (1)

we have used the observation that if the path starting at a1 is of even length then a1 is
matched with probability 1

2 , and if it is of odd length then it is matched with probability
1. 1’s and 1

2 ’s alternate in the above expression; see Figure 1(b) for an illustration. For
the case of a 4-cycle, the expression in Equation (1) is equal to (1−p)·1+p(1−p)· 12 +p2 ·1.
For any cycle of length greater than 4, the expression is strictly smaller, because

(1− p) · 1 + p(1− p)1

2
+ p2(1− p) · 1 + p3(1− p)1

2
+ · · ·+ pn−3(1− p) · f(n) + pn−2 · g(n)

< (1− p) · 1 + p(1− p) · 1

2
+ p2(1− p) · 1 + p3(1− p) · 1 + · · ·+ pn−3(1− p) · 1 + pn−2 · 1

= (1− p) · 1 + p(1− p) · 1

2
+ p2 · 1,

where the inequality is obtained by replacing all the 1
2 ’s starting from the fourth term

by 1’s.
It follows that the expected probability that a vertex is matched is strictly higher in

a 4-cycle than in a cycle of length greater than 4. The only other cycle length left to

EC’13, June 16–20, 2013, Philadelphia, PA, Vol. X, No. X, Article X, Publication date: June 2013.

X:6 A. Blum, A. Gupta, A. D. Procaccia, and A. Sharma

a1 a2

a2

a4a5

a6

(a) Dashed edges may not
be available.

(a2, a3)

1 (a3, a4)

1/2 (a4, a5)

1 (a5, a6)

1/2 1

n y

n y

n y

n y

(b) Probability that vertex v is
matched.

Fig. 1. The proof of Lemma 3.2 illustrated for the case of n = 6.

consider is 3. A similar analysis shows that the expected probability that a vertex is
matched in a cycle of length 3 is

(1− p)2 · 0 + p2(p · 1

2
+ (1− p) · 1) + 2 · p(1− p) · ((1− p) · 1 + p · 1

2
) ,

while for a 4-cycle the expression is

(1− p)2 · 0 + p2 · 1 + 2 · p(1− p) · ((1− p) · 1 + p(1− p) · 1

2
+ p2 · 1) .

It is easy to verify that the 4-cycle expression is strictly greater than the 3-cycle ex-
pression for all 0 < p < 1.

Lemma 3.2 is one of the main building blocks for our subsequent algorithmic results.
We will use it here to establish Theorem 3.1 and that in turn can be applied to establish
the computational hardness of our DOUBLE-CROSSMATCH problem.

PROOF OF THEOREM 3.1. Consider a graph G that admits a 4-cycle cover H, and
let the subgraph H ′ be the optimal solution to DOUBLE-CROSSMATCH for G. Assume
H ′ is not a 4-cycle cover of G. In this case, we show that the expected size of matching
H is strictly greater than that of H ′, which contradicts the fact that H ′ is the optimal
solution.

First, it is easy to note that H is a valid solution to the DOUBLE-CROSSMATCH
problem since it has at most two edges incident to any node.

The expected size of the matchings of H and H ′ is the sum over the probability of the
vertices being matched in the respective subgraphs. However, Lemma 3.2 states that
the average probability of a vertex being matched is highest in a 4-cycle. Furthermore,
from Observation 2.1, we know that H ′ is a collection of cycles and paths. This implies
that if H ′ has any cycle of length other than 4 or a path, then it must have lower
expected size of matching than H. This completes the proof.

3.1. Hardness result
THEOREM 3.3. DOUBLE-CROSSMATCH is NP-complete.

EC’13, June 16–20, 2013, Philadelphia, PA, Vol. X, No. X, Article X, Publication date: June 2013.

Harnessing the Power of Two Crossmatches X:7

xi
1

xi
2 xi

3 xi
4

x

yi
1

yi
2 yi

3 yi
4

y

zi1

zi2 zi3 zi4

z

x̃

x̃i
2 x̃i

3 x̃i
4

x̃i
1

Fig. 2. The gadget used in the proof of Lemma 3.4.

Theorem 3.1 states that if a graph G admits a 4-cycle cover, then the optimal solu-
tion to DOUBLE-CROSSMATCH for G is always a 4-cycle cover. Theorem 3.3 therefore
follows directly from the following lemma that states that finding whether or not a
4-cycle cover exists is NP hard. The proof of the lemma is similar to the proof that a
cover by cycles of length at most l for l ≥ 3 is NP-hard [Abraham et al. 2007, Theorem
1].

LEMMA 3.4. Deciding whether a graph G admits a cover by 4-cycles is an NP-
complete problem.

PROOF. We reduce the 3D-MATCHING problem to the problem of finding whether a
graph admits a 4-cycle cover. In 3D-MATCHING there are three vertex sets X, Y and
Z, such that |X| = |Y | = |Z|. In addition, we are given a set S of 3-tuples of the form
(x, y, z) where x ∈ X, y ∈ Y and z ∈ Z. The problem is to decide whether there exists a
subset S′ ⊆ S, such that |S′| = |X| = |Y | = |Z| and no two tuples in S′ share a vertex
in either X or Y or Z. The set S′ encodes a perfect matching — every x ∈ X is matched
to a unique y ∈ Y and z ∈ Z.

For the reduction, we construct a graph G where for every tuple ti = (x, y, z) in S we
introduce the gadget shown in Figure 2. Note that the vertices with superscript i only
appear in a single gadget – the one corresponding to ti. The vertices x, x̃, y, z appear in
multiple gadgets, and moreover x̃ appears in each gadget that contains x. The intuition
is that x is covered if and only if x̃ is covered.

We claim that graph G has a 4-cycle cover if and only if the corresponding 3D-
MATCHING problem has a perfect matching. First, if the 3D-MATCHING problem al-
lows a perfect matching, then graph G has a cover through 4-cycles. Indeed, for ev-
ery tuple ti = (x, y, z) ∈ S′, we completely cover the corresponding gadget with 4-
cycles using only the gadget’s vertices (there is only one such cover). For all tuples
ti = (x, y, z) ∈ S \ S′, we cover all the vertices except x, x̃, y, z with 4-cycles using the
gadget’s vertices. It is easy to verify that this is a complete cover by 4-cycles.

In the other direction, if the graphG has a cover via 4-cycles then the 3D-MATCHING
problem admits a perfect matching. The first observation we make is that in a 4-
cycle cover for G, for every x ∈ X, the 4-cycle which covers x has to be of the form
(x, xi2, x

i
3, x

i
4), because the only other possible 4-cycle is (x, xi2, x

i
1, x

i
4) but now xi3 can-

not be covered. In addition, once for a particular i the 4-cycle (x, xi2, x
i
3, x

i
4) is included

the corresponding xi1 can only be covered through the 4-cycle (xi1, y
i
1, z

i
1, x̃

i
1). This in

turn implies that we must completely cover the gadget using only the gadget’s ver-

EC’13, June 16–20, 2013, Philadelphia, PA, Vol. X, No. X, Article X, Publication date: June 2013.

X:8 A. Blum, A. Gupta, A. D. Procaccia, and A. Sharma

P1
a b c d e e′

P2
a b

c
d

e e′

Fig. 3. The proof of Claim 4.2 illustrated for the case of l = 10. Solid edges exist, dotted edges do not exist,
and dashed edges may or may not exist.

tices. For every i such that (xi1, y
i
1, z

i
1, x̃

i
1) is included in the cover for graph G, the tuple

(x, y, z) is included in the set S′. It is easy to verify that S′ encodes a solution to the
3D-MATCHING problem.

3.2. Complete Graphs
Another corollary which follows from Theorem 3.1 is the following.

COROLLARY 3.5. Consider a complete graph G(V,E), i.e., E = {(u, v) : u 6= v, u, v ∈
V }, such that |V | is divisible by 4. Then the optimal subgraph H of G is composed of
|V |/4 vertex disjoint 4-cycles.

PROOF. From Theorem 3.1, we know that if graph G admits a 4-cycle cover then
every optimal subgraph of H is a 4-cycle cover. The complete graph G(V,E) with |V |
divisible by 4 does admit a cover through 4-cycles.

4. BIPARTITE GRAPHS
Our next goal is to characterize optimal solutions for complete bipartite graphs. Note
that since a bipartite graph may not admit a 4-cycle cover, from the results so far we
do not know what an optimal collection of edges for a bipartite graph looks like. The
main result for this section is the following.

LEMMA 4.1. Consider a complete bipartite graph G(L ∪R,L×R), with |L| ≤ |R| ≤
2|L|. Then there exists an optimal solution H for graph G that consists only of 4-cycles,
paths of length 2, and at most one path of length 4 or a single edge.

As opposed to complete graphs, where a cover by 4-cycles is uniquely optimal if one
exists, here we are not claiming that this is the unique optimal subgraph. For our
purposes, the aspect of the lemma which will prove crucial later is that only “small”
structures are required. To prove this lemma, we first show that we do not lose any-
thing by restricting our attention to “short” paths.

CLAIM 4.2. For any l ≥ 6, the expected size of the matching under a 4-cycle plus a
path of length l− 4 is at least the expected size of the matching under a path of length l.

PROOF. Let P1 be a path of length l ≥ 6, and call its first four edges from the left
a, b, c, d, e. Now we use the first four vertices to close a cycle, and we also call its edges
a, b, c, d; the remaining path of length l − 4 ≥ 2, which starts with e, is denoted by P2.
We first make the observation that in any instantiation of the edges, if the edge d is
absent then the two structures have an equal number of matched edges. Hence we only
consider outcomes where edge d is present.

Consider an instantiation of the edges (such that edge d is present) and let edge e′
be the first edge in P2, starting from edge e and going to the right, that fails (if no such
edge e′ exists, let e′ = φ, i.e., null). See Figure 3 for an illustration. To the right of e′,

EC’13, June 16–20, 2013, Philadelphia, PA, Vol. X, No. X, Article X, Publication date: June 2013.

Harnessing the Power of Two Crossmatches X:9

Table I. The table shows the difference in the size of matching between 4-cycle plus
path P ′2, and path P ′1 for various possibilities of edge outcomes of a, b, c and whether
|P ′2| is even or odd. Edge d exists in all cases. An edge exists (resp., does not exist) if
its column shows 1 (resp., 0).

a b c
|M(4C + P ′2)| − |M(P ′1)| a b c

|M(4C + P ′2)| − |M(P ′1)|
Even Odd Even Odd

0 0 0 0 +1 1 0 0 -1 0
0 0 1 0 0 1 0 1 0 0
0 1 0 0 +1 1 1 0 0 +1
0 1 1 0 +1 1 1 1 0 0

both paths P1 and P2 have the same number of matched edges. Hence, we only need to
look to the left of e′; denote the path segments of P1 and P2 to the left of e′ as P ′1 and
P ′2 respectively.

We now look at all possible outcomes of edges a, b and c, and the length of the path
P ′2. We tabulate our observations in Table 4; they are easy to verify. Using the table, if
E[|M(4C + P ′2)|] and E[|M(P ′1)|] denote the expected number of matched edges for the
cases of 4-cycle plus path P ′2, and path P ′1 respectively, then

E[|M(4C + P ′2)|]− E[|M(P ′1)|]
= p
[
((1− p)3 + (1− p)2p+ (1− p)p2 + p2(1− p))Pr(|P ′2| odd)− p(1− p)2Pr(|P ′2| even)

]
= p(1− p) ·

[
(1− p+ 2p2) · Pr(|P ′2| odd)− p(1− p) · Pr(|P ′2| even)

]
,

where in the first equality the leftmost factor of p stands for the probability of edge
d being present, the term ((1 − p)3 + (1 − p)2p + (1 − p)p2 + p2(1 − p)) sums up the
probabilities of the outcomes of edges a, b, c where 4C +P ′2 has one more matched edge
than P ′1, and the term p(1 − p)2 is for the single case where P ′1 has one more matched
edge than 4C + P ′2. Now, with l′ = l − 4,

(1) l is odd: Pr(|P ′2| odd) = (1 − p) ·
(
p + p3 + p5 + · · · + pl

′−2) + pl
′

and Pr(|P ′2| even) =

(1− p) · (1 + p2 + p4 + · · ·+ pl
′−1). So, we have Pr(|P ′2| odd) ≥ p · Pr(|P ′2| even). And

hence,

(1− p+ 2p2) · Pr(|P ′2| odd) ≥ p(1− p) · Pr(|P ′2| even) .

(2) l is even: Pr(|P ′2| odd) = (1− p) ·
(
p+ p3 + p5 + · · ·+ pl

′−3 + pl
′−1) and Pr(|P ′2| even) =

(1−p)·(1+p2+p4+· · ·+pl′−2)+pl
′
. So, we have Pr(|P ′2| odd) = p·Pr(|P ′2| even)−pl′+1.

And hence,
(1−p+2p2)·Pr(|P ′2| odd)−p(1−p)·Pr(|P ′2| even) = 2p3·Pr(|P ′2| even)−(1−p+2p2)·pl

′+1 .

But, Pr(|P ′2| even) is at least (1− p) + pl
′

from the first expression that we wrote for
that quantity. It follows that 2p3 · Pr(|P ′2| even) ≥ (1− p+ 2p2) · pl′+1 since l′ ≥ 2 as
l ≥ 6.

Therefore, E[|M(4C + P ′2)|] ≥ E[|M(P ′1)|] and since E[|M(4C + P2)|] − E[|M(P1)|] =
E[|M(4C + P ′2)|]− E[|M(P ′1)|], the lemma follows.

Claim 4.2 directly implies that in a complete bipartite graph, paths of length at least
seven are useless. Next we compare 4-cycles and short paths; we defer the proof of the
next claim to Appendix D.

CLAIM 4.3.

(1) For any even l ≥ 4 and any p ∈ (0, 1), the probability of a vertex being matched in a
cycle of length l is strictly more than that in a cycle of length l + 2.

EC’13, June 16–20, 2013, Philadelphia, PA, Vol. X, No. X, Article X, Publication date: June 2013.

X:10 A. Blum, A. Gupta, A. D. Procaccia, and A. Sharma

(2) For any p ∈ (0, 1), the expected number of matched edges in a 4-cycle plus an edge is
strictly more than the expected number of matched edges in a cycle of length 6.

(3) The expected number of matched edges in a 4-cycle plus two paths of length 2 is
equal to the expected number of matched edges in two paths of length 4.

We now present the proof of Lemma 4.1.

PROOF OF LEMMA 4.1. Consider an optimal choice of edges O for the complete bi-
partite graph G. If O contains any paths of odd length, we can increase the quality
of the solution by adding an edge between the end points to get cycles of even length.
In addition, cycles of odd length are impossible. Hence an optimal solution can con-
tain only cycles of even length and paths of even length. Using the first two parts of
Claim 4.3 we can assume that all cycles are of length 4.

Next, by repeated application of Claim 4.2, we can convert O to a solution O′, where
we are left with only 4-cycles and paths of length 1 and 4, and the expected number
of matched edges in O′ is at least as large as O. Multiple paths of length 1 can be
combined into one longer even-length path (plus maybe a path of length 1), and then
further converted to 4-cycles plus maybe a path of length 4 (and plus maybe a path of
length 1).

If at this stage there is more than one path of length 4 in O′, we can use part 3 of
Claim 4.3 to further prune these paths and replace them with 4-cycles and paths of
length 2. At this point, we can have at most one path of length 4 and at most one path
of length 1. But this pair of structures is clearly worse than a path of length 6, which
by Claim 4.2 is worse than a 4-cycle plus a path of length 2.

5. GENERAL GRAPHS
Having discussed the case of complete graphs (Section 3.2) and bipartite graphs (Sec-
tion 4), we now move our attention to general graphs. The following lemma states that
if there exists a vertex u which does not have any edge incident to it in the subgraph
H, but which has an edge incident to it in the original graph G, then that edge can be
included in the subgraph H (perhaps requiring some other edge in H to be deleted),
without decreasing the expected size of matching of H. Its proof is relegated to Ap-
pendix B.

LEMMA 5.1. (No vertex left behind.) Consider an undirected graph G(V,E), and a
subgraph H(V,E′) (E′ ⊆ E) with δE′(v) ≤ 2. Suppose there exists a vertex u ∈ V with
δE′(u) = 0 but δE(u) > 0. Let v be a vertex which has an edge with u under E. Then we
can add the edge (u, v) to E′, and if needed, remove some other edge incident to v under
E′ in order to ensure δE′(v) ≤ 2, without reducing the expected size of matching of E′.

From Lemma 5.1, we can infer the following result.

COROLLARY 5.2. There exists an optimal solution H(V,E′) for the subgraph of
G(V,E) with the following property. For every vertex u that has δE′(u) = 0,

(1) either δE(u) = 0,
(2) or for every edge (v, u) present in E, δE′(v) = 2, and if b and d are the two vertices

adjacent to v under E′, then δE′(b) = 1 = δE′(d).

The proof of the corollary is straightforward: If there exists a vertex u for which the
stated property is violated then we can apply Lemma 5.1 and convert the solution to
one where it is not, without decreasing the expected maximum matching size.

EC’13, June 16–20, 2013, Philadelphia, PA, Vol. X, No. X, Article X, Publication date: June 2013.

Harnessing the Power of Two Crossmatches X:11

6. COMPLETE KIDNEY EXCHANGE GRAPHS
In this section, we will deal with a kidney exchange graph where every pair of vertices
that are blood-type compatible share an edge. In our results in this section we implic-
itly assume that tissue typing tests are always successful; this assumption is relaxed
in Section 7.

There are four blood types A,B,AB, and O. For blood-type compatibility the patient
should have as many types of antigens as the donor. Blood type O indicates absence
of antigens and hence a donor of blood type O is blood-type compatible with all other
blood groups. Blood groups A, B, and AB indicate presence of antigens A, B, and both
A and B, respectively. Hence, a donor with blood type A is blood type compatible with
a patient of either blood type A or AB. A patient with blood type AB is blood type
compatible with a donor of any blood group.

Since every node in the graph represents a (patient, donor) pair, we can label each
node by the blood-types of the patient and the donor. For instance, if the patient has
blood type A and the donor blood type AB, then the label is A−AB.

We now borrow some definitions from Ashlagi and Roth [2011] that will help our
presentation. In each definition X,Y ∈ {A,B,AB,O}.

Definition 6.1.

(1) A label X − Y is over-demanded if X 6= Y and Y is blood-compatible to donate to
X.

(2) A label X − Y is under-demanded if X 6= Y and X is blood-compatible to donate to
Y .

(3) All labels of the form X −X are known as self-demanded.
(4) The pair of labels A−B and B −A constitute reciprocally-demanded types.

Note that if X − Y is over-demanded, then Y −X must be under-demanded. We will
make the following assumption: For every X − Y such that X − Y is over-demanded
and Y −X is under-demanded, the number of nodes in the graph with label X − Y is
less than half the number of nodes with label Y − X. For instance, an implication of
this assumption is that the number of nodes with blood type AB − A is less than half
of the number of nodes with blood-type A−AB.

Why might such an assumption be realistic? The justification stems from the way
patient-donor pairs are formed in practice. Observe that every patient-donor pair that
is not blood-type compatible has to enter the kidney exchange pool. On the other hand,
if the donor is blood-type compatible to donate to the patient, then only pairs who fail
a tissue typing or crossmatch test join the pool. Hence, a priori one has reason to be-
lieve that the number of pairs in the kidney exchange pool that have label X − Y is
significantly smaller than the number of pairs with label Y −X, so for example Roth
et al. [2007] assume that there is an endless pool of underdemanded pairs. Moreover,
often the willing donor is a family member of the patient, and among family members
there is a higher chance of the tissue typing and crossmatch tests being successful. In
fact, the factor 1/2 has been used by Ashlagi and Roth [2011], who based this assump-
tion on real data [Zenios et al. 2001].

Now, let us the consider the reciprocally demanded labels A − B and B − A. Note
that a donor with blood-type A cannot donate to a patient with blood-type B, and vice
versa. Hence, every (patient, donor) pair of either of these types is forced to enter the
kidney exchange market. Moreover, the chances of (patient, donor) pair having blood
type A−B is the same as them having B−A, since there is no reason to believe that a
person with blood type A has a higher or lower chance of kidney failure than a person
of type B. Hence, in our complete kidney exchange graph, we assume that the number
of nodes with label A−B is approximately the same as those with label B −A.

EC’13, June 16–20, 2013, Philadelphia, PA, Vol. X, No. X, Article X, Publication date: June 2013.

X:12 A. Blum, A. Gupta, A. D. Procaccia, and A. Sharma

With this we are ready to define our model of the complete kidney exchange graph,
where for now (until Section 7) we only consider blood-type compatibility and ignore
tissue-type compatibility.

Definition 6.2. A complete kidney graph is a graph G(V,E) with the following prop-
erties. The vertex set V can be partitioned into the sets VX−Y where X and Y are the
blood types of the patient and the donor respectively (X,Y ∈ {A,B,AB,O}). Further-
more,

(1) Every pair of vertices in G that are blood-type compatible share an edge.
(2) For each over-demanded label X − Y , |VX−Y | < 1

2 |VY−X |.
(3) The reciprocally demanded labels obey 1

2 |VB−A| ≤ |VA−B | ≤ 2 · |VB−A|.

We define the term an almost optimal subgraph to denote a subgraph whose ex-
pected matching size is off from the optimal solution only by constant additive factors.

Definition 6.3. An almost optimal subgraph H for a graph G is a solution to the
DOUBLE-CROSSMATCH problem for G, which has expected size of matching at least
opt(G)−O(1).

We now present the structure of an almost optimal solution for the complete kidney
exchange graph (see Figure 4 for an illustration).

THEOREM 6.4. The subgraph H(V,E′) with the following description is an almost
optimal subgraph for the complete kidney exchange graph G(V,E).

(1) (Self-demanded form 4-cycles among themselves) For every self-demanded label
X −X, the edges of H constitute a 4-cycle cover of all (but for maybe O(1)) vertices
of that label.

(2) (Each over-demanded pairs with two under-demanded) For every pair of over-
demanded (X−Y) and under-demanded (Y −X) labels, every node with label X−Y
has two edges incident to a unique pair of vertices with label Y −X.

(3) (Reciprocally demanded pair) Every node in A − B is involved in either a 4-cycle
with one vertex of its own label and two nodes of the opposite label (i.e., B−A), or a
path of length two using vertices of the opposite label and maybe of its own label. A
similar statement holds for each node in B −A.

The crucial result that helps us to prove the the optimality of the above solution is
the following lemma, whose proof we defer to Appendix A. In a sense, it distills the
core properties of kidney exchange graphs, and presents the structure of an optimal
solution for all graphs that have these properties.

Definition 6.5. An undirected graph G(V,E) is said to be lopsided-bipartite parti-
tionable if it has the following structure. The vertex set V can be partitioned into k
pairs of sets (Pi, Qi) (1 ≤ i ≤ k) and R for some k, such that V =

⋃k
i=1(Pi ∪ Qi)

⋃
R.

Furthermore, for each 1 ≤ i ≤ k,

(1) |Qi| > 2 · |Pi|
(2) Pi and Qi form a complete bipartite graph.
(3) No vertex v ∈ Qi has an edge incident to it from any vertex in R ∪

⋃k
j=1Qj .

All other possible edges may or may not be present in G.

LEMMA 6.6. For a lopsided-bipartite partitionable graph G(V,E) with V =⋃k
i=1(Pi ∪Qi)

⋃
R, as in Definition 6.5, there exists an optimal subgraph H(V,E′) with

the property that for every 1 ≤ i ≤ k, all vertices v ∈ Pi have two edges incident to a

EC’13, June 16–20, 2013, Philadelphia, PA, Vol. X, No. X, Article X, Publication date: June 2013.

Harnessing the Power of Two Crossmatches X:13

O-O A-A B-B AB-ABA-B

B-A

A-O B-O AB-O AB-A AB-B

O-A O-B O-AB A-AB B-AB

Fig. 4. Edges chosen by Algorithm 6.4 in the kidney exchange graph. The grey circles are over-demanded
labels, the white circles are under-demanded labels, and the black circles are reciprocally demanded and
self-demanded labels.

unique pair of vertices in Qi × Qi. In particular, H does not have any edge between a
vertex in Pi (for any i) and a vertex in R.

We now complete the proof of the main result.

PROOF OF THEOREM 6.4. We first set the stage for the application of Lemma 6.6.
Consider the following settings of Pi’s, Qi’s and R.

(P1, Q1) , (VAB−A, VA−AB), (P3, Q3) , (VAB−O, VO−AB) (P5, Q5) , (VB−O, VO−B)
(P2, Q2) , (VAB−B , VB−AB), (P4, Q4) , (VA−O, VO−A),
R , (VA−A) ∪ VB−B ∪ VO−O ∪ VAB−AB ∪ VA−B ∪ VB−A)

Every over-demanded label with the corresponding under-demanded label has been
put in one of the (Pi, Qi)’s with the over-demanded label taking the place of Pi. The
set of self-demanded and reciprocally demanded labels have been put in R. Looking
at Definition 6.2 and Table II to infer the edges present in G, we can see the graph G
satisfies the condition to apply Lemma 6.6.

Hence, using Lemma 6.6, we know that there exists an optimal solution K(V,E′)
for the complete kidney exchange graph G, that for every over-demanded/under-
demanded pair of labels, satisfies the property that every vertex of the over-demanded
label (X−Y) has two edges incident to a unique pair of vertices of the under-demanded
label (Y −X).

Furthermore, in graph G (and hence in graph K), the vertices of the under-
demanded types do not have an edge to any vertex in the set R as defined above.

From Table II, it is easy to see that

(1) For every self-demanded label X −X, a vertex of that label has edges in graph G
to either vertices of of its own label or to an over-demanded label.

(2) Vertices labeled A − B (resp., B − A) share edges in graph G with vertices with
either an overdemanded label or label B −A (resp., A−B).

By Lemma 6.6, the optimal subgraph K does not have any edges between a vertex
with an over-demanded label and a vertex with either a self-demanded or reciprocally
demanded label. Hence,

(1) For every self-demanded labeled X − X vertex, graph K can only include edges
that are incident to the vertex from other vertices of the same label.

(2) For a vertex labeled A−B (resp., B −A), graph K can only include edges that are
incident to it from vertices with label B −A (resp., A−B).

In other words, for each self-demanded label X − X, graph K might as well treat
the complete graph formed by the vertices of that label in graph G as a separate entity
and optimize on it. Similarly, graph K can optimize over the bipartite graph formed by
the vertices of the reciprocally-demanded labels A−B and B −A separately.

For the complete graph formed by the vertices of a self-demanded labeled X − X,
we know that if |VX−X | is divisible by 4, Lemma 3.1 states that the optimal solution
is a 4-cycle cover of VX−X . Otherwise, a set of vertex disjoint 4-cycles that cover all

EC’13, June 16–20, 2013, Philadelphia, PA, Vol. X, No. X, Article X, Publication date: June 2013.

X:14 A. Blum, A. Gupta, A. D. Procaccia, and A. Sharma

but O(1) of the vertices is an almost optimal solution for the complete graph VX−X
(for sake of analysis, we can throw out O(1) vertices to get a complete graph whose
number of vertices is divisible by 4, and we know that for this remaining graph, the
4-cycle cover is optimal).

Similarly, applying Lemma 4.1 to the bipartite graph formed by vertices with the
reciprocally demanded labels A − B and B − A, we know that an optimal solution
consists of a cover of the vertices by 4-cycles, paths of length two and at most one path
of length 4 or an edge. If we throw out this one of path of length 4 or the edge, we get
an almost optimal solution consisting purely of 4-cycles and paths of length two. If an
A− B vertex is in a 4-cycle, then it shares this 4-cycle with one A− B vertex and two
B − A vertices. Moreover, depending on whether |A − B| ≥ |B − A| or the other way,
any path of length two will contain two vertices of label A − B and one of B − A or
vice-versa respectively.

Hence, the graph H as described in the statement of the theorem will have an ex-
pected size of matching at least that of K minus O(1). We lose O(1) terms if a 4-cycle
cover for any of the complete graphs formed by vertices of a self-demanded label is not
possible or if the bipartite graph formed by A − B and B − A cannot be covered using
4-cycles and paths of length 2. This completes the proof.

Table II. The set of compatible blood-types for all under-demanded, self-demanded and reciprocally-demanded
type vertices.

Patient-Donor Com. Patient Com. Donor Patient-Donor Com. Patient Com. Donor
A-A A/AB O/A A-AB AB O/A
B-B B/AB O/B B-AB AB B/AB
O-O O/A/B/AB O O-A A/AB O

AB-AB AB O/A/B/AB O-B B/AB O
A-B B/AB O/A O-AB AB O
B-A A/AB O/A

An easy corollary of Theorem 6.4 is the following result.

COROLLARY 6.7. There exists an almost optimal solution H(V,E′) for the complete
kidney exchange graph G with the following properties:

(1) For each self-demanded label, there are b|VX−X |c/4 vertex-disjoint cycles of length
4 in the subgraph H.

(2) For each over-demanded labelX−Y , there are |VX−Y | vertex-disjoint paths of length
2, each path involving a vertex of label X − Y with an edge incident to two unique
vertices of label Y −X.

(3) There are byc vertex disjoint paths of length 2 and bzc vertex disjoint cycles of length
4 where x and y are given by the equations

y + 2z = min(|VA−B |, |VB−A|) (2)
2y + 2z = max(|VA−B |, |VB−A|) (3)

In each such path of length 2, a vertex of label arg min (|VA−B |, |VB−A|) has an edge
each to two vertices of the other label. Every cycle of length 4 has two vertices of label
A−B that share an edge each with two vertices of label B −A.

7. REALISTIC KIDNEY EXCHANGE GRAPHS
We now remove the assumption of successful tissue typing tests that we made in Sec-
tion 6. In practice, if two pairs of donor-patient are blood-type compatible then the
tissue-type test succeeds with some constant probability [Ashlagi and Roth 2011]. This

EC’13, June 16–20, 2013, Philadelphia, PA, Vol. X, No. X, Article X, Publication date: June 2013.

Harnessing the Power of Two Crossmatches X:15

probability depends on biological parameters of the patients and donors. Hence, a re-
alistic kidney exchange graph can be seen as drawn from a distribution over graphs,
where the distribution is defined as follows: The vertex set of each graph in the distri-
bution is the same as the complete kidney exchange graph (Definition 6.2), and obeys
the constraints imposed on its various vertex sets. Each edge of the complete kidney
exchange graph exists independently in the randomly drawn graph with a constant
probability c (which for our purposes can be thought of as a lower bound). The ap-
proach of drawing a realistic kidney exchange graph from a similar distribution has
been taken before by Ashlagi and Roth [2011] and Toulis and Parkes [2011].

ALGORITHM 1: Polynomial time algorithm for the DOUBLE-CROSSMATCH problem for realis-
tic kidney exchange graphs.
Input: A realistic kidney exchange graph Gr drawn from a distribution.
Output: A subgraph Hr of Gr that is a solution to the DOUBLE-CROSSMATCH problem for Gr.
(1) For each of the complete graphs VA−A, VB−B , VAB−AB , VO−O, we run Algorithm 2 and add

to Hr the edges it returns.
(2) For each of the bipartite graphs (VAB−A, VA−AB), (VAB−B , VB−AB), (VAB−O, VO−AB),

(VB−O, VO−B), (VAB−O, VO−AB), we run Algorithm 3 and add to Hr the edges it returns.
(3) For the bipartite graph (VA−B , VB−A), we run Algorithm 4 and add to Hr the edges it

returns.

ALGORITHM 2:
Input: A random graph Gr drawn from a complete graph G.
Output: A subgraph Hr of Gr with every node having at most incident edges.
(1) Throw out O(1) vertices from Gr to make the cardinality of the vertex-set divisible by 4.
(2) Uniformly randomly partition the vertices of Gr into two sets A and B with |A| = |B|.
(3) In A, pair up the vertices uniformly randomly to get a set A′ which treats each pair as a

vertex and hence |A′| = |A|/2. The vertices of A′ can denoted as vxy where x and y are the
two vertices in A that were paired up. Do a similar operation with B to get B′.

(4) Introduce an edge between a vertex vxy in A′ and a vertex vx′,y′ in B′ if Gr contains all the
edges (x, x′), (x, y′), (y, x′), (y, y′). Note that if Gr contains all these edges, then x, x′, y, y′

form a 4-cycle in Gr.
(5) Compute the maximum matching M in the bipartite graph formed between A′ and B′.
(6) For each edge (vxy, vst) included in M , include the corresponding 4-cycle (x, s, y, t) in Hr.

ALGORITHM 3:
Input: A random graph Gr drawn from a lopsided complete bipartite graph G(A ∪B,E), with

|A| < 1
2
|B|.

Output: A subgraph Hr of Gr where each vertex is incident to at most two edges.
(1) Randomly pair up the vertices in B (if |B| is not divisible by 2, throw out a vertex from B

and then pair up the remaining vertices). Construct a new set B′ by introducing a vertex
vxy in B for each pair (x, y) of vertices created from B.

(2) Construct a bipartite graph G′ between A and B′. Introduce an edge between a vertex
u ∈ A and a vertex vxy ∈ B′, if the pair of edges (u, x) and (u, y) exist in G.

(3) Find a maximum matching M in the bipartite graph G′.
(4) For every matched edge (u, vxy) in M , add the edges (u, x) and (u, y) to Hr.

EC’13, June 16–20, 2013, Philadelphia, PA, Vol. X, No. X, Article X, Publication date: June 2013.

X:16 A. Blum, A. Gupta, A. D. Procaccia, and A. Sharma

ALGORITHM 4:
Input: A random graph Gr drawn from an almost balanced complete bipartite graph

G(L ∪R,E), with |L| ≤ |R| ≤ 2|L|.
Output: A subgraph Hr of Gr where each vertex is incident to at most two edges.
(1) With the given values of |L| and |R|, solve for x and y in the equations 2 · x+ y = |L| and

2 · x+ 2 · y = |R|. Consider disjoint subsets L1 and L2 of L of sizes 2 · bxc and y respectively.
Similarly, consider disjoint subsets R1 and R2 of R of sizes 2 · bxc and 2 · y respectively.

(2) Pair up the vertices in L1 and for every such pair (s, t), introduce a vertex vst in a new set
L′1. Similarly, pair up vertices in R1 and R2 to construct sets R′1 and R′2 respectively.

(3) Construct bipartite graphs G1 over L′1 ∪R′1, and introduce an edge between vertices
vst ∈ L′1 and vpq ∈ R′1 in G1, if each of the edges (s, p), (p, t), (t, q) and (q, s) are present in
Gr (i.e., the vertices (s, p, t, q) form a 4-cycle in Gr).

(4) Construct bipartite graph G2 over L2 ∪R′2, and introduce an edge between vertices u ∈ L2

and vst ∈ R′2 if the edges (u, s) and (u, t) exist (i.e., (s, u, t) form a path of length 2) in Gr.
(5) Find a maximum-cardinality matching M1 in G1, and M2 in G2.
(6) For every edge (vst, vpq) ∈M1, include the edges of the 4-cycle (s, p, t, q) in Hr. For every

edge (u, vst) ∈M2, include the edges of the path of length 2 formed by (s, u, t) in Hr.

We now present our main result, building on most of the results presented above.

THEOREM 7.1. For a randomly drawn graphGr from the kidney exchange graphG,
we can algorithmically find in polynomial time a subgraph Hr that with probability at
least 1−o(1

opt(G)) has expected matching size at least (1−o(1))opt(G) ≥ (1−o(1))opt(Gr).

PROOF. From the characterization of an almost optimal subgraph H for the kidney
graph G as mentioned in Lemma 6.7, we know that H will have the following:

(1) α , |VAB−A|+ |VAB−B |+ |VAB−O|+ |VB−O|+ |VAB−O|+ byc many paths of length 2
(2) β , b(|VA−A|+ |VB−B |+ |VAB−AB |+ |VO−O|)/4c+ bzc many cycles of length 4

where y and z are given by the set of equations

y + 2z = min(|VA−B |, |VB−A|) (4)
2y + 2z = max(|VA−B |, |VB−A|) (5)

Hence the expected size of matching of H is given by α ·M2P +β ·M4C where M2P and
M4C denote the expected size of matching in a path of length 2 and a cycle of length 4
respectively.

We will show that for a random graph Gr, with high probability, we can algorithmi-
cally find a subgraph Hr of G, that is composed of α− o(n) many paths of length 2 and
β − o(n) many cycles of length 4. Hence, with high probability, the expected matching
size of Hr would be (α− o(n)) ·M2P + (β − o(n)) ·M4C = opt(G)− o(n). Here n = |V |. It
is easy to see that opt(G) ≥ opt(Gr for all graphs Gr since the edge set of Gr is a subset
of that of G, and hence the optimal subgraph solution of Gr is also a subgraph of G.
Hence, it also follows that the expected matching size of Hr is opt(Gr)− o(n).

All that is left to prove is that for a random graph Gr, with high probability, we can
algorithmically find a subgraph Hr of G, that is composed of α − o(n) many paths of
length 2 and β − o(n) many cycles of length 4. We claim Algorithm 1 has the desired
properties.

The algorithm can be easily seen to run in polynomial since each of the sub-
algorithms clearly runs in polynomial time. We now complete the analysis. Some of
the claims and proofs are deferred to the appendix.

EC’13, June 16–20, 2013, Philadelphia, PA, Vol. X, No. X, Article X, Publication date: June 2013.

Harnessing the Power of Two Crossmatches X:17

(1) For each of the bipartite graphs (VX−Y , VY−X) ∈ {(VAB−A, VA−AB),
(VAB−B , VB−AB), (VAB−O, VO−AB), (VB−O, VO−B), (VAB−O, VO−AB)}, using
Claim C.7, we add to Hr, with probability at least 1 − o(1

|VX−Y |), |VX−Y | many
paths of length 2.

(2) For each of the complete graphs VX−X ∈ {VA−A, VB−B , VAB−AB , VO−O}, applying
Claim C.6, we add, with probability at least 1− o(1

VX−X
), b(|VX−X |/4c −O(1) many

4-cycles to Hr.
(3) For the bipartite graph (VA−B , VB−A), we can infer from Claim C.8, that we add

to Hr, with probability at least 1 − o(1
T), byc − o(T) many paths of length 2 and

bzc − o(T) many cycles of length 4, where T = |VA−B ∪ VB−A|.

We now need to sum up over the probability of failure in each of the high probability
statements given above. For each high probability statement given above, either the
probability of failure is o(1

opt(G)) or the contribution of that term to the size of optimal
matching opt(G) is o(opt(G)).

We only have a small number of sub-algorithms, hence using the union bound we
can say that with probability at least 1− o(1

opt(G)), the size of expected matching of the
graph Hr returned by the algorithm is (1− o(1))opt(G).

8. DISCUSSION
Taking an algorithmic point of view, our paper focuses on a special rather than a gen-
eral problem. In particular, we only consider the case where the collection of selected
edges E′ includes at most two edges per vertex. There are two reasons for this re-
striction. The first is that even the extension from two to three is extremely difficult,
because the relevant structures in the latter setting are no longer just cycles and paths.
The second reason is practical: current kidney exchanges use only one crossmatch per
matched vertex; tweaking the existing policy to allow two crossmatches seems realis-
tic in terms of additional costs. It is unclear whether performing more than two cross-
matches is feasible in practice.

Although we aim for a realistic kidney exchange model, it does differ from reality in
several important ways:

— Some kidney exchanges include altruistic donors that initiate a chain of donations;
very few existing theoretical models deal with chains [Dickerson et al. 2012b; Ash-
lagi et al. 2012].

— While our model of kidney exchanges is static, in reality a matching is computed
on a weekly or monthly basis, and over time patients and donors arrive and de-
part. Several recent papers consider the dynamics of kidney exchange [Ünver 2010;
Dickerson et al. 2012a].

— In addition to pairwise exchanges, real kidney exchanges match along 3-cycles. Al-
though this extension does not require any additional modeling, technically it is very
challenging because the optimal structures are much harder to characterize. Note
that papers on the query-commit problem also focus on pairwise exchanges [Chen
et al. 2009; Bansal et al. 2012; Costello et al. 2012].

— In practice kidney exchanges weight edges according to the quality of the fit (for
example an edge between an old donor and young patient would have low weight).
While weights are not taken into account in most existing kidney exchange papers
(see, e.g., [Ashlagi et al. 2010; Toulis and Parkes 2011; Ashlagi and Roth 2011; Cara-
giannis et al. 2011; Ashlagi et al. 2012]), they do play a role in the recent work
of Bansal et al. [2012]. A related extension has to with assigning a different prob-

EC’13, June 16–20, 2013, Philadelphia, PA, Vol. X, No. X, Article X, Publication date: June 2013.

X:18 A. Blum, A. Gupta, A. D. Procaccia, and A. Sharma

ability of crossmatch failure pe to each edge e ∈ E [Chen et al. 2009; Bansal et al.
2012; Costello et al. 2012].

Nevertheless, as simplified as our theoretical model is, we believe that our results
indicate that the concept of performing multiple crossmatch tests could be practical.
Indeed, we expect a shift to two crossmatches to linearly increase the number of lives
saved,4 and moreover our results suggest that practical optimization approaches are
available.

REFERENCES

ABRAHAM, D. J., BLUM, A., AND SANDHOLM, T. 2007. Clearing algorithms for barter
exchange markets: Enabling nationwide kidney exchanges. In Proc. of 8th EC. 295–
304.

ADAMCZYK, M. 2011. Improved analysis of the greedy algorithm for stochastic match-
ing. Information Processing Letters 111, 15, 731–737.

ASHLAGI, I., FISCHER, F., KASH, I., AND PROCACCIA, A. D. 2010. Mix and match. In
Proc. of 11th EC. 305–314.

ASHLAGI, I., GAMARNIK, D., REES, M. A., AND ROTH, A. E. 2012. The need for (long)
chains in kidney exchange. NBER Working Paper Series No. 18202.

ASHLAGI, I. AND ROTH, A. 2011. Individual rationality and participation in large
scale, multi-hospital kidney exchange. In Proc. of 13th EC. 321–322.

BANSAL, N., GUPTA, A., LI, J., MESTRE, J., NAGARAJAN, V., AND RUDRA, A. 2012.
When LP is the cure for your matching woes: Improved bounds for stochastic match-
ings. Algorithmica 63, 4, 733–762.

CARAGIANNIS, I., FILOS-RATSIKAS, A., AND PROCACCIA, A. D. 2011. An improved
2-agent kidney exchange mechanism. In Proc. of 7th WINE. 37–48.

CHEN, N., IMMORLICA, N., KARLIN, A. R., MAHDIAN, M., AND RUDRA, A. 2009. Ap-
proximating matches made in heaven. In Proc. of 36th ICALP. 266–278.

COSTELLO, K. P., TETALI, P., AND TRIPATHI, P. 2012. Matching with commitment.
In Proc. of 39th ICALP. 822–833.

DICKERSON, J. P., PROCACCIA, A. D., AND SANDHOLM, T. 2012a. Dynamic matching
via weighted myopia with application to kidney exchange. In Proc. of 26th AAAI.
1340–1346.

DICKERSON, J. P., PROCACCIA, A. D., AND SANDHOLM, T. 2012b. Optimizing kidney
exchange with transplant chains: Theory and reality. In Proc. of 11th AAMAS. 711–
718.

MOLINARO, M. AND RAVI, R. 2011. The query-commit problem. CoRR abs/1110.0990.
ROTH, A. E., SÖNMEZ, T., AND ÜNVER, M. U. 2007. Efficient kidney exchange: Coinci-

dence of wants in markets with compatibility-based preferences. American Economic
Review 97, 828–851.

TOULIS, P. AND PARKES, D. C. 2011. A random graph model of kidney exchanges:
efficiency, individual-rationality and incentives. In Proc. of 12th EC. 323–332.

ÜNVER, U. 2010. Dynamic kidney exchange. Review of Economic Studies 77, 1, 372–
414.

WALKUP, D. W. 1980. Matchings in random regular bipartite digraphs. Discrete Math-
ematics.

ZENIOS, S., WOODLE, E. S., AND ROSS, L. F. 2001. Primum non nocere: Avoiding
harm to vulnerable candidates in an indirect kidney exchange. Transplantation 72,
648–654.

4This statement would be trivial to formally establish for, e.g., complete graphs.

EC’13, June 16–20, 2013, Philadelphia, PA, Vol. X, No. X, Article X, Publication date: June 2013.

Online Appendix to:
Harnessing the Power of Two Crossmatches

AVRIM BLUM, Carnegie Mellon University
ANUPAM GUPTA, Carnegie Mellon University
ARIEL D. PROCACCIA, Carnegie Mellon University
ANKIT SHARMA, Carnegie Mellon University

A. PROOF OF LEMMA 6.6
Consider the optimal subgraph H(V,E′). If H does not already satisfy the stated prop-
erty, we show how to convert it into one that satisfies the stated property and does not
reduce the expected size of its maximum matching.

We can assume that subgraph H satisfies the properties stated in Corollary 5.2.
We will now present the procedure to convert H into one that satisfies the properties
stated in the statement of the theorem.
(1) Let S ← [k].
(2) While S is non-empty

— Pick a j ∈ S, such that there exists a vertex u ∈ Qj with no edges incident to it
under E′.

— If for some v ∈ Pj either of b or d are not members of Qj , say it is b, we shall
replace edge (v, b) by (v, u) in E′.

— If there does not exist a v ∈ Qj such that v has an edge incident to a vertex not
in Qj , remove j from S.

First we show that the above procedure is well-defined and that it terminates.

CLAIM A.1. (Well-defined) In each iteration of the while loop, in the first step of the
loop, we can find a j ∈ S and a vertex u ∈ Qj such that no edges are incident to it under
E′.

PROOF. Since

(1) the total number of edges in E′ that are incident to the vertices in the set ∪i∈SPi

can be at most 2 ·
∑

i∈S |Pi| (∵ ∀v ∈ V , δE′(v) ≤ 2), and
(2) E, and therefore E′, does not contain any edge going between a vertex in R and a

vertex in ∪ki=1Qi or an edge going between a vertex in Qi and a vertex in Qj for any
1 ≤ i, j ≤ k,

hence the number of edges incident to vertices in ∪ki=1Qj under edge set E′ is at most
2 ·
∑

i∈S |Pi|. On the other hand, the cardinality of the set ∪ki=1Qj is strictly greater
than 2 ·

∑
i∈S |Pi|. Hence, there must exist a vertex u ∈ Qj for some j ∈ S, such that u

does not have any edge incident to it.

CLAIM A.2. (Loop terminates) The while loop eventually terminates.

PROOF. After each iteration of the while loop, the number |E′ ∩
⋃k

i=1(Pi × Qi)| in-
creases by one. And this number is upper bounded by 2 ·

∑k
i=1 |Pi|.

The following claim states that the subgraph H(V,E′) satisfies the properties stated
in Corollary 5.2 at all points of the execution of the procedure.

c© 2013 ACM 0000-0000/2013/06-ARTX $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

EC’13, June 16–20, 2013, Philadelphia, PA, Vol. X, No. X, Article X, Publication date: June 2013.

App–2 A. Blum, A. Gupta, A. D. Procaccia, and A. Sharma

CLAIM A.3. At all points in the execution of the procedure (including the point when
it terminates), the subgraph H(V,E′) satisfies the properties stated in Corollary 5.2.

PROOF. Before the start of the procedure, we had assumed that the subgraph H
satisfies the properties stated in Corollary 5.2, and at no step in the above procedure,
we make a move that can violate the properties stated in Corollary 5.2.

We now show that the expected size of matching does not change at any step of the
procedure.

CLAIM A.4. (No change in solution quality) In each iteration of the while loop, the
change made to E′ in the second step of the loop, does not change the expected size of
matching

PROOF. In any iteration, the pair (j, u) found in the first step of the iteration satisfy
the property u has an edge to each vertex v ∈ Pj in E. Hence by Corollary 5.2 and
Claim A.3, each v ∈ Pj must be incident to two nodes b and d, such that δE′(b) = 1 =
δE′(d).

The second step changes E′ only if there exists a v ∈ Pj that has its edges incident to
a b and d, such that at least one of b or d is outside Qj . Suppose b is the vertex outside
Qj . In such a case, edge (v, b) is replaced with (v, u).

Since before replacement vertex b has only one edge incident to it and that was to
v, by replacing edge (v, b) by (v, u) in E′, from the point of view of matching, we have
only switched the situation of b and u, and left the situation of v unchanged, and so the
expected maximum matching size does not change.

The final claim shows that the procedures converts H into one that satisfies the
properties stated in the statement of the theorem.

CLAIM A.5. At the end of the procedure, the subgraph H(V,E) has the property that
for every 1 ≤ i ≤ k, all vertices v ∈ Pi have, in E′, two edges incident to a unique pair of
vertices in Qi ×Qi. No other edges are present in E′.

PROOF. The procedure terminates when the set S becomes empty. Since S = [k] at
the beginning of the procedure, hence, for all elements j ∈ [k], there is a point during
the execution when j is removed from set S.

For any element j, consider the point it is removed from set S. That can occur only
under the circumstance that all edges that are incident to vertices in Pj have their
other ends in Qj . Furthermore, since the subgraph H at all points in the execution
of the procedure, satisfies the properties in Corollary 5.2, hence we have the property
that all vertices v ∈ Pi have, in E′, two edges incident to a unique pair of vertices in
Qi ×Qi.

Hence, by end of the procedure, we have the property that for every 1 ≤ i ≤ k, all
vertices v ∈ Pi have, in E′, two edges incident to a unique pair of vertices in Qi × Qi.
These edges exhaust the total number of edges that could have been incident to the set
∪ki=1Pi since each vertex can have at most two edges incident to it in E′. Furthermore,
note that the graph G does not contain any edges in the set Qi×Qj for any 1 ≤ i, j ≤ k.
Hence, no other edges can occur in H other than those already listed.

This completes the proof of the lemma.

B. PROOF OF LEMMA 5.1
If δE′(v) < 2, then we can add the edge (u, v) without removing any edge. Adding an
edge cannot decrease the expected size of matching.

Hence, let us consider the case where δE′(v) = 2, and say, the vertices to which v has
an edge are b and d. If either d or b, has exactly one edge incident to it in E′, say it is

EC’13, June 16–20, 2013, Philadelphia, PA, Vol. X, No. X, Article X, Publication date: June 2013.

Harnessing the Power of Two Crossmatches App–3

d, then we can drop the edge (v, d) in E′ and add the edge (v, u). This does not change
the expected size of matching since up to renaming, nothing has changed in the graph
(u and d have exactly the same set of characteristics).

Therefore, we are left with the case where δE′(d) = 2 = δE′(b). Consider E′′, which
the same as E′ except that we drop the edge (v, d) and add the edge (v, u). We would
like to show that the expected size of matching in E′′ is at least as much as in E′.

In order to show that the expected size of matching in E′′ is at least as much as in
E′, we shall partition the sample space of outcomes as follows:

(1) Both (v, d) and (v, u) are present: Consider any outcome ω of edges in E where both
(v, d) and (v, u) exist. Consider a maximum matching M for E′ in ω. If M matches
v to b, then M is also a matching in E′′ since E′∆E′′ = {(v, u), (v, d)} and both don’t
exist in M . Hence the cardinality of the maximum matching in E′′ is at least |M |.
If M matches v to d, then consider matching M ′ for E′′ which is exactly the same
as M , but that it matches v to u (and not v to d). Again, |M ′| = |M |, and hence the
cardinality of the maximum matching in E′′ is at least |M ′| = |M |.

(2) Both (v, d) and (v, u) are absent: Consider any outcome ω of edges in E where both
(v, d) and (v, u) exist. Consider a maximum matching M for E′ in ω. M is also a
matching in E′′ since E′∆E′′ = {(v, u), (v, d)} and both don’t exist in M . Hence the
cardinality of the maximum matching in E′′ is at least |M |.

(3) Exactly one of (v, d) and (v, u) is present: Clearly for any outcomes of edges, the
size of maximum matching in E′ and E′′ can differ by at most one. For a particular
outcome of edges ω, denote the size of maximum matching for E′ and E′′ by φ(E′, ω)
and φ(E′′, ω) respectively.
We shall partition the sub-sample space (where exactly one of the two edges is
present) into two halves. In one half, edge (v, d) would be present and (v, u) absent,
and in the other half, the opposite would be true. Furthermore, we shall have a
one-to-one mapping from points in the first half to that in the second half. The two
points that are mapped to each other shall carry the same probability. In addition,
we shall have the property that if for a particular point ω in say, the first half,
φ(E′, ω) − φ(E′′, ω) = 1, then for the sample point ω′ in the other half that ω maps
to, φ(E′, ω′)−φ(E′′, ω′) = −1. Hence, in expectation over this sub-sample space, the
size of matching matching of E′ will be no more than that of E′′.
We now show the construction of the two halves and the mapping between them.
Fix the outcome ω′ of all edges in E but for (v, d) and (v, u). Let ωu be ω′ with (v, u)
present and (v, d) absent, and let ωd be ω′ with (v, d) present and (v, u) absent. Con-
sider the set A of points ωd that we generate while enumerating over ω′. Similarly,
consider the set B, that consists of points ωu, again while enumerating over all pos-
sible ω′. It is easy to see that A and B are disjoint, and that their union captures
the sub-sample space where exactly one of (v, d) and (v, u) is present. Also, again it
is easy to verify that |A| = |B|. A and B shall constitute our two halves.
We now explain the mapping from A to B. It will be the natural mapping, where
ω1 ∈ A and ω2 ∈ B are mapped to each other, in case the outcome of all edges but
for (v, d) and (v, u) is the same in ω1 and ω2. It is easy to see that this is a well
defined one-to-one map and that both points that are mapped to each other carry
the same probability weight.
Consider a ωd ∈ A and ωu ∈ B that are mapped to each other. Consider the set S of
all maximum matchings for E′ in outcome space ωd.
(a) Either there exists a maximum matching M in set S that does not use the edge

(v, d).
In this case, φ(E′′, ωd) ≥ φ(E′, ωd) = |M | because M is also a matching in E′′

since it does not use the edge (v, d) which is the only edge in E′′ \ E′.

EC’13, June 16–20, 2013, Philadelphia, PA, Vol. X, No. X, Article X, Publication date: June 2013.

App–4 A. Blum, A. Gupta, A. D. Procaccia, and A. Sharma

Moreover, φ(E′′, ωu) ≥ φ(E′, ωu) since under outcome ωu, edge (v, d) is absent
and hence, the maximum matching M for E′ under ωu shall also be a matching
in E′′ under ωu.

(b) Or every maximum matching in S uses the edge (v, d).
As we have claimed earlier, that since |E′′\E′| = 1, hence φ(E′, ωd)−φ(E′′, ωd) ≤
1.
Moreover, we have that φ(E′, ωu)− φ(E′′, ωu) ≤ −1. Why is this the case? Well,
consider any maximum matching M for E′ under ωd. We know that M uses
edge (v, d). Construct M ′ which has all the edges as in M but has edge (v, u)
replacing (v, d). M ′ is a legal matching for E′′ under ωu. Hence, φ(E′′, ωu) ≥
|M ′| = |M | = φ(E′, ωd). Moreover, it is the case that φ(E′, ωu) ≤ φ(E′, ωd) for
under ωd, E′ has strictly a superset of edges present as compared to in ωu. Not
only that, it is also the case that φ(E′, ωu) ≤ |M | − 1, for if it were the case
that φ(E′, ωu) = |M |, then it means that there exists a matching in E′ that
has cardinality equal to |M | and does not use the edge (v, d) contradicting the
assumption of this subcase that every maximum matching in S uses the edge
(v, d).
In summary, for this subcase we have, φ(E′, ωd)−φ(E′′, ωd) ≤ 1 and φ(E′, ωu)−
φ(E′′, ωu) ≤ −1.

Hence, in each one of the above cases, we have that in expectation over the sub-sample
space considered in the case, φ(E′, ω) − φ(E′′, ω) ≤ 0. And hence, in expectation over
all of sample space, φ(E′, ω)− φ(E′′, ω) ≤ 0.

C. DISTRIBUTION ON GRAPHS
Assume that for a particular graph G(V,E) we have been able to characterize an op-
timal subgraph H(V,E′). Moreover, we can find the subgraph H algorithmically. How-
ever, what if we are not dealing with G, but rather a graph Gr which has the same
vertex set as G and whose edges are drawn from the following distribution: every edge
e ∈ E is included in Gr with some constant probability c. Can we somehow use the fact
that we have been able to solve the problem for G, and use its solution for Gr?

We would like to emphasize here that the aim of this section is to solve DOUBLE-
CROSSMATCH problem for the graphGr. In solving it, we would like to leverage the fact
that we know that it is drawn from the underlying graph G and have the knowledge of
an optimal or almost optimal solution for DOUBLE-CROSSMATCH problem for G.

OBSERVATION C.1. The expected matching size of an optimal solution for the com-
plete graph G, denoted by opt(G), is at least as much as the expected matching size of
an optimal solution for any graph Gr, denoted by opt(GR).

The reason for the above observation is that the edge set of Gr is a subset of the edge
set of G, and hence any solution for Gr, i.e., a subgraph Hr of Gr, is also a subgraph of
G. Hence, opt(G) ≥ opt(Gr). One corollary of the above observation is the following.

COROLLARY C.2. If for a graph Gr, drawn from G, we can algorithmically find a
subgraphHr, that has expected matching size withing some additive loss of opt(G), then
that implies that the expected matching size of Hr is at least opt(Gr) within the same
additive loss.

Hence, if we wish to prove that a particular subgraphHr for a graphGr has expected
matching size close to opt(Gr), it suffices to show that the expected matching size of
Hr is close to opt(G). In this section, we explore this question for various special cases
of G.

EC’13, June 16–20, 2013, Philadelphia, PA, Vol. X, No. X, Article X, Publication date: June 2013.

Harnessing the Power of Two Crossmatches App–5

Before we delve into the special cases, we would like to state a result on random
bipartite graph.

CLAIM C.3. Consider a complete bipartite graph G(P ∪Q,P ×Q). Draw a random
bipartite graph Gr(P ∪Q,E′), where every edge in P ×Q is included in E independently
with probability c, for some constant c. There exists n0 (a constant depending on c) such
that if n = min(|P |, |Q|) ≥ n0, then with probability at least 1 − o(1

n), there exists a
bipartite matching in Gr of size n.

PROOF. Consider the case when |P | ≤ |Q|; the other case can be taken care of sim-
ilarly. Let |P | = n, and let us consider an arbitrary subset Q′ ⊆ Q, such that |Q′| = n.
We shall show that the random bipartite graph G′r(P ∪Q′, E′ ∩ (P ×Q′)) has a perfect
matching with probability at least 1− o(1

n).
We first show that with probability at least 1− 1

n2 , every vertex in both sets P and Q′
has degree at least 3 in graph G′r. Consider a particular vertex v ∈ P ∪Q′. Consider the
n independent random variables, each taking value in {0, 1} and representing a possi-
ble edge between v and a vertex from the opposite side. Let these random variable be
X1, · · · , Xn. Since each Xi takes value 1 with probability c, hence the expected degree
of vertex v, E[

∑n
i=1Xi] = cn.

Let n0 ≥ 6/c. If
∑n

i=1Xi ≤ 3 (i.e., vertex v has degree at most 3), then in particular,∑n
i=1Xi ≤ cn

2 . By Chernoff bound, Pr[
∑n

i=1Xi ≤ cn
2] ≤ exp(−cn/8).

By union bound, the probability that at least one vertex in P ∪ Q′ has degree less
than 3 in graph G′r is at most 2n · exp(−cn/8). Let n0 be the minimum integer ≥ 6/c,
such that 2n0 · exp(−cn0/8) ≤ 1

n2
0
. We then have that for all n ≥ n0, with probability at

least 1− 1
n2 , every vertex in both sets P and Q′ has degree at least 3 in graph G′r.

Let us condition the analysis from here on to each vertex in P ∪ Q′ having degree
at least 3 in graph G′r. Clearly, once we condition, then each vertex in graph G′r has
at least three random neighbors from the opposite side. We can now apply Walkup’s
theorem [Walkup 1980] to conclude that there exists a perfect matching in G′r with
probability at least 1− o(1

n).
Removing the conditioning, we get that with probability at least (1−o(1

n)) ·(1− 1
n2) =

1−o(1
n), there exists a perfect matching in G′r, and hence a matching of size n in Gr.

Remark C.4. For all the graphs that we consider below, we shall assume that the
number of vertices in the graph is large enough to apply Claim C.3.

C.1. Complete Graph
Suppose that G is a complete graph. If |V | is divisible by 4, then using Corollary 3.5,
we know that the optimal subgraph H for G is a cover of the vertices of G through
4-cycles. We now use this result for the complete graph G to get the polynomial time
Algorithm 2, which with high probability, gives an almost optimal solution for Gr.

LEMMA C.5. Algorithm 2, in polynomial time, constructs a subgraph Hr whose ex-
pected size of matching, with probability at least 1 − o(1

|V |), over the draw of random
graph Gr from a complete graph G, is at least opt(G)−O(1) ≥ opt(Gr)−O(1).

We first prove an important claim.

CLAIM C.6. Over the draw of Gr, with probability at least 1− o(1
|V |), the subgraph

Hr computed using Algorithm 2 has |V |/4−O(1) vertex disjoint 4-cycles.

PROOF. Having thrown out O(1) vertices in Step 1, consider any fixed partition
(A,B) of the remaining vertices for Step 2 of Algorithm 2, with |A| = |B| and fixed

EC’13, June 16–20, 2013, Philadelphia, PA, Vol. X, No. X, Article X, Publication date: June 2013.

App–6 A. Blum, A. Gupta, A. D. Procaccia, and A. Sharma

pairing up of vertices in A and in B to get A′ and B′. Consider a particular pair of
vertices vxy ∈ A and vst ∈ B. Over the draw of Gr, what is the probability that an edge
exists between vxy and vuv? For an edge to exist between these two vertices, the edges
(x, s), (s, y), (y, t), (t, x) must exist in Gr. Each of these edge exists independently with
probability c in Gr, and hence all four exist with probability c4.

Therefore, between any pair of vertices vxy ∈ A and vst ∈ B, an edge exists with
probability c4. Using Claim C.3 and Remark C.4, with probability at least 1 − o(1

|V |)

over the draw ofGr, the bipartite graph betweenA andB admits a maximum matching
of size |A| = |B|. This in turn implies that with probability at least 1 − o(1

|V |), the
subgraph Hr constructed for Gr has at least |V |/4−O(1) vertex disjoint 4-cycles.

PROOF OF LEMMA C.5. It is easy to see that Corollary 3.5 implies that the sub-
graph H for G with b|V |/4c vertex-disjoint 4-cycles has expected size at least opt(G)−
O(1) where we lose O(1) if the cardinality of the vertex set of G is not divisible by
4. The expected size of maximum matching in H is b|V |/4c ·M4C , where M4C is the
expected size of maximum matching in a single 4-cycle. In other words, opt(G) ≤
b|V |/4c ·M4C +O(1).

Claim C.6 shows that Algorithm 2 produces a subgraph Hr that with probability
at least 1 − o(1

|V |), has at least |V |/4 − O(1) vertex disjoint 4-cycles. Hence, the with
probability at least 1− o(1

|V |), the expected size of maximum matching in Hr is at least
opt(G)−O(1). Moreover, from Observation C.1, opt(G) ≥ opt(Gr). Hence the result.

C.2. Almost balanced bipartite graphs
We now consider G that is a complete bipartite graph between the two sets of vertices
L and R with |L| ≤ |R| ≤ 2|L|. From Lemma 4.1, we know that an optimal subgraph
H for the graph G consists of 4-cycles and paths of length 2 (plus maybe a path of
length 4 or an edge). Furthermore, by Lemma 4.1, it is easy to discern that a subgraph
H which has bxc 4-cycles and y paths of length 2 has expected matching size at least
opt(G)− O(1) where x and y are given by 2 · x + y = |L| and 2 · x + 2 · y = |R|. We now
utilize this knowledge to build Algorithm 4 for construct a subgraph Hr for a randomly
drawn graph Gr from G. The guarantee of this algorithm can be easily inferred from
the preceding discussion and the following claim.

CLAIM C.7. Given bipartite graphG(L∪R,L×R) with |L| ≤ |R| ≤ 2|L|, Algorithm 4,
in polynomial time, constructs a subgraph Hr of Gr, that, with probability at least
1−o(1

T), over the draw of Gr, has x−o(T) 4-cycles and y−o(T) paths of length 2, where
x and y are given by 2 · x+ y = |L| and 2 · x+ 2 · y = |R|, and T = |L ∪R|.

PROOF. If both x and y are Ω(T), we can apply Claim C.3 to each of the bipartite
matchings M1 and M2, found in Step 5 of Algorithm 4, to infer that

(1) with probability at least 1−o(1
x),M1 has size bxc, and hence, the number of 4-cycles

in Hr is bxc
(2) with probability at least 1− o(1

y), M2 has size y, and hence, the number of paths of
length 2 in Hr is y

where Hr is the subgraph returned by Algorithm 4. Hence, we can infer that with
probability at least 1− o(1

T), Hr has bxc 4-cycles and y paths of length 2.
On the other hand, if one of x or y is o(T), then we can ignore the contribution from

that term, and applying Claim C.3 solely to the other term, get that with probability
at least 1− o(1

T), Hr has x− o(T) 4-cycles and y − o(T) paths of length 2.

EC’13, June 16–20, 2013, Philadelphia, PA, Vol. X, No. X, Article X, Publication date: June 2013.

Harnessing the Power of Two Crossmatches App–7

C.3. Lopsided bipartite graphs
Let G be a complete bipartite graph between the two sets L and R, but with |L| < 1

2 |R|.
By Lemma 6.6, we know that the optimal subgraph H for G has each vertex in L
having an edge each to distinct and unique vertices in R, and this implies a total of
|L| vertex disjoint paths of length 2 in H. Hence, opt(G) = |L| ·M2P , where M2P is the
expected size of maximum matching in a path of length 2. We build Algorithm 3 for
such a bipartite graph, and the guarantee of the algorithm can be easily inferred from
the following claim.

CLAIM C.8. Given a graph G(L ∪ R,L × R), with |L| < 1
2 |R|, Algorithm 3, in poly-

nomial time, constructs a subgraph Hr, which has expected matching size, with proba-
bility at least 1− o(1

|A|), over the draw of the graph Gr, has |L| paths of length 2.

PROOF. Applying Claim C.3 to the matching found in Step 3, we can see that with
probability at least 1− o(1

|A|), we find a perfect bipartite matching and hence the sub-
graph Hr returned by the algorithm has |L| vertex disjoint paths of length 2. Hence
the claim follows.

D. PROOF OF CLAIM 4.3
We enumerate here the proofs of the various parts of the claim.

(1) The proof of Lemma 3.2 shows not only 4-cycle has the highest expected number
of matched edges, but that among even length cycles, a node has strictly higher
expected probability of being matched in cycles of length l than in l+ 2 for all even
l ≥ 4.

(2) The expected number of matched edges in a 4-cycle is 2p2 +2p(1−p)2 +2p(1−p)(1+
p2), for an edge is 1− (1− p)2 and for a cycle of length 6 is 6p(1− p)2(1 + p/2 + p2 +
p3/2 + p4) + 3p2. We can verify that the sum of the first two expressions strictly
dominates the third for all p ∈ (0, 1).

(3) For a 4-cycle, the expected number of matched edges is 2p2+2p(1−p)2+2p(1−p)(1+
p2); for a path of length 2, the expected number of matched edges is 1 − (1 − p)2
and for the case of a path of length 4, the expected number of matched edges is
2p2 + 2p(1− p)2 + p(1− p)2 + p(1− p)(1 + p2).
Summing the first expression with twice the second, and simplifying shows that it
is equal to twice the third.

EC’13, June 16–20, 2013, Philadelphia, PA, Vol. X, No. X, Article X, Publication date: June 2013.

