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Jérôme Lang
CNRS

Ariel D. Procaccia
Carnegie Mellon University



32 Avenue of the Americas, New York, NY 10013-2473, USA

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107060432

© Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, Ariel D. Procaccia 2016
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Foreword

Hervé Moulin

Axiomatics and algorithmics are two methodologies at the forefront of modern mathe-
matics. The latter goes back to the very birth of mathematics, whereas the former was
not developed until Hilbert’s famous contributions in the late 1800s.

Yet the axiomatic approach was the first to appear in modern social sciences, through
the instant success in 1951 of K. Arrow’s Social Choice and Individual Values. Beyond
the negative, discouraging message of its famous (im)possibility theorem, that book
had an immensely positive influence on the development of mathematical economics.
It opened the way to the critical evaluation of actual democratic institutions through
the filter of “self-evident” normative principles. Conversely, it allowed us to define
“optimal” rules for collective decision making and/or the allocation of scarce resources
by the convergence of a collection of such principles. In short, it started the field of
mechanism design.

Cake division is probably the first instance of an economic model with an algorith-
mic twist. The mathematical statement of the problem goes back to B. Knaster and
H. Steinhaus in the 1940s: it combines the normative choice of fairness axioms with
the algorithmic concern for a protocol made of simple “cut and choose” operations.
This literature did not have noticeable influence on the exponential development of
mechanism design in the last 40 years, in part because it was developed mostly by
mathematicians. Computational social choice will, I believe, bring it out from its rela-
tive obscurity.

In less than two decades, the COMSOC community has generated an intense dia-
logue between economists working on the normative side of mechanism design and
computer scientists poised to test the computational complexity of these mechanisms. A
remarkable side product of this collaboration is clear from the choice of the 19 thorough
chapters. Under a common axiomatic and computational umbrella, they discuss

� the social choice problem of selecting a public outcome from the conflicting opinions
of the citizens

� the microeconomic problem of dividing private commodities fairly and efficiently when
individual preferences differ

xi



xii foreword

� the market design problem of (bilaterally) matching employees to firms, students to
schools, and so on

� the design of reputation indices and ranking methods in peer-to-peer systems such as
the Internet

� the formation and stability of “local public goods,” that is, (hedonic) coalitions of agents
with common interests

The relative weights of these problems are naturally quite unequal, but the point is their
coexistence.

The book offers to noneconomists an outstanding self-contained introduction to
normative themes in contemporary economics and to economists a thorough discussion
of the computational limits of their art. But I also recommend it to anyone with a taste
for axiomatics: it is replete with new and open questions that will be with us for some
time.
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CHAPTER 1

Introduction to Computational
Social Choice

Felix Brandt, Vincent Conitzer, Ulle Endriss,
Jérôme Lang, and Ariel D. Procaccia

1.1 Computational Social Choice at a Glance

Social choice theory is the field of scientific inquiry that studies the aggregation of indi-
vidual preferences toward a collective choice. For example, social choice theorists—
who hail from a range of different disciplines, including mathematics, economics,
and political science—are interested in the design and theoretical evaluation of voting
rules. Questions of social choice have stimulated intellectual thought for centuries.
Over time, the topic has fascinated many a great mind, from the Marquis de Condorcet
and Pierre-Simon de Laplace, through Charles Dodgson (better known as Lewis Car-
roll, the author of Alice in Wonderland), to Nobel laureates such as Kenneth Arrow,
Amartya Sen, and Lloyd Shapley.

Computational social choice (COMSOC), by comparison, is a very young field that
formed only in the early 2000s. There were, however, a few precursors. For instance,
David Gale and Lloyd Shapley’s algorithm for finding stable matchings between two
groups of people with preferences over each other, dating back to 1962, truly had a
computational flavor. And in the late 1980s, a series of papers by John Bartholdi, Craig
Tovey, and Michael Trick showed that, on the one hand, computational complexity,
as studied in theoretical computer science, can serve as a barrier against strategic
manipulation in elections, but on the other hand, it can also prevent the efficient use of
some voting rules altogether. Around the same time, a research group around Bernard
Monjardet and Olivier Hudry also started to study the computational complexity of
preference aggregation procedures.

Assessing the computational difficulty of determining the output of a voting rule,
or of manipulating it, is a wonderful example of the importation of a concept from
one field, theoretical computer science, to what at that time was still considered an
entirely different one, social choice theory. It is this interdisciplinary view on collective
decision making that defines computational social choice as a field. But, importantly,
the contributions of computer science to social choice theory are not restricted to the
design and analysis of algorithms for preexisting social choice problems. Rather, the
arrival of computer science on the scene led researchers to revisit the old problem of

1



2 1 introduction to computational social choice

social choice from scratch. It offered new perspectives, and it led to many new types
of questions, thereby arguably contributing significantly to a revival of social choice
theory as a whole.

Today, research in computational social choice has two main thrusts. First,
researchers seek to apply computational paradigms and techniques to provide a better
analysis of social choice mechanisms, and to construct new ones. Leveraging the the-
ory of computer science, we see applications of computational complexity theory and
approximation algorithms to social choice. Subfields of artificial intelligence, such as
machine learning, reasoning with uncertainty, knowledge representation, search, and
constraint reasoning, have also been applied to the same end.

Second, researchers are studying the application of social choice theory to compu-
tational environments. For example, it has been suggested that social choice theory
can provide tools for making joint decisions in multiagent system populated by het-
erogeneous, possibly selfish, software agents. Moreover, it is finding applications in
group recommendation systems, information retrieval, and crowdsourcing. Although
it is difficult to change a political voting system, such low-stake environments allow
the designer to freely switch between choice mechanisms, and therefore they provide
an ideal test bed for ideas coming from social choice theory.

This book aims to provide an authoritative overview of the field of computational
social choice. It has been written for students and scholars from both computer sci-
ence and economics, as well as for others from the mathematical and social sciences
more broadly. To position the field in its wider context, in Section 1.2, we provide a
brief review of the history of social choice theory. The structure of the book reflects
the internal structure of the field. We provide an overview of this structure by briefly
introducing each of the remaining 18 chapters of the book in Section 1.3. As compu-
tational social choice is still rapidly developing and expanding in scope every year,
naturally, the coverage of the book cannot be exhaustive. Section 1.4 therefore briefly
introduces a number of important active areas of research that, at the time of conceiving
this book, were not yet sufficiently mature to warrant their own chapters. Section 1.5,
finally, introduces some basic concepts from theoretical computer science, notably the
fundamentals of computational complexity theory, with which some readers may not
be familiar.

1.2 History of Social Choice Theory

Modern research in computational social choice builds on a long tradition of work on
collective decision making. We can distinguish three periods in the study of collective
decision making: early ideas regarding specific rules going back to antiquity; the
classical period, witnessing the development of a general mathematical theory of social
choice in the second half of the twentieth century; and the “computational turn” of the
very recent past. We briefly review each of these three periods by providing a small
selection of illustrative examples.

1.2.1 Early Ideas: Rules and Paradoxes

Collective decision-making problems come in many forms. They include the question
of how to fairly divide a set of resources, how to best match people on the basis of their
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preferences, and how to aggregate the beliefs of several individuals. The paradigmatic
example, however, is voting: how should we aggregate the individual preferences of
several voters over a given set of alternatives so as to be able to choose the “best”
alternative for the group? This important question has been pondered by a number of
thinkers for a long time. Also the largest part of this book, Part I, is devoted to voting.
We therefore start our historic review of social choice theory with a discussion of early
ideas pertaining to voting.1

Our first example for the discussion of a problem in voting goes back to Roman
times. Pliny the Younger, a Roman senator, described in a.d. 105 the following problem
in a letter to an acquaintance. The Senate had to decide on the fate of a number of
prisoners: acquittal (A), banishment (B), or condemnation to death (C). Although
option A, favored by Pliny, had the largest number of supporters, it did not have an
absolute majority. One of the proponents of harsh punishment then strategically moved
to withdraw proposal C, leaving its former supporters to rally behind option B, which
easily won the majority contest between A and B. Had the senators voted on all three
options, using the plurality rule (under which the alternative ranked at the top by the
highest number of voters wins), option A would have won. This example illustrates
several interesting features of voting rules. First, it may be interpreted as demonstrating
a lack of fairness of the plurality rule: even though a majority of voters believes A to
be inferior to one of the other options (namely, B), A still wins. This and other fairness
properties of voting rules are reviewed in Chapter 2. Second, Pliny’s anecdote is an
instance of what nowadays is called election control by deleting candidates. By deleting
C, Pliny’s adversary in the senate was able to ensure that B rather than A won the
election. Such control problems, particularly their algorithmic aspects, are discussed
in Chapter 7. Third, the example also illustrates the issue of strategic manipulation.
Even if option C had not been removed, the supporters of C could have manipulated
the election by pretending that they supported B rather than C, thereby ensuring a
preferred outcome, namely, B rather than A. Manipulation is discussed in depth in
Chapters 2 and 6.

In the Middle Ages, the Catalan philosopher, poet, and missionary Ramon Llull
(1232–1316) discussed voting rules in several of his writings. He supported the idea
that election outcomes should be based on direct majority contests between pairs of
candidates. Such voting rules are discussed in detail in Chapter 3. What exact rule he
had in mind cannot be unambiguously reconstructed anymore, but it may have been
the rule that today is known as the Copeland rule, under which the candidate who wins
the largest number of pairwise majority contests is elected. Whereas Pliny specifically
discussed the subjective interests of the participants, Llull saw voting as a means of
revealing the divine truth about who is the objectively best candidate, for example,
to fill the position of abbess in a convent. The mathematical underpinnings of this
epistemic perspective on voting are discussed in Chapter 8.

Our third example is taken from the period of the Enlightenment. The works of
the French engineer Jean-Charles de Borda (1733–1799) and the French philosopher
and mathematician Marie Jean Antoine Nicolas de Caritat (1743–1794), better known

1 There are also instances of very early writings on other aspects of social choice. A good example is the discussion
of fair division problems in the Talmud, as noted and analyzed in modern terms by game theorists Aumann and
Maschler (1985).
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as the Marquis de Condorcet—and particularly the lively dispute between them—are
widely regarded as the most significant contributions to social choice theory in the early
period of the field. In 1770, Borda proposed a method of voting, today known as the
Borda rule, under which each voter ranks all candidates, and each candidate receives
as may points from a given voter as that voter ranks other candidates below her. He
argued for the superiority of his rule over the plurality rule by discussing an example
similar to that of Pliny, where the plurality winner would lose in a direct majority
contest to another candidate, while the Borda winner does not have that deficiency. But
Condorcet argued against Borda’s rule on very similar grounds. Consider the following
scenario with 3 candidates and 11 voters, which is a simplified version of an example
Condorcet described in 1788:

4 3 2 2

Peter Paul Paul James
Paul James Peter Peter

James Peter James Paul

In this example, four voters prefer candidate Peter over candidate Paul, whom they
prefer over candidate James, and so forth. Paul wins this election both under the plurality
rule (with 3 + 2 = 5 points) and the Borda rule (with 4 · 1 + 3 · 2 + 2 · 2 + 2 · 0 = 14
points). However, a majority of voters (namely, 6 out of 11) prefer Peter to Paul. In
fact, Peter also wins against James in a direct majority contest, so there arguably is a
very strong case for rejecting voting rules that would not elect Peter in this situation.
In today’s terminology, we call Peter the Condorcet winner.

Now suppose two additional voters join the election, who both prefer James, to
Peter, to Paul. Then a majority prefers Peter to Paul, and a majority prefers Paul to
James, but now also a majority prefers James to Peter. This, the fact that the majority
preference relation may turn out to be cyclic, is known as the Condorcet paradox. It
shows that Condorcet’s proposal, to be guided by the outcomes of pairwise majority
contests, does not always lead to a clear election outcome.

In the nineteenth century, the British mathematician and story teller Charles Dodgson
(1832–1898), although believed to have been unaware of Condorcet’s work, suggested
a voting rule designed to circumvent this difficulty. In cases where there is a single
candidate who beats every other candidate in pairwise majority contests, he proposed
to elect that candidate (the Condorcet winner). In all other cases, he proposed to count
how many elementary changes to the preferences of the voters would be required before
a given candidate would become the Condorcet winner, and to elect the candidate for
which the required number of changes is minimal. In this context, he considered the
swap of two candidates occurring adjacently in the preference list of a voter as such an
elementary change. The Dodgson rule is analyzed in detail in Chapter 5.

This short review, it is hoped, gives the reader some insight into the kinds of questions
discussed by the early authors. The first period in the history of social choice theory is
reviewed in depth in the fascinating collection edited by McLean and Urken (1995).

1.2.2 Classical Social Choice Theory

While early work on collective decision making was limited to the design of specific
rules and on finding fault with them in the context of specific examples, around the
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middle of the twentieth century, the focus suddenly changed. This change was due to
the seminal work of Kenneth Arrow, who, in 1951, demonstrated that the problem with
the majority rule highlighted by the Condorcet paradox is in fact much more general.
Arrow proved that there exists no reasonable preference aggregation rule that does
not violate at least one of a short list of intuitively appealing requirements (Arrow,
1951). That is, rather than proposing a new rule or pointing out a specific problem with
an existing rule, Arrow developed a mathematical framework for speaking about and
analyzing all possible such rules.

Around the same time, in related areas of economic theory, Nash (1950) published
his seminal paper on the bargaining problem, which is relevant to the theory of fair allo-
cation treated in Part II of this book, and Shapley (1953) published his groundbreaking
paper on the solution concept for cooperative games now carrying his name, which
plays an important role in coalition formation, to which Part III of this book is devoted.
What all of these classical papers have in common is that they specified philosophically
or economically motivated requirements in mathematically precise terms, as so-called
axioms, and then rigorously explored the logical consequences of these axioms. As an
example of this kind of axiomatic work of this classical period, let us review Arrow’s
result in some detail.

Let N = {1, . . . , n} be a finite set of individuals (or voters, or agents), and let
A be a finite set of alternatives (or candidates). The set of all weak orders � on
A, that is, the set of all binary relations on A that are complete and transitive, is
denoted as R(A), and the set of all linear orders � on A, which in addition are
antisymmetric, is denoted as L(A). In both cases, we use � to denote the strict part
of �. We use weak orders to model preferences over alternatives that permit ties and
linear orders to model strict preferences. A social welfare function (SWF) is a function
of the form f : L(A)n → R(A). That is, f is accepting as input a so-called profile
P = (�1, . . . ,�n) of preferences, one for each individual, and maps it to a single
preference order, which we can think of as representing a suitable compromise. We
allow ties in the output, but not in the individual preferences. When f is clear from the
context, we write � for f (�1, . . . ,�n), the outcome of the aggregation, and refer to it
as the social preference order.

Arrow argued that any reasonable SWF should be weakly Paretian and independent
of irrelevant alternatives (IIA). An SWF f is weakly Paretian if, for any two alternatives
a, b ∈ A, it is the case that, if a �i b for all individuals i ∈ N , then also a � b. That
is, if everyone strictly prefers a to b, then also the social preference order should rank
a strictly above b. An SWF f is IIA if, for any two alternatives a, b ∈ A, the relative
ranking of a and b by the social preference order � only depends on the relative
rankings of a and b provided by the individuals—but not, for instance, on how the
individuals rank some third alternative c. To understand that it is not straightforward
to satisfy these two axioms, observe that, for instance, the SWF that ranks alternatives
in the order of frequency with which they appear in the top position of an individual
preference is not IIA, and that the SWF that simply declares all alternatives as equally
preferable is not Paretian. The majority rule, while easily seen to be both Paretian and
IIA, is not an SWF, because it does not always return a weak order, as the Condorcet
paradox has shown.

An example of an SWF that most people would consider rather unreasonable is
a dictatorship. We say that the SWF f is a dictatorship if there exists an individual
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i� ∈ N (the dictator) such that, for all alternatives a, b ∈ A, it is the case that a �i� b

implies a � b. Thus, f simply copies the (strict) preferences of the dictator, whatever
the preferences of the other individuals. Now, it is not difficult to see that every
dictatorship is both Paretian and IIA. The surprising—if not outright disturbing—result
due to Arrow is that the converse is true as well:

Theorem 1.1 (Arrow, 1951). When there are three or more alternatives, then every
SWF that is weakly Paretian and IIA must be a dictatorship.

Proof. Suppose |A| � 3, and let f be any SWF that is weakly Paretian and IIA. For
any profile P and alternatives a, b ∈ A, let NP

a�b ⊆ N denote the set of individuals
who rank a strictly above b in P . We call a coalition C ⊆ N of individuals a decisive
coalition for alternative a versus alternative b if NP

a�b ⊇ C implies a � b, that is,
if everyone in C ranking a strictly above b is a sufficient condition for the social
preference order to do the same. Thus, to say that f is weakly Paretian is the same as
to say that the grand coalition N is decisive, and to say that f is dictatorial is the same
as to say that there exists a singleton that is decisive. We call C weakly decisive for a

vs. b if we have at least that NP
a�b = C implies a � b.

We first show that C being weakly decisive for a versus b implies C being (not just
weakly) decisive for all pairs of alternatives. This is sometimes called the Contagion
Lemma or the Field Expansion Lemma. So let C be weakly decisive for a versus b.
We show that C is also decisive for a′ versus b′. We do so under the assumption that
a, b, a′, b′ are mutually distinct (the other cases are similar). Consider any profile P

such that a′ �i a �i b �i b′ for all i ∈ C, and a′ �j a, b �j b′, and b �j a for all
j �∈ C. Then, from weak decisiveness of C for a versus b we get a � b; from f being
weakly Paretian, we get a′ � a and b � b′, and thus from transitivity, we get a′ � b′.
Hence, in the specific profile P considered, the members of C ranking a′ above b′ was
sufficient for a′ getting ranked above b′ also in the social preference order. But note
that, first, we did not have to specify how individuals outside of C rank a′ versus b′, and
that, second, due to f being IIA, the relative ranking of a′ versus b′ can only depend
on the individual rankings of a′ versus b′. Hence, the only part of our construction that
actually mattered was that everyone in C ranked a′ above b′. So C really is decisive
for a′ versus b′ as claimed.

Consider any coalition C ⊆ N with |C| � 2 that is decisive (for some pair of
alternatives, and thus for all pairs). Next, we will show that we can always split C

into two nonempty subsets C1, C2 with C1 ∪ C2 = C and C1 ∩ C2 = ∅ such that one
of C1 and C2 is decisive for all pairs as well. This is sometimes called the Splitting
Lemma or the Group Contraction Lemma. Recall that |A| � 3. Consider a profile P in
which everyone ranks alternatives a, b, c in the top three positions and, furthermore,
a �i b �i c for all i ∈ C1, b �j c �j a for all j ∈ C2, and c �k a �k b for all k �∈
C1 ∪ C2. As C = C1 ∪ C2 is decisive, we certainly get b � c. By completeness, we
must have either a � c or c � a. In the first case, we have a situation where exactly
the individuals in C1 rank a above c and in the social preference order a also is ranked
above c. Thus, due to f being IIA, in every profile where exactly the individuals in C1

rank a above c, a will come out above c. That is, C1 is weakly decisive for a versus c.
Hence, by the Contagion Lemma, C1 is in fact decisive for all pairs. In the second case
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(c � a), transitivity and b � c imply that b � a. Hence, by an analogous argument as
before, C2 must be decisive for all pairs.

Recall that, due to f being weakly Paretian, N is a decisive coalition. We can
now apply the Splitting Lemma again and again, to obtain smaller and smaller decisive
coalitions, until we obtain a decisive coalition with just a single member. This inductive
argument is admissible, because N is finite. But the existence of a decisive coalition
with just one element means that f is dictatorial.

Arrow’s Theorem is often interpreted as an impossibility result: it is impossible to devise
an SWF for three or more alternatives that is weakly Paretian, IIA, and nondictatorial.
The technique we have used to prove it is also used in Chapter 2 on voting theory and in
Chapter 17 on judgment aggregation. These chapters also discuss possible approaches
for dealing with such impossibilities by weakening our requirements somewhat.

The authoritative reference on classical social choice theory is the two-volume
Handbook of Social Choice and Welfare edited by Arrow et al. (2002, 2010). There
also are several excellent textbooks available, each covering a good portion of the field.
These include the books by Moulin (1988a), Austen-Smith and Banks (2000, 2005),
Taylor (2005), Gaertner (2006), and Nitzan (2010).

1.2.3 The Computational Turn

As indicated, Arrow’s Theorem (from 1951) is generally considered the birth of mod-
ern social choice theory. The work that followed mainly consisted in axiomatic, or
normative, results. Some of these are negative (Arrow’s Theorem being an example).
Others have a more positive flavor, such as the characterization of certain voting rules,
or certain families of voting rules, by a set of properties. However, a common point
is that these contributions (mostly published in economics or mathematics journals)
neglected the computational effort required to determine the outcome of the rules
they sought to characterize, and failed to notice that this computational effort could
sometimes be prohibitive. Now, the practical acceptability of a voting rule or a fair
allocation mechanism depends not only on its normative properties (who would accept
a voting rule that is considered unfair by society?), but also on its implementability
in a reasonable time frame (who would accept a voting rule that needs years for the
outcome to be computed?). This is where computer science comes into play, start-
ing in the late 1980s. For the first time, social choice became a field investigated
by computer scientists from various fields (especially artificial intelligence, opera-
tions research, and theoretical computer science) who aimed at using computational
concepts and algorithmic techniques for solving complex collective decision making
problems.

A paradigmatic example is Kemeny’s rule, studied in detail in Chapter 4. Kemeny’s
rule was not explicitly defined during the early phase of social choice, but it appears
implicitly in Condorcet’s works, as discussed, for instance, in Chapter 8. It played a key
role in the second phase of social choice: it was defined formally by John G. Kemeny
in 1959, characterized axiomatically by H. Peyton Young and Arthur B. Levenglick in
1978, and rationalized as a maximum likelihood estimator for recovering the ground
truth by means of voting in a committee by Young in 1988. Finally, it was recognized
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as a computationally difficult rule, independently and around the same time (the “early
phase of computational social choice”) by John Bartholdi, Craig Tovey, and Michael
Trick, as well as by Olivier Hudry and others. None of these papers, however, succeeded
in determining the exact complexity of Kemeny’s rule, which was done only in 2005,
at the time when computational social choice was starting to expand rapidly. Next
came practical algorithms for computing Kemeny’s rule, polynomial-time algorithms
for approximating it, parameterized complexity studies, and applications to various
fields, such as databases or “web science.” We took Kemeny’s rule as an example, but
there are similar stories to be told about other preference aggregation rules, as well as
for various fair allocation and matching mechanisms.

Deciding when computational social choice first appeared is not easy. Arguably,
the Gale-Shapley algorithm (1962), discussed in Chapter 14, deals both with social
choice and with computation (and even with communication, since it can also be seen
as an interaction protocol for determining a stable matching). Around the same time,
the Dubins-Spanier Algorithm (Dubins-Spanier, 1961), discussed in Chapter 13, was
one of the first important contributions in the formal study of cake cutting, that is, of
fairly partitioning a divisible resource (again, this “algorithm” can also be seen as an
interaction protocol). Just as for preference aggregation, the first computational studies
appeared in the late 1980s. Finally, although formal computational studies of the fair
allocation of indivisible goods appeared only in the early 2000s, they are heavily linked
to computational issues in combinatorial auctions, the study of which dates back to the
1980s.

By the early 2000s this trend toward studying collective decision making in the
tradition of classical social choice theory, yet with a specific focus on computational
concerns, had reached substantial momentum. Researchers coming from different fields
and working on different specific problems started to see the parallels to the work of
others. The time was ripe for a new research community to form around these ideas. In
2006 the first edition of the COMSOC Workshop, the biannual International Workshop
on Computational Social Choice, took place in Amsterdam. The announcement of this
event was also the first time that the term “computational social choice” was used
explicitly to define a specific research area.

Today, computational social choice is a booming field, carried by a large and grow-
ing community of active researchers, making use of a varied array of methodologies to
tackle a broad range of questions. There is increasing interaction with representatives of
classical social choice theory in economics, mathematics, and political science. There
is also increasing awareness of the great potential of computational social choice for
important applications of decision-making technologies, in areas as diverse as policy
making (e.g., matching junior doctors to hospitals), distributed computing (e.g., allo-
cating bandwidth to processes), and education (e.g., aggregating student evaluations
gathered by means of peer assessment methods). Work on computational social choice
is regularly published in major journals in artificial intelligence, theoretical computer
science, operations research, and economic theory—and occasionally also in other
disciplines, such as logic, philosophy, and mathematics. As is common practice in
computer science, a lot of work in the field is also published in the archival proceed-
ings of peer-reviewed conferences, particularly the major international conferences on
artificial intelligence, multiagent systems, and economics and computation.
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1.3 Book Outline

This book is divided into four parts, reflecting the structure of the field of computa-
tional social choice. Part I, taking up roughly half of the book, focuses on the design
and analysis of voting rules (which aggregate individual preferences into a collective
decision). The room given to this topic here mirrors the breadth and depth with which
the problem of voting has been studied to date.

The remaining three parts consist of three chapters each. Part II covers the problem
of allocating goods to individuals with heterogeneous preferences in a way that satisfies
rigorous notions of fairness. We make the distinction between divisible and indivisible
goods. Part III addresses questions that arise when agents can form coalitions and each
have preferences over these coalitions. This includes two-sided matching problems
(e.g., between junior doctors seeking an internship and hospitals), hedonic games
(where agents’ preferences depend purely on the members of the coalition they are part
of), and weighted voting games (where coalitions emerge to achieve some goal, such
as passing a bill in parliament).

Much of classical (noncomputational) social choice theory deals with voting (Part I).
In contrast, fair allocation (Part II) and coalition formation (Part III) are not always
seen as subfields of (classical) social choice theory, but, interestingly, their intersection
with computer science has become part of the core of computational social choice,
due to sociological reasons having to do with how the research community addressing
these topics has evolved over the years.

Part IV, finally, covers topics that did not neatly fit into the first three thematic
parts. It includes chapters on logic-based judgment aggregation, on applications of the
axiomatic method to reputation and recommendation systems found on the Internet,
and on knockout tournaments (as used, for instance, in sports competitions). Next, we
provide a brief overview of each of the book’s chapters.

1.3.1 Part I: Voting

Chapter 2: Introduction to the Theory of Voting (Zwicker). This chapter provides an
introduction to the main classical themes in voting theory. This includes the definition
of the most important voting rules, such as Borda’s, Copeland’s, and Kemeny’s rule.
It also includes an extensive introduction to the axiomatic method and proves several
characterization and impossibility theorems, thereby complementing our brief exposi-
tion in Section 1.2.2. Special attention is paid to the topic of strategic manipulation in
elections.

Chapter 2 also introduces Fishburn’s classification of voting rules. Fishburn used this
classification to structure the set of Condorcet extensions, the family of rules that
respect the principle attributed to the Marquis de Condorcet, by which any alternative
that beats all other alternatives in direct pairwise contests should be considered the
winner of the election. Fishburn’s classification groups these Condorcet extensions
into three classes—imaginatively called C1, C2, and C3—and the following three
chapters each present methods and results pertaining to one of these classes.

Chapter 3: Tournament Solutions (Brandt, Brill, and Harrenstein). This chapter
deals with voting rules that only depend on pairwise majority comparisons, so-called
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C1 functions. Pairwise comparisons can be conveniently represented using directed
graphs. When there is an odd number of voters with linear preferences, these graphs are
tournaments, that is, oriented complete graphs. Topics covered in this chapter include
McGarvey’s Theorem, various tournament solutions (such as Copeland’s rule, the top
cycle, or the bipartisan set), strategyproofness, implementation via binary agendas, and
extensions of tournament solutions to weak tournaments. Particular attention is paid to
the issue of whether and how tournament solutions can be computed efficiently.

Chapter 4: Weighted Tournament Solutions (Fischer, Hudry, and Niedermeier).
This chapter deals with voting rules that only depend on weighted pairwise majority
comparisons, so-called C2 functions. Pairwise comparisons can be conveniently rep-
resented using weighted directed graphs, where the weight of an edge from alternative
x to alternative y is the number of voters who prefer x to y. Prominent voting rules
of type C2 are Kemeny’s rule, the maximin rule, the ranked pairs method, Schulze’s
method, and—anecdotally—Borda’s rule. The chapter focusses on the computation,
approximation, and fixed-parameter tractability of these rules, while paying particular
attention to Kemeny’s rule.

Chapter 5: Dodgson’s Rule and Young’s Rule (Caragiannis, Hemaspaandra, and
Hemaspaandra). This chapter focuses on two historically significant voting rules
belonging to C3, the class of voting rules requiring strictly more information than a
weighted directed graph, with computationally hard winner determination problems.
The complexity of this problem is analyzed in depth. Methods for circumventing this
intractability—approximation algorithms, fixed-parameter tractable algorithms, and
heuristic algorithms—are also discussed.

The remaining five chapters in Part I all focus on specific methodologies for the analysis
of voting rules.

Chapter 6: Barriers to Manipulation in Voting (Conitzer and Walsh). This chapter
concerns the manipulation problem, where a voter misreports her preferences in order
to obtain a better result for herself, and how to address it. It covers the Gibbard-
Satterthwaite impossibility result, which roughly states that manipulation cannot be
completely avoided in sufficiently general settings, and its implications. It then covers
some ways of addressing this problem, focusing primarily on erecting computational
barriers to manipulation—one of the earliest lines of research in computational social
choice, as alluded to before.

Chapter 7: Control and Bribery in Voting (Faliszewski and Rothe). Control and
bribery are variants of manipulation, typically seen as carried out by the election
organizer. Paradigmatic examples of control include adding or removing voters or
alternatives. Bribery changes the structure of voters’ preferences, without changing the
structure of the entire election. This chapter presents results regarding the computational
complexity of bribery and control problems under a variety of voting rules. Much like
Chapter 6, the hope here is to obtain computational hardness in order to prevent strategic
behavior.

Chapter 8: Rationalizations of Voting Rules (Elkind and Slinko). While the best-
known approach in social choice to justify a particular voting rule is the axiomatic one,
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several other approaches have also been popular in the computational social choice
community. This chapter covers the maximum likelihood approach, which takes it that
there is an unobserved “correct” outcome and that a voting rule should be chosen
to best estimate this outcome (based on the votes, which are interpreted as “noisy
observations” of this correct outcome). It also covers the distance rationalizability
approach, where, given a profile of cast votes, we find the closest “consensus” profile
which has a clear winner.

Chapter 9: Voting in Combinatorial Domains (Lang and Xia). This chapter
addresses voting in domains that are the Cartesian product of several finite domains,
each corresponding to an issue, or a variable, or an attribute. Examples of contexts
where such voting processes occur include multiple referenda, committee (and more
generally multi-winner) elections, group configuration, and group planning. The chap-
ter presents basic notions of preference relations on multiattribute domains, and it
outlines several classes of solutions for addressing the problem of organizing an elec-
tion in such a domain: issue-by-issue and sequential voting, multiwinner voting rules,
and the use of compact representation languages.

Chapter 10: Incomplete Information and Communication in Voting (Boutilier and
Rosenschein). This chapter unifies several advanced topics, which generally revolve
around quantifying the amount of information about preferences that is needed to
accurately decide an election. Topics covered include the complexity of determining
whether a given alternative is still a possible winner after part of the voter preferences
have been processed, strategies for effectively eliciting voter preferences for different
voting rules, voting in the presence of uncertainty regarding the availability of alterna-
tives, the sample complexity of learning voting rules, and the problem of “compiling”
the votes of part of the electorate using as little space a possible for further processing
at a later point in time.

1.3.2 Part II: Fair Allocation

Chapter 11: Introduction to the Theory of Fair Allocation (Thomson). This chapter
offers an introduction to fair resource allocation problems as studied in economics.
While in most models of voting the alternatives are not structured in any particular
way, in resource allocation problems the space of feasible alternatives naturally comes
with a lot of internal structure. The chapter motivates and defines a wide range of
fairness criteria that are relevant to such problems, for different concretely specified
economic environments.

While Chapter 11 is restricted to concepts classically studied in economic theory, the
next two chapters zoom in on specific classes of resource allocation problems and focus
on work of a computational nature.

Chapter 12: Fair Allocation of Indivisible Goods (Bouveret, Chevaleyre, and
Maudet). This chapter addresses the fair allocation of indivisible goods. The main
topics covered are the compact representation of preferences for fair allocation prob-
lems (typically, though not always, using utility functions rather than ordinal preference
relations as in voting), the definition of appropriate fairness criteria, the algorithmic
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challenges of computing socially optimal allocations, complexity results for computing
socially optimal allocations, and protocols for identifying such optimal allocations in
an interactive manner.

Chapter 13: Cake Cutting Algorithms (Procaccia). This chapter deals with fair
allocation of heterogeneous divisible goods, also known as cake cutting. This is
quite different from the indivisible goods case, especially when taking the compu-
tational perspective, because utility functions may not have a finite discrete repre-
sentation. The chapter discusses models for reasoning about the complexity of cake
cutting. Furthermore, the chapter covers classical cake cutting methods, as well as
recent work on optimization and the tension between efficiency and fairness in cake
cutting.

1.3.3 Part III: Coalition Formation

Chapter 14: Matching under Preferences (Klaus, Manlove, and Rossi). This chapter
covers matching theory, starting with the setting where each side has preferences over
the other side, which includes the traditional example of matching men to women
but also the real-world application of matching residents (junior doctors) to hospitals.
It then covers the setting where only one side has preferences over the other, which
includes examples such as assigning students to campus housing and assigning papers
to reviewers. The chapter covers structural, algorithmic, and strategic aspects.

Chapter 15: Hedonic Games (Aziz and Savani). Matching under preferences can be
seen as a special case of coalition formation which only allows for certain types of
coalitions (e.g., coalitions of size two). Hedonic games are more general in the sense
that any coalition structure (i.e., any partitioning of the set of agents into subsets) is
feasible. The defining property of hedonic games is that an agent’s appreciation of a
coalition structure only depends on the coalition he is a member of and not on how
the remaining players are grouped. This chapter surveys the computational aspects
of various notions of coalitional stability (such as core stability, Nash stability, and
individual stability) in common classes of hedonic games.

Chapter 16: Weighted Voting Games (Chalkiadakis and Wooldridge). Weighted
voting games model situations where voters with variable voting weight accept or reject
a proposal, and a coalition of agents is winning if and only if the sum of weights of
the coalition exceeds or equals a specified quota. This chapter covers the computation
of solution concepts for weighted voting games, the relation between weight and
influence, and the expressive power of weighted voting games.

1.3.4 Part IV: Additional Topics

Chapter 17: Judgment Aggregation (Endriss). This chapter provides an introduction
to judgment aggregation, which deals with the aggregation of judgments regarding the
truth (or falsehood) of a number of possibly related statements. These statements are
expressed in the language of propositional logic, which is why judgment aggregation
is also referred to as logical aggregation. The origin of the field can be traced back
to discussions of the so-called doctrinal paradox in legal theory. The chapter covers
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the axiomatic foundations of judgment aggregation, the discussion of specific aggre-
gation procedures, connections to preference aggregation, the complexity of judgment
aggregation, and applications in computer science.

Chapter 18: The Axiomatic Approach and the Internet (Tennenholtz and Zohar).
The axiomatic approach, which is prevalent in social choice theory, gauges the desir-
ability of decision mechanisms based on normative properties. This chapter presents
applications of the axiomatic approach to a variety of systems that are prevalent on the
Internet. In particular, the chapter discusses the axiomatic foundations of ranking sys-
tems, including an axiomatic characterization of the PageRank algorithm. Furthermore,
the axiomatic foundations of crowdsourcing mechanisms and recommender systems
are discussed in detail.

Chapter 19: Knockout Tournaments (Vassilevska Williams). A knockout tourna-
ment specifies an agenda of pairwise competitions between alternatives, in which
alternatives are iteratively eliminated until only a single alternative remains. Knockout
tournaments commonly arise in sports, but more generally provide a compelling model
of decision making. This chapter covers a body of work on controlling the agenda of
a knockout tournament with the objective of making a favored alternative win, both in
terms of computational complexity and structural conditions.

1.4 Further Topics

In this section, we briefly review a number of related topics that did not fit into the
book, and provide pointers for learning more about these. We have no pretense to be
complete in our coverage of the terrain.

1.4.1 Mechanism Design

In mechanism design, the goal is to design mechanisms (e.g., auctions, voting rules, or
matching mechanisms) that result in good outcomes when agents behave strategically
(see, e.g., Nisan, 2007). Here, “strategic behavior” is typically taken to mean behavior
according to some game-theoretic solution concept. Several of the chapters discuss
some concepts from mechanism design (notably Chapters 6 and 14), but a thorough
introduction to mechanism design with money (e.g., auction theory), and topics such
as approximate mechanism design without money (Procaccia and Tennenholtz, 2013)
or incentive compatible machine learning (Dekel et al., 2010), are all outside the scope
of the book.

1.4.2 (Computational) Cooperative Game Theory

Part III of the book covers coalition formation, and thereby overlaps with (computa-
tional) cooperative game theory. Of course, it does not exhaustively cover that field,
which is worthy of a book in itself—and in fact such a book is available (Chalkiadakis
et al., 2011).
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1.4.3 Randomized Social Choice

While a voting rule returns a winning alternative (or possibly a set of tied winners), a
social decision scheme returns a probability distribution over alternatives. The role of
randomization as a barrier to strategic behavior is discussed in Chapter 6. Depending
on how preferences over probability distributions are defined, one can define various
degrees of strategyproofness, economic efficiency, and participation. The trade-off
between these properties has been analyzed by Aziz et al. (2013d, 2014c) and Brandl
et al. (2015a). Another line of inquiry is to quantify how well strategyproof social
decision schemes approximate common deterministic voting rules such as Borda’s
rule (Procaccia, 2010; Birrell and Pass, 2011; Service and Adams, 2012a).

Aziz et al. (2013a) and Aziz and Mestre (2014) have addressed the computational
complexity of computing the probability of alternatives under the random serial dic-
tatorship rule, in the context of voting as well as fair allocation. Randomization seems
particularly natural in the domain of fair allocation and researchers have transferred
concepts from voting to fair allocation (Kavitha et al., 2011; Aziz et al., 2013c), and
vice versa (Aziz and Stursberg, 2014).

1.4.4 Iterative Voting

In iterative voting settings, voters cast their vote repeatedly, starting from some initial
profile. In each round, the voters observe the outcome and one or more of them may
change their vote. Depending on the voting rule used and some assumptions regarding
the voters’ behavior, we may be able (or not) to predict that the process will converge,
as well as to guarantee that the outcome to which the process converges has some
desirable properties. In a paper that initiated a great deal of activity in this area, Meir
et al. (2010) proved for the plurality rule that, if voters update their ballots one at a
time and adopt a myopic best-response strategy, then the process converges to a Nash
equilibrium, whatever the initial state. Other voting rules and other assumptions on
voter behavior were considered by several authors (e.g., Chopra et al., 2004; Lev and
Rosenschein, 2012; Reyhani and Wilson, 2012; Grandi et al., 2013; Obraztsova et al.,
2015b). Reijngoud and Endriss (2012) added the assumption of incomplete knowledge
regarding the voting intentions of others and Meir et al. (2014) added the assumption of
uncertainty regarding this information. Alternative notions of equilibria (with truth bias
or lazy voters) were considered by Obraztsova et al. (2015a). Brânzei et al. (2013b)
studied the price of anarchy of such iterated voting processes for several rules. A
different iterative model was studied by Airiau and Endriss (2009), where in each step
a voter is randomly selected, proposes a new alternative as a challenger to the current
winning alternative, and the voters have to choose between the two.

1.4.5 Computer-Assisted Theorem Proving in Social Choice

A promising direction in computational social choice is to address open research
questions using computer-aided theorem proving techniques. The role of computer
science here is very different from that in mainstream computational social choice:
computational techniques are not used to address the computation of existing social
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choice mechanisms or to identify new problems, but rather to prove and/or discover
theorems in social choice theory.2 For example, Nipkow (2009) verified an existing
proof of Arrow’s Theorem using a higher-order logic proof checker. Tang and Lin
(2009) reduced the same theorem to a set of propositional logic formulas, which
can be checked automatically by a satisfiability solver, and Geist and Endriss (2011)
extended this method to a fully automated search algorithm for impossibility theorems
in the context of preference relations over sets of alternatives. Brandt and Geist (2014)
and Brandl et al. (2015b) applied these techniques to improve the understanding of
strategyproofness and participation in the context of set-valued (or so-called irresolute)
rules, and Brandt et al. (2014b) to compute the minimal number of voters required to
realize a given majority graph.

1.4.6 Approximate Single-Peakedness and Related Issues

It is well-known that certain domain restrictions enable the circumvention of impossibil-
ity theorems and can make computationally difficult problems easy. Arguably the most
well-known of these domain restrictions is Black’s single-peakedness (see Chapter 2);
another important (but somewhat less well-known) restriction is single-crossedness. It
is usually computationally easy to recognize whether a profile satisfies such restric-
tions (Trick, 1989; Doignon and Falmagne, 1994; Escoffier et al., 2008; Bredereck
et al., 2013b; Elkind and Faliszewski, 2014). However, for larger electorates, it is often
unreasonable to expect profiles to satisfy these restrictions. Therefore, researchers
have sought to quantify the extent to which a profile satisfies one of these domain
restrictions, and also to say something informative about its structure (for instance, for
single-peakedness, by identifying the most plausible axes). Several recent papers study
such notions of near-single-peakedness, or more generally approximate versions of
domain restrictions—especially (Conitzer, 2009; Cornaz et al., 2012; Bredereck et al.,
2013a; Sui et al., 2013; Elkind and Lackner, 2014; Elkind et al., 2015b)—and their
implications to computing and manipulating voting rules (Faliszewski et al., 2011c;
Cornaz et al., 2012, 2013; Faliszewski et al., 2014; Brandt et al., 2015c). A related
issue is the detection of components or clone structures in profiles (Brandt et al., 2011;
Elkind et al., 2012a).

1.4.7 Computational Aspects of Apportionment and Districting

Apportionment is the process of allocating a number of representatives to different
regions (or districts), such as states or provinces, usually according to their relative
population. Apportionment comes with electoral districting—subdividing the territory
into districts in which the election is performed, which in turn can give rise to ger-
rymandering, the redrawing of district borders for strategic reasons. Another case of
apportionment occurs in party-list proportional representation systems, in which seats
are allocated to parties in proportion to the number of votes they receive. This area of
research, which is sometimes seen as being located at the borderline between social

2 Automated reasoning has been very successful in some branches of discrete mathematics (e.g., in graph theory,
with the famous computer-assisted proof of the Four Color Theorem).
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choice theory and political science, gives rise to a variety of computational problems.
Algorithms for districting are reviewed by Ricca et al. (2013) (see also the works of
Pukelsheim et al. (2012), Ricca et al. (2007), and Hojati (1996) for technical con-
tributions to this field). Algorithms for apportionment are discussed by Balinski and
Demange (1989), Serafini and Simeone (2012), and Lari et al. (2014). The computa-
tional aspects of strategic candidacy in district-based elections are studied by Ricca
et al. (2011) and Ding and Lin (2014). Finally, related to that, the computational aspects
of vote trading (interdistrict exchange of votes) are studied by Hartvigsen (2006) and
Bervoets et al. (2015).

1.4.8 New Problem Domains for Social Choice

As stressed already in the opening paragraphs of this chapter, the interaction between
social choice theory and other disciplines, such as artificial intelligence, theoretical
computer science, and operations research, led some researchers to work on new
problem domains. Perhaps the most prominent of these new domains is the topic of
Chapter 18, which discusses social choice problems that came about with the rise of
the Internet. But there are others, some of which we mention next.

Collective combinatorial optimization. Collective combinatorial optimization deals
with the design of methods for the collective version of some combinatorial optimiza-
tion problems. An example is the group travel problem (Klamler and Pferschy, 2007),
where one has to find a Hamiltonian path in a graph (that is, a path that goes through
each vertex exactly once), given the preferences of a set of agents. Other examples are
the group knapsack problem (Nicosia et al., 2009) and the group minimum spanning
tree problem (Darmann et al., 2009; Darmann, 2013). Other such problems are con-
sidered, in a more systematic way, by Escoffier et al. (2013). In a similar vein, group
planning (Ephrati and Rosenschein, 1993) is concerned with finding a joint plan, given
the agents’ preferences over possible goals.

Group classification. Automated classification is a well-known supervised machine
learning task where the input consists of a training set of examples (e.g., a set of email
messages, some of them labeled as spam by the user and some not), and the output is a
classifier mapping any possible input (any future incoming message) to a class (spam or
not spam). Now, in many real-life situations, the training set may consist of data labeled
by several experts, who may have conflicting preferences about the learned classifier.
This problem has been studied by Meir et al. (2012), who characterize strategyproof
classification algorithms.3

Group recommendation. Recommender systems suggest interesting items for users
based on their past interaction with the system. A well-known example are book rec-
ommendations issued by online book sellers based on a user’s purchasing or browsing
history. Group recommendation is based on the idea that we sometimes want to make
such recommendations to groups of people, based on their (possibly diverse) prefer-
ences (e.g., a restaurant for a group of friends, or a holiday package for a family).

3 This line of research should not be confused with the use of voting techniques in classification (see, e.g., Bauer
and Kohavi, 1999).
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Examples of work on this problem include the contributions of Amer-Yahia et al.
(2009) and Chen et al. (2008).

Crowdsourcing. Online platforms such as Amazon’s Mechanical Turk have become a
popular method for collecting large amounts of labeled data (e.g., annotations of images
with words describing them). Social choice mechanisms can be used to aggregate the
information obtained through crowdsourcing. Besides a growing number of purely
theoretical contributions, examples for work in this area also include experimental
studies aimed at understanding how best to model the divergence between objectively
correct answers and answers actually submitted by participants (Mao et al., 2013), and
the design and evaluation of practical aggregation methods for concrete tasks, such as
the semantic annotation of corpora used in research in linguistics (Qing et al., 2014).

Dynamic social choice. Parkes and Procaccia (2013) deal with sequences of collective
decisions to be made in a population with evolving preferences, where future prefer-
ences depend on past preferences and past actions. The output of the collective decision
making process then is a policy in a Markov decision process. This setting is motivated
by online public policy advocacy groups. The causes advocated by the group’s leader-
ship have an impact on the preferences of members, leading to a dynamic process that
should be steered in a socially desirable direction.

1.5 Basic Concepts in Theoretical Computer Science

We conclude this chapter with a brief review of some standard concepts from (theoreti-
cal) computer science that will be used in many places in the book, particularly concepts
from the theory of computational complexity. Of course, it is challenging to commu-
nicate in so little space material that students usually learn over a sequence of courses.
Nevertheless, we hope that this provides the reader without computational background
some intuitive high-level understanding of these concepts—enough to appreciate a
result’s significance at a high level, as well as to know for which terms to search in
order to obtain more detailed background as needed. We imagine this may also serve
as a useful reference for some readers who do have computational background.

1.5.1 Computational Complexity

Computational complexity deals with evaluating the computational resources (mostly,
time and space) needed to solve a given problem. We first need to make explicit what
we mean by a “problem.” Most computational problems considered in this book are
phrased as decision problems. Formally, a decision problem P is defined as a pair
〈LP , YP 〉 where LP is a formal language, whose elements are called instances, and
YP ⊆ LP is the set of positive instances. For instance, the problem of deciding whether
a directed graph is acyclic is defined by the set LP of all directed graphs, while YP is
the set of all directed acyclic graphs. If I ∈ YP , then I is said to be a positive instance
of P . Sometimes we will also need to deal with search problems, also called function
problems, whose answer is a solution (when there exists one): a function problem is a
set 〈LP , SP , RP 〉, where SP is another formal language (the set of possible solutions)
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and RP ⊆ LP × SP is a relation between instances and solutions, where (I, S) ∈ RP

means that S is a solution for I . For instance, find a nondominated vertex in a directed
graph, if any and find all vertices with maximum outdegree are both search problems.
Solving the function problem on instance I ∈ LP consists in outputting some S ∈ SP

such that (I, S) ∈ RP , if any, and “no solution” otherwise.
Complexity theory deals with complexity classes of problems that are computation-

ally equivalent in a certain well-defined way. Typically, (decision or function) problems
that can be solved by an algorithm whose running time is polynomial in the size of the
problem instance are considered tractable, whereas problems that do not admit such an
algorithm are deemed intractable. Formally, an algorithm is polynomial if there exists
a k ∈ N such that its running time is in O(nk), where n is the size of the input. Here,
O(nk) denotes the class of all functions that, for large values of n, grow no faster than
c · nk for some constant number c (this is the “Big-O notation”). For instance, when
k = 1, the running time is linear, and when k = 2, the running time is quadratic in n.

The class of decision problems that can be solved in polynomial time is denoted by
P, whereas NP (for “nondeterministic polynomial time”) refers to the class of decision
problems whose solutions can be verified in polynomial time. For instance, the problem
of deciding whether a directed graph is acyclic is polynomial while deciding whether
a directed graph has a cycle that goes through all vertices exactly once (called a
Hamiltonian cycle) is in NP (but is not known to be in P).

The famous P �= NP conjecture states that the hardest problems in NP do not admit
polynomial-time algorithms and are thus not contained in P. Although this statement
remains unproven, it is widely believed to be true. Hardness of a problem for a particular
class intuitively means that the problem is no easier than any other problem in that class.
Both membership and hardness are established in terms of reductions that transform
instances of one problem into instances of another problem using computational means
appropriate for the complexity class under consideration. Most reductions in this book
rely on reductions that can be computed in time polynomial in the size of the problem
instances, and are called polynomial-time reductions. Finally, a problem is said to
be complete for a complexity class if it is both contained in and hard for that class.
For instance, deciding whether a directed graph possesses a Hamiltonian cycle is
NP-complete.

Given the current state of complexity theory, we cannot prove the actual intractabil-
ity of most algorithmic problems, but merely give evidence for their intractability.
Showing NP-hardness of a problem is commonly regarded as very strong evidence for
computational intractability because it relates the problem to a large class of problems
for which no efficient, that is, polynomial-time, algorithm is known, despite enormous
efforts to find such algorithms.

Besides P and NP, several other classes will be used in this book. Given a decision
problem P = 〈LP , YP 〉, the complementary problem of P is defined as P = 〈LP , LP \
YP 〉. Given a complexity class C, a decision problem belongs to the class coC if P

belongs to C. Notably, coNP is the class of all decision problems whose complement
is in NP. For instance, deciding that a directed graph does not possess a Hamiltonian
cycle is in coNP (and coNP-complete).

We now introduce several complexity classes which are supersets of NP and coNP
(and are strongly believed to be strict supersets). Given two complexity classes C and
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C′, we denote by CC′
the set of all problems that can be solved by an algorithm for C

equipped with C′-oracles, where a C′-oracle solves a problem in C′ (or in coC′) in unit
time. The class �P

2, defined as PNP, is thus the class of all decision problems that can
be solved in polynomial time with the help of NP-oracles, which answer in unit time
whether a given instance of a problem in NP is positive or not. The class �P

2 is the subset
of �P

2 consisting of all decision problems that can be solved in polynomial time using
“logarithmically many” NP-oracles. Equivalently, �P

2 may be defined as the subset of
�P

2 for which a polynomial number of NP-oracles may be used, but these need to be
queried in parallel, that is, we cannot use the answer to one oracle to determine what
question to put to the next oracle. Finally, �P

2 = NPNP and �P
2 = co�NP

2 . Thus, for
instance, �P

2 is the class of decision problems for which the correctness of a positive
solution can be verified in polynomial time by an algorithm that has access to an
NP-oracle. The following inclusions hold:

P ⊆ NP, coNP ⊆ �P
2 ⊆ �P

2 ⊆ �P
2 , �P

2 .

It is strongly believed that all these inclusions are strict, although none of them was
actually proven to be strict. Interestingly, �P

2 and (to a lesser extent) �P
2, �P

2 and �P
2 play

an important role in computational social choice (and indeed, we find them referred to
in Chapters 3, 4, 5, 8, 12, and 17). We occasionally refer to other complexity classes
(such as PLS or #P) in the book; they are introduced in the chapter concerned.

For a full introduction and an extensive overview of computational complexity
theory, we refer the reader to Papadimitriou (1994) and Ausiello et al. (1999).

1.5.2 Linear and Integer Programming

One notable computational problem is that of solving linear programs. A linear program
consists of a set of variables xj (1 � j � n), a set of constraints indexed by i (1 �
i � m), and an objective. Constraint i is defined by parameters aij (1 � j � n) and
bi , resulting in the following inequality constraint:

n∑
j=1

aij xj � bi.

The objective is defined by parameters cj , resulting in the following objective:

n∑
j=1

cjxj .

The goal is to find a vector of nonnegative values for the xj that maximizes the value of
the objective while still meeting all the constraints (i.e., all the inequalities should hold).
Natural variants, such as not requiring variables to take nonnegative values, allowing
equality constraints, having a minimization rather than a maximization objective, and
so on, are not substantively different from this basic setup. There is a rich theory of
linear programming; for the purpose of this book, what is most important to know
is that linear programs can be solved to optimality in polynomial time. Thus, if a
computational problem can be formulated as (equivalently, reduced to) a polynomial-
sized linear program, then it can be solved in polynomial time.
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Linear programs allow all their variables to take fractional values. If instead, we
require the variables to take integer values, we obtain an integer linear program. If we
allow some but not all variables to take fractional values, we obtain a mixed integer
linear program. This apparently minor modification has significant computational ram-
ifications: solving (mixed) integer linear programs is NP-hard. Indeed, many NP-hard
problems are easily formulated as (mixed) integer linear programs. One may wonder
what the point of doing so is, as after all the latter are hard to solve. However, (mixed)
integer linear program solvers are available that scale quite well on many (though,
unsurprisingly, not all) families of instances. Moreover, (mixed) integer linear program
formulations of a problem often help us develop deeper insight into the problem at hand.
One particularly natural and helpful notion is that of the linear program relaxation of
a mixed integer linear program, which simply drops the integrality requirement, taking
us back to an easy-to-solve linear program. While this relaxation necessarily does not
always have the same optimal solutions as the original, it nevertheless often serves as
a useful starting point for analysis and computation.

A good reference for the theory and practice of both integer and linear programming
is the book by Nemhauser and Wolsey (1999).
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CHAPTER 2

Introduction to the Theory
of Voting

William S. Zwicker

2.1 Introduction to an Introduction

Suppose a finite society is about to vote on a choice of one option from among finitely
many. The options, called alternatives in voting theory, might be candidates for mayor
of a town, or different amounts to spend on building a new firehouse, or several versions
of an immigration reform bill. If we assume that

1. every two voters play equivalent roles in our voting rule
2. every two alternatives are treated equivalently by the rule
3. there are only two alternatives to choose from

then the situation is simple: May’s Theorem, discussed in Section 2.4, tells us that the
only reasonable voting method is majority rule.

Many voting contexts, however, require us to relax some of these assumptions. In
these settings, the matter of choosing a voting rule can become much less straightfor-
ward. What are the principal issues that complicate matters? Contexts for voting vary
too greatly to admit any unified answer, so we will have to narrow the question.

Our focus here is on the context of multicandidate voting, for which an appropriate
metaphor is that of electing a mayor when there are three or more candidates—so we
will relax the third condition, while holding out for the first two.1,2 Even within this
framework, “voting” can mean different things, depending on the specified form of a
ballot and of a collective decision. Our primary concern will be with ranked ballots—
each voter submits a linear ordering of the alternatives, specifying their most favored

1 Legislative voting, in which a representative assembly must choose between collective approval or disapproval
of some proposal or bill under consideration, provides quite a different context. While there are only two
alternatives, they may be treated unequally (as when a supermajority is required to amend a constitution) and
some legislators may play different roles than others (if they represent districts with different populations and
economies, as happens in the EU Council of Ministers, or have veto power, as do the five permanent members
of the UN Security Council).

2 Metaphor notwithstanding, our perspective here is primarily mathematical. See Cox (1997) and Blais et al.
(1997) for a look at how the world actually votes from the political science viewpoint.

23
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candidate, their second choice, and so on—and with single winners (or several winners,
in the event of a tie) as outcomes.3 A voting rule in this setting is called a social choice
function or SCF (see examples in Section 2.2).

Within multicandidate voting, three results are most prominent. The first, observed
by Marie Jean Antoine Nicolas de Caritat, Marquis de Condorcet (1785) and arguably
most fundamental,4 is the existence of majority cycles, in which collective preference
violates what we might expect from any “rational” individual: a majority of voters
prefer some alternative a to b, a (different) majority prefers b to c, and a third majority
prefers c to a.5

Kenneth Arrow’s Independence of Irrelevant Alternatives principle (aka IIA) asserts
that collective voter opinion as to the relative merits of two alternatives should not be
influenced by individual voter opinions about an “irrelevant” third.6 The famous Arrow
Impossibility Theorem (Arrow, 1950) tells us that, with some mild assumptions, every
voting rule for three or more alternatives either violates IIA or is a dictatorship, in
which the election outcome depends solely on the ballot of one designated voter. This
important result, establishing a basic limitation of collective decision-making methods,
contributed in a major way to the broad revival of interest in the theory of voting, about
150 years after the “Golden Age” of social choice.7 More on IIA as well as a proof of
Arrow’s Theorem appear in Chapter 1 of this handbook, so we will not be dealing with
it here.

The Gibbard-Satterthwaite Theorem (aka GST), third member of the triad, estab-
lishes a different fundamental limitation on voting and is the principal topic of
Section 2.8 here. The GST asserts that every SCF f other than a dictatorship fails to be
strategyproof —f sometimes provides an incentive for an individual voter i to manip-
ulate the outcome, that is, to misrepresent his or her true preferences over the alterna-
tives by casting an insincere ballot. The incentive is that voter i prefers the alternative

3 Some view the reliance on ranked ballots as a major error, and see the major theorems of the field (see
Section 2.8, for example) more as artifacts of this mistake than as fundamental limitations on democracy. They
advocate voting rules such as range voting (Smith, 2000), majority judgment (Balinski and Laraki, 2010), or
approval voting (Brams and Fishburn, 2007) that use different ballot forms. For the argument in favor of ranked
ballots, see Arrow (1950).

4 Look for its appearance in proofs of Arrow’s Theorem and the Gibbard-Satterthwaite Theorem.
5 Buchanan (1954) argues that as society is not an “organic entity,” the concept of collective rationality (or

irrationality) has no meaning; it should be unsurprising, then, when a cooked-up form of collective preference
behaves inconsistently.

6 Imagine that applicants x and y are in a tight race for an open position in your department, with a third candidate
z drawing little support. An initial poll would have given the position to x. Subsequent discussion leads no
one to change their mind about x vs. y, but all support for z is withdrawn, and the effect of this change is
that y beats x in the revote. That’s a failure of IIA. The context for Arrow’s Impossibility Theorem is that of
a social welfare function (aka SWF) for which an outcome is a (weak) ranking of all alternatives. Thus Arrow
presumes transitivity of social preference. Our major (but not exclusive) concern in this chapter is with social
choice functions, for which the election outcome is the winning alternative(s) (with no assumption that social
preference is transitive in its entirety).

7 The McLean and Urken (1995) collection contains English translations of original works by de Borda and
Condorcet from the Golden Age (late eighteenth century), as well as some much earlier work by Ramon
Lull and Nicolaus Cusanus, and important nineteenth-century contributions by Nanson and Dodgson. Dun-
can Black’s (1958) book as well as the treatise of Thomas Hare (1859) on single transferable vote (see
Section 2.4) should also be mentioned in any brief history of pre-Arrovian social choice. Homeshaw (2001)
argues that STV was invented by the Danish mathematician and politician Carl Andræ, two years before Hare’s
treatise.
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that wins when she casts some insincere ballot to the winner that would result from
a sincere one. One limitation of the GST is that it presumes every election to have
a unique winner (no ties). This might seem problematic, but the Duggan-Schwartz
Theorem (Section 2.8) provides a pretty good solution.

Most of this chapter is devoted to introducing some of the more important voting
rules in the social choice function context, along with a selection of properties, or
axioms, that distinguish among these rules. We discuss a number of theorems that
characterize classes of SCFs axiomatically, or that establish fundamental limits on
what is possible by showing that certain packages of axioms conflict with others. The
topic of strategic manipulation, while far from being our sole concern, never lies far
beneath the surface, and a detailed proof of the GST appears in Section 2.8.

The rest of the chapter is organized as follows. In Section 2.2 we provide the
definitions and notation needed for a careful discussion of social choice functions,
introducing the variety of ways that a voting rule can use the information in ranked
ballots through two examples, Copeland and Borda voting. We contrast these rules
with plurality voting, which looks only at each voter’s top choice. The idea of strategic
manipulation is introduced via examples for these three SCFs, in Section 2.2. Our first
consideration of axioms, in Section 2.3, looks at three examples: anonymity, neutrality,
and the Pareto property. We see that even these “innocuous” axioms can conflict with
other desiderata; they can force all rules to admit some ties, for example.

In Section 2.4 we introduce additional SCFs from three important classes. Condorcet
extensions, including Copeland, respect Condorcet’s principle by choosing the alterna-
tive majority-preferred to each other alternative—the Condorcet winner—whenever it
exists; majority cycles mean that it might not exist. Scoring rules (including Borda and
plurality) have each voter award points to the alternatives according to how highly they
rank them. Scoring run-offs eliminate lower-scoring alternatives sequentially, until a
surviving alternative exceeds some threshold of acceptance (or until only one survives).
Fishburn’s classification, in Section 2.5, provides insight into how these rules differ in
the type of information (extracted from the ballots) that they actually use.

The reinforcement (aka consistency) axiom and various monotonicity axioms of
Section 2.6 are different from those in Section 2.3, in that they discriminate among these
three classes of rules. Our approach to monotonicity properties is to view them as limited
forms of strategyproofness. Theorems in this section illustrate several major themes:
� It is best to avoid love at first sight with some voting rule, based on an appearance

of fairness in its method for calculating winners. The law of unintended consequences
applies . . . so wait until you see which axioms it satisfies.

� There is a trade-off among axioms: asking for one may rule out another.
� There is a trade-off between desirable axioms and decisiveness: some rules manage to

satisfy difficult criteria by having lots of ties.
� The split between Condorcet extensions and scoring rules is fundamental: the philo-

sophical differences between Condorcet and de Borda endure.

In Section 2.7 we consider two rules initially defined using Kendall’s tau metric.
The first, suggested by John Kemeny,8 reconciles the apparent conflict between the

8 Peyton Young (1988) argues that Kemeny’s rule was first proposed by Condorcet.
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reinforcement axiom and respect for Condorcet’s principle, though the change in ballot
form weakens the implications of reinforcement. This rule shares, with Dodgson’s rule,
an important role in computational social choice, as seen in Chapters 4, 5, and 6.

Our detailed proof of the Gibbard-Satterthwaite Theorem is in Section 2.8. It is
followed, in Section 2.9, by results of Black and Sen showing that under certain
domain restrictions (limitations on allowable ballots) strategyproofness is possible.

Because of its different ballot form, the approval voting system is not generally
considered to be an SCF. Its practical and theoretical interest, however, would jus-
tify making an exception and including a brief look, in Section 2.10, at this system.
Moreover, if we relax the SCF notion by allowing voters to express indifference among
alternatives, approval voting becomes an SCF—in fact it coincides both with Borda and
with all Condorcet extensions, when these rules are suitably adapted to handle ballots
with many indifferences. The chapter ends with some brief discussion, in Section 2.11,
of the possible future of voting theory.

2.2 Social Choice Functions: Plurality, Copeland, and Borda

Voting takes place whenever a group of voters cast ballots, that are used as the basis
for a collective decision reached through the application of a voting rule. A variety
of voting contexts are possible, depending on the specified form of a ballot and of a
collective decision, and also on the interpretation we choose to make of these forms;
the term “voting rule” is generic, covering all possibilities. Our principal focus will be
on one context—that of social choice functions—which uses ranked ballots:

� N = {1, 2, . . . , n} is a finite set (of voters).
� A is a finite set of m alternatives (e.g., candidates for mayor), with m � 2.
� The ballot cast by voter i is a linear ordering �i of A: �i is transitive (if a �i b and

b �i c then a �i c, for all a, b, c ∈ A), complete (a �i b or b �i a, for all a �= b ∈ A),
reflexive (a �i a for all a ∈ A), and antisymmetric (if a �i b and b �i a, then a = b, for
all a, b ∈ A); L(A) denotes the set of all linear orderings for a given A. The antireflexive
version x � y means x � y holds and y � x fails.

� A profile P = (�1,�2, . . . ,�n) specifies such a ballot for each voter i ∈ N ; L(A)n

denotes the set of all such profiles for a given n, and L(A)<∞ stands for
⋃

n∈N L(A)n

(where N denotes the set of all natural numbers).

Such ballots are called preference rankings because of the favored interpretation:
x �i y expresses voter i’s (strict) preference for alternative x over alternative y.9 By
imposing antisymmetry we are making the simplifying assumption that individual
rankings are strict—no voter may express indifference to two alternatives. Alterna-
tively, we might allow weak preference rankings (aka pre-linear orderings) as ballots,
by dropping the antisymmetry requirement. We will use R to denote a profile of weak
preference rankings, R(A) to denote the set of all weak rankings of A, and R(A)n as
the set of all profiles of weak rankings for a given A and n.

9 It is common to state x �i y aloud as “voter i strictly prefers x to y,” but keep in mind that i’s sincere preferences
might differ from the binary relation �i expressed as i’s ballot.
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In practice, will often present a profile in tabular form, with each preference ranking
written vertically (in descending order of preference) and the number of voters casting
each ballot recorded on top. In profile P1 that follows, A = {a, b, c} with m = 3, and
of the n = 303 voters, 102 cast the ballot a � b � c :

102 101 100

a b c
b c b
c a a

While the table shows the number of voters who cast each ballot, it does not reveal their
individual identities (as a profile would); strictly speaking, P1 is a voting situation—a
function s: L(A) → N ∪ {0} assigning to each linear ordering the number of voters
with that order as ballot—rather than a profile. Each voting situation corresponds to
several profiles, but many voting rules are blind to the distinction between “profile”
and “voting situation,” so we will use the terms interchangeably.

A plurality ballot names a single, most-preferred alternative, and the plurality vot-
ing rule then selects, as the winner(s) of an election (aka the “social choice(s)”) the
alternative(s) with a plurality (greatest number) of votes. Alternately, we can identify a
ranking with a plurality ballot for the top-ranked alternative (while we ignore the rest
of the ranking). When we do this for P1, a is the unique plurality winner, or “social
choice” (although her 102 votes fall well short of a majority).

Much of the interest in voting theory arises from a widespread critique of plurality
voting; the winner can be enormously unpopular (because a plurality is quite different
from a majority). For example, with P1 it is difficult to see how a could win under any
reasonable rule that seriously made use of the second versus third place information
in the ballots; in fact, b wins under each one of the voting methods (that use ranked
ballots) discussed in the rest of this chapter.10

To make fuller use of the information in the ranking, consider profile P2:

102 101 100 1

a b c c
b c a b
c a b a

Note that 202 P2-voters rank a over b, while 102 rank b over a. The net preference

NetP (a > b) = |{j ∈ N | a �j b}| − |{j ∈ N | b �j a}| (2.1)

for a over b is 202 − 102 = 100 (for P = P2) and is strictly positive. Thus a beats
b in the pairwise majority sense, and we write a >μ b (or a >

μ
P2

b to identify the
profile). Here >μ is the strict pairwise majority relation, which is always complete
for an odd number of voters with strict preferences; x �μ y denotes the weak version

10 Plurality voting led to conservative Republican Alfonse D’Amato’s 1980 U.S. Senate win in New York (a
predominantly liberal state), with 44.88% of the vote; liberal democrat Elizabeth Holtzmann and liberal
Republican incumbent Jacob Javits split the liberal vote (with 43.54% and 11.05%, respectively). This is not
the only real-world example resembling P1.
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a c

b

a

100 102

100 c

b

Figure 2.1. The pairwise majority tournament (left) and weighted version (right) for P2.

(NetP (x > y) � 0), and x =μ y stands for a pairwise majority tie (NetP (x > y) = 0).
Figure 2.1 (left) depicts >μ as a complete directed graph,11 or tournament, using x → y

to indicate x >μ y; the weighted version, on the right, labels x → y with NetP (x > y),
to obtain a weighted tournament.

Our next voting rule scores candidates according to their win-loss record in this
pairwise majority sense. We will define Copeland(x), the (symmetric) Copeland score
of an alternative x,12 as the difference

Copeland(x) = |{y ∈ A | x >μ y}| − |{y ∈ A | y >μ x}|. (2.2)

For P2 we have a >μ b and c >μ a, so that a’s Copeland score is 1 − 1 = 0. Similarly,
Copeland(b) = 0 and Copeland(c) = 0. The Copeland rule (Copeland, 1951) selects,
as the social choice, the alternative(s) with highest Copeland score. For P2, then,
Copeland declares a three-way tie, with {a, b, c} as the winning set.

Copeland rewards an alternative x for each pairwise victory x >μ y over an opponent
and punishes her for each defeat, but disregards the margins of victory or defeat. If
we weight such rewards and punishments by these margins, the resulting voting rule is
quite different.

Given a profile P , the symmetric Borda score of an alternative x is given by

Bordasym
P (x) =

∑
y∈A

NetP (x > y).13 (2.3)

The Borda rule (also called the Borda count; see Borda, 1781) selects as winner
the alternative(s) with the highest such score. For P2 the symmetric Borda scores of
alternatives a, b, c are 0,+2,−2 respectively, and the set of Borda winners is {b}.

The more common asymmetric Borda score for 3 alternatives is defined via the
vector of scoring weights (aka score vector) w = (2, 1, 0). Each voter awards 2 points
to her top-ranked alternative, 1 point to the next, and 0 to her least preferred, and
the asymmetric Borda score Bordaasym

P (x) is obtained by summing points awarded
to x by all voters. The two versions are affinely equivalent (see Footnote 12), with
Bordaasym

P (x) = n + 1
2 Bordasym

P (x), so they induce the same SCF.
If we sum points awarded via the symmetric score vector w = (+2, 0,−2) we

will replicate the (2.3) scores. With m alternatives the asymmetric score vector is

11 That is, >μ is complete as a relation, so that each edge occurs in exactly one of its two orientations (as is the
case when the number of voters is odd, and ballots are linear orders).

12 One commonly sees asymmetric forms of Copeland score, such as Cass.(x) = |{y ∈ A | x >μ y}| or
Cass.+(x) = |{y ∈ A | x >μ y}| + 1

2 |{y ∈ A | x =μ y}|. It is easy to see that Copeland(x) and Cass.+(x)
are affinely equivalent as scores; there is a positive affine transform S �→ αS + β (where α > 0 and β are
real number constants) that carries Copeland(x) to Cass.+(x); it follows that they always choose the same
winners. Note that Cass. can differ from these two, for example when there are three alternatives satisfying
a >μ b >μ c =μ a.

13 We will reconcile this nonstandard definition of Borda score with the standard version shortly.



2 .2 social choice functions: plurality, copeland, and borda 29

w = (m − 1, m − 2, m − 3, . . . , 0); the symmetric version w = (m − 1, m − 3, m −
5, . . . ,−(m − 1)) replicates the scores from (2.3).14 An advantage of the symmet-
ric approach embodied by (2.1), (2.2), and (2.3) is that it is well-defined for pro-
files of weak preferences, yielding plausible extensions of the Borda and Copeland
rules.15

As these examples suggest, our interest lies mainly with voting rules that take profiles
of strict preferences as inputs, and return one alternative (the winner) or several (in the
event of a tie). Let C(X) denote the set of all nonempty subsets of a set X. Then:

Definition 2.1. A social choice function, or SCF, is a map f : L(A)n → C(A) that
returns a nonempty set of alternatives for each profile of strict preferences. If |f (P )| = 1
then f is single valued on P (and we sometimes write f (P ) = x instead of f (P ) =
{x}). A resolute SCF is one with no ties: it is single valued on all profiles.16

We will also be interested in SCFs with restricted domain—voting rules that fit the
definition, except that they are defined only on some proper subset of L(A)n. Definition
2.1 associates each SCF with a single choice of N : these are fixed electorate SCFs;
for variable electorate SCFs, substitute L(A)<∞ for L(A)n.17 The rest of this chapter
presumes a fixed electorate, except where explicitly noted otherwise.

Note that for the plurality, Copeland, and Borda SCFs the assignment of numerical
scores does more than just select the socially most desirable alternative—it induces a
“social ranking” in which one alternative is ranked over another when it has a higher
score. Tied scores are possible, so this is a “weak” ranking in R(A). Many social choice
functions use mechanisms that yield a weak ranking of all alternatives, and so fit the
following definition:

Definition 2.2. A social welfare function, or SWF, is a map f : L(A)n → R(A)
that returns a weak ranking of the set of alternatives for each profile of strict
preferences.18

A Taste of Strategic Manipulation

Do these rules give voters an incentive, on occasion, to cast insincere ballots? Consider
Ali, one of the two a � b � c � d � e voters of profile P3 (see later). Under Copeland,
he is about to see his least preferred alternative win: e’s (symmetric) Copeland score is
2, b’s is −2, and the other scores are each 0. If Ali misrepresents his sincere preferences
by completely reversing his ballot ranking, the Copeland winner shifts to d—which he
prefers—with a score of 4, the maximum possible.

14 Any two scoring vectors of form w = (c, c − d, c − 2d, . . . , c − (m − 1)d), d > 0 have affinely equivalent
scoring weights, yielding affinely equivalent total scores for the alternatives. Thus, the weak ordering of
alternatives induced by these scores is the same.

15 See last part of Section 2.10, including footnotes.
16 Some authors reserve “SCF” for the resolute case, and use social choice correspondence (SCC) when multiple

winners are allowed.
17 The fixed/variable distinction is often suppressed; Borda and Copeland fit both contexts, for example.
18 Domains R(A)n and R(A)<∞ are also considered for SCFs and SWFs.
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2 3 2

e d a
c e b
a b c
d c d
b a e

Definition 2.3. An SCF f is single voter manipulable if for some pair P , P ′ of profiles
on which f is single valued, and voter i with �′

j =�j for all j �= i, f (P ′) �i f (P );
f is single voter strategyproof if it is not single voter manipulable.

We interpret �i (in Definition 2.3) as representing voter i’s sincere ranking; by switch-
ing from �i to the insincere ballot �′

i voter i can change the winning alternative to one
that, according to her sincere ballot, she strictly prefers.

Notice that for each pair of alternatives, Ali’s reversed ballot of e � d � c � b � a

misrepresents which of the two he actually prefers. Under Borda, Ali alone can still
manipulate profile P3, but not by completely reversing his ranking.19 Instead, by lifting
d to the top (casting ballot d � a � b � c � e) Ali can get d to displace e, as earner
of the uniquely highest Borda score.

Plurality voting is not single voter manipulable; any one voter preferring y to the
unique plurality winner x does not top-rank x on her sincere ballot, so she cannot lower
x’s score. At best she can raise y’s plurality score to a tie with x’s. However, if the two
e � c � a � b � d voters of P3 both switch to a � . . . the former plurality winner d

will be replaced by a, which they prefer. The example suggests that for rules with ties,
single voter manipulability is an inappropriate test—we need to ban ties, or deal with
them, and we touch on both routes in Section 2.3.

2.3 Axioms I: Anonymity, Neutrality, and the Pareto Property

A variety of interesting SCFs have been proposed, often based on mechanisms that
seem to calculate the winner in an intuitively “fair” way. Experience suggests, however,
that mechanisms may have unintended consequences that undercut their initial appeal.
As a result, scholars have come to distrust arguments based solely on the intuitive
appeal of an underlying mechanism20 for calculating winners. They rely instead on
axioms—precisely defined properties of voting rules as functions (phrased without
referring to a particular mechanism). Axioms often have normative content, meaning
that they express, in some precise way, an intuitively appealing behavior we would like
our voting rules to satisfy (such as a form of fairness).

As applied to the theory of voting, the axiomatic method identifies interesting voting
rules, formulates intuitively appealing or useful axioms, and proves theorems showing
which rules satisfy which axioms. Ideally, such theorems characterize a class S of

19 The example thus shows that Copeland can be manipulated via complete reversal. Borda, on the other hand,
can never be manipulated in this way—see later discussion of half-way monotonicity in Section 2.6.

20 As we already glimpsed in the case of the Borda SCF, a function may be computable via a variety of mechanisms,
not all having the same intuitive appeal. Which of them should determine the intuitive appeal of the common
function they compute? This is a second reason to be cautious when passing judgment as to the fairness of a
voting rule based on its mechanism alone.
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voting rules via a set A of axioms, by proving that S contains exactly those rules
satisfying all axioms in A. Such theorems may uniquely characterize one rule in terms
of its properties (when S is a singleton), or demonstrate the impossibility of satisfying
all properties of A (by showing S to be empty). In fact, impossibilities are among the
most consequential results in the field, for it turns out that axioms also have unintended
consequences . . . as when one seemingly reasonable axiom rules out any hope of
satisfying some other one.

Axioms for SCFs can be loosely sorted into three groups. The first group represent
minimal demands. These axioms are absolutely required (for some contexts) and plenty
of SCFs satisfy them (including plurality, Borda, and Copeland). There is little cost,
then, to requiring them and they seem, as well, to offer less scope for unintended
consequences, so they tend to be seen as uncontroversial.

In this section we discuss five axioms from the first group. In Section 2.6 we consider
a second group of axioms, of middling strength—they are satisfied by some interesting
SCFs, but requiring any one of these axioms would have a high cost: some very
attractive rules, and some of the other axioms from the same group, would be ruled out.
These axioms are the most controversial; your favorite voting rule may violate some
axiom from this group, and be seen as illegitimate by anyone who finds that axiom to
be compelling. A third group of axioms include strategyproofness and IIA, and these
are the strongest, in that they tend to rule out all reasonable voting rules. Of course
these axioms are associated with some controversy, in terms of how one interprets the
corresponding impossibilities—does Arrow’s Theorem really say that democracy is
impossible? Or does a closer look at IIA suggest that it is less compelling than might
first appear? But there is no controversy over whether or not to impose any of these
axioms when choosing an SCF—the cost is too high.21

Definition 2.4. An SCF f is anonymous if each pair of voters play interchangeable
roles: f (P ) = f (P �) holds whenever a profile P � is obtained from another P by
swapping the ballots cast by some two voters i and j (��

i=�j , ��
j=�i , and ��

k=�k

for all k �= i, j );22 f is dictatorial if some voter i acts as dictator, meaning f (P )
coincides with i’s top-ranked alternative, for every profile P .

Anonymity is a very strong form of equal treatment of voters, and nondictatoriality
serves as a particularly weak version of anonymity.

Definition 2.5. An SCF f is neutral if each pair of alternatives are interchangeable in
the following sense: whenever a profile P † is obtained from another P by swapping the
positions of the two alternatives x and y in every ballot, the outcome f (P †) is obtained

21 We should qualify, in at least two respects, the picture painted here. First, there are important strands of research
that are not axiomatic—they do not measure the success or failure of some SCF to satisfy some property in
black-or-white terms. These include empirical and experimental methods in the political realm (e.g., van der
Straeten et al., 2013), as well as enumerations and simulations (e.g., Kelly, 1993; Aleskerov and Kurbanov,
1999). Second, while strategyproofness may be impractical as a requirement for SCFs, it can be achieved in
some collective decision-making contexts other than voting (Moulin, 1988a). Moreover, SCFs can achieve
strategyproofness when their domains are limited appropriately, as we see in Section 2.9.

22 Transpositions τij of pairs generate the full permutation group on N , so anonymity demands that f be blind
to every permutation of the voters; informally, “f is invariant under renaming voters.” Anonymous SCFs are
those that use only the information in the voting situation derived from a profile P (which represents P ’s
equivalence class under permutations of voters).
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from f (P ) via a similar swap;23 f is imposed if some alternative x is unelectable: for
no profile P does f (P ) = {x}.
Neutrality is a very strong form of equal treatment of alternatives, and nonimposition
serves as a particularly weak version of neutrality.

So far, nothing we have said rules out the following “reverse Borda” SCF: elect
the alternative(s) having the lowest Borda score. Given a profile P we will say that
alternative x Pareto dominates alternative y if every voter ranks x over y; y is Pareto
dominated if such an x exists.

Definition 2.6 (Pareto Principle; Pareto, 1919). An SCF f is Pareto (aka Pareto
optimal, or Paretian) if f (P ) never contains a Pareto dominated alternative.

Plurality, Copeland, and Borda are clearly anonymous, neutral, and Pareto (while
reverse Borda is not Pareto). Note also that Pareto implies nonimposition.

Should a voting rule be immediately rejected if it fails anonymity, or neutrality, or
Pareto optimality? Yes, in some voting contexts—but not in others. Legislative voting
rules are often neither anonymous nor neutral,24 and if our goal, for example, were to
elect a committee rather than an individual, we might wish to consider the rule that
adds alternatives having progressively lower Copeland scores as winners, until some
minimal committee size is achieved; such a rule is not Pareto.25

These three axioms, while uncontroversial, do illustrate the law of unintended con-
sequences, in the form of a (small) impossibility theorem. Consider profile P4 for
n = 3k voters and m � 3 alternatives (with A = {a, b, c, x1, . . . , xm−3}:

k k k

a c b
b a c
c b a
x1 x1 x1

...
...

...

Symmetries imply that every neutral, anonymous, and Pareto SCF f satisfies f (P4) =
{a, b, c}.26 A similar construction forces tied outcomes whenever some factor r of n

satisfies 1 < r � m (with r = 3 for P4), establishing

23 That is, f (P †) is the image of f (P ) under τxy . As with anonymity, transpositions may be replaced with
arbitrary permutations. However, neutrality is not an invariance property, so the analogy with anonymity is
imperfect; we cannot directly apply f to equivalence classes of profiles under permutations of alternatives . . .
but for a way around this see Eğeciouglu and Giritligil (2013).

24 In a legislative voting system, representatives vote for or against proposals (such as adding a new law) and the
set of alternatives might be A = {yes, no} (or {yes, no, abstain}, or . . . ). It is fairly common for the voting
rule to have a deliberate bias in favor of the status quo (“no, do not alter the current body of law by adding
a new one”), which may be quite strong when voting on constitutional change. Such rules are not neutral. In
bicameral legislatures (wherein passage of a new law requires approval of both chambers) a legislator from
one of the chambers is not interchangeable with one from the other, so the rule is not anonymous.

25 While Definition 2.6 fails for this rule, arguably it is a different version of Pareto that should be applied
here—one for which the committees are considered to be the alternatives.

26 Suppose f (P4) = X. As f is Pareto, X ⊆ {a, b, c}, so assume w.l.o.g. a ∈ X. The transposition τab , coupled
with a suitable permutation of the voters, both fixes P4 and carries X to X’s image under τab . Thus, b ∈ X.
Similarly, c ∈ X.
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Proposition 2.1 (Moulin, 1983). Let m � 2 be the number of alternatives and n be
the number of voters. If n is divisible by any integer r with 1 < r � m, then no neutral,
anonymous, and Pareto SCF is resolute (single-valued).27

Tied outcomes make life complicated in terms of real applications (we only want
one mayor) and of theory: how can we decide whether a strategically cast ballot results
in a successful manipulation, if both it and the sincere ballot yield several winning
alternatives? The four main approaches taken in the literature28 are as follows:

1. Use a fixed ordering of the alternatives (or a designated voter) to break all ties.
2. Use a randomized mechanism to break all ties.
3. Deal with set-valued outcomes directly.
4. Ignore or suppress the issue (assume no ties exist).

The first approach breaks neutrality (or anonymity, if using a designated voter).
The second requires that we consider “indeterminate” voting rules, along with what it
means to manipulate one. With approach 3, adapting the definitions (in Section 2.6) of
monotonicity properties and strategyproofness might seem to require choosing a “set
extension principle” (which extends preferences over individual alternatives to ones
over sets), although alternative approaches exist.29

We can agree that approach 4 is quite reasonable as a preliminary, simplifying
assumption when first exploring some new concept. As to the importance of (or interest
in) a subsequent careful reconsideration of that concept in light of ties, opinions differ.

2.4 Voting Rules I: Condorcet Extensions, Scoring Rules,
and Run-Offs

When there are only two alternatives, the distinction between a preference ranking and
a plurality ballot disappears, and one SCF in particular jumps to mind. Majority rule
declares the winner to be the alternative that gets strictly more votes, with a two-way
tie when the alternatives split the vote evenly. Majority rule is neutral and anonymous,
and is resolute if the number of voters is odd. A characterization, however, requires an
additional element of monotonicity (if x is a winner and one voter switches her ballot
from y to x, then x remains a winner) or of positive responsiveness (if x is a winner
and one voter switches her ballot from y to x, then x becomes the unique winner).
Monotonicity excludes certain perverse rules (e.g., elect whichever alternative gets an
odd number of votes) while positive responsiveness additionally breaks all ties that are

27 If every factor of n exceeds m, then a resolute SCF can be neutral, anonymous, and Pareto. See later discussion
immediately after Theorem 2.7.

28 For a fifth approach, see Footnote 66. In real world political elections with large numbers of voters, election
returns may be too “noisy” to declare an exact tie with certainty, and very close elections are sometimes settled
in court. However, some countries have election laws that mandate coin tosses to settle ties; in 2013 the mayoral
election in San Teodoro, the Philipines, was settled this way. The French electoral code specifies that ties be
broken in favor of the older candidate (consequently, parties favor older candidates in some elections).

29 For more on these approaches—which are less different than may first appear—see Gärdenfors (1976),
Gärdenfors (1979), Barberà et al. (2001), Barberà et al. (2004), Brandt and Brill (2011), Sanver and Zwicker
(2012).
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not “knife-edge” (excluding, for example, the rule electing all alternatives getting at
least one third of the vote).

Proposition 2.2 (May’s Theorem; May, 1952). For two alternatives and an odd
number of voters, majority rule is the unique resolute, anonymous, neutral, and mono-
tonic SCF. For two alternatives and any number of voters, it is the unique anonymous,
neutral, and positively responsive SCF.

Proof. It is evident that majority rule satisfies these properties. For uniqueness, note
that with any other rule we may choose a profile for which x wins with fewer votes than
y. Switch enough ballots from y to x to exactly reverse these vote totals. Monotonicity
implies x still wins, but neutrality + anonymity say y wins. Similarly, if x ties y, yet
has fewer votes, positive responsiveness contradicts neutrality + anonymity.

It is not unreasonable to interpret Proposition 2.2 as saying that majority rule is the
best voting rule for two alternatives (in certain contexts, anyway). So, which SCFs can
claim the mantle as “majority rule for 3 or more alternatives”? On one hand, each of
the SCFs we have considered so far (along with a host of others) reduces to majority
rule for the case m = 2, and in quite a natural way. So one might argue that most rules
can claim this mantle. On the other hand, for SCFs defined on the “full domain” (all
of L(A)n) there is no completely satisfactory extension of May’s Theorem to the case
of 3 or more alternatives.30 In this sense, then, no voting method wins the mantle.
Nonetheless, one rule has long claimed a special place as most deserving:

Definition 2.7. A Condorcet winner for a profile P is an alternative x that defeats
every other alternative in the strict pairwise majority sense: x >

μ
P y for all y �= x.31

Pairwise Majority Rule, henceforth PMR, declares the winning alternative to be the
Condorcet winner . . . and is undefined when a profile has no Condorcet winner.

When a Condorcet winner exists, it is unique. With three or more alternatives,
however, majority cycles can rule them out. The cycle a >μ b, b >μ c, and c >μ a

of profile P2 is depicted in Figure 2.1; no PMR winner exists. Such a cycle is also
known as Condorcet’s voting paradox, and corresponds to intransitivity of the relation
>μ. Cycles represent a disturbing type of instability. Imagine a version with 10 voters
and 10 alternatives,32 wherein any alternative x selected as winner would prompt 90%
of the voters to agree on an alternative y they all prefer to x and to approve, by an
overwhelming margin, a referendum replacing x with y. A different 90% would then
replace y with z, and so on. One cannot overstate the importance of majority cycles to
the theory of voting—they lie behind a number of the most important results.

A significant literature is concerned with calculating the probability that a Condorcet
winner exists (or that �μ is transitive), or the Condorcet efficiency of a voting rule—the
conditional probability that the rule elects the Condorcet winner, given that a Condorcet

30 Such extensions do exist in voting contexts other than SCFs (see Freixas and Zwicker (2009), for example)
and also for SCFs on restricted domains (as we will see in a moment).

31 Some prefer strong Condorcet winner for this notion; a weak Condorcet winner satisfies x �μ
P y for all y �= x.

32 Voter 1 ranks a on top, with b through j following in alphabetical order; each subsequent ballot is derived
from its predecessor by “vertical rotation”: lift the bottom-ranked alternative to the top, and drop each of the
others down by one spot.
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winner exists—or with identifying the most Condorcet efficient rule (from among
all scoring rules, for example).33 The answers depend on the underlying probability
distribution over profiles.34

PMR does not always declare a winner, so it is an SCF with restricted domain. Our
interest here is with full SCFs that agree with PMR on its domain:

Definition 2.8. LetDCondorcet denote the Condorcet domain—the set of all profiles P for
which a Condorcet winner exists. An SCF f is a Condorcet extension (or is Condorcet
consistent) if f selects the Condorcet winner alone, for each profile P ∈ DCondorcet.

Note that the monotonicity hypothesis in May’s Theorem is equivalent to strategy-
proofness (because m = 2). Thus if we are willing to consider SCFs whose domain
is restricted to DCondorcet, the following result (see Campbell and Kelly, 2003) can
plausibly claim to be “May’s Theorem for three or more alternatives”:

Theorem 2.3 (Campbell-Kelly Theorem).35 Consider SCFs with domain DCondorcet

for three or more alternatives. Pairwise Majority Rule is resolute, anonymous, neutral,
and strategyproof; for an odd number of voters, it is the unique such rule.36

Proof. Clearly PMR, as restricted to DCondorcet, is resolute, neutral, and anonymous.
To see that it is strategyproof (Definition 2.3), assume that voter i’s (sincere) ballot has
y �i x with x being the Condorcet winner. Then replacing �i with some alternative
(insincere) ballot cannot reverse x >μ y, and thus cannot make y the new Condorcet
winner. We postpone the proof of uniqueness to Section 2.8.

Some find Condorcet consistency so compelling that they view it as absolutely
necessary when choosing a voting rule, but this view is not universal. We treat it here
as a member of the second group—plausible axioms that cannot all be satisfied at once.
Borda can fail to elect an alternative who is top-ranked by a majority of the voters, and
in this sense fails rather badly to be a Condorcet extension.37 On the other hand, the
Borda score of a Condorcet winner is always strictly above the average Borda score of
all alternatives.38

33 See Gehrlein (2006), Saari (2009), Favardin et al. (2002), Cervone et al. (2005), for example.
34 The two most prominent distributions studied are “IC” (Impartial Culture—voters choose linear orderings

randomly and independently, with probability 1
m! for each ordering) and “IAC” (Impartial Anonymous Cul-

ture—each voting situation is equiprobable); see Berg (1985), Gehrlein (2002). But others have been considered,
e.g., in Regenwetter et al. (2006) and Eğeciouglu and Giritligil (2013).

35 Campbell and Kelly’s result (Theorem 1 in Campbell and Kelly, 2003) is stronger; it assumes nonimposition
and nondictatoriality in place of anonymity and neutrality. Another version of their theorem assumes group
strategyproofness and does not require odd n.

36 In applying the definition of strategyproofness to a function having this restricted domain we require that the
profiles P and P ′ (arising respectively before, and after, voter i switches to �′

i from her sincere ballot �i ) both
lie in DCondorcet .

37 For example, this happens if three of five voters rank a � b � c while two rank b � c � a. For this reason,
some describe Borda as a compromise that takes minority views into account, even when they are opposed by
a majority who completely agree with one another.

38 The symmetric Borda score (2.3) of a Condorcet winner is a sum of strictly positive numbers, whereas the
average symmetric Borda score is always zero. Similarly, a Condorcet loser—an x for which y >μ x for each
alternative y �= x—is assigned a negative score, which is strictly below average. In particular, a Borda winner
is never a Condorcet loser.
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The Copeland score of a Condorcet winner is m − 1, and uniquely highest, so
Copeland is a Condorcet extension. Other well-known Condorcet extensions include:

� Simpson Rule (aka Simpson-Kramer, minimax): Let min{NetP (x > y) | y ∈ A \ {x}}
give the (symmetric) Simpson score SimpsonP (x) of an alternative x. The Simpson
winner is the alternative(s) with highest Simpson score.39

� Top Cycle: If there is a chain x = x1 �μ x2 �μ · · · �μ xj = y from alternative x to y

we will write x �μ
ᵀ y; �μ

ᵀ is the transitive closure of the weak pairwise majority relation
�μ. An alternative x is in the top cycle if x �μ

ᵀ y for each alternative y �= x, and the
Top Cycle SCF declares each such x to be a winner. Equivalently, the top cycle is the
uniquely smallest dominant set (where a set X of alternatives is dominant if x >μ y for
each x ∈ X and y /∈ X).40

� Sequential Majority Comparison (SMC): Fix some enumeration {x1, x2, . . . , xm} of the
alternatives. The winner of round 1 is x1; the winner of round i + 1 is the winner w of
round i, if w �μ xi+1, and is xi+1, if xi+1 >μ w; and the ultimate winner is the winner
of round m.41

To break the three-way Copeland tie of profile P2, how many voters would need to
switch their vote? As the answer suggests, Copeland is highly indecisive as a voting
rule, yielding many ties. Simpson has an advantage over Copeland in this respect. Top
Cycle is even less decisive than Copeland—in fact, the Copeland winners are always
within the top cycle, and the top cycle can include Pareto-dominated alternatives.
Every SMC winner is in the top cycle, and SMC can likewise elect a Pareto-dominated
alternative.

Sequential Majority Comparison figures prominently in Chapter 19 and has also
been called sequential pairwise majority. Although we use “sequential” here to refer
to a linear sequence, one can also use a partial order—a tree—to dictate the order of
majority comparisons between pairs of alternatives; see Horan (2013), for example. In
its dependence on the enumeration, SMC may initially seem a rather odd rule, and of
course its failure to be neutral argues against its use in electing the mayor of a town
(for example). But legislative voting bodies are often limited by their constitutions to
making binary decisions via majority rule, so if they wish to consider more than one
alternative to the current body of law (such as an immigration reform bill with multiple
versions arising from a number of possible amendments),42 there is little alternative to
employing something resembling SMC.

Scoring rules form a second large class of related SCFs:

39 Alternately, Simpson winners minimize max{NetP (y > x) | y ∈ A \ {x}}, whence the term “minimax.”
40 A strictly weaker graph-theoretic notion has a similar name: X is a dominating set if for each vertex y /∈ X there

exists an x ∈ X with x → y. A set X of alternatives that is dominating for the pairwise majority tournament
need not be dominant.

41 Banks (1985) assumes sophisticated voting (wherein voters “take into account the optimal behavior of others
in solving their own optimal decisions”) and characterizes the set of SMC winners arising from all possible
enumerations, now known as the Banks set.

42 In this case, the official with agenda setting power gets to choose the order in which amendments are considered,
and may wield considerable influence over the final form of the legislation.
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Definition 2.9. A score vector w = (w1, w2, . . . , wm) consists of real number scoring
weights; w is proper if w1 � w2 � · · · � wm−1 � wm and w1 > wm. Any score vector
induces a scoring rule, in which each voter awards w1 points to their top-ranked
alternative, w2 points to their second-ranked, and so on. All points awarded to a given
alternative are summed, and the winner is the alternative(s) with greatest sum.43 A
proper scoring rule is one induced by a proper score vector.

In addition to the Borda count, with w = (m − 1, m − 2, . . . , 1, 0), scoring rules
include:

� Plurality: w = (1, 0, 0, . . . , 0)
� Anti-plurality: w = (1, 1, 1, . . . , 1, 0)
� k-Approval: w = (1, 1, 1, . . . , 1, 0, 0, . . . , 0) (with k 1s)
� Formula One Championship: w = (25, 18, 15, 12, 10, 8, 6, 4, 2, 1, 0, . . . , 0)44

A third class of multiround rules is based on the idea that less popular alternatives in
one round be dropped from all ballots in the next round (with each ballot then ranking
the remaining alternatives in the same relative order that they had in the initial version of
that ballot); these rounds continue until some surviving alternative achieves majority
support (or until only one is left standing). The best-known of these has multiple
names—Alternative Vote, Hare (Hare, 1859), Single Transferable Vote (STV), Instant
Run-off Voting (IRV), and Ranked Choice Voting (RCV)—and proceeds as follows: at
each stage, the alternative with lowest plurality score is dropped from all ballots, and
at the first stage for which some alternative x sits atop a majority of the ballots, x is
declared the winner.45

Related rules include the following:

� Plurality Run-off : If some alternative is top ranked by a majority of the voters, it wins
in round 1; otherwise, round 2 consists of majority rule applied to the two alternatives
with highest plurality score in round 1.

� Baldwin: In each round, the alternative with lowest Borda score is dropped. The final
alternative eliminated is the winner (Baldwin, 1926).

� Nanson: In each round, drop all alternatives with below-average Borda score. The final
alternative eliminated is the winner (Nanson, 1882; Niou, 1987).

43 Alternately a SWF can be defined by ranking alternatives in descending order of point totals.
44 Since 2010, a driver gets 25 points for each Formula One Grand Prix race they win, 18 points for each second

place, etc., and the World Championship goes to the driver with greatest point total for that season. In effect,
the races serve as voters. Related rules have been used since 1950, but in some earlier versions a driver was
awarded points for his or her top j finishes only.

45 The vexing matter of how to deal with ties for lowest plurality score is often ignored, perhaps because for large,
political elections uncertainties in counting (and in classifying ballots as valid or not) leave the matter moot.
One method suggested (Taylor and Pacelli, 2006) is to drop all alternatives sharing a lowest plurality score. If
each of k � 3 surviving alternatives garners the same plurality score, this method eliminates all of them, with
no alternative ever achieving majority support (unless one eliminates the stop-when-there-is-a-majority rule
and instead declares, as winners, all alternatives eliminated in the final round). The second (Conitzer et al.,
2009b) chooses at each stage one alternative to eliminate, among those achieving minimal plurality score, but
considers all possible sequences of such choices, identifying the winning alternative for each sequence, and
declaring a tie among them.
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STV is perhaps the most popular rule among electoral reform societies.46 Supporters
argue that voters do not “waste” their vote when their top choice is unpopular—instead,
it is transferred to the next choice on their ballot. Plurality run-off is a bit different
in being limited to two rounds at most, but agrees with STV for three alternatives.
Neither of these systems is a Condorcet extension.47,48 Both Baldwin and Nanson are
Condorcet extensions, as the elimination process never discards a Condorcet winner; for
the explanation see Footnote 38, which also shows that Nanson discards any Condorcet
loser in round one.

2.5 An Informational Basis for Voting Rules: Fishburn’s
Classification

Figure 2.1 (left) depicts the pairwise majority tournament for profile P2—the complete
directed graph induced by >μ (see Footnote 11). To calculate a winner, the Copeland,
Top Cycle, and Sequential Majority Comparison SCFs need only the information from
this tournament. Peter Fishburn (1977) classified such SCFs as C1 functions; loosely
speaking, such SCFs correspond to tournament solutions as studied in Chapter 3.49

Borda and Simpson need the additional information in the weighted tournament—
the net preferences50 of Figure 2.1 (right)—and are classified in C2. Imagine that each
voter’s ranking �i is represented as a set of ordered pairs in the usual way, and a union
(counting multiplicity) of all rankings from the profile is taken. Ordered pairs in this
multiset are sorted into bins according to which two alternatives are in the pair. Then
C2 functions rely only on the information represented by these bins; what is lost is

46 In the United Kingdom a 2011 referendum proposing a switch from plurality voting to STV lost when almost
68% voted No. In the United States the FairVote organization advocates STV (under the IRV name), and
has been successful in some locales. For example, the city of Burlington, Vermont, adopted IRV for its 2006
mayoral election and later repealed it, when in 2009 the IRV winner (Kiss) differed from the plurality winner
(Wright). One analysis argued that the Condorcet winner was a third candidate (Montroll), and that the “no
show” paradox (discussed after Proposition 2.6) had applied. See http://rangevoting.org/Burlington.html and
http://vermontdailybriefing.com/?p=1215.

47 Consider any profile for 4 alternatives wherein alternative a is ranked second by all voters, with each of the
other alternatives ranked first by around one third of the voters. The Condorcet winner a is eliminated in the
first round.

48 A version of plurality run-off is used for presidential elections in France, Austria , . . . indeed, in more countries
than use plurality (see Blais et al., 1997); voters do not submit ranked ballots, but instead return to the ballot
box if a second round is required. The method attracted international attention in the 2002 French election,
when the far-right candidate Le Pen bested the Socialist Jospin in round one, and ran against the incumbent
Chirac in round two (which Chirac won with over 82% of the vote, after having captured under 20% in round
one). Reportedly, voters with allegiance to small left-wing parties chose to vote for these parties in round
one, assuming that Jospin would survive to round two, when they would vote for him. In round one of the
2012 election Francois Bayrou came in fifth, with 11% of the vote, yet data suggests that he may have been a
Condorcet winner (van der Straeten et al., 2013); there is some uncertainty because the conclusion is sensitive
to the method used to control sample bias (private communication of the authors).

49 Unlike an SCF, a tournament solution takes as input only the tournament itself (rather than an underlying
profile that may have induced that tournament). Also, a tournament solution f is often assumed to satisfy the
conditions corresponding to neutrality and Condorcet extension (for the C1 SCF f � induced by f ).

50 Alternately, for each two alternatives draw edges in both directions, labeling the x → y edge with gross
preference (absolute number of voters ranking x over y). In a fixed electorate context one knows the number
n of voters, so the information in these labels is equivalent to the net preferences.

http://rangevoting.org/Burlington.html
http://vermontdailybriefing.com/?p=1215
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Figure 2.2. A basic cocycle (left) and a basic cycle (right). The −1 on edge d → c indicates
that its pre-assigned orientation opposes the cycle’s clockwise direction.

whether a given (a, b) pair came from a ranking with (b, c) or one with (c, b). Social
choice functions in C2 correspond (speaking as loosely as in the previous paragraph)
to weighted tournament solutions—the topic of Chapter 4.

Any SCFs not in C1 or C2 are C3. In a sense, C3 SCFs need “more” information;
the bins of atomized pairs are insufficient. But plurality is in C3, and one should balk
at a suggestion that Borda needs less information than plurality. Borda, for example,
needs all the information in the rank vector ρ(x) = (ρ1(x), ρ2(x), . . . , ρm(x)) of an
alternative x (where ρj (x) denotes the number of voters who rank x in j th position),
while plurality does not. Thus while Fishburn’s classification is a particularly useful
approach to informational bases, it is not the only such approach.

A further refinement of C2 is based on the orthogonal decomposition approaches of
Zwicker (1991) and Saari (1995). Any weighted tournament can be viewed as a vector v
whose scalar components are the edge weights. As such, v has a unique decomposition
v = vcycle + vcocycle with vcycle ⊥ vcocycle, wherein vcycle is a linear combination of basic
cycles and vcocycle is a linear combination of basic cocycles—see Figure 2.2 (for the
case of 4 alternatives).

We may interpret vcycle as the underlying tendency toward a majority cycle, while
vcocycle contains exactly the same information as the list of symmetric Borda scores.51,52

Condorcet extensions use the information in both components, while the Borda count
discards vcycle and imposes a version of pairwise majority rule based on vcocycle alone.53

Whether the ranking according to PMR (the true version, based on both components)
agrees with the ranking induced by Borda score, or differs from it, or fails to be a
ranking at all, depends on the relative balance (speaking loosely) between vcocycle and
vcycle.

2.6 Axioms II: Reinforcement and Monotonicity Properties

We consider axioms that distinguish among the three classes of rules introduced in the
previous section. More than two hundred years ago Condorcet and Borda disagreed

51 This same decomposition serves as a basis for Kirchoff’s laws, where the edge weights represent flow of
electric current (rather than flow of net preference, as in our setting); a basic cocycle is a sink or source of
current (such as a battery) while a simple cycle is a “loop current.”

52 The asymmetric scores encode one additional piece of information: the number of voters.
53 The map that discards vcycle is an orthogonal projection, and coincides with the boundary map of homology

theory in the one-dimensional case. The version of PMR based on vcocycle alone satisfies a strong, quantitative
transitivity property.
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over the best way to aggregate preferences, and the theory sketched here suggests—to
a surprising degree—that their split in point-of-view is of fundamental importance.

Each axiom in this section concerns the way an SCF responds to profile changes,
which can be of two kinds:

� One or more voters modify their ballots.
� One or more voters are added to a profile.

The second type requires the variable electorate context, and may be formalized in
terms of voting situations: for s, t : L(A) → Z+, the pointwise sum s + t represents
the effect of pooling disjoint electorates corresponding to s and t while ks (k ∈ N)
replaces each individual voter of s with k “clones.”54

Reinforcement (aka Consistency) requires that the common winning alternatives
chosen by two disjoint sets of voters (assuming common winners exist) be exactly
those chosen by the union of these sets; precisely, an SCF f is reinforcing if

f (s) ∩ f (t) �= ∅ ⇒ f (s + t) = f (s) ∩ f (t) (2.4)

for all voting situations s and t . Homogeneity, a weak form, demands f (ks) = f (s)
for each k ∈ N; intermediate forms include f (s) = f (t) ⇒ f (s + t) = f (s) = f (t).

Scoring rules are reinforcing, for if some alternative x has highest score for s and
t both, then x’s score for s + t (the sum of x’s s and t scores) must also be highest.
The same argument applies to the compound scoring rules, wherein any ties resulting
from a first score vector w1 may be broken by score differences arising from a second
such vector w2 (e.g., use plurality score to break ties among Borda winners), with a
possible third vector used to break ties that still remain, and so on; any finite number
j � 1 of score vectors may be used.55 In fact, reinforcement essentially characterizes
such rules:

Theorem 2.4 (Smith, 1973; Young, 1975). The anonymous, neutral, and reinforcing
SCFs are exactly the compound scoring rules.56

Proposition 2.5. All Condorcet extension SCFs for three or more alternatives violate
reinforcement.

Proof. If there are 3 alternatives,57 consider the voting situations s and t :

2 2 2
a c b

b a c

c b a

2 1
b a

a b

c c

54 Formally, (s + t)(�) = s(�) + t(�) and (ks)(�) = k(s(�)).
55 On a domain that is restricted by fixing an upper bound on the number of voters, every such compound rule is

equivalent to some simple scoring rule.
56 Moreover, the class of “simple” (non-compound) scoring rules may be characterized by adding one more

axiom, continuity (aka the Archimedean property), which asserts that for all voting situations s and t with
f (t) = {x}, there exist a k ∈ N such that f (s + j t) = {x} for all j � k.

57 If we additionally assume the Pareto property, extending this proof to the case of 4 or more alternatives is
straightforward. Without Pareto, the proof for m � 4 is more complicated.
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Let f be any Condorcet extension, and assume for the moment that b ∈ f (s). As b is t’s
Condorcet winner, f (t) = {b}. Reinforcement would demand f (s + t) = f (s) ∩ {b}
whence b ∈ f (s + t), but f (s + t) = {a}, as a is s + t’s Condorcet winner. A similar
contradiction results from assuming a ∈ f (s) (or c ∈ f (s)), using a suitably permuted
version of t .

A function f from the real numbers to the real numbers is monotonically increasing
if x � y ⇒ f (x) � f (y). In voting, a monotonicity property similarly asserts that a
change in the input of an SCF and the corresponding output change “point in the same
direction.”

We first consider a particular type of change to a ballot: if one preference ranking
�′ is obtained from another � by moving alternative x from under one or more
alternatives (in �) to over them (in �′), without changing the relative order of any
pair of alternatives that exclude x, then we say that �′ is obtained from � by lifting x

simply (and� is obtained from�′ by dropping x simply). Among various monotonicity
properties considered in the literature, the earliest, most widely studied is usually known
simply as monotonicity (Fishburn, 1982):

Definition 2.10. A resolute SCF f satisfies monotonicity (aka weak monotonicity) if
whenever a profile P is modified to P ′ by having one voter i switch �i to �′

i by lifting
the winning alternative x = f (P ) simply, f (P ′) = f (P ).

If we apply Definition 2.10 to an irresolute f , it only “bites” for profiles lacking ties.58

Given an SCF f based on maximizing some form of score, suppose we know that
lifting x simply never lowers x’s score or raises y’s score for y �= x. Then f must be
monotonic (and remains so if we use any fixed ordering of alternatives to break ties).
It follows that Copeland, Simpson, and all proper scoring rules are monotonic.59

Smith (1980) shows that every scoring run-off rule violates monotonicity. We show
this result for plurality run-off and STV, with the help of the following example:

6 4 5 2
a b c b

b c a a

c a b c

6 4 5 2
a b c a

b c a b

c a b c

When either of these rules is applied to the profile P5 above, c is eliminated in the first
round, whereupon a achieves a strict majority, and is sole winner. Let P6 be obtained
from P5 by having one of the two b � a � c voters lift a simply (over b) and P7 be
obtained from P5 by having the remaining b � a � c voter do the same. When either

58 It follows that this “resolute” version of monotonicity can be satisfied vacuously by any SCF that has been
modified by adding a tied alternative to the outcome for each profile. This suggests a need to find an appropriate
“irresolute” version—one that cannot be so easily fooled. Peleg (1981) suggested the following: after any simple
lift of a winning alternative x, x remains a winning alternative and no new winning alternatives are added.
Other authors propose irresolute versions that omit the italicized part of Peleg’s requirement—see Footnote 61
in this connection. Sanver and Zwicker (2012) argue for Peleg’s version based on a general methodology for
handling irresoluteness. Note also that by allowing the set of winners to change, Peleg’s version addresses a
possible critique of the resolute version—a requirement that the winning alternative not change at all seems
contrary to the spirit of our generic “corresponding output change” language.

59 Similarly, they satisfy the more stringent version due to Peleg (Footnote 58), as do SMC and Top Cycle.
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procedure is now run on P7, alternative b is eliminated first, whereupon c displaces a

as the new majority winner, with 9 of the 17 ballots.
If we used an alternative definition of monotonicity allowing several voters to

simultaneously lift the winning alternative, then monotonicity would fail as P5 �→ P7

(in one step). For our version we observe that no matter what set X of winners results60

from P6, there must be a failure of monotonicity in the first step {a} �→ X (as P5 �→ P6)
or in the second X �→ {c} (as P6 �→ P7).61

Now suppose the last two voters of P7 truly prefer a � b � c. They will be disap-
pointed under STV when the winner turns out to be c. They would do better by casting
b � a � c, and achieving a win for their most preferred alternative a. Indeed, any
failure of monotonicity for a resolute SCF f represents an opportunity for a voter to
manipulate f in a particular way: via a simple drop or simple lift.62 Thus monotonicity
is a weak form of strategyproofness. The same holds for the following monotonicity
properties (except for participation):

Definition 2.11. A resolute SCF f satisfies:

� Strategyproofness if whenever a profile P is modified to P ′ by having one voter i switch
�i to �′

i , f (P ) �i f (P ′).63

� Maskin monotonicity (aka strong monotonicity) if whenever a profile P is modified to
P ′ by having one voter i switch �i to a ballot �′

i satisfying for all y f (P ) �i y ⇒
f (P ) �′

i y, f (P ′) = f (P ); see Maskin (1977), Maskin (1999).
� Down monotonicity if whenever a profile P is modified to P ′ by having one voter i

switch �i to �′
i by dropping a losing alternative b �= f (P ) simply, f (P ′) = f (P ).

� One-way monotonicity if whenever a profile P is modified to P ′ by having one voter i

switch �i to �′
i , f (P ) �i f (P ′) or f (P ′) �′

i f (P ).
� Half-way monotonicity if whenever a profile P is modified to P ′ by having one voter i

switch �i to �rev
i , f (P ) �i f (P ′).

(Here �rev denotes the reverse of �: z � w ⇔ w �rev z.)
� Participation (the absence of no show paradoxes) if whenever a profile P is modified to

P ′ by adding one voter i with ballot �i to the electorate, f (P ′) �i f (P ).

Proposition 2.6. For resolute social choice functions,

1. Strategyproofness ⇒ Maskin monotonicity ⇔ Down monotonicity ⇒ Monotonicity
2. Strategyproofness ⇒ One-way monotonicity ⇒ Half-way monotonicity
3. Participation ⇒ Half-way monotonicity

Proof. For the first arrow of item 1 of Proposition 2.6 reason as in Footnote 62. For
the second arrow in the left direction, show that repeated changes to �i of the kind
allowed by down monotonicity can be used to effect any change allowed by Maskin

60 To resolve how STV or plurality run-off behave when handed P6 would require addressing the issue raised in
Footnote 45.

61 This is clear if X is a singleton. If not, then either of the two “irresolute” versions of monotonicity discussed
in Footnote 58 imply such a failure.

62 Suppose �i �→�′
i via a simple lift of the winning alternative a, which makes a lose and b win.

If b �i a, then a voter with sincere preference �i would gain by casting the insincere ballot �′
i ; if a �i b,

then a voter with sincere preference �′
i would gain by casting the insincere ballot �i .

63 In the resolute context this agrees with our earlier Definition 2.3 of single voter strategyproofness.
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monotonicity. The second arrow to the right and the third arrow are straightforward, as
is item 2. For item 3, see Sanver and Zwicker (2009).

Down monotonicity, perhaps surprisingly, is much stronger than monotonicity—it
is the form of strategyproofness used in our proof (in Section 2.8) of the Gibbard-
Satterthwaite Theorem. Participation originated in the work of Brams and Fishburn
(2007), who observed that some voting rules are susceptible to the no show paradox,
wherein a voter does better by choosing to not participate in the election than by casting
a sincere ballot. Such a voter can manipulate the outcome by abstaining. Speaking
loosely, then, participation is a form of strategyproofness.

Speaking precisely, however, participation is a property of variable-electorate SCFs,
and so cannot follow from strategyproofness, which is defined here (as is typical)
for fixed-electorate SCFs.64 Thus in the following theorem, part 1 (Moulin, 1988b)
cannot be compared directly to the Gibbard-Satterthwaite Theorem. Part 2 (Sanver and
Zwicker, 2009), however, is a different story; any failure of half-way monotonicity
is indeed a violation of strategyproofness, of a rather drastic kind (see the earlier
discussion in Section 2.2).

Theorem 2.7. Let f be any resolute Condorcet extension for four or more alternatives.
Then

1. f violates participation (if f is a variable-electorate SCF)65 and
2. f violates half-way monotonicity (if f is a fixed-electorate SCF for sufficiently large n).

Proper scoring rules behave quite differently—they satisfy participation and one-way
monotonicity (hence half-way monotonicity) even after being rendered resolute by
breaking ties via a fixed ordering of alternatives (Moulin, 1988a; Sanver and Zwicker,
2012). That tie-breaker destroys anonymity, but for values of m and n not ruled out
by Proposition 2.1, an alternative method renders certain scoring rules resolute while
preserving anonymity, neutrality, monotonicity, and one-way monotonicity.66 Keep
these examples in mind when interpreting the next result:

Corollary 2.8. Let f be a resolute SCF for four or more alternatives and sufficiently
large odd n. If f is neutral and anonymous on DCondorcet, then either f fails to be
strategyproof on DCondorcet, or f violates half-way monotonicity.67

Proof. On DCondorcet, pairwise majority rule is the unique resolute, anonymous, neutral
and strategyproof SCF for odd n (Theorem 2.3). So if f is strategyproof on DCondorcet

then f is a Condorcet extension, and Theorem 2.7, part 2 applies.

Corollary 2.8 is a version of the Gibbard-Satterthwaite Theorem, with stronger hypothe-
ses that reveal additional information about the split between Condorcet extensions and
scoring rules in terms of vulnerability to strategic manipulation.

64 Any rule using different voters as dictator, depending on the number of voters, will be strategyproof yet violate
participation.

65 Some irresolute tournament solutions satisfy versions of participation (see Chapter 3).
66 See Eğeciouglu and Giritligil (2014) and Doğan (2015).
67 In place of anonymity and neutrality, it suffices to assume nondictatoriality and nonimposition; use the stronger

version of Theorem 2.3 actually proved in Campbell and Kelly (2003)—see Footnote 35.
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How seriously should we take it when a voting rule fails to satisfy one of the
axioms in this section? Should STV and plurality run-off be dismissed out of hand
for violating monotonicity? Some would say “yes,” either because the failure itself
is offensive, or because the nature of the violation demonstrates a behavior of the
sequential elimination mechanism that is not at all what we expected, suggesting
an unpredictable and untrustworthy process. To the extent that STV’s initial appeal
rested on an intuitive feeling about sequential elimination that made it seem fair, the
monotonicity failure hits STV at its core, showing that intuition to have been poorly
grounded. However, even some who agree with this critique seem willing to live with
STV’s flaws, if it means dethroning plurality.68

The failure of Condorcet extensions to be reinforcing is not commonly advanced
as a critique. Some see reinforcement as a natural mathematical principle with an
important role in classification theorems, but one that lacks the normative heft of
monotonicity, for example.69 Failures of participation or half-way monotonicity seem
somewhat more serious, however, so what does Theorem 2.7 say about the viability
of “Condorcet’s Principle”? Opinions differ. The theorem only states that Condorcet
extensions behave badly after all ties are broken by some mechanism, so one might
argue that the tie-breaking mechanism, not the original rule, is guilty of the violation.
Nonetheless, the Copeland and Simpson rules both violate participation (as well as
half-way monotonicity), in their original, irresolute form.70

2.7 Voting Rules II: Kemeny and Dodgson

Although no social choice function is both reinforcing and a Condorcet extension
(Proposition 2.5), John Kemeny (1959) defined a neutral, anonymous, and reinforcing
Condorcet extension that escapes this limitation via a change in context: his rule is a
social preference function—meaning that the outcome of an election is a set of one or
more rankings—rather than a social choice function.

The Kendall tau metric dK (Kendall and Smith, 1939; Kendall, 1962) measures the
distance between two linear orderings �, �� by counting pairs of alternatives on which

68 In the rump session of the 2010 VPP Workshop Assessing Alternative Voting Procedures (July–August 2010),
22 of the 23 participants used approval voting (see Section 2.10) to vote on “What is the best voting rule that
the city council of your town should use to elect the mayor?” The 17 options included all rules discussed here
(except for Baldwin) as well as others, such as range voting and majority judgement, that do not fit the SCF
context. Approval voting received the most votes (68.18% approval) followed by STV(45.45%), Copeland
(40.91%), and Kemeny (36.36%). Plurality received no approvals, inspiring the title of the article (Laslier,
2012) analyzing the poll. Although STV approvals were presumably cast by two participants from the Electoral
Reform Society (which advocates for STV), without them STV would still have done no worse than a tie for
fourth.

69 Ashley Piggins has pointed out that reinforcement gains some normative force when one interprets it as
a coalitional form of the Pareto principle, and Wulf Gaertner notes that a failure would allow strategic
manipulation by splitting or merging the electorate (private communications).

70 Top Cycle satisfies these monotonicities, but is particularly prone to ties and is not Pareto. Is there a theorem
showing that all half-way monotonic Condorcet extensions are highly irresolute? If so, it might determine
the correct interpretation of Theorem 2.7, much as the Duggan-Schwarz Theorem (see the “limitations” part
of Section 2.8) suggests that the Gibbard-Satterthwaite Theorem is less compromised by its resoluteness
hypothesis than might first appear.
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they disagree:

dK (�,��) = |{(a, b) ∈ A2 | a � b and b �� a}|.
Equivalently, dK gives the minimum number of sequential inversions (reversals of pairs
of alternatives that are adjacent when a linear ordering is listed vertically) needed to
convert � to ��. We extend any metric d on ballots to one on profiles by summing:
d(P, P ′) = ∑n

i=1 d(�i ,�′
i), and for each � define the unanimous profile U� by U�

i =
� for all i. For any profile P , the Kemeny Rule returns the ranking(s) � minimizing
dK (P, U�). If a were a Condorcet winner for the profile P and � did not rank a on top,
then lifting a simply to �’s top would strictly decrease dK (P, U�). Thus all rankings
in the Kemeny outcome place a on top and in this sense Kemeny is a Condorcet
extension.71

Kemeny is not a scoring rule in the sense of Definition 2.9, but suppose we make a
modification:

Definition 2.12. A ranking score function W: L(A) × L(A) → R assigns a real num-
ber scoring weight W(��,�) to each pair of rankings. Any such function induces a
ranking scoring rule, in which a voter with ranking �i awards W(�i ,�) points to each
ranking �∈ L(A). All points awarded to a given ranking are summed, and the winner
is the ranking(s) with greatest sum.

This expands the class of scoring rules strictly72 to include Kemeny—set the points
awarded to �� by a ballot of � equal to the number of pairs of agreement: m(m−1)

2 −
dK (�,��). Reinforcement now follows for Kemeny (just as it did in Section 2.5 for
ordinary scoring rules) but one needs to interpret the reinforcement equation f (s) ∩
f (t) �= ∅ ⇒ f (s + t) = f (s) ∩ f (t) with care—f (s), f (t), and f (s + t) now denote
sets of rankings, and this substantially weakens the reinforcement requirement.73

The preceding paragraphs establish the easy part of the following theorem, but it is
the uniqueness that impresses:

Theorem 2.9 (Young and Levenglick, 1978). Among social preference functions
Kemeny’s rule is the unique neutral and reinforcing Condorcet extension.

A second rule based on counting inversions was proposed by Charles Dodgson
(1876) (aka Lewis Carroll), and is often compared to Kemeny’s rule: for any profile
P the Dodgson rule returns the Condorcet winner(s) for the profile(s) P ′ ∈ DCondorcet

minimizing dK (P, P ′) among all P ′ ∈ DCondorcet. Dodgson’s rule is interesting from a

71 Also, if majority preference >μ is transitive and complete, it is the unique Kemeny outcome. The Slater rule
chooses the linear order � minimizing the number of pairs of alternatives for which >μ and � disagree; unlike
Kemeny, it ignores the sizes of the majorities determining >μ.

72 Every (standard) scoring rule is a ranking scoring rule (if interpreted as a social preference function), but not
conversely: Conitzer et al. (2009b) and Zwicker (2008). Other generalizations of scoring rules can be found in
Myerson (1991), Zwicker (2008), Xia (2013), and Dietrich (2014).

73 For example, consider the profiles s, t , and s + t from the proof of Proposition 2.5. Every standard scoring rule
f has f (s) = {a, b, c} and f (t) = {b} (or {a, b} for antiplurality) so that reinforcement applies, forcing f (s +
t) = {a} or {a, b} (which shows f is not a Condorcet extension). But for the Kemeny rule, fKem(s) = {a �
b � c, c � a � b, b � c � a} and fKem(t) = {b � a � c}, so that fKem(s) ∩ fKem(t) = ∅ and reinforcement
fails to apply at all. In a political setting, an outcome similar to fKem(s) might be worrisome—it is difficult to
imagine the reaction of voters who have not studied voting theory.
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computational point of view (see Hemaspaandra et al., 1997a; Chapter 5), differs from
Kemeny (Ratliff, 2001), and has some severe drawbacks as a voting method (Brandt,
2009c), failing even to be homogeneous (Fishburn, 1977).

Both Kemeny and Dodgson may be interpreted as minimizing a distance to “consen-
sus.” They use the same metric on rankings, but different notions of consensus: unanim-
ity for Kemeny versus membership in DCondorcet for Dodgson.74 It is not difficult to see
that every preference function that can be defined by minimizing distance to unanimity
is a ranking scoring rule,75 hence is reinforcing in the preference function sense. We
can convert a preference function into an SCF by selecting all top-ranked alternatives
from winning rankings, but this may transform a reinforcing preference function into
an nonreinforcing SCF—as happens for Kemeny. The conversion preserves homogene-
ity, however, so every distance-from-unanimity minimizer is homogeneous as a social
choice function. In this light, the inhomogeneity of Dodgson argues an advantage for
unanimity over DCondorcet as a consensus notion.

In fact a large variety of voting rules are “distance rationalizable”—they fit the
minimize distance from consensus scheme. Chapter 8 is devoted to this topic, and
includes an extensive selection of references.

2.8 Strategyproofness: Impossibilities

Our immediate goal is to show that every resolute, nonimposed, and nondictatorial
SCF for three or more alternatives is manipulable, by way of the following theorem,
due (independently) to Allan Gibbard (1973) and Mark Satterthwaite (1975):

Theorem 2.10 (Gibbard-Satterthwaite Theorem). Any resolute, nonimposed, and
strategyproof SCF for three or more alternatives must be a dictatorship.

Of course, a dictatorship is resolute, strategyproof, and nonimposed, so we could restate
the theorem as an if and only if. Over the years, a variety of interesting and distinct
proofs have emerged (e.g., see Barberà and Peleg, 1990). The version here follows
Taylor (2005). It relies on the following key definition, and on a sequence of lemmas,
which appear after the proof of Theorem 2.10 itself.

Definition 2.13. Let f be a resolute social choice function for m � 3 alternatives,
a, b ∈ A be two distinct alternatives and X ⊆ N be a set of voters. Then we say that
X can use a to block b, notated Xa>b, if for every profile P wherein each voter in X

ranks a over b, f (P ) �= b; X is a dictating set if Xz>w holds for every choice z �= w of
distinct alternatives.

Proof (Gibbard-Satterthwaite Theorem). First, we will show that each resolute, down
monotonic, and Pareto f has a dictator j in the form of a singleton dictating set
X = {j}. As f is Pareto, the set N of all voters is a finite dictating set. The Splitting
Lemma 2.17 shows that when a dictating set X = Y ∪ Z is split into disjoint subsets

74 Chapter 5 discusses a rule due to Peyton Young, using membership in DCondorcet as consensus notion, but a
different metric. It shares some complexity properties with Dodgson.

75 Assuming that some metric on rankings is extended to profiles via summation, as described earlier.
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Y and Z, either Y is a dictating set, or Z is. Hence repeated application of the Splitting
Lemma (first to X = N , then to the half of N that is a dictating set, etc.) will terminate,
yielding the desired singleton dictating set.

Next, the Adjustment Lemma 2.18 establishes that the Pareto assumption can be
relaxed to nonimposition (when f is resolute and down monotonic). By Proposition 2.6
the down monotonicity assumption can be strengthened to strategyproofness, and this
completes the proof.

A well known variant reformulates Theorem 2.10 in terms of monotonicity:

Theorem 2.11 (Muller and Satterthwaite, 1977). Any resolute, nonimposed, and
Maskin monotonic SCF for three or more alternatives must be a dictatorship.

Proof. By Proposition 2.6 a resolute, Maskin monotonic SCF f is down monotonic.
If f is also nonimposed, then it is dictatorial by our proof of Theorem 2.10.

Lemma 2.12 (Push-Down Lemma). Let a, b, c1, c2, . . . , cm−2 enumerate the m � 3
alternatives in A, f be a resolute and down monotonic SCF for A, and P be any profile
with f (P ) = a. Then there exists a profile P � with f (P �) = a such that:

� For each voter i with a �i b, ��
i = a � b � c1 � · · · � cm−2

� For each voter i with b �i a, ��
i = b � a � c1 � · · · � cm−2.

Proof. Have P ’s voters, one-at-a-time, drop c1 simply to the bottom of their ranking.
Then have them all drop c2 to the bottom, then c3, . . . . The final version P � of P has
exactly the ballots bulleted earlier, and by down monotonicity f (P �) = a.

Lemma 2.13. Let f be a resolute and down monotonic SCF. If there exists a profile
P for which every voter in X has a over b, every voter in N \ X has b over a, and
f (P ) = a, then Xa>b.

Proof. Assume we have such a profile P , yet Xa>b fails. Choose a second profile P ′

for which each voter in X has a over b and f (P ′) = b. If any P ′ voters in N \ X have
a over b let them one-at-a-time drop a simply below b. By down monotonicity the
resulting profile P ′′ satisfies f (P ′′) = b.

Apply the Push-Down Lemma (2.12) to P to obtain profile P � with f (P �) = a,
and apply it again to P ′′ to obtain profile P ′′� with f (P ′′�) = b. But the Lemma 2.12
properties of P � force P � = P ′′�, a contradiction.

Lemma 2.14. Let f be a resolute, Pareto, and down monotonic SCF for three or more
alternatives. Assume Xa>b, with X = Y ∪ Z split into disjoint subsets Y and Z. Let c

be any alternative distinct from a and b. Then Ya>c or Zc>b.

Proof. Consider the profile P8. As f is Pareto, f (P8) ∈ {a, b, c}, but we know Xa>b,
so f (P8) �= b. Lemma 2.13 now applies to show that if f (P8) = a then Ya>c, and if
f (P8) = c then Zc>b.
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All voters in Y All voters in Z All voters in N \ X

a c b

b a c

c b a
...

...
...

Lemma 2.15. Let f be a resolute, Pareto, and down monotonic SCF for three or more
alternatives. Assume Xa>b. Let c be any alternative distinct from a and b.
Then (i) Xa>c and (ii) Xc>b.

Proof. Nothing in the Lemma 2.14 proof rules out X or Y being empty, and Pareto
implies that ∅u>v is impossible. Applying Lemma 2.14 with Y = X, Z = ∅ yields
Xa>c, and applying it with Y = ∅, Z = X yields Xc>b.

Lemma 2.16. Let f be a resolute, Pareto, and down monotonic SCF for three or more
alternatives. Assume Xa>b. Then X is a dictating set.

Proof. Let y ∈ A. We will show Xy>z holds for all z �= y.

Case 1 Assume y = a. Lemma 2.15 (i) immediately implies Xa>z for all z �= a.

Case 2 Assume y /∈ {a, b}. Lemma 2.15 (ii), with y replacing c, yields Xy>b.
Now restate Lemma 2.15, as follows: “Assume Xy>b. Then (i) Xy>z and . . . ,”
so Xy>z for all z �= y.

Case 3 Assume y = b. By Lemma 2.15 (i), Xa>c. Restate Lemma 2.15 as follows:
“Assume Xa>c. Then . . . (ii) Xb>c.” Restating Lemma 2.15 yet again shows Xb>z for
all z �= b.

Lemma 2.17 (Splitting Lemma). Let f be a resolute, Pareto, and down monotonic
SCF for three or more alternatives. If a dictating set X = Y ∪ Z is split into disjoint
subsets Y and Z, then either Y is a dictating set, or Z is.

Proof. Let a, b, and c be three distinct alternatives. Split the dictating set X = Y ∪
Z into disjoint subsets Y and Z. As Xa>b, by Lemma 2.14 either Ya>c or Zc>b.
Lemma 2.16 now implies Y is a dictating set (if Ya>c) or Z is (if Zc>b).

Lemma 2.18 (Adjustment Lemma). Let f be any resolute, nonimposed SCF (but no
longer assume f is Pareto). If f is down monotonic then it is Pareto.

Proof. If not, choose a profile P in which every voter ranks b over a, yet f (P ) = a.
Use nonimposition to choose a second profile P ′ with f (P ′) = b. Now we proceed as
in the proof of Lemma 2.13. If any P ′ voters have a over b let them one-at-a-time drop
a simply below b. By down monotonicity the resulting profile P ′′ satisfies f (P ′′) = b.
Apply the Push-Down (Lemma 2.12) to P to obtain a profile P � with f (P �) = a, and
apply it again to P ′′ to obtain the profile P ′′� with f (P ′′�) = b. But the Lemma 2.12
properties of P � force P � = P ′′�, a contradiction.



2 .8 strategyproofness: impossibilities 49

Limitations of the Gibbard-Satterthwaite Theorem: Resoluteness

This completes our proof of the Gibbard-Satterthwaite Theorem—a central result in
the theory of voting. But what is its real significance . . . does the theorem tell us that
voting rules are all manipulable in practice?

One issue is that several conditions seem to be required for a single voter i to be
certain she can achieve such a single voter manipulation:

1. She needs to know the intended ballot of each of the other voters.
2. She needs to be sure that no other voter will similarly engage in strategic vote-switching.
3. She needs the computational resources to predict whether some switch in her ballot can

change the outcome into one she prefers.

In many real voting settings conditions (1) and (2) are unlikely to obtain, and so there is a
body of work that considers manipulation in a less restrictive context.76 Computational
barriers to manipulation are explored in Chapter 6.

Another limitation is that the theorem applies only to the social choice function con-
text, with its associated form of ballot—ordinal rankings of the alternatives—and of
election outcome. For example, there is a spirited debate as to whether certain other vot-
ing rules gain an advantage, with respect to manipulability, by using, as inputs, ballots
that are quite different.77 Social Decision Schemes escape the Gibbard-Satterthwaite
context at the other end—the output—by declaring a probability distribution as the
election outcome.

The most immediately apparent limitation of the Gibbard-Satterthwaite Theorem,
however, might be that it applies only to resolute SCFs, while Proposition 2.1 tells us
that, in the case of a neutral and anonymous SCF f , ties are often inevitable, suggesting
that the theorem might say little about the rules that are of greatest interest. Of course,
we can use some tie-breaking mechanism M to break all ties for f , and the resulting
resolute rule is then manipulable, but the fault might then lie with M rather than with
the original irresolute f .

The following question, then, would seem to be important: How many tied outcomes
must we be willing to live with, in order to achieve strategyproofness? Several gener-
alizations of Gibbard-Satterthwaite to irresolute SCFs suggest an answer:
a lot of ties. This points to a certain robustness in the theorem. We state one such
generalization as follows, without proof: the Duggan-Schwartz Theorem.78 First, we
need some preliminaries. For Z ⊆ A let max�i

[Z] denote i’s top ranked alternative in
Z, with min�i

[Z] defined similarly.

Definition 2.14. Let f be an SCF, possibly irresolute. We say f is manipulable by
optimists (respectively manipulable by pessimists) if for some pair P , P ′ of profiles
and voter i with �′

j =�j for all j �= i, max�i
[f (P ′)] �i max�i

[f (P )] (respectively,
min�i

[f (P ′)] �i minsucci
[f (P )]). A voter k is a nominator for f if for every profile

76 See Peleg (1975), Dutta and Pattanaik (1978), Favardin and Lepelley (2006), and Slinko and White (2008), for
example.

77 Examples are mentioned in Footnote 3. Each context requires its own definition of manipulation, making
cross-contextual comparisons problematic. In this regard, see Section 2.10 for the case of approval voting.

78 Taylor (2005) proves Duggan-Schwartz using the same machinery as in his Gibbard-Satterthwaite proof (as
given here).
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P , k’s top-ranked alternative is a member of f (P ). The Omninominator SCF returns,
for each profile P , the set OmNom(P ) of all alternatives that have been top-ranked by
at least one voter.

The intuition here is that some outside agency will ultimately choose a single winning
alternative from the set f (P ). An “optimist” assumes that the chosen x will always be
his favorite alternative from f (P ), hence preferring one set Z of winners to another Z′

when max�i
[Z] �i max�i

[Z′]. A nominator is a sort of weak dictator. It is easy to
check that the Omninominator rule is not manipulable by optimists or by pessimists.
This rule is notably irresolute, but it seems that every other example is even worse:

Theorem 2.19 (Duggan and Schwartz, 2000). If a nonimposed SCF f for three or
more alternatives is not manipulable by optimists and is not manipulable by pessimists,
then f must have a nominator.

Thus, if f is anonymous, every voter must be a nominator, whence:

Corollary 2.20 (Corollary to Theorem 2.19). If an anonymous, nonimposed SCF f

for three or more alternatives is not manipulable by optimists and is not manipulable
by pessimists, then f (P ) ⊇ OmNom(P ) for every profile P .

Thus, for an anonymous SCF to be strategyproof (in the Theorem 2.19 sense) it must
have at least as many ties as Omninominator. Moreover, Duggan and Schwartz also
show that by requiring f to be minimally more resolute than Omninominator the
conclusion of Theorem 2.19 can be strengthened to “f must have a dictator.”

Back to Pairwise Majority Rule on the Condorcet Domain

We return to the postponed part of our proof of Theorem 2.3, Section 2.4, showing that
for functions restricted to the Condorcet domain, no SCF other than Pairwise Majority
Rule is resolute, anonymous, neutral, and strategyproof.

Proof. Let f : DCondorcet → A be resolute, anonymous, neutral and strategyproof,
hence down monotonic. If f �= PMR, choose a profile P ∈ DCondorcet with Condorcet
winner b such that f (P ) = a �= b. Apply the Push-Down (Lemma 2.12) (noting that
the changing profile remains within DCondorcet) to obtain a profile P � with f (P �) = a

such that

� for each voter i with a �i b, ��
i = a � b � c1 � · · · � cm−2, and

� for each voter i with b �i a, ��
i = b � a � c1 � · · · � cm−2.

We now proceed as in the May’s Theorem proof. More P � voters have b ��
i a than have

a ��
i b. One ballot at a time, drop b simply below a on enough ballots to reverse those

numbers. As n is odd, the evolving profile remains within DCondorcet. Monotonicity
implies a still wins, but neutrality + anonymity say b wins.
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2.9 Strategyproofness: Possibilities

Suppose that five old friends meet annually for a hike in the country, but some are more
fit than others. Each friend i has an “ideal” hike length di with

di �i d ′ �i d ′′ for all d ′, d ′′ such that di > d ′ > d ′′ or di < d ′ < d ′′. (2.5)

Such preferences are said to be single peaked.79 Ali suggests using the mean (average)
of the announced ideal lengths as the actual length L for the hike, but she is known to
be the most ambitious hiker, and has a good idea of the others’ dis. Dieter, concerned
that Ali will declare an artificially high di in order to raise the mean to her actual ideal,
suggests the median M be used instead of the mean.80

Why consider the median? With an odd number of voters, more than half the
voters prefer the median M to any value e > M (namely, those voters i with di � M),
and to any e < M (similarly), so M is the Condorcet winner, and the hikers’ profile
is contained in DCondorcet.81 It follows by Proposition 2.3 that the median rule is
strategyproof (but take a moment to think about a direct argument that the median
is strategyproof in this context). The argument can be iterated,82 showing that pairwise
majority preference �μ is a linear ordering (in particular, it is transitive) over hike-
lengths. Of course, we are not limited to taking hikes:

Definition 2.15. A ballot �i is single peaked with respect to >, a linear order on
the set A of alternatives, if it satisfies Condition 2.5 (with di denoting �i’s maximal
alternative or ideal point, and for all alternatives d ′, d ′′). A profile P is single peaked if
there exists a common linear order > on A such that every ballot of P is single-peaked
with respect to >. The single-peaked domain is the set of all such profiles (for a given
A and N ), and the median rule is the restricted domain SCF that selects the median of
voters’ ideal points, for each profile in this domain.

The ordering > might represent a left-right political spectrum, with a voter’s ideal point
located at his own position, and more preferred candidates having positions closer to
his own. Our informal reasoning about the median can easily be turned into a proof of
the following theorem of Duncan Black (1958).

Theorem 2.21 (Black’s Theorem). Every single-peaked profile P yields a transitive
pairwise majority preference relation �μ. In particular, if n is odd then P ∈ DCondorcet,
and the median of the ideal points coincides with P ’s Condorcet winner. For odd n,
the median rule is strategyproof on the single-peaked domain.83

79 Think of a graph with horizontal axis as hike-length, and vertical as i’s degree-of-preference.
80 Assume negative ballots are disallowed. Using the mean, if it is common knowledge that all hikers will vote

strategically, and that they know each others’ ideal lengths, then the Nash equilibrium will have four hikers
declaring 0 as their ideal lengths, and Ali declaring five times her true di .

81 With n even, there can be two medians M1 < M2, which are the two weak Condorcet winners: at least half the
voters prefer Mi to any e �= Mi .

82 Remove the median from the set of available alternatives, assume each voter’s preferences for remaining
alternatives stay the same, and take the median again, etc.

83 Strategyproofness holds for even n if one extends the strategyproofness definition to account for the particularly
simple ties that arise in this context (see Footnote 81).
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A word here on the nature of domain restrictions—single peakedness (with respect to
a specified >) is actually a restriction on individual rankings. Voters are free to choose
any ballot they wish from the setP> of rankings single peaked for that >, without regard
to other voters’ choices, and the result will be a single peaked profile. Equivalently,
the single peaked domain for a particular > is the n-fold Cartesian product P>

n. Our
earlier restriction to DCondorcet was quite different, corresponding to no restricted set of
ballots from which voters could choose freely.

The phrase “domain restriction” is sometimes used to refer exclusively to such
restrictions on rankings—which sets S of ballots have the property that every profile
built from members of S has a transitive >μ? Amartya Sen (1966) observed that:

� For preferences single-peaked with respect to >, and any three alternatives a, b, c,
whichever of the three falls between the other two (according to >) will never be ranked
third among the three.

� This condition alone guarantees transitivity of >μ, for n odd.
� Excluding any of the three relative positions (never ranked second, or first) similarly

ensures transitivity, but not single peakedness.
� The excluded position need not be the same for each triple a, b, c.

Definition 2.16. A set S ⊆ L(A) of rankings satisfies value restriction if for every set
X ⊆ A of three alternatives there exists an x ∈ X such that no ranking in S ranks x

third among members of X, or none ranks x second, or none ranks x first.

Theorem 2.22 (Sen’s Possibility Theorem). Let S ⊆ L(A) be a set of rankings of A.
Then S is value restricted if and only if >μ is transitive for every profile of ballots
from S having an odd number of voters.

Proof. (⇒) Assume profile P has an odd number n of voters casting ballots from
the value restricted set S. It suffices to show for an arbitrary set X = {a, b, c} of
three alternatives that the restriction >μ|X of the pairwise majority preference to X

is transitive. By value restriction, one of the three—let’s say a, w.l.o.g.—is excluded
from one of the three positions.

Now >μ|X is clearly transitive if a >μ b and a >μ c both hold, or if b >μ a and
c >μ a both hold. So w.l.o.g. assume c >μ a >μ b. If a is excluded from first among
members of X, then each voter i in the majority having a �i b agrees that c �i a �i b

and so >μ|X coincides with �i|X, and is transitive. If a is excluded from last among
members of X, then each voter i in the majority having c �i a agrees that c �i a �i b

and so >μ|X is again transitive. Finally, with c >μ a >μ b it is impossible to exclude
a from the middle position among X’s members, because the majorities with c �i a

and with a �i b must have a voter in common.
(⇐) If S is not value restricted, choose a set X = {a, b, c} ⊆ A such that for each

x ∈ X there are elements �1
x , �2

x , and �3
x of S whose restrictions to X rank x first,

second, and third respectively. A table can be used to show that S’s restrictions to X are
forced to include all three from the set C1 = {a � b � c, c � a � b, b � c � a} or
all three from C2 = {a � c � b, b � a � c, c � b � a}. Any profile of three rankings
from S having C1 (or C2) as their restrictions yields a majority cycle.
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That single-peakedness and value restriction constitute restrictions on individual
rankings is a strength, but also a weakness: if even one voter (of many) violates
the restriction, Theorems 2.21 and 2.22 no longer apply; thus, the value-restricted
profiles exclude many profiles with transitive >μ. The decomposition approach (end of
Section 2.5) provides various alternative conditions guaranteeing transitivity of >μ.

2.10 Approval Voting

The approval voting rule is striking for its combination of simplicity and relatively
recent discovery, its potential as a real voting reform in the political context, and its
nature—it is not a social choice function . . . or is it? An approval ballot is a subset X of
the set A of alternatives; the idea is that voter i “approves” of exactly those alternatives
x ∈ Xi . Given a profile of such ballots, the approval score of an alternative x is the
number of voters who approve of x, and approval voting declares the winner(s) to be
the alternative(s) with highest approval score. Equivalently, a voter may vote for as
many alternatives as she wishes, and whoever gets the most votes wins. In their book
Approval Voting, Brams and Fishburn (2007) attribute the idea to five different groups,
acting independently in the 1970s. The more recent edited collection by Laslier and
Sanver (2010) is also a good source.

Arguments made on behalf of approval voting (primarily, as an improvement on
plurality voting in a political context) include the following:

1. Simplicity: the ballot is barely more complicated than a plurality ballot, and the aggre-
gation rule is conceptually transparent (hence an easier sell to the public).

2. It addresses the most egregious flaw of plurality voting: a single candidate at the minority
end of a political spectrum can defeat several candidates at the majority end, who split
that majority. For example, Holtzmann (see Footnote 10) would have won the 1980
senatorial election for New York had even a small percentage of Javits voters chosen to
approve her as well as Javits.

3. It improves the odds that the winner is supported by a majority of the electorate, making
it easier to claim a “mandate” that allows her or him to govern effectively.

4. It eliminates the “wasted vote” problem, allowing minor-party candidates to achieve
returns that more accurately reflect the true level of support for their ideas.

5. It is likely to elect the Condorcet winner, when one exists.84

6. It is relatively resistant to strategic manipulation.

Criticisms of approval voting have included the following:

1. There is an ambiguity at its heart, with little agreement on or understanding of what it
means to “approve” of an alternative.85

84 See Beaujard et al. (2014), who also argue that approval voting favors “consensual” candidates located near
the middle in a multidimensional issue space, generalizing advantage 2.

85 Balinski and Laraki (2010) see this as a fatal flaw. Laslier (private communication) reports that voters see the
flexibility as a solution to the dilemma they face with a plurality ballot: “Do I vote for the one I think best, or
for the best among those who have a chance?”
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2. It overly restricts expressivity by obligating voters to compress their ranking into two
levels, forcing them to declare certain pairs of alternatives equivalent when that violates
their true feelings.

3. It violates “one person, one vote.”
4. It is unfair, giving more influence to voters who approve of more alternatives.
5. Some arguments on its behalf (e.g., resistance to manipulation) are rigged by the choice

of methodology in comparing preference ballots with approval ballots.

We will make a few observations, without commenting on each preceding advan-
tage. Critique 4 has no basis—one might equally claim that the voter who indicates
more nonapproved alternatives gains the advantage86—and critique 3 seems more
an argument of convenience than one of conviction. With regard to the meaning
of “approval” there appears to be a fundamental split among points-of-view. Some
presume that each voter actually has an underlying ranking (possibly weak) of the
alternatives, and in choosing an approved ballot must somehow compress several dis-
tinct levels of approval into exactly two levels. Others view the dichotomous ballot
as a direct reflection of a dichotomous primitive: each voter either likes or dislikes
each alternative, and is indifferent among those within either group. A third view pre-
sumes that a voter has a ranking together with a line dividing those alternatives she
likes from those she dislikes; we will refer to such a line as a true zero. An assign-
ment of cardinal utilities might underlie the first view, or the third (if utilities can be
negative).87

A strategic analysis of approval voting cannot easily be disentangled from this
more philosophical matter of what it means to approve an alternative. If approval is a
primitive, then each voter has only one sincere ballot, but lacks any incentive to vote
insincerely. For a voter with an underlying ranking, it is clearly never strategically
advantageous to approve an alternative without also approving all others that you like
as well or better, so deciding on an approval ballot amounts to choosing “where to
draw the line.” If that line has no intrinsic meaning, there is no basis on which to
discriminate between a sincere ballot and an insincere one; one might argue that all
ballots are strategic, or that none are. If a voter has both a ranking and a line with
intrinsic meaning as a true zero, then any ballot drawing the line somewhere else might
be classified as insincere—and such a voter might have a strategic incentive to cast
such a ballot.88

86 It is easy to recast approval voting in terms that are symmetric in approval and nonapproval.
87 The authors of Approval Voting take two views, referring sometimes to an underlying ranking and at other

times speaking of the approved alternatives as those “acceptable” to the voter. The third view appears in Brams
and Sanver (2009), which proposes voting rules that use a ballot consisting of a ranking and a dividing line
both, and in Sanver (2010); see also the related Bucklin voting, fallback voting, and majoritarian compromise
discussed in Hoag and Hallett (1926) and Brams (2008).

88 Marking a voter’s true zero is not the only way to ascribe intrinsic meaning to the location of “the line.” For a
voter who assigns a cardinal utility to each alternative, the mean utility value serves as a sort of relative zero
(quite possibly different from that voter’s “true” zero, if she has one) and arguments have been made (in Brams
and Fishburn, 2007) for drawing the line there. Duddy et al. (2013) show that drawing the line at the mean
maximizes a measure of total separation between the approved and unapproved groups. Laslier (2009) argues
that it is strategically advantageous to draw the line near the utility (to the individual voter) of the expected
winner, and that voters tend to behave this way.
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Approval = Borda = Condorcet

To bridge the gap between approval voting and the SCF context we might translate each
approval ballot Xi into the weak ranking�i for which a �i b iff a ∈ Xi or b /∈ Xi . This
identifies approval voting with a certain SCF, for which the domain is restricted to the
class R2 of dichotomous preferences; ballots in R2 are weak rankings having exactly
two (nonempty) indifference classes, one ranked over the other. (Here, an indifference
class is an equivalence class under the indifference relation ∼i , defined on the set A of
alternatives by x ∼i y if both x �i y and y �i x.)

We can now ask, “Among the SCFs we have considered, which become identical
to approval voting after R2 is imposed?” The answer depends, of course, on how
these SCFs are extended to handle indifferences in the ballots. Approval voting is
identical to the Borda count under the R2 restriction, provided that we apply, directly
to profiles of weak rankings, the earlier Equations 2.1 for net preference NetP (a > b)
and 2.3 for symmetric Borda score (without any modification to these equations); the
result is equivalent to using the averaging method for modifying scoring weights in
the presence of indifferences.89,90 Whether scoring rules other than Borda reduce to
approval voting depends on the convention used to adapt their scoring weights in the
presence of indifferences.91

The fate of Condorcet extensions under R2 depends on how one defines the pairwise
majority relation x >μ y in the presence of individual indifferences. Suppose we apply
the earlier definition of x >μ y as NetP (x > y) > 0, directly and without modification
to weak order ballots. Then x >μ y is equivalent to “the number of voters i with x �i y

is strictly greater than the number with y �i x.”92 Moreover, under R2 this version of
x >μ y is equivalent to “more voters approve x than approve y.” Thus under R2 every
profile has a Condorcet winner (and a transitive >μ) and approval voting is identical
to every Condorcet extension under R2.93 One can argue, then, that approval voting
reconciles de Borda and Condorcet.94

89 This is a bit surprising, in that the total number of points awarded by a single dichotomous ballot (via
Equation 2.3 for symmetric Borda score) varies depending on the number of approved alternatives. However,
the difference between any single ballot’s award to an approved and a disapproved alternative does not vary,
and only these differences matter in determining the winner. That Borda reduces to approval under suitable
ballot restrictions has been noted, for example, in Endriss et al. (2009)

90 Applying Equations 2.1 and 2.3 is equivalent to applying, to any vector of scoring weights that are equally
spaced—hence, serve as Borda weights—the following method for modifying scoring weights to account for
indifference expressed in a weak order ballot: choose an arbitrary linear extension of the ballot, and then award,
to each alternative in an indifference class of the ballot, the average scoring weight awarded to the members
of that class by the extension.

91 For such rules, scoring weights are unequally spaced, and applying the averaging method of Footnote 90 will
typically not yield approval voting under the R2 restriction (because the differences discussed in Footnote 89
will vary depending on the number of approved alternatives). For each proper scoring rule there exists some
adaptation of weights to dichotomous preferences that yields approval voting, but in some cases (k-approval,
for example) the adaptation method seems artificial.

92 However, with weak rankings this version of x >μ y is no longer equivalent to “more than half of the voters
rank x over y.” This latter version seems problematic when there are many indifferences.

93 Of course, if each approval ballot is derived by compressing a ranking, then the Condorcet winner for the
uncompressed rankings might differ from that for the compressed versions.

94 This is less surprising when one considers the fate, under the R2 restriction, of the orthogonal decomposition
discussed at the end of Section 2.5. The difference between Borda and Condorcet resides entirely in the cyclic
component of the weighted tournament, which is always 0 under R2.
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2.11 The Future

Where is the theory of voting headed? One view holds that the results of Arrow, Gibbard,
and Satterthwaite killed the field, with subsequent work amounting to picking the bones
of the carcass. But such opinions were being expressed well before the birth of new,
unsuspected, and vital cognate fields such as computational social choice or judgment
aggregation. These opinions reflect, in our view, a naı̈veté as to the nature of voting. If
voting is one thing, then perhaps one might interpret the famous impossibility results
as saying, “give up—a perfect rule is impossible.”

But voting for a mayor in a political context is quite different, for example, from
voting on a panel of petroleum geologists ranking land tracts, to advise an oil company
bidding for drilling rights. Resistance to manipulation might be irrelevant for the
geologists, but quite important when deciding how to elect a mayor.

An alternative view of the future, then, is that it will bring a better understanding of
the broad spectrum of contexts for voting, together with a guide to as to which, among
a variety of properties and axioms, are more relevant for each context. Certainly, we
are still a long way from this level of mastery today.

Under this latter view, impossibility results do not kill the subject of voting, but
rather fertilize it by leading us to consider a more diverse set of axioms and voting
rules appropriate to these varied contexts. Just how large, then, is the universe of
interesting axioms and voting rules? On this matter, there is a similar split in point
of view. Some see this universe as largely mapped. We suspect that unexplored and
unsuspected regions may dwarf what is known.
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CHAPTER 3

Tournament Solutions

Felix Brandt, Markus Brill, and Paul Harrenstein

3.1 Introduction

Perhaps one of the most natural ways to aggregate binary preferences from individual
agents to a group of agents is simple majority rule, which prescribes that one alternative
is socially preferred to another whenever a majority of agents prefers the former to
the latter. Majority rule intuitively appeals to democratic principles, is easy to under-
stand and—most importantly—satisfies some attractive formal properties. As seen in
Chapter 2, May’s Theorem shows that a number of rather weak and intuitively accept-
able principles completely characterize majority rule in settings with two alterna-
tives (May, 1952). Moreover, almost all common voting rules satisfy May’s axioms
and thus coincide with majority rule in the two-alternative case. It would therefore
seem that the existence of a majority of individuals preferring alternative a to alter-
native b signifies something fundamental and generic about the group’s preferences
over a and b. We will say that alternative a dominates alternative b in such a case.

As is well known from Condorcet’s paradox (see Chapter 2), the dominance rela-
tion may contain cycles. This implies that the dominance relation may not admit a
maximal element and the concept of maximality as such is rendered untenable. On the
other hand, Arrow writes that “one of the consequences of the assumptions of rational
choice is that the choice in any environment can be determined by a knowledge of
the choices in two-element environments” (Arrow, 1951, p. 16). Thus, one way to
get around this problem—the one pursued in this chapter—is to take the dominance
relation as given and define alternative concepts to take over the role of maximal-
ity. More precisely, we will be concerned with social choice functions (SCFs) that
are based on the dominance relation only, that is, those SCFs that Fishburn (1977)
called C1 functions. Topics to be covered in this chapter include McGarvey’s Theo-
rem, various tournament solutions (such as Copeland’s rule, the uncovered set, the top
cycle, or the tournament equilibrium set), strategyproofness, implementation via binary
agendas, and extensions of tournament solutions to weak tournaments. Particular atten-
tion will be paid to the issue of whether and how tournament solutions can be computed
efficiently.
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In this chapter, we will view tournament solutions as C1 SCFs. However, for varying
interpretations of the dominance relation, tournament solutions and variants thereof can
be applied to numerous other settings such as multicriteria decision analysis (Arrow
and Raynaud, 1986; Bouyssou et al., 2006), zero-sum games (Fisher and Ryan, 1995;
Laffond et al., 1993a; Duggan and Le Breton, 1996), and coalitional games (Brandt
and Harrenstein, 2010).

3.2 Preliminaries

We first introduce and review some basic concepts and notations used in this chapter.
Let N = {1, . . . , n} be a set of voters, A a set of m alternatives, and R = (�1, . . . ,�n)
a vector of linear orders over A. �i is the preference relation of voter i and R is
called a preference profile. The majority relation � for R is defined such that for all
alternatives a and b,

a � b if and only if |{i ∈ N : a �i b}| ≥ |{i ∈ N : b �i a}|.
See Figure 3.1 for an example preference profile and the corresponding majority
relation. A Condorcet winner is a (unique) alternative a such that there is no other
alternative b with b � a (or in other words, an alternative a such that a � b for all
b ∈ A \ {a}, where � is the asymmetric part of �). By definition, the majority relation
is complete, i.e., a � b or b � a for all alternatives a and b. Apart from completeness,
the majority relation has no further structural properties, that is, every complete relation
over a set of alternatives can be obtained as the majority relation for some preference
profile. This result is known as McGarvey’s Theorem.

Theorem 3.1 (McGarvey, 1953). Let A be a set of m alternatives and ≥ a complete
relation over A. Then, there is a preference profile R = (�1, . . . ,�n) over A with
n ≤ m(m − 1) such that ≥ = �.

Proof. Denote the asymmetric part of ≥ by >. For every pair (a, b) of alternatives
with a > b, introduce two voters, iab and jab, that is, N = {iab, jab : a > b}. Define
the preference profile R such that for all a, b ∈ A,

a �iab
b �iab

x1 �iab
· · · �iab

xm−2 and

xm−2 �jab
· · · �jab

x1 �jab
a �jab

b,

where x1, . . . , xm−2 is an arbitrary enumeration of A \ {a, b}. It is easy to check that
the majority relation � for R coincides with ≥. By asymmetry of >, moreover, we
have a > b for at most 1

2m(m − 1) pairs (a, b) and thus n = |N | ≤ m(m − 1).

The minimal number of voters required to obtain any majority relation has sub-
sequently been improved by Stearns (1959) and Erdős and Moser (1964), who have
eventually shown that this number is of order �( m

log m
). This implies that for any fixed

number of voters, there are tournaments which are not induced by any preference pro-
file. Only little is known about the classes of majority relations that can be induced by
preference profiles with small fixed numbers of voters (see Bachmeier et al., 2014).
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a

b

c

de

1: a �1 b �1 c �1 e �1 d

2: d �2 c �2 a �2 b �2 e

3: e �3 d �3 b �3 c �3 a

Figure 3.1. A tournament T = ({a, b, c, d, e},�), which depicts the asymmetric part of the
majority relation of the three-voter preference profile on the right.

3.2.1 Tournaments

If the number of voters is odd, there can be no majority ties and the majority relation
is antisymmetric. In this case, the asymmetric part � of the majority relation � is
connex and irreflexive and will be referred to as the dominance relation.1 A dominance
relation can be conveniently represented by an oriented complete graph, a tournament
(see Figure 3.1).

Formally, a tournament T is a pair (A,�) where A is a set of vertices and �
is an asymmetric and connex relation over the vertices. Tournaments have a rich
mathematical theory and many results for C1 SCFs have a particularly nice form if
the dominance relation constitutes a tournament. Moreover, many C1 functions have
only been defined for tournaments and possess a variety of possible generalizations to
majority graphs that are not tournaments. None of these generalizations can be seen as
the unequivocal extension of the original function. We therefore assume the dominance
relation to be antisymmetric and discuss generalizations of functions in Section 3.5.2

The dominance relation can be raised to sets of alternatives and we write A � B to
signify that a � b for all a ∈ A and all b ∈ B. Using this notation, a Condorcet winner
can be defined as an alternative a such that {a} � A \ {a}. For a subset of alternatives
B ⊆ A, we will sometimes consider the restriction �B= {(a, b) ∈ B × B : a � b} of
the dominance relation � to B. (B,�B) is then called a subtournament of (A,�).

For a tournament (A,�) and an alternative a ∈ A, we denote by D(a) the dominion
of a, that is,

D(a) = { b ∈ A : a � b },

and by D(a) the dominators of a, that is,

D(a) = { b ∈ A : b � a }.

The order |T | of a tournament T = (A,�) refers to the cardinality of A.

1 A relation � is connex if a � b or b � a for all distinct alternatives a and b. In the absence of majority ties, �
and � are identical except that � is reflexive while � is not.

2 The preference profile constructed in the proof of Theorem 3.1 involves an even number of voters. It is easily
seen, however, that no single additional voter, no matter what his preferences are, will affect the dominance
relation � and we may assume that every tournament is also induced by a preference profile with an odd number
of voters. Likewise, the result by Erd ős and Moser (1964) also holds for tournaments (Moon, 1968, Chapter 19,
Example 1 (d)).
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T

a

b

c

de

M(T )

a b c d e

a 0 1 0 0 1

b 0 0 1 0 1

c 1 0 0 0 1

d 1 1 1 0 0

e 0 0 0 1 0

G(T )

a b c d e

a 0 1 −1 −1 1

b −1 0 1 −1 1

c 1 −1 0 −1 1

d 1 1 1 0 −1

e −1 −1 −1 1 0

Figure 3.2. The tournament T from Figure 3.1 with its adjacency matrix M(T ) and its skew-
adjacency matrix G(T ). Here, for instance, D(a) = {b, e} and D(b) = {a, d}.

The elements of the adjacency matrix M(T ) = (mab)a,b∈A of a tournament T are 1
whenever a � b and 0 otherwise. The skew-adjacency matrix G(T ) of the correspond-
ing tournament graph is skew-symmetric and defined as the difference of the adjacency
matrix and its transpose, that is, G(T ) = M(T ) − M(T )t (see Figure 3.2).

An important structural notion in the context of tournaments is that of a component.
A component is a nonempty subset of alternatives B ⊆ A that bear the same relationship
to any alternative not in the set, that is, for all a ∈ A \ B, either B � {a} or {a} � B.
A decomposition of T is a partition of A into components.

For a given tournament T̃ , a new tournament T can be constructed by replacing each
alternative with a component. Let B1, . . . , Bk be pairwise disjoint sets of alternatives
and consider tournaments T1 = (B1,�1), . . . , Tk = (Bk,�k), and T̃ = ({1, . . . , k}, �̃).
The product of T1, . . . , Tk with respect to T̃ , denoted by �(T̃ , T1, . . . , Tk), is the
tournament (A,�) such that A = ⋃k

i=1 Bi and for all b1 ∈ Bi, b2 ∈ Bj ,

b1 � b2 if and only if i = j and b1 �i b2, or i �= j and i �̃ j .

Here, T̃ is called the summary of T with respect to the preceding decomposition. In the
tournament depicted in Figure 3.2, for example, {a, b, c}, {d}, and {e} are components
and {{a, b, c}, {d}, {e}} is a decomposition. The tournament can therefore be seen as the
product of a 3-cycle and two singleton tournaments with respect to a 3-cycle summary.
Importantly, every tournament admits a unique decomposition that is minimal in a
well-defined sense (Laslier, 1997, pp. 15–23).

3.2.2 Tournament Solutions

A tournament solution is a function S that maps each tournament T = (A,�) to a
nonempty subset S(T ) of its alternatives A called the choice set. The formal definition
further requires that a tournament solution does not distinguish between isomorphic
tournaments, that is, if h : A → A′ is an isomorphism between two tournaments (A,�)
and (A′,�′), then

S(A′,�′) = {h(a) : a ∈ S(A,�)}.
As defined in Chapter 2, an SCF is a C1 function if its output only depends on the dom-
inance relation. Because the dominance relation is invariant under renaming voters,
C1 SCFs are anonymous by definition. Moreover, due to the invariance of tourna-
ment solutions under isomorphisms, tournament solutions are equivalent to neutral
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C1 functions. In contrast to Laslier (1997), we do not require tournament solutions to
be Condorcet-consistent, that is, to uniquely select a Condorcet winner whenever one
exists.

For a tournament T = (A,�) and a subset B ⊆ A, we write S(B) for the more
cumbersome S(B,�B). For two tournament solutions S and S ′, we write S ′ ⊆ S, and
say that S ′ is a refinement of S and S a coarsening of S ′, if S ′(T ) ⊆ S(T ) for all
tournaments T .

The literature on rational choice theory and social choice theory has identified a
number of desirable properties for (social) choice functions, also referred to as axioms,
which can be readily applied to tournament solutions. In this section, we review three of
the most important properties in this context—monotonicity, stability, and composition-
consistency. As we will see in Section 3.3.2, another important property of SCFs—
Pareto-optimality—is intimately connected to a particular tournament solution, the
uncovered set.

A tournament solution is monotonic if a chosen alternative remains in the choice set
when its dominion is enlarged, while leaving everything else unchanged.

Definition 3.1. A tournament solution S is monotonic if for all T = (A,�), T ′ =
(A,�′), a ∈ A such that �A\{a} = �′

A\{a} and for all b ∈ A \ {a}, a �′ b whenever
a � b,

a ∈ S(T ) implies a ∈ S(T ′).

Monotonicity of a tournament solution immediately implies monotonicity of the
corresponding C1 SCF. Note that this notion of monotonicity for irresolute SCFs is
one of the weakest one could think of.

While monotonicity relates choices from tournaments of the same order to each
other, the next property relates choices from different subtournaments of the same
tournament to each other. Informally, stability (or self-stability) requires that a set is
chosen from two different sets of alternatives if and only if it is chosen from the union
of these sets.

Definition 3.2. A tournament solution S is stable if for all tournaments T = (A,�)
and for all nonempty subsets B, C, X ⊆ A with X ⊆ B ∩ C,

X = S(B) = S(C) if and only if X = S(B ∪ C).

In comparison to monotonicity, stability appears to be much more demanding. It can
be factorized into two conditions, α̂ and γ̂ . Condition γ̂ corresponds to the implication
from left to right whereas α̂ is the implication from right to left (Brandt and Harrenstein,
2011). α̂ is also known as Chernoff’s postulate 5∗ (Chernoff, 1954), the strong superset
property (Bordes, 1979), outcast (Aizerman and Aleskerov, 1995), and the attention
filter axiom (Masatlioglu et al., 2012).3 α̂ implies idempotency,4 that is,

S(S(T )) = S(T ) for all T .

3 We refer to Monjardet (2008) for a more thorough discussion of the origins of this condition.
4 Tournament solutions that fail to satisfy idempotency (such as the uncovered set) can be made idempotent by

iteratively applying the tournament solution to the resulting choice sets until no further refinement is possible.
The corresponding tournament solutions, however, often violate monotonicity.
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Finally, we consider a structural invariance property that is based on components
and strengthens common cloning-consistency conditions. A tournament solution is
composition-consistent if it chooses the “best” alternatives from the “best” components.

Definition 3.3. A tournament solution S is composition-consistent if for all tourna-
ments T , T1, . . . , Tk , and T̃ such that T = ∏

(T̃ , T1, . . . , Tk),

S(T ) =
⋃

i∈S(T̃ )

S(Ti).

Consider again the tournament given in Figure 3.2. Nonemptiness and neutrality
imply that every tournament solution has to select all alternatives in a 3-cycle. It
follows that every composition-consistent tournament solution has to select all five
alternatives in this tournament.

Besides its normative appeal, composition-consistency can be exploited to speed
up the computation of tournament solutions. Brandt et al. (2011) introduced the
decomposition degree of a tournament as a parameter that reflects its decomposability
and showed that computing any composition-consistent tournament solution is fixed-
parameter tractable with respect to the decomposition degree. Because computing the
minimal decomposition requires only linear time, decomposing a tournament never
hurts, and often helps.5

A weaker notion of composition-consistency, called weak composition-consistency,
requires that for every pair of tournaments T = (A,�) and T ′ = (A,�′) that only
differ with respect to the dominance relation on some component Y of T , both

(i) S(T ) \ Y = S(T ′) \ Y , and
(ii) S(T ) ∩ Y �= ∅ if and only if S(T ′) ∩ Y �= ∅.

3.3 Common Tournament Solutions

In this section we review some of the most common tournament solutions. On top of
the axiomatic properties defined in the previous section, particular attention will be
paid to whether and how a tournament solution can be computed efficiently. Whenever
a tournament solution is computationally intractable, we state NP-hardness of the
decision problem of whether a given alternative belongs to the choice set of a given
tournament. This implies hardness of computing the choice set. By virtue of the
construction in the proof of Theorem 3.1, it is irrelevant whether the input for this
problem is a tournament or a preference profile.

Let us start with two extremely simple tournament solutions. The trivial tournament
solution TRIV always selects all alternatives from any given tournament. While TRIV
does not discriminate between alternatives at all and as such is unsuitable as a
tournament solution, it is easily verified that it satisfies monotonicity, stability, and

5 Because the representation of a tournament of order m has size �(m2), the asymptotic running time of a linear
time algorithm is in O(m2).
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a b c d

Figure 3.3. Tournament T with MA(T ) = SL(T ) = {a}, CO(T ) = {a, b}, UC(T ) = {a, b, d}, and
TRIV(T ) = CNL(T ) = TC(T ) = {a, b, c, d}. All other tournament solutions considered in this
chapter coincide with UC. All omitted edges are assumed to point rightward, that is, a � b,
a � c, b � c, b � d, and c � d.

composition-consistency, and, of course, can be “computed” efficiently.6 One of the
largest nontrivial tournament solutions is the set of Condorcet non-losers (CNL). A
Condorcet loser is a (unique) alternative a such that A \ {a} � {a}. In tournaments of
order two or more, CNL selects all alternatives except Condorcet losers. CNL is barely
more discriminating than TRIV , yet already fails to satisfy stability and composition-
consistency (monotonicity is satisfied).

All tournament solutions defined in the following generalize the concept of a Con-
dorcet winner in one way or another.

3.3.1 Solutions Based on Scores

In this section, we introduce four tournament solutions that are defined via various
methods of assigning scores to alternatives: the Copeland set, the Slater set, the Markov
set, and the bipartisan set.

Copeland Set

The Copeland set is perhaps the first idea that comes to mind when thinking about tour-
nament solutions. While a Condorcet winner is an alternative that dominates all other
alternatives, Copeland’s rule selects those alternatives that dominate the most alterna-
tives (see, e.g., Copeland, 1951). Formally, the Copeland set CO(T ) of a tournament T

consists of all alternatives whose dominion is of maximal size, that is,

CO(T ) = arg max
a∈A

|D(a)|.
|D(a)| is also called the Copeland score of a. In graph-theoretic terms, |D(a)| is the
outdegree of vertex a.

In the example tournament given in Figure 3.3, CO(T ) = {a, b}, because both a

and b have a Copeland score of 2, whereas the Copeland score of both c and d is 1.
It is straightforward to check that CO satisfies monotonicity. On the other hand,

stability and composition-consistency do not hold. This can be seen by again examin-
ing the tournament in Figure 3.3. Because CO(CO(T )) = {a} �= {a, b} = CO(T ), CO
violates idempotency and thus stability. Moreover, as {{a}, {b, c}, {d}} is a decompo-
sition of T , composition-consistency would require that d ∈ CO(T ), which is not the
case. A similar example shows that CO even violates weak composition-consistency.
An axiomatic characterization of CO was provided by Henriet (1985).

6 Many axiomatizations of tournament solutions only require inclusive properties (i.e., properties which demand
that alternatives ought to be included in the choice set under certain circumstances) and inclusion-minimality
(see, e.g., Brandt et al., 2013a, pp. 224–226).
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CO can be easily computed in linear time by determining all Copeland scores and
choosing the alternatives with maximum Copeland score.7

Theorem 3.2. The Copeland set can be computed in linear time.

It is possible to define “second-order” Copeland scores by adding the Copeland
scores of all alternatives within the dominion of a given alternative. The process
of iteratively computing these scores is guaranteed to converge (due to the Perron-
Frobenius Theorem) and leads to a tournament solution, which is sometimes referred
to as the Kendall-Wei method (see, e.g., Moon, 1968, Chapter 15; Laslier, 1997, pp. 54–
56). Kendall-Wei scores can be computed in polynomial time by finding the eigenvector
associated with the largest positive eigenvalue of the adjacency matrix.

Slater Set

Although the dominance relation � of a tournament may fail to be a strict linear order,
it can be linearized by inverting edges in the tournament graph. The intuition behind
Slater’s rule is to select from a tournament (A,�) those alternatives that are maximal
elements (i.e., Condorcet winners) in those strict linear orders that can be obtained
from � by inverting as few edges as possible, that is, in those strict linear orders that
have as many edges in common with � as possible (Slater, 1961).8 Thus, Slater’s rule
can be seen as the unweighted analogue of Kemeny’s social preference function (see
Chapter 2 and Chapter 4).

Denote the maximal element of A according to a strict linear order > by max(>).
The Slater score of a strict linear order > over the alternatives in A with respect to
tournament T = (A,�) is |> ∩ � |. A strict linear order is a Slater order if it has
maximal Slater score. Then, the Slater set SL is defined as

SL(T ) = {max(>) : > is a Slater order for T }.
In the example in Figure 3.3, SL(T ) = {a} because a > b > c > d is the only Slater
order. SL satisfies monotonicity, but violates stability and composition-consistency.

Finding Slater orders is equivalent to solving an instance of the minimum feedback
arc set problem, which is known to be NP-hard, even in tournaments.9 Therefore,
checking membership in SL is NP-hard as well.

Theorem 3.3 (Alon, 2006; Charbit et al., 2007; Conitzer, 2006). Deciding whether
an alternative is contained in the Slater set is NP-hard.

It is unknown whether the membership problem is contained in NP. The best
known upper bound for this problem is the complexity class �

p
2 , and Hudry (2010)

7 Brandt et al. (2009) have shown that deciding whether an alternative is contained in CO(T ) is TC0-complete
and therefore not expressible in first-order logic.

8 When inverting as few edges as possible in order to obtain a Condorcet winner (rather than a strict linear order),
we get the Copeland set.

9 Whether the minimum feedback arc set problem is NP-hard in tournaments was a long-standing open problem
that was solved independently by Alon (2006), Charbit et al. (2007), and Conitzer (2006). The minimum
feedback arc set problem is APX-hard (Kann, 1992) and thus does not admit a polynomial-time approximation
scheme (PTAS) unless P = NP. For tournaments, however, there exists a PTAS (Kenyon-Mathieu and Schudy,
2007).
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conjectured that the problem is complete for this class. For a more detailed discussion
of the computational complexity of Slater’s solution, see Hudry (2010) and Charon and
Hudry (2006, 2010). Bachmeier et al. (2014) have shown that deciding membership in
the Slater set remains NP-hard even when there are only 13 voters.

Although SL is not composition-consistent, it satisfies weak composition-
consistency. Interestingly, decompositions of the tournament can be exploited to iden-
tify a subset of the Slater orders (see Laslier, 1997, p. 66; Conitzer, 2006).

Markov Set

Based on ideas that date back at least to Daniels (1969) and Moon and Pullman (1970),
Laslier (1997) defines a tournament solution via a Markov chain. The intuition given
by Laslier is that of a table tennis tournament in which the alternatives are players
who compete in a series of pairwise comparisons. If a player wins, he will stay at
the table and compete in the next match. If he loses, he will be replaced with a new
random player. The goal is to identify those players who, in expectation, will win most
matches.

The states of the Markov chain are the alternatives and the transition probabilities
are determined by the dominance relation: in every step, stay in the current state a

with probability |D(a)|
|T |−1 , and move to state b with probability 1

|T |−1 for all b ∈ D(a). The
Markov set consists of those alternatives that have maximum probability in the chain’s
unique stationary distribution. Formally, the transition matrix of the Markov chain is
defined as

Q = 1

|T | − 1
· (M(T ) + diag(CO)),

where M(T ) is the adjacency matrix and diag(CO) is the diagonal matrix of the
Copeland scores. Let �(A) be the set of all probability distributions over A. The
Markov set MA(T ) of a tournament T is then given by

MA(T ) = arg max
a∈A

{p(a) : p ∈ �(A) and Qp = p} .

MA tends to select significantly smaller choice sets than most other tournament solu-
tions. In the example in Figure 3.3, MA(T ) = {a} because the stationary distribution
is 4

10a + 3
10b + 1

10c + 2
10d. The Markov solution is also closely related to Google’s

PageRank algorithm for ranking websites (see Brandt and Fischer, 2007). It satisfies
monotonicity, but violates stability and weak composition-consistency.

Computing p as the eigenvector of Q associated with the eigenvalue 1 is straight-
forward. Accordingly, deciding whether an alternative is in MA can be achieved in
polynomial time.

Theorem 3.4. The Markov set can be computed in polynomial time.

Moreover, Hudry (2009) has pointed out that computing MA has the same asymptotic
complexity as matrix multiplication, for which the fastest known algorithm to date runs
in O(m2.38).
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Bipartisan Set

The last tournament solution considered in this section generalizes the notion of a
Condorcet winner to lotteries over alternatives. Laffond et al. (1993a) and Fisher and
Ryan (1995) have shown independently that every tournament T admits a unique
maximal lottery,10 that is, a probability distribution p ∈ �(A) such that for G(T ) =
(gab)a,b∈A, ∑

a,b∈A

p(a)q(b)gab ≥ 0 for all q ∈ �(A).

Let pT denote the unique maximal lottery for a tournament T . Laffond et al. (1993a)
define the bipartisan set BP(T ) of T as the support of pT , that is,

BP(T ) = {a ∈ A : pT (a) > 0}.
For the tournament in Figure 3.4, we have pT = 1

3a + 1
3b + 1

3d and thus BP(T ) =
{a, b, d}. It is important to realize that the probabilities do not necessarily represent the
strengths of alternatives and, that, in contrast to other score-based tournament solutions,
just selecting those alternatives with maximal probabilities results in a tournament
solution that violates monotonicity (see Laslier, 1997, pp. 145–146).

To appreciate this definition, it might be illustrative to interpret the skew-adjacency
matrix G(T ) of T as a symmetric zero-sum game in which there are two players, one
choosing rows and the other choosing columns, and in which the matrix entries are
the payoffs of the row player. Then, if the players respectively randomize over rows
and columns according to pT this corresponds to the unique mixed Nash equilibrium
of this game. An axiomatization of BP and an interpretation of mixed strategies in the
context of electoral competition were provided by Laslier (1997, pp. 151–153) and
Laslier (2000), respectively.

BP satisfies monotonicity, stability, and composition-consistency. Moreover, BP can
be computed in polynomial time by solving a linear feasibility problem (Brandt and
Fischer, 2008a).

Theorem 3.5. The bipartisan set can be computed in polynomial time.

In weak tournaments—that is, generalizations of tournaments where the dominance
relation is not required to be antisymmetric (see Section 3.5)—deciding whether an
alternative is contained in the bipartisan set is P-complete (Brandt and Fischer, 2008a).
Whether P-hardness also holds for tournaments is open.

3.3.2 Uncovered Set and Banks Set

If dominance relations were transitive in general, every tournament (and all of its
subtournaments) would admit a Condorcet winner. The uncovered set and the Banks
set address the lack of transitivity in two different but equally natural ways.

The uncovered set takes into account a particular transitive subrelation of the domi-
nance relation, called the covering relation, and selects the maximal alternatives thereof,

10 Maximal lotteries were first considered by Kreweras (1965) and studied in detail by Fishburn (1984). The
existence of maximal lotteries follows from the Minimax Theorem.
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a b c d e

a b c d e

a 0 1 1 −1 1

b −1 0 1 1 −1

c −1 −1 0 1 1

d 1 −1 −1 0 1

e −1 1 −1 −1 0

Figure 3.4. Tournament T and its skew-adjacency matrix G(T ). CO(T ) = SL(T ) =
MA(T ) = {a}, BP = {a, b, d}, UC(T ) = BA(T ) = {a, b, c, d}, and TRIV(T ) = CNL(T ) = TC(T ) =
{a, b, c, d, e}. All other tournament solutions considered in this chapter coincide with BP.
Omitted edges point rightward.

whereas the Banks set consists of maximal alternatives of inclusion-maximal transitive
subtournaments.11

Uncovered Set

An alternative a is said to cover alternative b whenever every alternative dominated
by b is also dominated by a. Formally, given a tournament T = (A,�), the covering
relation C is defined as a binary relation over A such that for all distinct a, b ∈ A,

a C b if and only if D(b) ⊆ D(a).

Observe that a C b implies that a � b and is equivalent to D(a) ⊆ D(b). It is easily
verified that the covering relation C is transitive and irreflexive, but not necessarily
connex. The uncovered set UC(T ) of a tournament T = (A,�) is then given by the set
of maximal elements of the covering relation, that is,

UC(T ) = {a ∈ A : b C a for no b ∈ A}.
UC was independently proposed by Fishburn (1977) and Miller (1980) and goes back
to a game-theoretic notion used by Gillies (1959).

In the example in Figure 3.4, a covers e, as D(e) = {b} and D(a) = {b, c, e}. As
this is not the case for any other two alternatives, UC(T ) = {a, b, c, d}. UC satisfies
monotonicity and composition-consistency, but violates stability. In fact, it does not
even satisfy idempotency. An appealing axiomatic characterization of UC was given
by Moulin (1986).

Interestingly, UC consists precisely of those alternatives that reach every other
alternative on a domination path of length at most two (Shepsle and Weingast, 1984).12

This equivalence can be easily seen by realizing that

a ∈ UC(T ) if and only if there is no b ∈ A such that b C a

if and only if for all b ∈ D(a) there is some c ∈ D(a) such that c � b

if and only if a reaches all b ∈ A \ {a} in at most two steps.

11 As Brandt (2011a) notes, the uncovered set contains exactly those alternatives that are Condorcet winners in
inclusion-maximal subtournaments that admit a Condorcet winner.

12 In graph theory, these alternatives are called the kings of a tournament, and they constitute the center of the
tournament graph.
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a

b

c

d

e

f

g

x D(x) TC (D(x))

a {c, e} {c}
b {a, f} {a}
c {b, g} {b}
d {a, b, c} {a, b, c}
e {b, c, d, g} {b}
f {a, c, d, e} {c}
g {a, b, d, f} {a}

Figure 3.5. Tournament T and its dominator sets. BA(T ) = {a, b, c}, UC(T ) = {a, b, c, d}, and
TRIV(T ) = CNL(T ) = TC(T ) = {a, b, c, d, e, f, g}. All other tournament solutions considered in
this chapter coincide with BA. Omitted edges point rightward.

This characterization can be leveraged to compute UC via matrix multiplication
because

a ∈ UC(T ) if and only if (M(T )2 + M(T ) + I )ab �= 0 for all b ∈ A,

where I is the n × n identity matrix (Hudry, 2009). Hence, the asymptotic running
time is O(n2.38).13

Theorem 3.6. The uncovered set can be computed in polynomial time.

As mentioned in Chapter 2, an alternative is Pareto-optimal if there exists no other
alternative such that all voters prefer the latter to the former. A tournament solution is
Pareto-optimal if its associated SCF only returns Pareto-optimal alternatives. Brandt
et al. (2015a) have shown that UC is the coarsest Pareto-optimal tournament solution. As
a consequence, a tournament solution is Pareto-optimal if and only if it is a refinement
of UC.

Banks Set

The Banks set selects the maximal elements of all maximal transitive subtournaments.
Formally, a transitive subtournament (B,�B) of tournament T is said to be maximal
if there is no other transitive subtournament (C,�C) of T with B ⊂ C. The Banks set
BA(T ) of a tournament is then defined as

BA(T ) = {max(�B) : (B,�B) is a maximal transitive subtournament of T }.
The tournament in Figure 3.5 has six maximal transitive subtournaments, induced

by the following subsets of A: {a, b, d, g}, {a, d, f, g}, {b, c, d, e}, {b, d, g, e},
{c, a, d, f }, and {c, d, e, f }. Hence, BA(T ) = {a, b, c}. Like UC, BA satisfies mono-
tonicity and composition-consistency, but violates stability. BA was originally defined
as the set of sophisticated outcomes under the amendment agenda (Banks, 1985). For

13 Brandt and Fischer (2008a) proved that the problem of computing UC is contained in the complexity class
AC0 by exploiting that computing the covering relation can be highly parallelized. This is interesting insofar
as deciding whether an alternative lies within UC is computationally easier (in AC0) than checking whether
it is contained in CO (TC0-complete), despite the fact that the fastest known algorithm for computing UC is
asymptotically slower than the fastest algorithm for CO.
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p q ¬r

p s r

¬p s q

u4

u2

d

c1

c3

c5

c2

c4

Figure 3.6. Tournament Tϕ for the 3CNF formula ϕ = (¬p∨ s ∨ q) ∧ (p∨ s ∨ r ) ∧ (p∨ q ∨ ¬r ).
Omitted edges point downward.

more details see Section 3.4. An alternative axiomatization of the Banks set was given
by Brandt (2011a).

BA cannot be computed in polynomial time unless P equals NP.

Theorem 3.7 (Woeginger, 2003). Deciding whether an alternative is contained in the
Banks set is NP-complete.

Proof. Membership in NP is straightforward. Given a tournament T = (A,�) and an
alternative a ∈ A, simply guess a subset B of A and verify that (B,�B) is a transitive
subtournament of T with a = max(�B). Then, check (B,�B) for maximality.

For NP-hardness, we give the reduction from 3SAT by Brandt et al. (2010c). Let ϕ =
(x1

1 ∨ x2
1 ∨ x3

1 ) ∧ · · · ∧ (x1
m ∨ x2

m ∨ x3
m) be a propositional formula in 3-conjunctive

normal form (3CNF). For literals x we have x̄ = ¬p if x = p, and x̄ = p if x = ¬p,
where p is a propositional variable. We may assume that x and x̄ do not occur in the
same clause.

We now construct a tournament Tϕ = (A,�) with

A = {c1, . . . , c2m−1} ∪ {d} ∪ U1 ∪ · · · ∪ U2m−1,

where for 1 ≤ k ≤ 2m − 1, the set Uk is defined as follows. If k is odd, let i = k+1
2 and

define Uk = {x1
i , x

2
i , x

3
i }. If k is even, let Uk = {uk}.

The dominance relation is defined such that x1
i � x2

i � x3
i � x1

i . Moreover, for
literals x


i and x
′
j (1 ≤ 
, 
′ ≤ 3) with i < j we have x


i � x
′
j , unless x


i = x̄
′
j , in

which case x
′
j � x


i . For the dominance relation on the remaining alternatives the
reader is referred to Figure 3.6.

Observe that for every maximal transitive subtournament (B,�B) of Tϕ with
max(�B) = d it holds that:

(i) B contains an alternative from each Uk with 1 ≤ k ≤ 2m − 1, and
(ii) for no literal x, the set B contains both x and x̄.
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For (i), assume that B ∩ Uk = ∅. Because max(�B) = d and cj � d for all 1 ≤ j ≤
2m − 1, we have B ∩ {c1, . . . , c2m−1} = ∅. It follows that (B ∪ {ck},�B∪{ck}) is tran-
sitive (ck � b for all b ∈ B), contradicting maximality of (B,�B). For (ii), assume
both x, x̄ ∈ B. By a previous assumption then x ∈ Uk and x̄ ∈ Uk′ for odd k and k′

with k �= k′. Without loss of generality assume that k < k′. By (i), uk+1 ∈ B. Then,
however, x � uk+1 � x̄ � x, contradicting transitivity of (B,�B).

We now prove that

ϕ is satisfiable if and only if d ∈ BA(Tϕ).

First assume that d ∈ BA(Tϕ), that is, d = max(�B) for some maximal transitive sub-
tournament (B,�B) of Tϕ . Define assignment v such that it sets propositional variable p

to true if p ∈ B and to false if ¬p ∈ B. By virtue of (ii), assignment v is well-defined
and with (i) it follows that v satisfies ϕ.

For the opposite direction, assume that ϕ is satisfiable. Then, there are an assign-
ment v and literals x1, . . . , xm from the clauses (x1

1 ∨ x2
1 ∨ x3

1 ), . . . , (x1
m ∨ x2

m ∨ x3
m),

respectively, such that v satisfies each of x1, . . . , xm. Define

B = {d} ∪ {x1, . . . , xm} ∪ {u2, u4, . . . , u2m−2}.
It is easily seen that (B,�B) is transitive and that max(�B) = d. Observe that B

contains an alternative uk from each Uk with 1 ≤ k ≤ 2m − 1. Hence, for each ck ∈ C,
we have ck � d � uk � ck and, thus, (B ∪ {ck},�B∪{ck}) is not transitive. It follows
that d = max(�B ′) for some maximal transitive subtournament (B ′,�B ′) with B ⊆ B ′,
that is, d ∈ BA(Tϕ).

By modifying the construction only slightly and using a variant of 3SAT, Bach-
meier et al. (2014) have shown that this problem remains NP-complete even when
there are only 5 voters. Interestingly, finding some alternative in BA(A,�) can be
achieved in linear time using the following simple procedure (Hudry, 2004). Label
the alternatives in A as a1, . . . , am and initialize X as the empty set. Then, starting
with k = 1, successively add alternative ak to X if and only if ak dominates all alter-
natives in X. After m steps, this process terminates and the last alternative added to X

can easily be seen to be a member of the Banks set. The difficulty of computing the
whole Banks set is rooted in the potentially exponential number of maximal transitive
subtournaments.

3.3.3 Solutions Based on Stability

Generalizing an idea by Dutta (1988), Brandt (2011a) proposed a method for refining
any tournament solution S by defining minimal sets that satisfy a natural stability
criterion with respect to S. Given a tournament solution S and a tournament T , a subset
of alternatives B ⊆ A is called S-stable in T if, for all a ∈ A \ B,

a /∈ S(B ∪ {a}).
An S-stable set B is said to be minimal if there is no other S-stable set C in T such
that C ⊂ B. Because the set of all alternatives is finite and trivially S-stable, minimal
S-stable sets are guaranteed to exist. Now for each tournament solution S, there is a
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new tournament solution Ŝ, which returns the union of all minimal S-stable sets in a
tournament T = (A,�), that is,

Ŝ(T ) =
⋃

{B ⊆ A : B is a minimal S-stable set in T }.
A crucial issue in this context is whether S admits a unique minimal stable set in every
tournament because this is necessary for Ŝ to satisfy stability (Brandt et al., 2014e).

In the following, we will define three tournament solutions using the notion of stable
sets: the top cycle, the minimal covering set, and the minimal extending set.

Top Cycle

The top cycle TC can be defined as the unique minimal stable set with respect to CNL,
the set of Condorcet nonlosers, that is,

TC = ĈNL.

Alternatively, TC can be defined via the notion of a dominant set. A nonempty subset
of alternatives B ⊆ A is called dominant in tournament T = (A,�) if B � A \ B,
that is, if each alternative in B dominates all alternatives not in B. Dominant sets are
linearly ordered via set inclusion and TC returns the unique smallest dominant set. In
yet another equivalent definition, TC is defined as the set of maximal elements of the
transitive and reflexive closure of the dominance relation �. TC is a very elementary
tournament solution and, in a slightly more general context (see Section 3.5), is also
known as weak closure maximality, GETCHA, or the Smith set (Good, 1971; Smith,
1973; Schwartz, 1986). An appealing axiomatic characterization of the top cycle was
given by Bordes (1976).

TC tends to select rather large choice sets and may even contain Pareto-dominated
alternatives. In the example tournaments given in Figures 3.3, 3.4, and 3.5, TC selects
the set of all alternatives because it is the only dominant set. TC satisfies monotonic-
ity, stability, and weak composition-consistency, but violates the stronger notion of
composition-consistency (see, e.g., Figure 3.3).

Because each alternative outside TC only dominates alternatives that are also out-
side TC and every alternative in TC dominates all alternatives outside TC, it can easily
be appreciated that each alternative in TC has a strictly greater Copeland score than
each alternative outside TC. Hence, CO ⊆ TC.

Exploiting this insight, TC(T ) can be computed in linear time by starting with CO(T )
and then iteratively adding alternatives that are not dominated by the current set.
Alternatively, one can employ an algorithm, for example, the Kosaraju-Sharir algorithm
or Tarjan’s algorithm, for finding the strongly connected components of T and then
output the unique strongly connected component that dominates all other strongly
connected components.14

Theorem 3.8. The top cycle can be computed in linear time.

14 Brandt et al. (2009) have shown that the problem of deciding whether an alternative is contained in the top
cycle of a tournament is in the complexity class AC0.
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Minimal Covering Set

A subset B of alternatives is called a covering set if it is UC-stable, that is, if every
a ∈ A \ B is covered in the subtournament (B ∪ {a},�B∪{a}). The minimal covering
set MC is defined as

MC = ÛC.

Dutta (1988) has shown that every tournament admits a unique minimal UC-stable
set and that MC ⊆ UC. In the example in Figure 3.4, MC(T ) = {a, b, d}, and hence
MC is a strict refinement of UC. Observe that, for instance, {a, b, c} is not UC-
stable, as d ∈ UC({a, b, c, d}). MC satisfies monotonicity, stability, and composition-
consistency. Dutta also provided an axiomatic characterization of MC, which was later
improved by Laslier (1997, pp. 117–120).

Laffond et al. (1993a) have shown that BP ⊆ MC. By virtue of Theorem 3.5, we
can therefore efficiently compute a nonempty subset of MC. This fact can be used to
compute MC by leveraging the following lemma.

Lemma 3.9. Let T = (A,�) be a tournament and B ⊆ MC(A). Define C = {a ∈
A \ B : a ∈ UC(B ∪ {a})}. Then, MC(C) ⊆ MC(A).

MC(T ) can then be computed by first computing the bipartisan set BP(T ) and then
iteratively adding a specific subset of alternatives that lie outside the current set but do
belong to MC(T ). Lemma 3.9 tells us how this subset can be found at each stage (see
Algorithm 1).15

Algorithm 1 Minimal covering set
procedure MC(A,�)

B ← BP(A)
loop

C ← {a ∈ A \ B : a ∈ UC(B ∪ {a}}
if C = ∅ then return B end if
B ← B ∪ BP(C)

end loop

Theorem 3.10 (Brandt and Fischer, 2008a). The minimal covering set can be com-
puted in polynomial time.

Minimal Extending Set

A subset of alternatives is called an extending set if it is BA-stable. Brandt (2011a)
defined the minimal extending set ME(T ) as the union of all minimal extending sets of
a tournament T , that is,

ME = B̂A.

15 Lemma 3.9 can also be used to construct a recursive algorithm for computing MC without making reference
to BP. However, such an algorithm has exponential worst-case running time.
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In the tournament in Figure 3.4, we find that ME(T ) = {a, b, d}. Brandt et al. (2014c)
showed that ME ⊆ BA and that computing ME is computationally intractable by using
a construction similar to that of the proof of Theorem 3.7.

Theorem 3.11 (Brandt et al., 2014c). Deciding whether an alternative is contained
in a minimal extending set is NP-hard.

The best known upper bound for this decision problem is the complexity class �
p
3 .

Bachmeier et al. (2014) have shown that the problem remains NP-hard even when
there are only 7 voters. A relation-algebraic specification of minimal extending
sets, which can be used to compute ME on small instances, was proposed by
Berghammer (2014).

Brandt (2011a) proved that ME satisfies composition-consistency, and conjectured
that every tournament contains a unique minimal extending set. Even though this
conjecture was later disproved, which implies that ME violates monotonicity and
stability, it is unclear whether this seriously impairs the usefulness of ME (Brandt
et al., 2013b, 2014c). The counterexample found by Brandt et al. consists of about
10136 alternatives and concrete tournaments for which ME violates any of these
properties have never been encountered (even when resorting to extensive computer
experiments).

3.3.4 Solutions Based on Retentiveness

Finally, we consider an operator on tournament solutions which bears some resem-
blance to the notion of minimal stable sets as introduced in the previous section. The
underlying idea of retentiveness was first proposed by Schwartz (1990) and studied
more generally by Brandt et al. (2014d).

For a given tournament solution S, we say that an alternative a is S-dominated by
alternative b if b is chosen among a’s dominators by S. Similarly, a nonempty set
of alternatives is called S-retentive if none of its elements is S-dominated by some
alternative outside the set. Formally, for a tournament solution S and a tournament
T = (A,�), a nonempty subset B ⊆ A is S-retentive in T if for all b ∈ B such that
D(b) �= ∅,

S(D(b)) ⊆ B.

An S-retentive set B in T is said to be minimal if there is no other S-retentive
set C in T with C ⊂ B. As in the case of S-stable sets, minimal S-retentive sets are
guaranteed to exist because the set of all alternatives is trivially S-retentive. Thus we
can define S̊ as the tournament solution yielding the union of minimal S-retentive sets,
that is, for all tournaments T = (A,�),

S̊(T ) =
⋃

{B ⊆ A : B is a minimal S-retentive set in T }.

As with minimal stable sets, it is important for the axiomatic properties of S̊ whether
S admits a unique minimal retentive set in every tournament. It is easily veri-
fied that there always exists a unique minimal TRIV-retentive set, and that in fact

˚TRIV = TC.
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The Minimal TC-Retentive Set

Brandt et al. (2014d) have shown that S̊ inherits several desirable properties from S—
including monotonicity and stability—whenever a unique minimal S-retentive set is
guaranteed to exist. They went on to show that every tournament admits a unique
TC-retentive set. As a consequence, the tournament solution T̊C—which can also be

written as ˚̊TRIV—is monotonic and stable. Also, T̊C inherits efficient computability
from TC and satisfies weak composition-consistency.

Theorem 3.12 (Brandt et al., 2014d). The minimal TC-retentive set can be computed
in polynomial time.

In the tournament in Figure 3.5, the set {a, b, c} and each of its supersets is TC-
retentive. Therefore, T̊C(T ) = {a, b, c}.

Tournament Equilibrium Set

Schwartz (1990) defined the tournament equilibrium set (TEQ) recursively as the union
of all minimal TEQ-retentive sets,

TEQ = ˚TEQ.

This recursion is well-defined because the order of the dominator set of any alternative
is strictly smaller than the order of the original tournament. In the example in Figure 3.5,
TEQ(T ) = T̊C(T ) = {a, b, c}, because TEQ and TC coincide on all dominator sets.

TEQ is the only tournament solution defined via retentiveness that satisfies
composition-consistency. Schwartz conjectured that every tournament contains a
unique minimal TEQ-retentive set. As was shown by Laffond et al. (1993b) and Houy
(2009b,a), TEQ satisfies any one of a number of important properties including mono-
tonicity and stability if and only if Schwartz’s conjecture holds. Brandt et al. (2013b)
showed that Schwartz’s conjecture does not hold by nonconstructively disproving a
related weaker conjecture surrounding ME.16 As a consequence, TEQ violates mono-
tonicity and stability. However, counterexamples to Schwartz’s conjecture appear to be
extremely rare and it may be argued that TEQ satisfies the properties for all practical
purposes.

Using a construction similar to that of the proof of Theorem 3.7, it can be shown
that computing TEQ is intractable.17

Theorem 3.13 (Brandt et al., 2010c). Deciding whether an alternative is contained
in the tournament equilibrium set is NP-hard.

There is no obvious reason why checking membership in TEQ should be in NP. The
best known upper bound for this problem is the complexity class PSPACE. Bachmeier

16 A significantly smaller counterexample for Schwartz’s conjecture, consisting of only 24 alternatives, was found
by Brandt and Seedig (2013). However, this smaller counterexample does not disprove the corresponding
conjecture for ME.

17 The proof of Theorem 3.13 actually shows that the membership decision problem for any tournament solution
that is sandwiched between BA and TEQ, that is, computing any tournament solution S with TEQ ⊆ S ⊆ BA,
is NP-hard.
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Table 3.1. Axiomatic and computational properties of tournament solutions

Composition-
Monotonicity Stability Consistency Computational Complexity

CO + – – in P
SL + – weak NP-hard, in �

p
2

MA + – – in P
BP + + + in P

UC + – + in P
BA + – + NP-complete

TC + + weak in P
MC + + + in P
ME – – + NP-hard, in �

p
3

T̊C + + weak in P
TEQ – – + NP-hard, in PSPACE

Note: All hardness results hold even for a constant number of voters. Computing UC and TC has been shown to
be in AC0, whereas computing CO is TC0-complete.

et al. (2014) have shown that this problem remains NP-hard even when there are
only 7 voters. Brandt et al. (2010c, 2011) devised practical algorithms for TEQ that run
reasonably well on moderately sized instances, even though their worst-case complexity
is, of course, still exponential.

3.3.5 Summary

Table 3.1 summarizes the axiomatic as well as computational properties of the consid-
ered tournament solutions. There are linear-time algorithms for CO and TC. Moreover,
a single element of BA can be found in linear time. Computing BA, TEQ, and SL is
intractable unless P equals NP. Apparently, MC and BP fare particularly well in terms
of axiomatic properties as well as efficient computability.18

Figure 3.7 provides a graphical overview of the set-theoretic relationships between
tournament solutions. It is known that BA and MC (and by the known inclusions also
UC and TC) almost always select all alternatives when tournaments are drawn uni-
formly at random (Fey, 2008; Scott and Fey, 2012). Experimental results suggest that
the same is true for TEQ. Interestingly, despite satisfying strong inclusive axiomatic
properties such as stability and composition-consistency, BP is much more discrimi-
native: For every integer m > 1, the average number of alternatives that BP selects in a
labeled tournament of order m is m

2 (Fisher and Reeves, 1995; Scott and Fey, 2012).19

Analytic results concerning the uniform distribution stand in sharp contrast to empirical
observations that Condorcet winners are likely to exist in real-world settings, which

18 Berghammer et al. (2013) have formalized the definitions of most of the considered tournament solutions
using a computer algebra system, which can then be used to compute and visualize these functions. These
general-purpose algorithms are, however, outperformed by tailor-made algorithms using matrix multiplication,
linear programming, or eigenvalue decomposition (see, e.g., Seedig, 2014).

19 Brandt et al. (2014e) have shown that there is no more discriminative stable tournament solution than BP. In
particular, there is no stable refinement of BP.
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TC

UC

BA

MC

ME

TEQ

BPSL MA

CO

Figure 3.7. The set-theoretic relationships between tournament solutions are depicted in this
Venn-like diagram. If the ellipses of two tournament solutions S and S′ intersect, then S(T ) ∩
S′(T ) �= ∅ for all tournaments T . If the ellipses for S an S′ are disjoint, however, this signifies
that S(T ) ∩ S′(T ) = ∅ for some tournament T . Thus, BA and MC are not included in each other,
but they always have a nonempty intersection (see, e.g., Laslier, 1997). CO, MA, and SL are
contained in UC but may be disjoint from MC and BA. The exact location of BP in this diagram
is unknown, but it intersects with TEQ in all known instances and is contained in MC. TEQ and
ME are contained in BA, but their inclusion in MC is uncertain. Hence, the ellipses for TEQ,
ME, and BP are dashed. T̊C is omitted in this figure because very little is known apart from the
inclusion in TC (see Brandt et al., 2015b, for more details).

implies that tournament solutions are much more discriminative than these analytical
results suggest (Brandt and Seedig, 2015).

3.4 Strategyproofness and Agenda Implementation

It is well-known from the Gibbard-Satterthwaite Theorem (see Chapter 2) that only
trivial resolute SCFs are strategyproof, that is, immune against the strategic misrepre-
sentation of preferences. Tournament solutions are irresolute by definition (think of a
3-cycle) and therefore the Gibbard-Satterthwaite Theorem does not apply directly.20

There are two ways to obtain weak forms of strategyproofness that are partic-
ularly well-suited for tournament solutions. The first one concerns the traditional
notion of strategyproofness with respect to weakly dominant strategies, but incom-
plete preference relations over sets of alternatives, and the second one deals with the
implementation of tournament solutions by means of sequential binary agendas and
subgame-perfect Nash equilibrium. Each of these methods allows for rather positive
results, but also comes at a cost: the first one requires a high degree of uncertainty

20 However, the Gibbard-Satterthwaite Theorem does imply that no resolute refinement of any of the tournament
solutions discussed in this chapter—except TRIV—is strategyproof. There are important extensions of the
Gibbard-Satterthwaite Theorem to irresolute SCFs such as the Duggan-Schwartz Theorem (see Chapter 2).
We will focus on more positive results for tournament solutions in this chapter.
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among the voters as to how ties are broken, whereas the second one requires common
knowledge of all preferences and may result in impractical voting procedures.

3.4.1 Strategyproofness

A proper definition of strategyproofness for irresolute SCFs requires the specification
of preferences over sets of alternatives. One way to obtain such preferences is to
extend the preferences that voters have over individual alternatives to (not necessarily
complete) preference relations over sets. A function that yields a preference relation
over subsets of alternatives when given a preference relation over single alternatives is
called a set extension. Of course, there are various set extensions, each of which leads
to a different class of strategyproof SCFs (see, e.g., Gärdenfors, 1979; Barberà et al.,
2004; Taylor, 2005, Brandt, 2015; Brandt and Brill, 2011).

Here, we will concentrate on two natural and well-studied set extensions due to
Kelly (1977) and Fishburn (1972), respectively.21 Let �i be the preference relation of
voter i and let B and C be two nonempty sets of alternatives. Then, Kelly’s extension
is defined by letting

B �K
i C if and only if b �i c for all b ∈ B and c ∈ C.

One interpretation of this extension is that voters are completely unaware of the
tiebreaking mechanism (e.g., a lottery) that will be used to pick the winning alter-
native.

Fishburn’s extension is defined by letting

B �F
i C if and only if b �i c for all b ∈ B and c ∈ C \ B and

b �i c for all b ∈ B \ C and c ∈ C.

One interpretation of this extension is that ties are broken according to some unknown
linear order (e.g., the preferences of a chairman). It is easily seen that B �K

i C implies
B �F

i C.
Each set extension induces a corresponding notion of strategyproofness. An SCF f

is Kelly-strategyproof if there is no voter i and no pair of preference profiles R and R′

with �j=�′
j for all j �= i such that f (R′) �K

i f (R). If such profiles exist, we say that
voter i can manipulate f . Fishburn-strategyproofness is defined analogously. Note that
in this definition of strategyproofness, set extensions are interpreted as fully specified
preference relations according to which many choice sets are incomparable (and chang-
ing the outcome to an incomparable choice set does not constitute a manipulation).
Clearly, because B �K

i C implies B �F
i C, Fishburn-strategyproofness is stronger

than Kelly-strategyproofness.
Kelly-strategyproofness may seem like an extremely weak notion of strategyproof-

ness as only few pairs of sets can actually be compared. Nevertheless, almost all
common SCFs fail to satisfy Kelly-strategyproofness because they can already be
manipulated on profiles where these functions are resolute (Taylor, 2005, pp. 44–51).

21 Gärdenfors (1979) attributed the second extension to Fishburn because it is the coarsest extension that satisfies
a certain set of axioms proposed by Fishburn (1972).
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Brandt (2015) has shown that stability and monotonicity are sufficient for Kelly-
strategyproofness. Virtually all SCFs of interest that satisfy these conditions are tour-
nament solutions (or weighted tournament solutions). We therefore only state the result
for tournament solutions rather than for SCFs.

Theorem 3.14 (Brandt, 2015). Every monotonic and stable tournament solution
is Kelly-strategyproof. Moreover, every Condorcet-consistent coarsening of a Kelly-
strategyproof tournament solution is Kelly-strategyproof.

As a consequence, BP, each of its Condorcet-consistent coarsenings (such as MC,
UC, and TC), and T̊C are Kelly-strategyproof.22 On the other hand, it can be shown that
every Condorcet-consistent tournament solution that may return a single alternative in
the absence of a Condorcet winner is Kelly-manipulable. It follows that CO, SL, and
MA fail to be Kelly-strategyproof. More involved arguments can be used to show that
ME and TEQ are not Kelly-strategyproof.

The results for Fishburn-strategyproofness are less encouraging. While it is known
that TC is Fishburn-strategyproof (Brandt and Brill, 2011; Sanver and Zwicker, 2012),
a computer-aided proof has shown that no refinement of UC is Fishburn-strategyproof.
Because UC is the coarsest Pareto-optimal tournament solution, we have the following
theorem.

Theorem 3.15 (Brandt and Geist, 2014). There is no Pareto-optimal Fishburn-
strategyproof tournament solution.

As a consequence of this theorem, the set-theoretic relationships depicted in
Figure 3.7, and other observations (Brandt and Brill, 2011), TC is the finest Fishburn-
strategyproof tournament solution considered in this chapter.

3.4.2 Agenda Implementation

An important question—which has enjoyed considerable attention from social choice
theorists and political scientists since the work of Black (1958) and Farquharson
(1969)—is whether simple procedures exists that implement a particular tournament
solution. This in particular concerns procedures that are based on a series of binary
choices and eventually lead to the election of a single alternative. The binary choices
may depend on one another and need not exclusively be between two alternatives. Such
procedures are in wide use by actual committees and institutions at various levels of
democratic decision making. The most prominent among these are the simple agenda
(or successive procedure) and the amendment procedure, both of which were initially
studied in their own right by political scientists. The former is prevalent in civil law or
Euro-Latin legal systems, whereas the latter is more firmly entrenched in the common
law or Anglo-American legal tradition (see, e.g., Apesteguia et al., 2014).

With the simple agenda, the alternatives are ordered in a sequence a1, . . . , am and
subsequently successively being voted up or down by majority voting: First alterna-
tive a1 is brought up for consideration; if a1 is carried by a majority, it is accepted as

22 In fact, the proof even shows that these functions are group-strategyproof with respect to Kelly’s extension.
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Simple agenda

a1?

a2?

a3?

a4a3

a3 not-a3

a2

a2 not a2

a1

a1 not a1

Amendment agenda

a1 or a2?

a2 or a3?

a3 or a4?

a4a3

a3 a4

a2 or a4?

a4a2

a2 a4

a2 a3

a1 or a3?

a3 or a4?

a4a3

a3 a4

a1 or a4?

a4a1

a1 a4

a1 a3

a1 a2

Figure 3.8. The simple agenda and the amendment agenda for four alternatives ordered as
a1, a2, a3, a4.

the final decision; otherwise, a1 is rejected and a2 is brought up for consideration, and
so on.

With the amendment agenda, the alternatives are again ordered in a sequence
a1, . . . , am and voting then takes place in m − 1 rounds. In the first round, a majority
comparison is made between a1, the status quo, and a2, the amendment. The winner
then goes through to the next round as the new status quo and is put in a majority
contest with a3, and so on. Figure 3.8 illustrates how these procedures can be depicted
as binary trees, the leaves of which are associated with alternatives.

More generally, every binary tree with alternatives at its leaves could be seen as
defining a multistage voting procedure. Formally, an agenda of order m is defined
as a binary tree whose leaves are labeled by an index set I . A seeding of a set of
alternatives A of size |I | is a bijection from A to I .

For the analysis of voting procedures defined by such agendas and seedings, voters
can either be sincere or sophisticated. Sincere voters myopically and nonstrategically
vote “directly according to their preferences” whenever the agenda calls for a binary
decision. If these choices are invariably between two alternatives, as in the amend-
ment procedure, sincere voting simply comes down to voting for the more preferred
alternative at each stage. We refer to Chapter 19 on knockout tournaments for this
setting.

By contrast, sophisticated voters are forward looking and vote strategically. Hence, a
more game-theoretic approach and “backward inductive” reasoning is appropriate. For
the remainder of this section, we assume voters to adopt sophisticated voting strategies,
meaning that the binary tree can be “solved” by successively propagating the majority
winner among two siblings to their parent, starting at the leaves and going upward.
Multistage sophisticated voting yields the same outcome as the one obtained by solving
the extensive-form game as defined by the agenda using backward induction (McKelvey
and Niemi, 1978), in an important sense leveraging the strategyproofness of majority
rule in settings with more than two alternatives. Similarly, the sophisticated outcome
is the alternative that survives iterated elimination of weakly dominated strategies in
the strategic form game induced by the agenda (Farquharson, 1969; Moulin, 1979).

In order to define agenda-implementability, one defines a class of agendas (one
for each order m) and considers all possible seedings for each agenda. A tournament
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solution S is then said to be agenda-implementable if there exists a class of agendas
such that for every tournament T , a ∈ S(T ) if and only if there is a seeding for the
agenda of size |T | such that its sophisticated outcome is a.

Early results on agenda implementation demonstrated that the class of simple agen-
das implements TC and the class of amendment agendas implements BA (Miller, 1977,
1980; Banks, 1985; Moulin, 1986). Moulin (1986), moreover, showed that agenda-
implementable tournament solutions have to be weakly composition-consistent refine-
ments of TC. As a consequence, CO and MA are not agenda-implementable. A com-
plete characterization of agenda-implementable tournament solutions, however, had
long remained elusive before Horan (2013) obtained sufficient conditions for agenda-
implementability that cover a wide range of tournament solutions and almost match
Moulin’s necessary conditions.23

Theorem 3.16 (Horan, 2013). Every weakly composition-consistent tournament
solutions that chooses from among the top cycle of every component is agenda-
implementable.

As a corollary to this result it follows that—besides TC and BA—also SL, UC,
MC, ME, BP, and TEQ are agenda-implementable. It should be observed, however,
that the agendas actually implementing these tournament solutions may be extremely
large. The size of the amendment agenda, for instance, is already exponential in
the number of alternatives.24 Moreover, Horan’s proof is nonconstructive and no
concrete classes of agendas that implement any of the tournament solutions con-
sidered in this chapter—except the simple agenda and the amendment agenda—are
known.

The fact that CO fails to be agenda-implementable has sparked some research on
approximating Copeland winners via binary agendas. Fischer et al. (2011) showed
that agenda-implementability is unachievable for any tournament solution that, from
tournaments of order m, only chooses alternatives with a Copeland score at least as
high as 3

4 + O( 1
m

) of the maximum Copeland score. Horan (2013) demonstrated the
existence of agenda-implementable tournament solutions that only select alternatives
whose Copeland score is at least 2

3 of the maximum Copeland score, improving previous
results by Fischer et al. (2011).

3.4.3 Summary

Table 3.2 summarizes which of the considered tournament solutions are Kelly-
strategyproof, Fishburn-strategyproof, and agenda-implementable, respectively. Again,
it turns out that BP represents a decent compromise between discriminative power and
attractive axiomatic properties.

23 A weaker version of Theorem 3.16 simply states that every composition-consistent refinement of TC is agenda-
implementable.

24 As an extreme case consider the agendas that Coughlan and Le Breton (1999) introduced to implement a
refinement of the iterated Banks set (see also Laslier, 1997). The corresponding agenda of order 6 has already
2720! − 1 nodes!
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Table 3.2. Strategic properties of tournament solutions

Kelly- Fishburn- Agenda-
Strategyproofness Strategyproofness Implementability

CO – – –
SL – – +
MA – – –
BP + – +
UC + – +
BA ? – + (amendment)

TC + + + (simple)
MC + – +
ME – – +
T̊C + – ?
TEQ – – +

Note: It is unknown whether BA is Kelly-strategyproof and whether T̊C is agenda-implementable.
Interestingly, T̊C falls exactly between the necessary and sufficient conditions given by Moulin
(1986) and Horan (2013).

3.5 Generalizations to Weak Tournaments

So far, we assumed the majority relation to be antisymmetric, which can be justified,
for instance, by assuming that there is an odd number of voters. In general, however,
there may be majority ties. These can be accounted for by considering weak tourna-
ments (A,�), that is, directed graphs that represent the complete, but not necessarily
antisymmetric, majority relation.25

For most of the tournament solutions defined in Section 3.3, generalizations or
extensions to weak tournaments have been proposed. Often, it turns out that there are
several sensible ways to generalize a tournament solution and it is unclear whether
there exists a unique “correct” generalization. A natural criterion for evaluating the
different proposals is whether the extension satisfies (appropriate generalizations of)
the axiomatic properties that the original tournament solution satisfies.

3.5.1 The Conservative Extension

A generic way to generalize any given tournament solution S to weak tournaments
is by selecting all alternatives that are chosen by S in some orientation of the weak
tournament. Formally, a tournament T = (A,�) is an orientation of a weak tournament
W = (A,�′) if a � b implies a �′ b for all a, b ∈ A. The conservative extension of
S, denoted [S], is defined such that, for every weak tournament W ,

[S](W ) =
⋃

T ∈[W ]

S(T ),

25 Alternatively, one can consider the strict part of the majority relation�, which is asymmetric, but not necessarily
connex.
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where [W ] denotes the set of all orientations of W . Brandt et al. (2014a) have shown
that [S] inherits several natural properties from S, including monotonicity, stability,
and composition-consistency.

An alternative interpretation of weak tournaments is in terms of a partial information
setting, where the symmetric and irreflexive part of the dominance relation represents
unknown comparisons rather than actual ties (see Chapter 10). In this setting, the set
of winners according to the conservative extension exactly corresponds to the set of
possible winners of the partially specified tournament. The computational complexity
of possible and necessary winners of partially specified tournaments has been studied
by Aziz et al. (2012b), who showed that for a number of tractable tournament solutions
(such as CO, UC, and TC), possible winners—and thus the conservative extension—can
be computed efficiently.

3.5.2 Extensions of Common Tournament Solutions

For many tournament solutions, ad hoc extensions have been proposed in the literature.
In this section, we give an overview of these extensions and compare them to the
conservative extension.

The Copeland set CO gives rise to a whole class of extensions that is parameterized
by a number α between 0 and 1. The solution COα selects all alternatives that maximize
the variant of the Copeland score in which each tie contributes α points to an alterna-
tive’s score (see, e.g., Faliszewski et al. (2009c)). Henriet (1985) axiomatically charac-
terized CO

1
2 , arguably the most natural variant in this class. The conservative extension

[CO] does not coincide with any of these solutions. Furthermore, [CO] �⊆ COα for all
α ∈ [0, 1] and COα ⊆ [CO] if and only if 1

2 ≤ α ≤ 1.
When moving from tournaments to weak tournaments, maximal lotteries are no

longer unique. Dutta and Laslier (1999) have shown that the appropriate generalization
of the bipartisan set BP is the essential set ES, which is given by the set of all alternatives
that are contained in the support of some maximal lottery. The essential set coincides
with the support of any quasi-strict Nash equilibrium of the game defined by the
skew-adjacency matrix. It is easy to construct tournaments where ES is strictly smaller
than [BP], and there are also weak tournaments in which [BP] is strictly contained
in ES.

Duggan (2013) surveyed several extensions of the covering relation to weak tour-
naments. Any such relation induces a generalization of the uncovered set UC. The
so-called deep covering and McKelvey covering relations are particularly interesting
extensions. Duggan showed that for all other generalizations of the covering relation
he considered, the corresponding uncovered set is a refinement of the deep uncovered
set UCD. Another interesting property of UCD is that it coincides with the conservative
extension of UC. It follows that all other UC generalizations considered by Duggan
are refinements of [UC].

Banks and Bordes (1988) discussed four different generalizations of the Banks set BA
to weak tournaments. Each of these generalizations is a refinement of the conservative
extension [BA].

For the top cycle TC, Schwartz (1972; 1986) defined two different generalizations
(see also Sen, 1986). GETCHA (or the Smith set) contains the maximal elements of the
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transitive closure of �, whereas GOCHA (or the Schwartz set) contains the maximal
elements of the transitive closure of �. GOCHA is always contained in GETCHA,
and the latter coincides with [TC]. A game-theoretical interpretation of TC gives
rise to a further generalization. Duggan and Le Breton (2001) observed that the top
cycle of a tournament T coincides with the unique mixed saddle MS(T ) of the game
G(T ), and showed that the mixed saddle is still unique for games corresponding to
weak tournaments. The solution MS is nested between GOCHA and GETCHA. The
computational complexity of GETCHA and GOCHA was analyzed by Brandt et al.
(2009), and the complexity of mixed saddles was studied by Brandt and Brill (2012).

Generalizations of the minimal covering set MC using the McKelvey covering
relation and the deep covering relation are known to satisfy stability. There exist
weak tournaments in which [MC] is strictly contained in both the McKelvey minimal
covering set MCM and the deep minimal covering set MCD. There are also weak
tournaments in which MCM is strictly contained in [MC]. Computational aspects of
generalized minimal covering sets have been analyzed by Brandt and Fischer (2008a)
and Baumeister et al. (2013a).

Schwartz (1990) suggested six ways to extend the tournament equilibrium set TEQ—
and the notion of retentiveness in general—to weak tournaments. However, all of those
variants can easily be shown to lead to disjoint minimal retentive sets even in very
small tournaments, and none of the variants coincides with [TEQ].

It is noteworthy that, in contrast to the conservative extension, some of the exten-
sions discussed earlier fail to inherit properties from their corresponding tournament
solutions. For instance, GOCHA violates stability.

A further generalization of tournaments (and weak tournaments) are weighted tour-
naments, which take the size of pairwise majorities into account. Weighted tournament
solutions are studied in detail in Chapter 4. Dutta and Laslier (1999) have generalized
several common tournament solutions to weighted tournaments.

3.6 Further Reading

The monograph by Moon (1968) provides an excellent, but slightly outdated, overview
of mathematical results about tournaments, which is nicely complemented by more
recent book chapters on tournament graphs (Reid and Beineke, 1978; Reid, 2004).

The formal study of tournament solutions in the context of social choice was initiated
by Moulin (1986) and sparked a large number of research papers, culminating in
the definitive monograph by Laslier (1997). More recent overviews of tournament
solutions, which also focus on their computational properties, were given by Brandt
(2009b) and Hudry (2009). There are also comprehensive studies that exclusively deal
with tournament solutions based on covering (Duggan, 2013), stability (Brandt, 2011a;
Brandt and Harrenstein, 2011; Brandt et al., 2014e), and retentiveness (Brandt et al.,
2014d), respectively. For some tournament solutions, continuous generalizations to the
general spatial model are available (see, e.g., Banks et al., 2006; Duggan, 2013).

For a more extensive introduction to the vast literature on agenda-implementability,
the reader is referred to Moulin (1988a, Chapter 9), Laslier (1997, Chapter 8),
Austen-Smith and Banks (2005, Chapter 4), and Horan (2013) . Fo r a n ove r v i ew o f
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the literature on and a discussion of simple and amendment procedures, see, e.g.,
Apesteguia et al. (2014).

This chapter focusses on choosing from a tournament. For the related—but
different—problem of ranking alternatives in a tournament, finding a ranking that
agrees with as many pairwise comparisons as possible (i.e., Slater’s rule) has enjoyed
widespread acceptance (see, e.g., Charon and Hudry, 2010). Clearly, score-based tour-
nament solutions such as CO and MA can easily be turned into ranking functions.
Bouyssou (2004) has studied ranking functions that are defined via the successive
application of tournament solutions and found that monotonic and stable tournament
solutions yield particularly attractive ranking functions.
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CHAPTER 4

Weighted Tournament Solutions

Felix Fischer, Olivier Hudry, and Rolf Niedermeier

An obvious way to move beyond tournament solutions as studied in Chapter 3 is to take
into account not only the direction of the majority preference between a pair of alterna-
tives, but also its strength in terms of the margin by which one alternative is preferred.
We focus in this chapter on social choice functions that are called C2 functions by
Fishburn (1977) and could also be referred to as weighted tournament solutions: social
choice functions that depend only on pairwise majority margins but are not tournament
solutions.

Consider a set A = {1, . . . , m} of alternatives and a set N = {1, . . . , n} of voters
with preferences �i∈ L(A) for all i ∈ N . Here, we denote by L(X) the set of all linear
orders on a finite set X, that is, the set of all binary relations on X that are complete,
transitive, and asymmetric. For a given preference profile R = (�1, . . . ,�n) ∈ L(A)n,
the majority margin mR(x, y) of x over y is defined as the difference between the
number of voters who prefer x to y and the number of voters who prefer y to x, that is,

mR(x, y) = |{i ∈ N : x �i y}| − |{i ∈ N : y �i x}|.

We will routinely omit the subscript when R is clear from the context. The pairwise
majority margins arising from a preference profile R can be conveniently represented
by a weighted tournament (A, MR), where MR is the antisymmetric m × m matrix
with (MR)xx = 0 for x ∈ A and (MR)xy = mR(x, y) for x, y ∈ A with x �= y.1 An
example of a weighted tournament and a corresponding preference profile is shown in
Figure 4.1. Because C2 functions only depend on majority margins, they can be viewed
as functions mapping weighted tournaments to sets of alternatives, or to linear orders
of the alternatives.

Clearly all majority margins will be even if the number of voters is even, and odd if
the number of voters is odd. The following result, similarly to McGarvey’s Theorem

1 Note that antisymmetry of MR only implies asymmetry and not antisymmetry of the relation {(x, y) ∈
A × A : m(x, y) > m(y, x)}. Therefore, unlike tournaments, weighted tournaments allow for ties in pairwise
comparisons.
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a b
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e
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6
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6

6

4

b � d � a � e � c × 3

d � a � c � e � b × 3

b � c � e � d � a × 4

a � e � c � d � b × 4

a � b � c � e � d × 1

e � c � d � a � b × 1

Figure 4.1. Example of a weighted tournament and a corresponding preference profile. The
illustration on the left shows a weighted tournament for A = {a, b, c, d, e}, where x ∈ A and
y ∈ A are connected by an arc with weight m(x, y) if and only if m(x, y) > 0. The weighted
tournament is induced by a preference profile for 16 voters with preferences and multiplicities
as shown on the right.

for tournaments (McGarvey, 1953), establishes that this condition in fact characterizes
the set of weighted tournaments induced by preference profiles.2

Theorem 4.1 (Debord, 1987). Let (A, M) be a weighted tournament. Then M = MR

for some profile R of preferences over A if and only if all off-diagonal elements of M

have the same parity.

For a given preference profile, the induced weighted tournament can be computed in
time O(nm2). Unlike tournaments, weighted tournaments can be exponentially more
succinct than the smallest preference profiles that induce them, but this turns out to be
inconsequential: all computational hardness results in this chapter hold even when the
input is given as a preference profile, whereas all tractable C2 functions we consider
can be computed in time polynomial in the size of the weighted tournament.

We begin our investigation with Kemeny’s rule. Section 4.1 introduces the rule
and studies some of its properties, Section 4.2 then surveys computational hardness
results and different types of algorithms. Section 4.3 provides a more general treatment
of median orders and associated computational results, Section 4.4 a brief overview
of applications in rank aggregation. In Section 4.5 we finally study properties and
computational aspects of various other C2 functions—including Borda’s rule, Black’s
rule, Nanson’s rule, maximin rule, Schulze’s method, the ranked pairs method, and the
essential set.

4.1 Kemeny’s Rule

Kemeny (1959) proposed to aggregate a preference profile R = (�1, . . . ,�n) into a
linear order � ∈ L(A) that maximizes the number of agreements with the preferences
in R, that is, one for which∑

i∈N

| �i ∩ � | = max
�′∈L(A)

∑
i∈N

| �i ∩ �′ |.

2 The example in Figure 4.1 provides some intuition why this result is true. We do not prove it here, but note that
a short proof was given by Le Breton (2005). A proof of McGarvey’s Theorem can be found in Section 3.2.
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Orders with this property are an example of so-called median orders (Barthelemy and
Monjardet, 1981; Charon and Hudry, 2007), which will be discussed more generally
in Section 4.3. The social preference function that selects all such orders is the only
neutral and consistent Condorcet extension (Young and Levenglick, 1978) and has
also been characterized as the maximum likelihood estimator for a simple probabilistic
model in which individual preferences are noisy estimates of an underlying “true”
ranking (Young, 1988, 1995a).3 We will see momentarily that Kemeny’s rule is very
interesting also from a computational perspective, and will devote a significant part of
this chapter to its study.

In the literature, Kemeny’s rule is often defined by minimization of disagreement
rather than maximization of agreement. To this end, define the (Kemeny) score of a
ranking � with respect to a preference profile R = (�1, . . . ,�n) as∑

i∈N

τ (�i ,�),

where

τ (�i ,�) =
∑

{x,y}⊆A

dx,y(�i ,�)

with

dx,y(�i ,�) =
{

1 if x �i y and y � x, or y �i x and x � y

0 otherwise

is Kendall’s tau distance (Kendall, 1938). In other words, the score of � measures
the sum of distances to the individual preference orders �i in terms of the number of
inversions. Kemeny’s rule then chooses rankings with minimum score.4 Because

∑
i∈N

τ (�i ,�) =
∑

x,y∈A

x�y

∣∣{i ∈ N : y �i x}∣∣ =∑
x,y∈A

x�y

mR(y, x) + n

2
,

Kemeny’s rule is a C2 function. This characterization also emphasizes the close rela-
tionship between Kemeny’s rule and Slater’s rule (Chapter 3), which only takes the sign
of each majority margin into account when computing scores and ignores its absolute
value.

We leave it to the reader to verify that in the example of Figure 4.1 alternative a is
the unique Kemeny winner, that is, the unique alternative at the top of a ranking with
minimum score.

3 Quite surprisingly, the alternative most likely to be the best may not simply be the alternative at the top of the
ranking with the highest likelihood. In fact Borda’s rule, which we discuss in Section 4.5.1, may provide a better
estimate in this case (Young, 1988).

4 There can in fact be up to m! such rankings. It is also worth noting that other social choice functions can be
obtained by maximizing score over a set of rankings other than linear orders, see Section 4.3 for details.
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4.2 Computing Kemeny Winners and Kemeny Rankings

We consider three decision problems and one optimization problem related to Kemeny’s
rule.

Kemeny Score
Input: A preference profile R and a nonnegative integer k.
Question: Is there a linear order that has score at most k with respect to R?

Kemeny Winner
Input: A preference profile R and an alternative x ∈ A.
Question: Is there a linear order that has minimum score with respect to R and ranks x

first?

Kemeny Ranking
Input: A preference profile R and two alternatives x, y ∈ A.
Question: Is there a linear order that has minimum score with respect to R and ranks

x above y?

Kemeny Rank Aggregation
Input: A preference profile R.
Task: Find a linear order that has minimum score with respect to R.

We will see that the first decision problem is NP-complete, whereas the other two
seem computationally even harder: they are complete for the class �P

2 of problems
solvable via parallel access to NP.5 From a practical point of view, Kemeny Rank
Aggregation is perhaps most interesting.

We begin with a discussion of the classical completeness results mentioned above,
and then we explore two approaches that attempt to address the computational
intractability these completeness results imply: exponential-time parameterized algo-
rithms, and polynomial-time approximation algorithms for Kemeny Rank Aggre-
gation. Finally we discuss additional approaches—exact, approximate, or purely
heuristic—that are relevant in practice.

4.2.1 Computational Hardness

If there are only two voters, the preference order of either of them has minimum
Kemeny score. By contrast, it was known since the late 1980s that Kemeny Score
is NP-complete when the number n of voters is unbounded (Bartholdi et al., 1989a;
Hudry, 1989). This result was later shown to hold already for n = 4, and in fact for
any even n � 4. Quite intriguingly, the case for any odd n � 3 remains open.

Theorem 4.2 (Bartholdi et al., 1989b; Hudry, 1989; Dwork et al., 2001; Biedl
et al., 2009). Kemeny Score is NP-complete for even n � 4, and for odd n when n is
unbounded.

5 A detailed discussion of this complexity class, and related results for Dodgson’s and Young’s rules, can be
found in Chapter 5.
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Proof sketch. The Kemeny score of a given linear order can easily be computed and
compared to k in polynomial time, so Kemeny Score is in NP.

Hardness for the two cases can be shown by two polynomial-time reductions from
the NP-complete feedback arc set problem on directed graphs (e.g., Garey and Johnson,
1979), here we sketch the reduction for even n � 4.

Feedback Arc Set
Input: A directed graph G = (V, E) and an integer k � 0.
Question: Is there a set F ⊆ E with |F | � k such that graph G′ = (V, E \ F ) does

not have any directed cycles?

Consider a directed graph G = (V, E) with V = {v1, . . . , vn} and an integer k � 0,
and let m = |E|. The goal is to find in polynomial time a preference profile R and an
integer k′ such that there exist a linear order that has Kemeny score at most k′ with
respect to R if and only if G has a feedback arc set of size at most k. To this end,
let A = V ∪ E. For each v ∈ V , let out(v) and in(v) respectively denote arbitrary linear
orders of the incoming and outgoing arcs of v. For any linear order �, let � denote the
reverse order. Now define R as the set of the following four linear orders, where we
slightly abuse notation and compose linear orders from linear orders on subsets of the
alternatives:

v1 �1 out(v1) �1 v2 �1 out(v2) �1 . . . �1 vn �1 out(vn),

vn �2 out(vn) �2 vn−1 �2 out(vn−1) �2 . . . �2 v1 �2 out(v1),

in(v1) �3 v1 �3 in(v2) �3 v2 �3 . . . �3 in(vn) �3 vn,

in(vn) �4 vn �4 in(vn−1) �4 vn−1 �4 . . . �4 in(v1) �4 v1.

Setting k′ = 2
(
n
2

)+ 2
(
m
2

)+ 2m(n − 1) + 2k completes the construction.
For a rigorous proof of correctness, the reader is referred to the article of Biedl et al.

(2009). It is not hard to show, however, that independently of the structure of graph G

any linear order of A must have score at least k′ − 2k with respect to R. Given a
feedback arc set F of size k, a linear order on A \ F that has score k′ − 2k with respect
to the restriction of R to A \ F can be obtained by starting from a topological ordering
of the acyclic graph (V, E \ F ) and inserting each arc (u, v) ∈ E \ F between u and v.
Inserting each arc (u, v) ∈ F immediately after u, as in �1 and �2, increases the score
by 2k due to �3 and �4, for an overall score of k′.

The result can easily be generalized to any even number n � 6 of voters by adding
(n − 4)/2 voters with an arbitrary preference order and (n − 4)/2 voters with the
reverse preference order.

While NP-hardness of Kemeny Winner and Kemeny Ranking follow from The-
orem 4.2 and were thus known since 1989, the exact complexity of these problems
remained open until they were finally shown complete for the class �P

2 of problems
that can be decided by parallel access to an oracle for NP. Membership in �P

2 is
straightforward. The proof of hardness follows the same general idea as the proof of
Bartholdi et al. (1989b) for NP-hardness of Kemeny Score, but starts from a �P

2 -
complete variant of Feedback Arc Set, referred to as Feedback Arc Set Member,
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and reduces this problem in polynomial time to both Kemeny Winner and Kemeny
Ranking.

Theorem 4.3 (Hemaspaandra et al., 2005). Kemeny Winner and Kemeny Rank-
ing are �P

2 -complete.

The usual interpretation of the above results is that general efficient algorithms for
Kemeny’s rule are unlikely to exist, where efficiency is associated with running times
that are polynomial in the size of the problem instance. We proceed to discuss different
algorithmic approaches by which this difficulty can be and has been addressed. We
focus mainly on Kemeny Rank Aggregation, but note that most of the techniques
can easily be adapted to the three decision problems.

4.2.2 Polynomial-Time Approximation Algorithms

A common approach to computationally difficult problems sacrifices solution quality to
achieve a polynomial running time, while trying to guarantee that the solution remains
close to optimal. To this end, call an algorithm a polynomial-time α-approximation
algorithm for Kemeny Rank Aggregation if it has polynomial running time and for
each preference profile produces a linear order with Kemeny score at most α times the
minimum Kemeny score.

Ordering the alternatives by increasing Borda score provides a 5-approximation to
Kemeny Rank Aggregation (Coppersmith et al., 2010). Because τ is a metric and
in particular satisfies the triangle inequality, the preference order of a voter selected
uniformly at random in fact yields a 2-approximation in expectation, and this argument
can easily be de-randomized to obtain a deterministic polynomial-time algorithm with
the same approximation factor (e.g., Ailon et al., 2008). Spearman’s footrule distance,
that is, the sum of the absolute values of the difference between ranks, provides
another polynomial-time 2-approximation algorithm (Diaconis and Graham, 1977;
Dwork et al., 2001), and it turns out that the approximation factor can be improved
further.

Theorem 4.4 (Ailon et al., 2008; van Zuylen and Williamson, 2009). The following
polynomial-time algorithms exist for Kemeny Rank Aggregation:

� a 4/3-approximation algorithm based on linear programming;
� a combinatorial 11/7-approximation algorithm.

The 11/7-approximation algorithm selects the better of two linear orders: the pref-
erence order of a voter chosen uniformly at random and the order obtained by an
algorithm similar to quicksort, which chooses a pivot alternative and recursively orders
the alternatives above and below that alternative (Ailon et al., 2008). The approxima-
tion guarantee can be improved to 4/3 if the pivot element is chosen randomly based
on the solution of a linear program (Ailon et al., 2008), and this algorithm can be de-
randomized while preserving the approximation factor (van Zuylen and Williamson,
2009).

Whereas all of the above algorithms are reasonably efficient also in practice, the
following result is of purely theoretical interest.
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Theorem 4.5 (Kenyon-Mathieu and Schudy, 2007). Kemeny Rank Aggregation
has an efficient polynomial-time approximation scheme.

An efficient polynomial-time approximation scheme computes an (1 + ε)-
approximation in polynomial time for any ε > 0, where the degree of the polynomial
is independent of ε but the running time can otherwise depend on ε in an arbitrary
way. The running time of the algorithm underlying Theorem 4.5 is doubly exponential
in 1/ε, which is too large for most practical purposes. Theorem 4.5 does imply, how-
ever, that no constant lower bound greater than one exists on possible approximation
factors for Kemeny Rank Aggregation, so there is hope that Theorem 4.4 can be
improved upon by algorithms that are efficient in practice.

4.2.3 Parameterized Algorithms

Parameterized algorithms provide a different approach to computationally difficult
problems, by attempting to limit any super-polynomial growth of the running time to
certain parameters of the problem at hand. If the attempt is successful the problem
is fixed-parameter tractable, that is, it can be solved efficiently for small parameter
values (e.g., Downey and Fellows, 2013; Niedermeier, 2006).

Perhaps the most obvious candidate parameters in our setting are the number n

of voters and the number m of alternatives. Whereas a restriction of n makes little
sense given the NP-completeness of Kemeny Score for n = 4, the situation looks
more promising for m. Indeed, an exhaustive search through all possible linear orders
for one with minimum score requires O(m! nm log m) time, where O(nm log m) is
the time needed to compute the score of a single linear order. While this algo-
rithm could be used to solve instances with around ten alternatives, the excessive
growth of m! limits its usefulness. Dynamic programming enables a reduction of this
factor to 2m.

Theorem 4.6 (Betzler et al., 2009; Raman and Saurabh, 2007). Kemeny Rank
Aggregation can be solved in O(2mm2n) time.

Proof sketch. Consider a preference profile R on a set A of alternatives. We inductively
compute a Kemeny ranking for the restriction of R to every nonempty subset of A.
For subsets of size one, computation of a Kemeny ranking is trivial. For A′ ⊆ A with
|A′| > 1, we exploit the fact that the exclusion of the alternative at the top of a Kemeny
ranking does not change the relative ranking of the other alternatives (e.g., Young,
1988). A Kemeny ranking for A′ can thus be found by considering all linear orders that
begin with some alternative a ∈ A′ and continue with a Kemeny ranking for A′ \ {a}.
There are |A′| � m such rankings, and the score of each such ranking can be computed
from that of a Kemeny ranking for A′ \ {a} in O(nm) time. Because the algorithm
considers each nonempty subset of A, its running time is O(2mm2n).

Another obvious class of parameters includes the Kemeny score of the instance at
hand, which we denote by k in the following, the average distance τavg between pref-
erence orders, and the average distance between the preference orders and a Kemeny
ranking, which is equal to k/n. Simjour (2009) observed that k/(n − 1) � τavg � 4k/n,
which makes k/n a stronger parameter than τavg in the sense that it takes smaller
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values (Komusiewicz and Niedermeier, 2012). The advantage of τavg is that it can
easily be computed for a given preference profile. In the following we state results
in terms of k/n, but they clearly hold for τavg and any other upper bound on k/n as
well.

The main theoretical result for this type of parameterization is a sub-exponential
algorithm that makes use of a standard reduction from Kemeny Score to Weighted
Feedback Arc Set in tournaments and a dynamic programming algorithm for the
latter.

Theorem 4.7 (Karpinski and Schudy, 2010). Kemeny Rank Aggregation can be
solved in 2O(

√
k/n) + (n + m)O(1) time.

Fomin et al. (2010) gave a sub-exponential algorithm for a local search variant of
Kemeny Rank Aggregation. Mahajan et al. (2009) showed that Kemeny Score
remains fixed-parameter tractable if instead of k it is parameterized by the difference
between k and a certain lower bound on the Kemeny score that can be shown to hold
for a given preference profile.

Parameterization in terms of k and related parameters also enables a more detailed
analysis of preprocessing techniques. Even when the existence of polynomial-time
algorithms for a certain problem is unlikely, we may still hope for polynomial-time
data reduction rules that provably reduce the size of the input instance (Guo and
Niedermeier, 2007). Knowledge of k can for example be used to reduce the number
of voters to at most 2k, by distinguishing instances where at most k and more than k

voters have the same preference order. In the former case, any instance with more than
2k voters would have Kemeny score greater than k. In the latter case, the preference
order shared by more than k voters is the only one that can have score k or less and
must thus be a Kemeny ranking.

Two additional data reduction rules can be obtained from an extension of the Con-
dorcet criterion (Truchon, 1998). A linear order � ∈ L(A) satisfies the extended Con-
dorcet criterion with respect to a preference profile R on A if the following holds: if
there exists A′ ⊆ A such that mR(x, y) > 0 for all x ∈ A′ and y ∈ A \ A′, then x � y

for all x ∈ A′ and y ∈ A \ A′.

Lemma 4.8 (Truchon, 1998). Any Kemeny ranking satisfies the extended Condorcet
criterion.

This lemma implies, for example, that an alternative that is ranked in the same
way by all voters relative to all other alternatives must appear in a fixed position in
every Kemeny ranking. More interestingly, the lemma suggests a recursive way of
computing a Kemeny ranking that can be applied whenever some set A′ ⊆ A satisfies
the condition of the extended Condorcet criterion. In this case the elements of A′ must
be ranked above the elements of A \ A′, and the restrictions of the Kemeny ranking to
A′ and A \ A′ must be Kemeny rankings of the respective restrictions of the preference
profile.

These insights can be combined with an exhaustive search for Kemeny rankings of
at most 2/ε alternatives, for some ε > 0, and with a connection to a weighted version
of Feedback Arc Set, to obtain the following result.
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Theorem 4.9 (Simjour, 2013). For any ε > 0, a given preference profile can be
transformed in polynomial time into a preference profile with at most (2 + ε)k/n

alternatives that is equivalent with regard to Kemeny Rank Aggregation.

Other parameters that have been considered in the literature include the positions
each alternative takes in the preferences of individual voters, and the distance to single-
peaked or single-crossing preferences.

For a given preference profile, define the range of an alternative as one plus the
difference between the highest and the lowest rank this alternative takes in the prefer-
ence order of any voter. Let rmax denote the maximum range of any alternative and ravg

the average range of the alternatives. It is now not difficult to see that Kemeny Rank
Aggregation remains NP-hard even for preference profiles with ravg = 2. For this,
consider an arbitrary preference profile and add m2 new alternatives that are ranked
below the original alternatives and in the same relative order in all preference orders.
Then, any Kemeny ranking with respect to the new preference profile ranks the orig-
inal alternatives above the new ones, and its restriction to the original alternatives is
a Kemeny ranking with respect to the original preference profile. Moreover, the new
profile has an average range of at most 2. By contrast, Kemeny Rank Aggregation
can be solved in O(32rmax (r2

max + rmaxm
2)) time using dynamic programming (Betzler

et al., 2009).
Cornaz et al. (2013) obtained a characterization in terms of the single-peaked or

single-crossing width of a preference profile, which respectively measure its distance to
a single-peaked or single-crossing profile. Here, a preference profile is single-peaked if
there exists a linear order of the alternatives such that each voter prefers alternatives less
if they are further away in this order from its most preferred alternative. A preference
profile is single-crossing if there exists a linear order of the voters such that for any
two alternatives x and y the voters preferring x over y are ranked above the voters
preferring y over x, or vice versa.

4.2.4 Practical Algorithms

All of the algorithms we have discussed so far come with some kind of formal guarantee
regarding their running time or the quality of solutions they produce. These guarantees
hold in the worst case over all preference profiles or over a restricted set of profiles with
certain parameters. It is, however, not obvious that the algorithms with the strongest
worst-case guarantees are the best algorithms in practice. A fair amount of work has
therefore been done to validate them empirically, and potentially identify algorithms
that perform better on realistic problem instances. We provide a brief overview, and
refer the interested reader to the individual articles and to the survey of Charon and
Hudry (2010) for details.

In discussing the empirical work, it again makes sense to distinguish two classes of
algorithms: exact algorithms that are guaranteed to produce an optimal ranking, and
where the goal is to reduce the running time to a reasonable level; and suboptimal
algorithms that provide a trade-off between solution quality and running time and that
may come with or without formal guarantees for either of these two characteristics.
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Both classes of algorithms may use heuristics designed to reduce running time or
improve solution quality in practice.

Members of the former class that have been evaluated include algorithms based on
integer linear programming, branch and cut, and branch and bound (Davenport and
Kalagnanam, 2004; Conitzer et al., 2006; Charon and Hudry, 2006; Schalekamp and
van Zuylen, 2009; Ali and Meilǎ, 2012). In addition, effectiveness of the data reduction
rules of Section 4.2.3 has been confirmed empirically (Betzler et al., 2014). While the
dynamic programming algorithm underlying Theorem 4.6 is competitive only for very
small numbers of alternatives, a combination of integer programming with polynomial-
time data reduction and other techniques for reducing the running time leads to the
fastest known algorithms in all other cases.

The second class of algorithms provides an even wider range of options. Here,
Schalekamp and van Zuylen (2009) recommend a heuristic based on Borda scores
when the goal is to obtain reasonably good results very quickly, and an algorithm
based on Copeland’s method for higher solution quality and slightly larger running
time. At the cost of a further increase in running time, an initial solution may be
improved further using local search. The analysis of Schalekamp and van Zuylen
was extended by Ali and Meilǎ (2012), who investigated how the structure of pref-
erence profiles affects the complexity of finding a Kemeny ranking, and how this
information can be used to select an appropriate algorithm. This approach is similar
to parameterized complexity analysis in that it tries to identify certain structures in the
problem input that enable faster algorithms, but at the same time abandons exactness
of solutions and worst-case bounds on the running time in favor of improved practical
performance.

It is finally worth mentioning that a rich set of metaheuristics has been applied to
Kemeny’s rule, including simulated annealing, tabu search, and genetic algorithms.
The interested reader is again referred to the survey of Charon and Hudry (2010).

4.3 Further Median Orders

Kemeny’s rule is defined in terms of linear orders that maximize the number of agree-
ments with a given set of linear orders. The central role of linear orders in social choice
theory notwithstanding, one may also more generally consider the problem of finding
a binary relation from a set M that maximizes the number of agreements with a set
of binary relations taken from a set V . We focus here on sets M and V obtained
by relaxing some of the properties that characterize linear orders—completeness,
transitivity, and asymmetry—and refer to the literature for additional properties
(Barthelemy and Monjardet, 1981; Fishburn, 1985; Bouyssou et al., 2006; Caspard
et al., 2012) and complexity results (Wakabayashi, 1998; Hudry, 2008; Charon and
Hudry, 2010).

For a set A of alternatives, let B(A) denote the set of (binary) relations, T (A) the
set of complete and asymmetric relations, and R(A) the set of complete and tran-
sitive relations on A. Obviously, T (A) is the set of tournaments on A. Relations
in R(A), which are also called weak orders, can model indifferences or incomparabil-
ities among alternatives, but not both. Note also that for any A, L(A) ⊆ T (A) ⊆ B(A)
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and L(A) ⊆ R(A) ⊆ B(A). We now consider the following decision problem for
M,V ∈ {B,R, T ,L}.6

(V,M)-Score
Input: An element of V(A)n and a nonnegative integer k.
Question: Is there an element of M(A) with score at most k?

By Theorem 4.2 (L,L)-Score, or Kemeny Score, is NP-complete for any even
number of voters greater than or equal to four and for an unbounded odd number of
voters.7 It is easy to see that membership in NP holds for all of the preceding choices
of M and V . Because NP-hardness is established by identifying certain elements of V
for which the existence of an element of M(A) with score at most k is hard to decide,
it continues to hold if elements are added to V . This means in particular that (V,L)-
Score is NP-complete for any V ⊇ L. Taking V to be a strict superset of L could of
course render the problem more difficult, and indeed (T ,L)-Score is hard even for a
single voter.

Theorem 4.10 (Alon, 2006; Charbit et al., 2007; Conitzer, 2006). (T ,L)-Score is
NP-complete, even when n = 1.

The attentive reader may have recognized the single-voter variant as a subproblem
in the computation of the Slater set of Chapter 3, and Theorem 3.3 is in fact a corollary
of Theorem 4.10.

The dependence of the complexity of (V,M)-Score on M is less obvious, but we
will see that hardness can in many cases be attributed to transitivity. Wakabayashi (1986,
1998) studied (B,M)-Score for various choices of M, and identified transitivity of
the relations in M as a source of hardness. NP-completeness for M = L can be
obtained as a corollary of Theorem 4.2, but the problem remains NP-complete when
completeness, asymmetry, or both are relaxed. If we instead relax transitivity and keep
completeness, asymmetry, or both, the problem can be solved in polynomial time.

Theorem 4.11 (Wakabayashi, 1986, 1998). (B,R)-Score is NP-complete. (B, T )-
Score can be solved in polynomial time.

Theorems 4.2 and 4.10 can respectively be extended to (L,R)-Score and (T ,R)-
Score, which by earlier arguments also strengthens the first part of Theorem 4.11.

Theorem 4.12 (Hudry, 2012). (L,R)-Score is NP-complete for every even n � 4.
(T ,R)-Score is NP-complete, even when n = 1.

6 In the context of this problem the term complete preorders has sometimes been used incorrectly for all elements
of R and not just those that satisfy reflexivity. It is, however, easy to see that the addition of reflexivity or
irreflexivity to V or M does not affect the relative sizes of scores or the complexity of (V,M)-Score, so that
all statements concerning R in what follows hold also for complete pre-orders. Also in what follows, statements
concerning linear orders remain true, sometimes nontrivially, if linearity is replaced by acyclicity. We leave it
to the interested reader to verify that this is indeed the case.

7 Kemeny (1959) in fact followed Arrow (1951) in requiring only completeness and transitivity, and considered
(R,R)-Score. We will obtain a hardness result concerning (R,R)-Score toward the end of this section.
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Ignoring the dependence on the number of voters, and denoting by A(A) the set of
acyclic relations on A, sufficient conditions for NP-completeness can be summarized
as follows.

Theorem 4.13. (V,M)-Score is NP-complete if V ⊇ L and M ∈ {A,R,L}.

4.4 Applications in Rank Aggregation

The enormous interest in Kemeny’s rule and other median orders across various dis-
ciplines can to a certain extent be attributed to its importance in rank aggregation,
with applications that extend far beyond the realm of social choice. Rank aggregation
problems arise for instance in the context of planning in multiagent systems (e.g.,
Ephrati and Rosenschein, 1993), in the design of metasearch engines and in spam
detection (e.g., Cohen et al., 1999; Dwork et al., 2001), in collaborative filtering
and recommender systems (e.g., Pennock et al., 2000a), in computational biology
(e.g., Jackson et al., 2008), and in winner determination for sports competitions (e.g.,
Betzler et al., 2014). Here we briefly describe an application to similarity search and
classification for high-dimensional data (Fagin et al., 2003).

Assume we are given a set of n data points and an additional query point, both from
a Euclidean space, and are interested in finding data points that are similar to the query
point. This problem can be reduced to a rank aggregation problem by associating each
data point with an alternative, and each dimension with a voter who ranks alternatives in
increasing distance from the query point in that dimension. What makes this approach
particularly attractive in the context of databases is that it does not require complex data
structures or a large amount of additional storage and mostly avoids random access to
the data. It of course relies on an efficient algorithm for rank aggregation, and Fagin
et al. (2003) specifically propose an approximate solution using the footrule distance.

4.5 Other C2 Functions

Whereas a large part of the computational work on C2 functions has focused on
Kemeny’s rule and other median orders, classical social choice theory has studied
various other C2 functions, mostly with regard to their relationships and axiomatic
properties.

4.5.1 Variations of Borda’s Rule

The first class of functions we consider are variations of a well-known choice rule
due to Borda (1781). Borda’s rule is commonly defined as the scoring rule with score
vector s = (m − 1, m − 2, . . . , 0). Under a scoring rule, an alternative receives score sj

whenever some voter ranks it in position j . These scores are then added up for all voters,
and the alternatives with maximum cumulative score are selected (also see Section 2.4).
Borda’s rule in particular can be viewed as selecting the alternatives with the highest
average rank in the individual preferences. Interestingly, the Borda score of alternative
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x is equal to∑
i∈N

|{y ∈ A : x �i y}| =
∑
y∈A

|{i ∈ N : x �i y}| =
∑
y∈A

m(x, y) + n

2

and thus only depends on the majority margins. Borda’s rule fails the Condorcet
criterion,8 but this is easily fixed. Black’s rule selects a Condorcet winner if it exists,
and the alternatives with maximum Borda score otherwise (Black, 1958). Nanson’s rule
successively excludes the alternatives whose Borda scores are below the average until
all remaining alternatives have the same Borda score (Nanson, 1882). It is a Condorcet
extension because the Borda score of a Condorcet winner is always at least the average
Borda score. In the example of Figure 4.1, the unique alternative selected by each of
these C2 functions is alternative a.

It is easy to see that the complexity of Borda’s, Black’s, and Nanson’s rules is
dominated by that of the Borda scores, which can be computed from the majority
margins in time O(m2). The same is true for the choice rule obtained by successive
exclusion of all alternatives with minimum Borda score, which is sometimes attributed
to Nanson but differs from Nanson’s rule (see Niou, 1987).

4.5.2 Maximin Rule and Schulze’s Method

Maximin rule (Young, 1977), also known as Condorcet’s rule or the Simpson-Kramer
method, selects alternatives for which the minimum pairwise majority margin is max-
imized, that is, alternatives x for which

min
z∈A

m(x, z) = max
y∈A

min
z∈A

m(y, z).

Such an alternative is desirable in the sense that it minimizes the number of overruled
voters, and can be computed from the majority margins in time O(m2). A drawback
of maximin rule is that it violates a number of desirable properties, most notably
the Condorcet loser criterion. A Condorcet loser for a given preference profile is an
alternative to which every other alternative is preferred by a majority of the voters, and
the Condorcet loser criterion requires that a Condorcet loser can never be selected.9

Another C2 function, closer to Borda’s rule but still violating the criterion, can be
obtained by selecting alternatives that maximize the sum rather than the minimum of
their majority margins with negative sign (Tideman, 2006, p. 199). This function will
be discussed in a different context in Section 5.6.2.

8 Borda’s rule does, however, maximize the probability of selecting a Condorcet winner among all scoring rules
for a preference profile chosen uniformly at random from the set of all preference profiles, in the limit as the
number of voters goes to infinity (Gehrlein and Fishburn, 1978). While Borda’s rule and Kemeny’s rule may
produce very different outcomes, both rules agree in the relative ranking of their respective best and worst
alternatives (Saari and Merlin, 2000): for any Kemeny ranking, the top alternative has a higher Borda score
than the bottom alternative; conversely, Kemeny’s rule ranks an alternative with maximum Borda score above
an alternative with minimum Borda score.

9 In the example of Figure 4.1, maximin rule selects an alternative not preferred to any other alternative by a
majority of the voters. It is easy to extend this example to a violation of the Condorcet loser criterion, showing
that most other social choice functions satisfy the criterion is a more substantial exercise.
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Schulze (2011) proposed a C2 function that addresses the shortcomings of maximin
rule and can still be computed in polynomial time. It is currently used for internal
elections by the Wikimedia Foundation, Pirate Parties in various countries, and several
other organizations. The idea behind Schulze’s method is to minimize opposition
along paths in the weighted tournament rather than single arcs. Let S(x, y) be the
maximum majority margin of any path from x to y, where the majority margin of a
path (x = z1, z2, . . . , zk−1, zk = y) is equal to the minimum majority margin of any of
its arcs, that is,

S(x, y) = maxz2,...,zk−1∈A,z1=x,zk=y min1�j<k m(zj , zj+1).

Schulze’s method then selects all alternatives x ∈ A such that S(x, y) � S(y, x) for all
y ∈ A \ {x}.10 In the example of Figure 4.1, the unique alternative with this property
is alternative d.

The problem of computing S(y, x) is known as the widest path problem or bottleneck
shortest path problem and can for example be solved using a variant of the Floyd-
Warshall algorithm. To this end, order the alternatives such that A = {a1, . . . , an} and
let S(x, y, i) be the maximum majority margin of any path from x to y in which all
intermediate alternatives are from {a1, . . . , ai}, that is,

S(x, y, i) = maxz2,...,zk−1∈{a1,...,ai},z1=x,zk=y min1�j<k m(zj , zj+1).

Then S(x, y) = S(x, y, n), with

S(x, y, 0) = m(x, y), and

S(x, y, i) = max{S(x, y, i − 1), min{S(x, ai, i − 1), S(ai, y, i − 1)}} for i � 1.

This is true because S(x, y) does not change if we restrict the definition to simple
paths. Now, for i � 1, the values S(x, y, i) for all x, y ∈ A can be computed from the
values S(x, y, i − 1) in time O(m2). We can thus compute S(x, y) for all x, y ∈ A in
time O(m3), and it is easy to see that the overall running time of Schulze’s method is
O(m3) as well. Asymptotically faster algorithms can be obtained from fast algorithms
for matrix multiplication.

4.5.3 The Ranked Pairs Method

The ranked pairs method, originally proposed by Tideman (1987) to achieve clone
independence,11 yields a C2 function with similar properties as Schulze’s rule. The
method creates a ranking � of the alternatives by starting from the empty relation and
successively adding pairs of alternatives according to a “priority” ranking unless doing
so would violate transitivity of �. Priority is given to pairs with larger absolute majority
margin, and a tie-breaking rule is used in cases where two or more pairs of alternatives

10 Schulze actually defined a family of choice rules by allowing measures of support other than the majority
margin, but this family contains only a single element when individual preferences are linear.

11 Clone independence requires that the addition of alternatives that are very similar to an existing alternative
does not harm the latter. It is violated by many social choice functions, including those of Kemeny, Borda,
Black, and Nanson, but satisfied by that of Schulze.
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have the same majority margin. The ranked pairs method can thus be viewed as a
greedy heuristic for finding Kemeny rankings.

Consider a particular tie-breaking rule T ∈ L(A × A), and construct a priority
ordering of the set of unordered pairs of alternatives by ordering all such pairs by
their majority margins and using T to break ties: {x, y} has priority over {x ′, y ′}
if m(x, y) > m(x ′, y ′), or if m(x, y) = m(x ′, y ′) and (x, y) T (x ′, y ′).12 Now let
�T ∈ L(A) be the ranking of alternatives obtained by means of the following iter-
ative procedure:

1. Let � = ∅.
2. If all pairs of alternatives have been considered, then return �. Otherwise consider the

pair {x, y} with highest priority according to T among those not considered so far.
3. If m(x, y) �= 0, then let a, b ∈ {x, y} such that m(a, b) > 0. Otherwise let a, b ∈ {x, y}

such that (a, b) T (b, a).
4. If the relation � ∪ {(a, b)} is acyclic, then add (a, b) to �. Otherwise add (b, a) to �.

Go to 2.

It is easily verified that this procedure terminates and returns a complete, transitive,
and asymmetric relation when it does. Now, call ranking � ∈ L(A) a ranked pairs
ranking if it results from the procedure for some tie-breaking rule T , and call x ∈ A

a ranked pairs winner if there exists a ranked pairs ranking � such that x � y for all
y ∈ A \ {x}. The C2 function proposed by Tideman selects all ranked pairs winners.
In the example of Figure 4.1 it selects a unique alternative, alternative d.

To find some ranked pairs ranking or winner, we can simply fix a tie-breaking
rule T and construct �T as earlier. This involves repeated checks whether � violates
transitivity and can be done efficiently (Brill and Fischer, 2012). Indeed, violation
of transitivity can be recognized in constant time given the transitive closure of the
current relation �, that is, a matrix M ∈ {0, 1}m×m such that mxy = 1 if and only if
there exists a sequence of alternatives z1, . . . , zk with z1 = x, zk = y, and zi � zi+1

for i = 1, . . . , k − 1. Upon addition of a new pair (x, y) ∈ A × A, this matrix can be
updated by setting, for every z ∈ A \ {y} with mzx = 1 and mzy = 0 and every z′ ∈ A,
mzz′ = 1 if myz′ = 1. Ibaraki and Katoh (1983) have shown that this requires only
O(m3) operations no matter how many pairs are added, which implies that a ranked
pairs ranking or winner can be found in O(m3) time.

The problem of deciding whether a given ranking � is a ranked pairs ranking can
also be solved efficiently, using an alternative characterization of ranked pairs rankings
due to Zavist and Tideman (1989). Given a ranking � ∈ L(A) and two alternatives
x, y ∈ A, we say that x attains y through � if there exists a sequence of distinct
alternatives z1, z2, . . . , zk , where k � 2, such that z1 = x, zk = y, and zi � zi+1 and
m(zi, zi+1) � m(y, x) for all i with 1 � i < k. A ranking � is then called a stack if for
any pair of alternatives x, y ∈ A, x � y implies that x attains y through �.

Lemma 4.14 (Zavist and Tideman, 1989). A ranking is a ranked pairs ranking if and
only if it is a stack.

12 Here we assume without loss of generality that the pairs (x, y) and (x′, y′) are ordered in such a way that
(x, y) T (y, x) and (x′, y′) T (y′, x′).
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Figure 4.2. Construction used in the proof of Theorem 4.15, for the Boolean formula ϕ = (v1 ∨
v̄2) ∧ (v1 ∨ v2) ∧ (v̄1 ∨ v2). The relation �2 is represented by arcs, the relation �4 by double-
shafted arcs. For all pairs (x, y) that are not connected by an arc, we have m(x, y) = m(y, x ) = 0.

To decide whether a given ranking � is a ranked pairs ranking, it therefore suffices
to check whether � is a stack. This in turn reduces to checking, for every pair of
alternatives x, y ∈ A with x � y, whether x attains y through �. The latter can be
achieved in time O(m3) for all pairs by solving the widest path problem subject to the
additional constraint that paths must follow the relation �.

Whether a given alternative is a ranked pairs winner intuitively seems harder to
recognize, because this property could be witnessed by any of an exponential number
of different rankings. Indeed, this problem turns out to be NP-complete.

Theorem 4.15 (Brill and Fischer, 2012). Deciding whether a given alternative is a
ranked pairs winner is NP-complete.

Proof sketch. Membership in NP holds because ranked pairs rankings can be recog-
nized in polynomial time.

For hardness we provide a polynomial-time reduction from SAT, the NP-complete
satisfiability problem for Boolean formulae in conjunctive normal form (e.g., Garey
and Johnson, 1979). Consider a formula ϕ = C1 ∧ · · · ∧ Ck , where Cj for 1 � j � k

is a disjunction of literals, that is, of negated and nonnegated variables from a set
V = {v1, . . . , vm}. Our goal is to construct a preference profile Rϕ over a set Aϕ of
alternatives such that a particular alternative d ∈ Aϕ is a ranked pairs winner for Rϕ

if and only if ϕ is satisfiable. Instead of constructing Rϕ explicitly, we specify a
majority margin m(x, y) for each pair (x, y) ∈ Aϕ × Aϕ , all with even parity, and then
apply Theorem 4.1. In doing so, we write x �w y to denote that m(x, y) = w and
m(y, x) = −w.

Let us first define the set Aϕ of alternatives. For each variable vi ∈ V , 1 � i � m,
there are four alternatives vi , v̄i , v′

i , and v̄′
i . For each clause Cj , 1 � j � k, there is

one alternative yj . Finally, there is one alternative d for which we want to decide
whether it is a ranked pairs winner for Rϕ . Now, for each variable vi ∈ V , 1 � i � m,
let vi �4 v̄′

i �2 v̄i �4 v′
i �2 vi . For each clause Cj , 1 � j � k, let vi �2 yj if variable

vi ∈ V appears in clause Cj as a positive literal, and v̄i �2 yj if variable vi appears
in clause Cj as a negative literal. Finally let yj �2 d for 1 � j � k and d �2 v′

i and
d �2 v̄′

i for 1 � i � m. For all pairs (x, y) for which m(x, y) has not been specified so
far, let m(x, y) = m(y, x) = 0. An example is shown in Figure 4.2.
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The proof now proceeds by showing that alternative d is a ranked pairs winner for
Rϕ if and only if formula ϕ is satisfiable, and that Rϕ can be constructed from the
majority margins in polynomial time. The intuition for the former is that the majority
relation contains cycles on the four alternatives for each variable, and that each way
in which the ranked pairs method can break ties among pairs of alternatives with the
same majority margin leads to an assignment of truth values to these variables.

The preceding results reveal an interesting trade-off: whereas Tideman’s original
choice rule is NP-hard to compute, tractable variants can be obtained by using a
fixed tie-breaking rule. Such variants necessarily violate neutrality, which requires
that permuting the alternatives in the preference profile permutes the set of chosen
alternatives or rankings in the exact same way. It is worth noting that neutrality and
computational tractability can be achieved simultaneously by breaking ties according to
the preferences of a particular voter. However, the resulting choice rule would not be a
C2 function and more specifically would violate anonymity, which requires invariance
of the result when the elements of the preference profile are permuted.

4.5.4 Generalizations of C1 Functions

What distinguishes C1 functions from C2 functions is that they ignore the absolute
values of the majority margins and only take their signs into account. The rules of
Slater and Kemeny and those of Copeland and Borda provide obvious examples of this
relationship, but it turns out that several other C1 functions discussed in Chapter 3 can
be generalized in a natural way to use information about the absolute values.13

Laffond et al. (1993a) defined the bipartisan set as the support of the unique equi-
librium of the tournament game (also see Section 3.3.1), which in our notation can
be written as the symmetric two-player zero-sum game with action set A and payoff
function p : A × A → {−1, 0, 1}, where

p(x, y) =

⎧⎪⎨⎪⎩
1 if m(x, y) > 0,

−1 if m(x, y) < 0, and

0 otherwise.

This definition can be generalized to equilibria of the weighted tournament game,
where instead p(x, y) = m(x, y). Equilibria in this more general class of games need
no longer be unique, but we can define the essential set (Dutta and Laslier, 1999) as the
union of all equilibrium supports. Because the set of equilibria of any zero-sum game
is convex, the essential set is itself the support of an equilibrium, and in fact the unique
support of a quasi-strict equilibrium. The latter can be found efficiently by solving a
linear feasibility problem (Brandt and Fischer, 2008b).

Another notion that can be generalized to weighted tournaments is that of covering
among alternatives, where now alternative x ∈ A covers alternative y ∈ A if m(x, y) >

13 It is tempting to think that these generalizations should be able to discriminate better among alternatives
because they have more information than the corresponding C1 functions. This is not generally the case, and
the right way to generalize a C1 function is often not obvious (Laffond et al., 1994; De Donder et al., 2000).
For generalizations of C1 functions to weak tournaments, that is, relations that are transitive and complete but
not necessarily asymmetric, see Section 3.5.
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0 and for all z ∈ A, m(x, z) � m(y, z). This immediately leads to generalizations of
the uncovered set and the minimal covering set (Dutta and Laslier, 1999). These
generalizations can be computed efficiently using essentially the same algorithms as
the corresponding C1 functions (Brandt and Brill, 2012). In the special case where all
majority margins are nonzero, these generalizations and an analogous generalization
of the top cycle can alternatively be understood in terms of various game-theoretic
solution concepts applied to the weighted tournament game (De Donder et al., 2000).
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CHAPTER 5

Dodgson’s Rule and Young’s
Rule

Ioannis Caragiannis, Edith Hemaspaandra, and
Lane A. Hemaspaandra

5.1 Overview

Dodgson’s and Young’s election systems, dating from 1876 and 1977, are beautiful,
historically resonant election systems. Surprisingly, both of these systems turn out to
have highly intractable winner-determination problems: The winner problems of these
systems are complete for parallel access to NP. This chapter discusses both the com-
plexity of these winner-determination problems and approaches—through heuristic
algorithms, fixed-parameter algorithms, and approximation algorithms—to circum-
venting that complexity.

5.2 Introduction, Election-System Definitions, and
Results Overview

Charles Lutwidge Dodgson, better known under his pen name of Lewis Carroll, was
a mathematics tutor at Oxford. In his 1876 pamphlet, “A Method of Taking Votes on
More than Two Issues” (Dodgson, 1876), printed by the Clarendon Press, Oxford and
headed “not yet published,” he defined an election system that is compellingly beautiful
in many ways, and yet that also turned out to be so subtle and complex, also in many
ways, that it has in recent decades been much studied by computational social choice
researchers.

Dodgson’s election system is very simply defined. An election will consist of a finite
number of voters, each voting by casting a linear order over (the same) finite set of
candidates. (Recall that linear orders are inherently antisymmetric, i.e., are “tie-free.”)
A Condorcet winner (respectively, weak Condorcet winner) is a candidate a who, for
each other candidate b, is preferred to b by strictly more than half (respectively, by at
least half) of the voters. It is natural to want election systems to be Condorcet-consistent,
that is, to have the property that if there is a Condorcet winner, he or she is the one and
only winner under the election system. Dodgson’s system is Condorcet-consistent. In
fact, the system is defined based on each candidate’s closeness to being a Condorcet
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winner. Dodgson’s view was that whichever candidate (or candidates if there is a tie
for closest) was “closest” to being Condorcet winners should be the winner(s), and his
system is a realization of that view.

In particular, the Dodgson score of a candidate, a, is the smallest number of
sequential exchanges of adjacent candidates in preference orders such that after those
exchanges a is a Condorcet winner. All candidates having the smallest Dodgson score
among the candidates are the winner(s) in Dodgson’s system.

For example, suppose our election is over the candidates a, b, and c, and there are
two voters, one voting a � b � c and the other also voting a � b � c. (Throughout
this paper, when writing out a particular vote we use the strict linear order � associated
with the voter’s linear order �; as noted in Chapter 2, these are related by: x � y ⇐⇒
(x � y ∧ ¬(y � x).) The Dodgson score of c is four, since to make c a Condorcet
winner we have to adjacently exchange c with b in the first voter, forming the vote
a � c � b and then, after that, we have to adjacently exchange c with a in the first
vote, and then we need to do the same two exchanges in the second vote. The Dodgson
scores of a and b are zero and two. In this example, there is one Dodgson winner,
namely, a. However, if the votes had instead been a � b � c and b � a � c, then the
Dodgson scores of a, b, and c would be one, one, and four, and a and b would be the
Dodgson winners.

The system just described is what Dodgson himself defined. (This chapter is designed
to be self-contained. However, we mention that Chapter 2 provides to all interested
readers an excellent treatment of the basics of voting theory, including such notions as
Dodgson’s election system, Condorcet winners, and so on.) However, some researchers
have studied the following variant, sometimes still calling it Dodgson elections and not
mentioning that it differs from Dodgson’s notion. The election system WeakDodgson
is defined exactly as above, except in terms of WeakDodgson scores, which are the
number of sequential exchanges of adjacent candidates needed to make the given
candidate become a weak Condorcet winner. The WeakDodgson scores of a, b, and c

in the first example above are zero, one, and two, and in the second example above are
zero, zero, and two. The WeakDodgson winners are the same as the Dodgson winners
in the above examples. However, it is easy to construct examples where Dodgson and
WeakDodgson produce different winner sets.

Dodgson’s system is measuring each candidate’s adjacent-exchange distance from
being a Condorcet winner, and is electing the candidate(s) with the shortest such
distance. Among the many beauties of Dodgson’s system is that it is based on finding
the minimum edit distance between the initial votes and a certain region in the space
of all votes, under a certain basis of operations, in particular sequential adjacent-
exchanges. The notion of edit distance is essential in a large number of fields, and is
central in many area of algorithmics. Dodgson’s use of this notion is a natural, lovely,
and quite early example. The coverage of distance rationalizability in Chapter 8 will
make clear that a distance-based framework can be used to capture and study a wide
range of important voting systems.

H. Peyton Young (1977) defined his election system, now known as Young elections,
in terms of a different type of distance. The Young score of a candidate, a, is defined to be
the smallest number n such that there is a set of n voters such that a is a weak Condorcet
winner when those n voters are removed from the election. All candidates having the
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lowest Young score in a given election are its Young winner(s). The analogous system
based on the number of deletions needed to make a given candidate a Condorcet winner
will be called StrongYoung, and has also been studied, sometimes in papers still calling
it Young elections and not mentioning that it differs from Young’s notion. If a given
candidate cannot be made a Condorcet winner by any number of deletions, we will
say that its StrongYoung score is infinite. So, for example, in a zero-voter election, all
candidates tie under the Young system, each with Young score zero, and all candidates
tie under the StrongYoung system, each with StrongYoung score infinity. StrongYoung
is clearly a Condorcet-consistent system.

Let us look at an election example and find its Young scores and its Young winner(s).
Consider the election in which the candidates are a, b, c, and d, and the following six
votes are cast:

1. a � b � c � d,
2. a � b � c � d,
3. a � b � d � c,
4. c � a � d � b,
5. d � b � a � c, and
6. d � b � c � a.

Candidate a—who actually is already a Condorcet winner—is certainly a weak Con-
dorcet winner, and so has Young score zero. Candidate b is losing to a four to two
among the six voters, and ties or beats each of c and d. Due to b’s four to two loss
against a, clearly the Young score of b is at least two, since deleting one vote closes
the amount by which b trails a by at most one. If one deletes the votes numbered 1 and
2 above, b will tie with a two to two, but—horrors!—now loses to d one to three. So
the fact that deleting 1 and 2 removes b’s weakness with regard to a does not suffice
to establish that the Young score of b is at most two. However, happily, it is easy to
see that deleting the votes numbered 1 and 4 above indeed makes b become a weak
Condorcet winner, and so b’s Young score is at most two. Thus b’s Young score is
exactly two. It is also easy to see that d’s Young score is exactly two, and the reader
may wish to verify that as practice. c is a more interesting case than d is. Initially, c

ties d three to three, loses to b five to one, and loses to a four to two. Due to the five
to one loss to b, clearly c’s Young score is at least four. However, c also trails a, and it
is possible that removing some four votes that catch c up to b might not catch c up to
a, or might even leave c losing to d. This observation, and the twist we ran into above
related to computing b’s Young score, are related to why computing Young scores
turns out to be, as further mentioned later in this chapter, computationally difficult:
The number of vote collections to be considered for potential deletion can be com-
binatorially explosive, and deleting a given vote can affect a given candidate in some
helpful and some harmful ways at the same time. However, in this particular example,
deleting votes 1, 2, 3, and 5 leaves c a weak Condorcet winner, and thus c’s Young
score is at most four. So c’s Young score in fact is exactly four. Overall, candidate a is
the one and only Young winner in this example—which of course follows immediately
from the fact, mentioned near the start of this paragraph, that a is a Condorcet winner
here.
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As noted earlier, Dodgson in effect means StrongDodgson, but Young in effect means
WeakYoung. This is simply due to the history of how these notions were defined by their
creators. Throughout this chapter, we will use the terms Dodgson and StrongYoung
for the versions based on Condorcet winners and will use the terms WeakDodgson and
Young for the versions based on weak Condorcet winners.

Dodgson’s and Young’s election systems have followed paths of whipsaw twists
and turns in terms of their computational properties, and this chapter is mostly
focused on providing an overview of those paths, with a particular stress on Dodgson’s
system.

Briefly summarized, in the late 1800s Dodgson defined his system, and it was
natural, compelling, and lovely—so much so that it was included in McLean and
Urken’s (1995) collection of the key papers in the multi-thousand-year history of
social choice. However, as we will discuss in Section 5.3, in the late 1900s Bartholdi
et al. (1989b) proved that the winner problem of this lovely system was NP-hard,
and so under current standard assumptions in computer science is computationally
intractable. Hemaspaandra et al. (1997a) then obtained a tight classification of the
problem’s computational complexity, and it became the first truly real-world-natural
problem to be “complete” for the class of problems solvable through parallel access to
NP—a very high level of complexity. That result was good news for complexity theory,
as it populated that complexity class with a problem that clearly was highly nonartificial,
since the election system had been defined in the 1800s, long before complexity theory
even existed. However, the late 1900s results were grim news indeed regarding the
computational difficulty of Dodgson elections.

Yet hardness results often are not the last word on a problem. Rather, they can
serve as an invitation to researchers to find ways to sidestep the problem’s hardness.
That is exactly what happened in the case of Dodgson elections, in work done in the
2000s. It is known that, unless the polynomial hierarchy collapses, no heuristic algo-
rithm for any NP-hard problem can have a subexponential error rate (see Hemaspaan-
dra and Williams, 2012). So heuristic algorithms for the Dodgson election problem
are limited in what they can hope to achieve. Nonetheless, it has been shown that
there are quite good heuristic algorithms for the class of instances where the num-
ber of candidates is superquadratic in the number of voters. Section 5.4 presents
such heuristic results. Section 5.5 discusses another approach to bypassing hardness
results—parameterized algorithms. The results covered there show, for example, that
the Dodgson winner problem is fixed-parameter tractable with respect to the number
of candidates. That is, there is a uniform algorithm whose running time is the prod-
uct of a polynomial in the instance’s size and some (admittedly very large) function
of the number of candidates. Finally, Section 5.6 studies a third approach to deal-
ing with hardness, namely, approximation algorithms. That section presents results
about approximating the Dodgson score and using approximation algorithms them-
selves as voting rules that achieve some social-choice properties that Dodgson’s system
lacks.

Young elections have been less extensively studied than Dodgson elections. But as
this chapter will discuss, Young’s system walked a twisty results road quite similar to
the one Dodgson’s system walked. Like Dodgson, Young is a natural election system;
like Dodgson, long after Young’s system was defined it was proven that even telling
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who won is computationally intractable; and like Dodgson, for Young elections one
can obtain fixed-parameter tractability results.

5.3 Winner-Problem Complexity

This section discusses the complexity of the winner problems of Dodgson,
WeakDodgson, StrongYoung, and Young elections.

5.3.1 Basics and Background

To understand the complexity of the winner problems of Dodgson, WeakDodgson,
StrongYoung, and Young elections, we will need to define and discuss an important
level of the polynomial hierarchy that is far less well-known than the polynomial
hierarchy’s famous lowest levels, P and NP. This less well-known complexity class is
the �

p
2 level of the polynomial hierarchy, which captures the power of (polynomial-

time) parallel access to NP.
Let us now define this class. We will assume that the reader is familiar with the

definition of NP and has at least a general idea of what a Turing machine is. A set
is in coNP exactly if its complement is in NP. We will not define the polynomial
hierarchy in this chapter. However, we mention that it is widely believed that the
polynomial hierarchy does not collapse. Thus any assumption that would imply that
the polynomial hierarchy collapses is, in the eyes of modern computer science, viewed
as highly unlikely to be true.

A Turing machine operating with parallel access to a set A is a standard Turing
machine enhanced with an extra tape, called the query tape. On an arbitrary input x,
the machine is allowed, after some computation, to write on the tape a sequence of
binary strings (say y1, . . . , yk), each separated by the special character #. The machine
then can, at most once on each input, enter a special state, known as the query state,
qask query . After it does, the machine is by the definition of this model immediately (i.e.,
in one time step) placed into the state qquery answered , and the query tape’s content is
replaced with a k-bit vector containing the answers to the k questions “y1 ∈ A?”, . . . ,
“yk ∈ A?” After some additional computation the machine may halt and accept or halt
and reject. Here, k need not be a constant; on different inputs, k might differ, and there
might be no global bound on k.

For any string x, let |x| denote the length of x, for example, |01111| = 5. A set B

is said to belong to �
p
2 exactly if there exists a Turing machine, M , and an NP set

A, such that (i) there exists a polynomial p such that, for each input x, M operating
with parallel access to A, on input x, halts and accepts or halts and rejects within time
p(|x|), and (ii) the set of all strings accepted by M operating with parallel access to A

is B.
Informally put, �

p
2 is capturing the power of what one can do with a machine that

on input x can, in time polynomial in |x|, generate some list of queries to an NP set,
and then, in light of the input and a magically delivered answer for each of those
queries as to whether the queried string is in the NP set, can with at most polynomially
long additional computation determine whether x is in the given set. Simply put, this
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class is capturing the power of (polynomial-time) parallel access to NP. Although, as
mentioned above, there is no a priori limit on the number of queries that can be asked
in the (one) question string, the fact that the machine has only polynomial time to write
the string ensures that there are at most polynomially many queries in the question
string.

�
p
2 is sometimes alternatively denoted PNP

‖ or PNP
t t ; the ‖ denotes parallel access and

the t t stands for truth-table, which is the type of reduction on which the above definition
of �

p
2 is based. For those familiar with the polynomial hierarchy and its classes, the

location of �
p
2 within the polynomial hierarchy is �

p
1 ∪ �

p
1 ⊆ �

p
2 ⊆ �

p
2 ⊆ �

p
2 ∩ �

p
2 ,

or to state that without the jargon, NP ∪ coNP ⊆ PNP
‖ ⊆ PNP ⊆ NPNP ∩ coNPNP. It is

well-known that unless NP is a strict subset of �
p
2 , the polynomial hierarchy collapses

to NP.
Let us give a brief example showing membership in �

p
2 . Consider the set of all

(undirected, nonempty) graphs in which the largest clique in the graph has an odd
number of nodes, that is, the problem odd-max-clique. This problem is clearly in �

p
2 .

Why? The standard clique problem is the set of all (G, 
), with G a graph and 
 a
natural number, such that there is a clique in G of size at least 
. So our machine to
show that odd-max-clique is in �

p
2 will, given a graph G having n nodes, write on the

query tape the string (G, 1)#(G, 2)# · · · #(G, n) and enter the state qask query , and then
from the state qquery answered will look at the answer vector, which will be, for some j ,
j ones followed by n − j zeros, and from the number of ones will easily be able to tell
whether the largest clique is odd or even. For example, if the answer vector is 111000,
we know the graph has cliques of size 1, 2, and 3, but not 4, 5, or 6, so the largest clique
is of size 3, which is odd, so the machine in this case will enter an accepting state and
halt.

Our oracle model allowed only a single question string, although that question
string itself could be encoding polynomially many different simultaneous queries to
the oracle. That is why this class is said to capture parallel access to NP. However, �p

2 is
also known to exactly capture the set of languages accepted if, in our above polynomial-
time model, one can query the oracle O(log n) times, except now with each question
string containing a single query rather than asking many queries combined. That is,
informally, polynomial-time unbounded parallel access to NP has the same power as
polynomial-time logarithmic-query sequential access to NP. Indeed, the class was first
studied in the sequential version (Papadimitriou and Zachos, 1983), and only later was
the connection to the parallel notion established (Hemachandra, 1989).

In complexity theory, reductions provide a tool to help classify complexity. We say
a set B polynomial-time many-one reduces to a set D if there is a polynomial-time
computable function f such that, for each x, x ∈ B if and only if f (x) ∈ D. Informally,
there is a simple to compute, membership-preserving mapping from B to D. It certainly
follows that if D is easy to compute, then so is B.

For any complexity class C, we say a set D is C-hard if for every set B ∈ C it
holds that B polynomial-time many-one reduces to D. Since NP ⊆ �

p
2 , every �

p
2 -hard

problem is NP-hard. For any complexity class C, we say a set D is C-complete exactly
if (a) D ∈ C and (b) D is C-hard. The complete sets for a class are in some sense the
quintessence of the class’s power. They are members of the class, yet are so powerful
that each other set in the class can be polynomial-time many-one reduced to them.
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�
p
2 itself has an interesting, unusual history. It is natural to worry, when one throws

a party, whether anyone will come. In complexity theory, the analogous worry is that
one will define a complexity class that seems intuitively natural, and yet the class will
somehow not turn out to capture the complexity of important real-world problems.

The complexity of Dodgson elections helped �
p
2 avoid being a dull party. In partic-

ular, by the mid-1990s, it was clear that �
p
2 was important in complexity theory. For

example, Kadin (1989) had proven that if NP has a “sparse Turing-complete set” then
the polynomial hierarchy collapses to �

p
2 ; �

p
2 was known to have a large number of

different yet equivalent definitions (Wagner, 1990); and �
p
2 was known to be closely

connected to time-bounded Kolmogorov complexity theory (Hemachandra and Wech-
sung, 1991). Yet those were all results that would warm only the heart of a complexity
theorist. �p

2 was known to have complete problems (see Wagner, 1987). But they were
artificial or mathematical problems of a sort that might be interesting to theoretical
computer scientists or logicians, yet that did not have the natural appeal of problems
coming from compellingly important “real world” settings and challenges.

To this uneasily quiet party came the Dodgson winner problem, with party favors
and noisemakers. The Dodgson winner problem turned out to be complete for �

p
2 ,

and was unarguably natural, coming as it did from a question raised a hundred years
earlier. And the party was soon humming, as many other problems, including such
additional election-winner problems as StrongYoung elections and Kemeny elections,
were shown to also be �

p
2 -complete (Rothe et al., 2003; Hemaspaandra et al., 2005).

5.3.2 The Complexity of the Dodgson and Young Winner Problems

In 1989, Bartholdi et al. (1989b) proved that the Dodgson winner problem was NP-
hard and left as an open issue whether it was NP-complete. In 1997, Hemaspaandra
et al. (1997a) proved that the Dodgson winner problem was in fact �

p
2 -complete.

This implies that, unless NP = coNP, the problem is not NP-complete. Intuitively, the
problem is too hard to be NP-complete.

It is natural to wonder why one should even bother to exactly classify a problem
that is known to be NP-hard. After all, NP-hardness is already a powerful indicator of
hardness. There are a number of answers to this question. The nerdy, technical answer
that a complexity theorist might give is that improving a problem’s complexity from
NP-hardness to �

p
2 -completeness tells us more about how unlikely the problem is to

be solvable with certain other approaches to computation (see Hemaspaandra et al.,
1997b, for a discussion of this). However, the truly compelling answer harks back to
our earlier comment about complete sets capturing the core nature of their classes. By
proving a set complete for a class, we learn much about the fundamental nature of
the set—whether it is capturing, as NP-complete sets do, the power of polynomially
bounded existential quantification connected to polynomial-time predicates, or whether
it is capturing, as �

p
2 -complete sets do, the power of parallel access to NP.

Formally, the Dodgson winner problem is a set, namely, the set of all triples
(A, R, p)—where A is the set of candidates, R is the list of cast votes (each being
a linear order over A), and p ∈ A—such that p is a winner of the given election,
when conducted under Dodgson’s election system. The following theorem pinpoints
the complexity of the Dodgson winner problem.
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Theorem 5.1 (Hemaspaandra et al., 1997a). The Dodgson winner problem is �
p
2 -

complete.

We do not have the space to give a proof of the above theorem. However, it will be
important and interesting to sketch the philosophy behind and structure of the proof,
as they are at first quite counterintuitive.

What is counterintuitive is that one proves the Dodgson winner problem to be
�

p
2 -hard through doing extensive work to prove that many properties of the Dodgson

winner problem are computationally easy to handle. Those (three) easy properties
regard trapping the potential scores of the winner to two adjacent values within the
image of an NP-hardness reduction (we will refer back to this later as L1), creating in
polynomial time a “double exposure” that merges two elections in a way that preserves
key information from each (we will refer back to this later as L2), and providing (with
some twists) a polynomial-time function that given a list of elections and a candidate
of interest in each creates a single election such that the sum of the scores of each
election’s interesting candidate in its election is the score of a particular designated
candidate in the single election. For concreteness, the last of those can be formally
stated as the following “sum of the scores equals the score of the ‘sum’” claim.

Lemma 5.2 (Hemaspaandra et al., 1997a). There is a polynomial-time func-
tion, dodgsonsum, such that, for all k and for all (A1, R1, p1), . . . (Ak, Rk, pk)
that are election triples (i.e., pi ∈ Ai , and the Ri are each a collection of lin-
ear orders over the candidates in Ai), each having an odd number of voters,
dodgsonsum((A1, R1, p1), . . . , (Ak, Rk, pk)) is an election triple (A, R, p) having an
odd number of voters and it holds that the Dodgson score of p in the election (A, R)
is exactly the sum over all j of the Dodgson score of pj in election (Aj, Rj ).

The natural question to ask is: Why on earth would one prove lots of things easy about
Dodgson elections in order to prove that the Dodgson winner problem is extremely
hard? The answer to this question is that, despite the “hardness” in its name, �

p
2 -

hardness is not just about hardness (and neither are other hardnesses, such as NP-
hardness). Let us explain why, using NP-hardness for our example. Suppose for each
string in {0, 1}∗ we independently flip an unbiased coin, and put the string in or out of
a set A based on the outcome. With probability one, the obtained set A is so extraordi-
narily hard as to not even be computable. Yet under standard beliefs about NP (namely,
that NP is not a subset of bounded probabilistic polynomial time), with probability
one the set A we obtained is not NP-hard (see Ambos-Spies, 1986). Intuitively, the
issue here is that NP-hardness is not just about hardness. To be NP-hard, a set indeed
must have enough power to be usable to handle all NP sets. But that power must be so
well-organized and accessible that polynomial-time many-one reductions can harness
that power. Our random set A is simply chaos, and so provides no such organized
power. Every time we prove something NP-hard, by a reduction, we are exploiting the
organization of the set being mapped to. With NP, we usually do not think much about
that. In contrast, �

p
2 -hardness proofs are so demanding, and the amount of structure

exploitation needed to establish �
p
2 -hardness is so great, that this issue comes out from

the shadows.
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We need a lens to focus the structure provided by Lemma 5.2 and the two other
“in polynomial time we can do many things regarding Dodgson elections” claims that
we alluded to just before that result (though neither of those is stated formally in this
chapter), and to use that structure to establish a �

p
2 -hardness result for the Dodgson

winner problem. For �
p
2 -hardness proofs, the lens of choice is the following powerful

technical lemma proven in the 1980s by the great German complexity theorist Klaus
W. Wagner. χA denotes the characteristic function of A, that is, χA(y) = 1 if y ∈ A

and χA(y) = 0 if y �∈ A.

Lemma 5.3 (Wagner, 1987). Let A be any NP-complete set and let B be any set. Then
B is �

p
2 -hard if there is a polynomial-time function f such that, for all k � 1 and all

x1, . . . , x2k satisfying χA(x1) � · · · � χA(x2k), it holds that

‖{i | xi ∈ A}‖ ≡ 1 (mod 2) ⇐⇒ f (x1, . . . , x2k) ∈ B.

This can be used, for example, to show that odd-max-clique is �
p
2 -hard (Wagner,

1987). Thus in light of our earlier example odd-max-clique in fact is �
p
2 -complete.

Briefly put, the broad structure of the �
p
2 -hardness proof for the Dodgson winner

problem is as follows. The result we alluded to earlier as L1 basically seeks to show
that the Dodgson winner problem is NP-hard through a reduction that achieves a num-
ber of additional properties. The original Bartholdi et al. (1989b) reduction showing
NP-hardness for the Dodgson winner problem reduced from the exact cover by three-
sets problem. However, that reduction does not have the properties needed to work
in concert with Lemma 5.3. Nonetheless, L1 holds, because one can, by a reduction
from a different NP-complete problem, three-dimensional matching, obtain the desired
properties. Then using L1 and Lemma 5.2 together with Lemma 5.3, one can argue that
the problem of telling whether candidate p1’s Dodgson score in an election (A1, R1) is
less than or equal to candidate p2’s score in an election (A2, R2), with both ‖R1‖ and
‖R2‖ odd, is �

p
2 -hard. Finally, using that result and the result we referred to earlier

as L2 (a “merging” lemma), one can prove that Dodgson winner itself is �
p
2 -hard.

Thus rather extensive groundwork about the simplicity of many issues about Dodg-
son elections, used together with Wagner’s Lemma, is what establishes �

p
2 -hardness

here.
Completeness for a class requires not just hardness for the class but also membership

in the class. Yet we still have not argued that the Dodgson winner problem is in �
p
2 .

Happily, that is a very easy result to show. Given an election, a distinguished candidate
p, and a natural number k, it clearly is an NP problem—called DodgsonScore in the
literature—to determine whether the Dodgson score of p in that election is at most
k. The way we see that this is in NP is that one can simply seek to guess a sequence
of k sequential exchanges of adjacent candidates, making p a Condorcet winner. (In
fact, this DodgsonScore is even NP-complete, as was established in the seminal paper
of Bartholdi et al. (1989b).) Now, given an election instance, (A, R), and a candidate
p ∈ A, we wish to determine within �

p
2 whether p is a Dodgson winner. What we do

is that we ask, in parallel, to the NP problem DodgsonScore every reasonable score
question for every candidate. Note that even if a candidate p′ is at the bottom of every
vote, with (‖A‖ − 1)‖R‖ sequential exchanges of adjacent candidates it can be moved
to the top of every vote, at which point it easily is a Condorcet winner. So for each
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candidate p′ ∈ A, and each natural number i, 1 � i � (‖A‖ − 1)‖R‖, we ask whether
the Dodgson score of p′ is at most i. That is a single parallel round of ‖A‖(‖A‖ − 1)‖R‖
queries. From the answers, we immediately know the Dodgson score of each candidate,
and so we can easily tell whether p is a Dodgson winner. Since this scheme meets the
definition of �

p
2 , we have established that the Dodgson winner problem is in �

p
2 . In

light of the already discussed �
p
2 -hardness, we may conclude that the Dodgson winner

problem is �
p
2 -complete.

Is this �
p
2 -completeness result just a trick of the particular model of Dodgson

elections, or does it hold even for natural variants? Research has shown that �
p
2 -

completeness holds even for many natural variants of the Dodgson winner problem.
The WeakDodgson winner problem is �

p
2 -complete (Brandt et al., 2010a, 2010b),

asking whether p is the one and only Dodgson winner (i.e., is a so-called unique
winner) is �

p
2 -complete (Hemaspaandra et al., 2009), and asking whether p is the

one and only WeakDodgson winner is �
p
2 -complete (Brandt et al., 2010b). Even

comparing two Dodgson scores in the same election is �
p
2 -complete (Hemaspaandra

et al., 1997a).
Still, there are limits to how much one can vary the problem and remain hard. For

example, if one considers elections in which the electorate has so-called single-peaked
preferences (Black, 1948)—an extremely important notion in political science—the
complexity of the winner problem for Dodgson and WeakDodgson elections falls to
polynomial time (Brandt et al., 2010a).

Although we have so far been discussing the Dodgson winner problem, the key
results mentioned above also hold for the Young winner problem. In 2003, the com-
plexity of the StrongYoung winner problem was pinpointed by Rothe et al. (2003) as
being �

p
2 -complete. �p

2 -completeness also holds for the Young winner problem (Brandt
et al., 2010a, 2010b):

Theorem 5.4. The Young winner problem is �
p
2 -complete.

�
p
2 -completeness also holds for case of asking whether p is the one and only

StrongYoung winner (Hemaspaandra et al., 2009), and for the case of asking whether
p is the one and only Young winner (Brandt et al., 2010b).

Similarly to the Dodgson case, if one considers elections in which the electorate
has single-peaked preferences, the complexity of the winner problem for Young and
StrongYoung elections falls to polynomial time (Brandt et al., 2010a).

Dodgson and Young are not the only election systems whose winner problem turns
out to be hard. For example, the lovely election system known as Kemeny elec-
tions (Kemeny, 1959; Kemeny and Snell, 1960) (see Chapters 2 and 4 for more
on Kemeny elections) also has a �

p
2 -complete winner (and unique winner) prob-

lem (Hemaspaandra et al., 2005, 2009).
Although an understandable first reaction to a �

p
2 -hardness result might be despair

and resignation, it surely is better to be positive and make the best of the situation. For
example, we mentioned above that for a restricted-domain setting, called single-peaked
electorates, the complexity of the Dodgson winner problem vanishes. In the coming
sections, we will look at three other approaches to living with intractability results:
heuristic algorithms, parameterized algorithms, and approximation algorithms.
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5.4 Heuristic Algorithms

Suppose we are faced with a problem for which getting an efficient deterministic
algorithm that is correct on all inputs seems unlikely, for example due to the problem
being NP-hard or �

p
2 -hard. A natural next step is to seek an algorithm that is correct a

very high portion of the time.
There are severe complexity-theoretic barriers to even that goal. As mentioned ear-

lier, it is known that, unless the polynomial hierarchy collapses, no NP-hard problem
(and thus no �

p
2 -hard problem) has (deterministic) heuristic algorithms whose asymp-

totic error rate is subexponential (see Hemaspaandra and Williams, 2012). Still, even a
heuristic algorithm whose asymptotic error rate is not subexponential can be valuable.
In fact, despite the above result, heuristic algorithms are a valuable tool when faced
with complex problems.

Even better than heuristic algorithms that often are correct would be heuristic
algorithms that often are self-knowingly correct. A heuristic algorithm for a total
function f is said to be self-knowingly correct if, on each input x, the function (i) outputs
a claim as to the value of f (x), and also outputs either “definitely” or “maybe,” and
(ii) whenever the function outputs (y, “definitely”) it holds that f (x) = y. When the
second output component is “maybe,” the first output component might, or might not,
equal f (x). Of course, the goal is to build self-knowingly correct algorithms that very
often have “definitely” as their second output component.

Since we will now often be speaking of drawing random elections, for the rest of
this section we assume that in m-candidate elections the candidate names are always
1, . . . , m, and so in drawing a random election all that is at issue will be the votes. So
in Theorem 5.5 below, the “election” will refer just to R, and both the function and the
GreedyWinner algorithm we will discuss in the next paragraph will take R and p as
their input.

Consider the function that on input (R, p)—where R is a list of votes (each a linear
order) that for some j are all over the candidates 1, 2, . . . , j and p ∈ {1, . . . , j}—
equals Yes if p is a Dodgson winner of that election and equals No otherwise, that
is, the function in effect computes the characteristic function of the Dodgson winner
problem (j is not fixed; it may differ on different inputs). It turns out that there is a fre-
quently self-knowingly correct polynomial-time heuristic algorithm, called Greedy-
Winner, for the function just described, and so, in effect, for the Dodgson winner
problem.

Theorem 5.5 (Homan and Hemaspaandra, 2009).

1. For each (election, candidate) pair it holds that if GreedyWinner outputs “definitely”
as its second output component, then its first output component correctly answers the
question, “Is the input candidate a Dodgson winner of the input election?”

2. For each m ∈ {1, 2, 3, . . .} and n ∈ {1, 2, 3, . . .}, the probability that an election E

selected uniformly at random from all elections having m candidates and n votes
(i.e., all (m!)n elections having m candidates and n votes have the same likelihood of
being selected) has the property that there exists at least one candidate p′ such that
GreedyWinner on input (E,p′) outputs “maybe” as its second output component is
less than 2(m2 − m)e

−n

8m2 .
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What this says is that the portion of m-candidate, n-voter elections that Greedy-
Winner is self-knowingly correct on is at least 1 − 2(m2 − m)e

−n

8m2 . For example, if
one looks at the asymptotics as m goes to infinity, and with n being some superquadratic
polynomial of m, for example, n = m2.00001, the error rate will go to zero exponentially
fast.

How does the GreedyWinner algorithm work? It is almost alarmingly simple. In
fact, the reason one can get such an explicit bound, rather than just being able to draw
plots from experiments as so many papers do, is in large part due to the algorithm’s
simplicity. The simplicity of the algorithm makes it possible, in this case, to well-
analyze its performance. That is why, in the GreedyScore algorithm below, we tie
our hands by making at most one exchange per vote; it suffices to get the desired result
and it simplifies the analysis.

GreedyWinner is built on top of a heuristic algorithm called GreedyScore,
which given an election and a candidate p′, seeks to, in a frequently self-knowingly
correct way, compute the Dodgson score of p′ in the election. What GreedyScore
does is simply this: It goes through the votes one at a time, and in each it looks at what
one candidate (if any), c, is immediately preferred (i.e., adjacently preferred) to p′ in
that vote, and if at that moment p′ is not yet strictly beating c in terms of how many
voters prefer one to the other, then GreedyScore exchanges p′ and c in that vote. If
at the end of this process, p′ is a Condorcet winner, then the algorithm outputs as its
first component the number of exchanges it made, and outputs as its second component
“definitely.” It does so because an obvious lower bound for the number of adjacent
exchanges needed to make p′ a Condorcet winner is the sum, over all candidates, of
how many voters must change from preferring c to p′ to instead preferring p′ to c. But
if we made p′ become a Condorcet winner only by exchanging it with things that were
initially upside-adjacent to it in the given vote, and we only did such exchanges if p′

was at the moment of exchange still behind the candidate it was being exchanged with
in their head-on-head contest, then our algorithm clearly uses no more exchanges than
that lower bound. And so our algorithm has truly found the Dodgson score of p′.

Intuitively, if the number of voters is sufficiently large relative to the number of
candidates, then it is highly likely that the above GreedyScore procedure will self-
knowingly succeed, that is, that we can make up all the deficits that p′ has simply by
exchanging it with rivals that are immediately adjacent to it. (After all, for any two
candidates c and d, it is easy to see that for 1/m of the possible vote choices c will
adjacently beat d within that vote. So the expected value of the number of votes in which
c will adjacently beat d is n/m.) The claim about frequent success can be made more
precise. In particular, if one fixes a candidate, say candidate 1, and draws uniformly at
random an m-candidate, n-voter election, the probability that GreedyScore’s second
component is “maybe” is less than 2(m − 1)e

−n

8m2 .
The GreedyWinner algorithm, on input (R, p), is simply to first run

GreedyScore on (R, p). If “maybe” is the second component, we ourselves out-
put “maybe” as our second component (and the first component does not matter).
Otherwise, we run the GreedyScore algorithm on (R, p′) for each candidate p′ �= p.
If each of those runs results in a score that is not less than what we computed for
p and each has a second component “definitely,” then we output (as to whether p is
a Dodgson winner) Yes (in fact, in this case, our algorithm self-knowingly correctly
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knows all the Dodgson scores and thus the complete set of Dodgson winners, and p is
one of them), with second component “definitely,” and otherwise if all second compo-
nents were “definitely” we output No (in this case, our algorithm now self-knowingly
correctly knows all the Dodgson scores and thus the complete set of Dodgson winners,
and p is not one of them), with second component “definitely,” and otherwise we output
second component “maybe” (and the first component does not matter). By probability
arguments (using the union theorem and a variant of Chernoff’s Theorem), we can for-
mally establish the claim made in the previous paragraph about GreedyScore, and
Theorem 5.5’s claim about the (in)frequency with which the self-knowingly correct
algorithm GreedyWinner outputs “maybe.”

This section has been speaking about Dodgson elections, and is based on the results
of Homan and Hemaspaandra (2009). Independent work of McCabe-Dansted et al.
(2008) studies essentially these issues for the case of WeakDodgson elections, and
using the same general approach obtains related results for that case; see the discussion
in Section 5.7.

5.5 The Parameterized Lens

Another approach that aims to cope with the inherent computational difficulty of
Dodgson’s and Young’s election systems is the design of fixed-parameter tractable
algorithms. The algorithmic challenge is the following: Is there an algorithm that
computes the Dodgson (or StrongYoung) score, whose running time is polynomial for
each fixed value of some important parameter of the problem, such as the number
of candidates? The question falls within the research agenda of the area known as
parameterized computational complexity (Downey and Fellows, 1999; Niedermeier,
2006). In general, that area’s goal is to identify whether the computational explosion
occurring in algorithms for NP-hard problems can be attributed solely to a certain
parameter of the problem. In applications where that parameter typically takes on only
small values, an algorithm with a running time that depends superpolynomially on only
that parameter might be hoped to be of practical use.

In our case, attractive parameters include the number, m, of candidates; the number,
n, of votes; and the number, k, of editing operations. For the Dodgson score, k denotes
the number of sequential exchanges of adjacent candidates in the votes, while for the
StrongYoung score, k denotes the number of votes deleted from the electorate. As a
simple, initial example, fixed-parameter tractability with respect to the parameter n is
clear in StrongYoung elections. Namely, one can conduct an exhaustive search over
the 2n different subsets of votes of the original profile and find (if one exists) a subset
of maximum size in which the desired candidate is the Condorcet winner. The number
of votes in this subset is the StrongYoung score of the preferred candidate p; if no
such subset exists, we will output ∞ as p’s StrongYoung score. So it is clear that the
StrongYoung score is fixed-parameter tractable with respect to the number of voters.

The Dodgson score and the StrongYoung score are fixed-parameter tractable for
the parameter m. This follows by a seminal result of Lenstra, Jr. (1983) that implies
that a problem is fixed-parameter tractable when it can be solved by an integer linear
program (ILP) in which the number of variables is upper-bounded by a function solely
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depending on the parameter. In particular, the seminal work of Bartholdi et al. (1989b)
handles Dodgson score by integer linear programming in a way that, as has often
been noted, tacitly establishes that the Dodgson score is fixed-parameter tractable with
respect to the number of candidates. ILPs can also be used to compute the Young and
the StrongYoung scores (see Young, 1977).

Furthermore, the Dodgson score has been proved to be fixed-parameter tractable
for the parameter k using dynamic programming, a standard tool for designing fixed-
parameter tractable algorithms. The key idea is to solve the problem by solving sub-
problems and combining overlapping solutions in order to compute the overall solution.
Dynamic programming avoids multiple computation of the same (sub)solution by stor-
ing it in a so-called dynamic-programming table and by accessing its value from the
table when needed.

We will now present the main ideas behind the way Betzler et al. (2010) have,
using dynamic programming, upper-bounded the parameterized complexity of check-
ing whether a candidate’s Dodgson score is at most a given value. Let us be given a
profile R with n votes (each specified as a linear order). We will now explore how
to efficiently compute the Dodgson score of a particular candidate in that profile, say
candidate a. We will denote by deficit(a, y, R) the deficit of candidate a with respect to
candidate y in profile R, that is, the (minimum) number of voters who have to change
their preference so that a beats y in their pairwise election. For example, if there are ten
voters and eight initially prefer y to a, so a loses to y eight to two, deficit(a, y, R) = 4
since with the right four changed votes a will squeak past y to win by six to four. P

will denote the set of candidates with respect to whom a has a positive deficit under
our profile R.

The idea is to build a table whose entries store information about how candidate a

can be pushed upward in the votes so that the deficit with respect to each candidate of P

is eventually decreased to 0. This requires storing intermediate information concerning
subsets of votes and partial decreases of the deficit in the table entries. The table for
this has n + 1 rows. Row i will contain information about the first i votes of the profile.
Each column of the table will be labeled by a vector d, and that vector will have an entry
for each candidate of P , with d(y) being an integer between 0 and deficit(a, y, R).
Entry T (i, d) of the table stores the minimum number of total upward pushes of a in
the first i votes of R that will suffice to decrease a’s initial deficit with respect to each
y ∈ P by at least d(y). (By a “push,” we mean a single exchange of adjacent candidates
in a preference order.) We place ∞ in the table’s T (i, d) entry if even pushing a to the
top of the first i votes is not enough to achieve the improvements demanded by the
vector d. Using d̃ to denote the vector with d̃(y) = deficit(a, y, R) for each candidate
y of P , it is clear that the entry T (n, d̃) will contain the Dodgson score.

The entries of the table are initialized to be T (0, d) = 0 if d = (0, 0, . . . , 0) and
T (0, d) = ∞ otherwise. The entries of the ith row (doing this first for the i = 1 row,
then the i = 2 row, and so on) can then be computed from the information stored in the
entries of the (i − 1)st row. Before presenting the formal definition of this computation,
let us give a small example. Let us focus on the first i votes of a profile R, for which we
want to compute the Dodgson score of candidate a. Furthermore, let us suppose that
the ith vote is d � b � c � a. Let us as our example seek to complete the least costly
way to promote a (i.e., the minimum number of exchanges) in the first i votes in such
a way (if any exists using pushes among just those votes) as to decrease the deficit of a
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Table 5.1. Profile and table example for computing the Dodgson score

(a) A profile.

1 2 3

d d c
b a d
c b a
a c b

(b) The dynamic-programming table, T , for computing the Dodgson score of
candidate a.

(0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2)

0 0 ∞ ∞ ∞ ∞ ∞
1 0 3 ∞ 1 3 ∞
2 0 1 4 1 2 4

3 0 1 2 1 2 3

Note: The table at the right is used to compute the Dodgson score of candidate a in the profile at the left. In both
the profile here and in Table 5.2, our tabular vote displays are arranged “top down,” for example, the leftmost
column of this profile indicates that the vote of the first voter is d � b � c � a. The “1 2 3” on the top row
of profiles, both here and in Table 5.2, indicates the voters, for example, the column headed by a “3” is about
voter 3. In the profile given in part (a), the deficits of a with respect to the candidates b, c, and d are 0, 1, and
2. So P = {c, d} and each column label refers to a’s deficits against c and d. The Dodgson score is the value,
3, that is computed for the entry T (3, (1, 2)), and it is achieved by pushing a one position upward in the second
vote and two positions upward in the third vote.

with respect to candidates c and d by one and two, respectively. This can be computed
by considering several different alternatives. One possibility is to use the least costly
way to decrease the deficit of a with respect to d in the first i − 1 votes by one and then
push a three positions upward in the ith vote to cut by an additional one the deficits
with respect to each of c and d. Another possibility is to use the least costly way to
decrease the deficit of a with respect to d by two in the first i − 1 votes and push a one
position upward in the ith vote, to shrink by one its deficit with respect to c. A third
possibility is to just use the least costly way to decrease the deficits by 1 and 2 in the
first i − 1 votes and leave the ith vote unaltered. The entry of the table corresponding to
the ith row and the column corresponding to the deficit decrease vector (1, 2) will store
the best among all the possibilities, including those mentioned above. This example
shows how an entry in row i can be relatively easily computed if we already have in
hand all the entries of row i − 1.

We are now ready to formally present the computation of entry T (i, d) based on the
entries in row i − 1. We use L

j
i (d) for the set of all vectors of decreases of deficits such

that if those decreases are satisfied over the first i − 1 votes of R then that will ensure
that the decreases specified in d are satisfied over the first i voters of R when candidate
a is pushed j positions upward in the ith vote. We use hi to denote the number of
candidates that voter i prefers to a. Then T (i, d) will be assigned the value stated by
the right-hand side below:

T (i, d) = min
0�j�hi

min
d ′∈L

j
i (d)

{T (i − 1, d ′) + j}.

A completed table for an example with three votes and four candidates is provided as
Table 5.1.

Using the approach sketched above and additional technical arguments, Betzler et al.
(2010) prove that testing whether the Dodgson score of a given candidate is at most k

is fixed-parameter tractable with respect to the parameter k.
It is important to mention that negative statements are also known. For example,

the Dodgson score problem is not fixed-parameter tractable with respect to param-
eter n (the number of votes) unless a complexity-theoretic statement known as the
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exponential-time hypothesis is false. This follows from the fact that the problem is
W[1]-hard (Fellows et al., 2010); W[1]-hardness is a central hardness notion in param-
eterized complexity. Young elections are also intractable with respect to the score
parameter, k. In particular, Betzler et al. (2010) prove that the StrongYoung score
problem is complete for the parameterized complexity class W[2].

5.6 Approximation Algorithms

We now focus specifically on Dodgson elections. Since Dodgson scores are hard
to compute exactly in general, an alternative approach is to view the Dodgson score
computation as a combinatorial optimization problem and exploit the rich and beautiful
theory of approximation algorithms (e.g., see Vazirani, 2001) in order to approximate
the Dodgson score. Briefly, the challenge is to obtain efficient (i.e., polynomial-time)
algorithms that return scores that are provably close to the Dodgson score. Furthermore,
such an approximation algorithm can be used as an alternative voting rule to Dodgson’s
rule under some circumstances. We discuss these issues below.

We consider algorithms that receive as input a candidate p from an m-candidate set
A and an n-voter election profile R over A, and return a score for p. We denote the
score returned by an algorithm Y when applied on such an input by scY (p, R). Also,
scD(p, R) will denote the Dodgson score. An algorithm Y is said to be a Dodgson
approximation if scY (x, R) � scD(x, R) for every candidate x ∈ A and every profile
R. Also, Y is said to have an approximation ratio of ρ � 1 if scY (x, R) � ρ · scD(x, R),
for every candidate x and every profile R over A.

Let us give a trivial example. Again, denote by deficit(x, y, R) the deficit of candidate
x with respect to candidate y in profile R, that is, the minimum number of voters
who have to change their preference so that x beats y in their pairwise election.
Consider the algorithm Y that, given a candidate x and a preference profile R, returns
a score of scY (x, R) = (m − 1) ·∑y∈A−{x} deficit(x, y, R). It is easy to show that this
algorithm is a Dodgson approximation and, furthermore, has approximation ratio at
most m − 1. In particular, it is possible to make x beat y in a pairwise election by
pushing x to the top of the preferences of deficit(x, y, R) voters, and clearly this
requires at most (m − 1) · deficit(x, y, R) sequential exchanges of adjacent candidates.
By summing over all y ∈ A − {x}, we obtain an upper bound of scY (x, R) on the
Dodgson score of x. On the other hand, given x ∈ A, for every y ∈ A − {x} we require
deficit(x, y, R) sequential adjacent-exchanges that push x above y in the preferences
of some voter in order for x to beat y in a pairwise election. Moreover, these sequential
adjacent-exchanges do not decrease the deficit with respect to any other candidate.
Therefore,

∑
y∈A−{x} deficit(x, y, R) � scD(x, R), and by multiplying by m − 1 we

get that scY (x, R) � (m − 1) · scD(x, R).

5.6.1 Achieving Logarithmic Approximation Ratios

In this section we present two Dodgson approximations with approximation ratios
logarithmic in the number of candidates. One is a combinatorial, greedy algorithm and
the other is an algorithm based on linear programming.
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Table 5.2. An example of the execution of Section 5.6.1’s greedy algorithm
(to compute the score of candidate p) on an election with 3 votes and 11
candidates

(a) Initial profile.

1 2 3

b b c
d1 d4 b
d2 d5 d6

c p d7

d3 c d8

p d1 p
d4 d2 d1

d5 d3 d2

d6 d6 d3

d7 d7 d4

d8 d8 d5

(b) After step 1.

1 2 3

b b c
d1 d4 b
d2 d5 d6

p p d7

c c d8

d3 d1 p
d4 d2 d1

d5 d3 d2

d6 d6 d3

d7 d7 d4

d8 d8 d5

(c) After step 2.

1 2 3

b p c
d1 b b
d2 d4 d6

p d5 d7

c c d8

d3 d1 p
d4 d2 d1

d5 d3 d2

d6 d6 d3

d7 d7 d4

d8 d8 d5

(d) After step 3.

1 2 3

b p c
d1 b p
d2 d4 b
p d5 d6

c c d7

d3 d1 d8

d4 d2 d1

d5 d3 d2

d6 d6 d3

d7 d7 d4

d8 d8 d5

We present the greedy algorithm first. This is a far more numerically driven greedy
algorithm than the ones mentioned in Section 5.4. Given a profile R and a special
candidate p ∈ A, those candidates a ∈ A − {p} with deficit(p, a, R) > 0 are said to
be alive. Candidates that are not alive, that is, those with deficit(p, a, R) = 0, are said
to be dead. In each step, the algorithm selects an optimally cost-effective push (i.e., a
least cost-ineffective push) of candidate p in the preference of some voter. The cost-
ineffectiveness of pushing p in the preference of a voter i is defined as the ratio between
the total number of positions p is moved upward in the preference of i compared with
the original profile R, and the number of currently live candidates relative to which
p gains as a result of this push. Note that the optimally cost-effective push (i.e., the
push with the lowest cost-ineffectiveness) at each step may not be unique; in this case,
tie-breaking has to be used in order to select one of the optimally cost-effective pushes.

After selecting an optimally cost-effective push, the algorithm decreases the deficit
of p by one for each live candidate a relative to which p gains by that push. Candidates
with respect to whom p has zero deficit become dead. The algorithm terminates when
no live candidates remain; its output is the total number of positions that candidate p

is pushed upward in the preferences of all voters.
An example of the execution of the algorithm is depicted in Table 5.2. In

the initial profile R of this example, candidate p has deficits deficit(p, b, R) = 2,
deficit(p, c, R) = 1, and deficit(p, di, R) = 0 for 1 � i � 8. So candidates b and c

are alive and candidates d1, . . . , d8 are dead. At the first step of the algorithm, there
are several different ways of pushing candidate p upward in order to gain relative to
one or both of the live candidates b and c. Among them, the one with the smallest
cost-ineffectiveness is to push p upward in the first vote. In this way, p moves two
positions upward and gains relative to the live candidate c for a cost-ineffectiveness of
2. Any other push of p in the initial profile has cost-ineffectiveness at least 2.5 since
p has to be pushed at least three positions upward in order to gain relative to one live
candidate and at least five positions upward in order to gain relative to both b and c.
After step 1, candidate c is dead. Then, in step 2, there are three ways to push candidate
p upward so that it gains relative to the live candidate b: either pushing it to the top of
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the first vote (this has cost-ineffectiveness 5 because p would have moved five posi-
tions in total compared to the initial first vote), or pushing it to the top of the second
vote (with cost-ineffectiveness 3), or pushing it four positions upward in the third vote
(with cost-ineffectiveness 4). The algorithm picks the second option. Then, in step 3,
the algorithm can either push candidate p to the top of the first vote or push it four
positions upward in the third vote. The former has a cost-ineffectiveness of 5 (recall
that cost-ineffectiveness is defined using the total number of positions p would move
compared to its position at the initial profile), while the latter has a cost-ineffectiveness
of 4 and is the push the algorithm picks. After step 3, all candidates are dead and the
algorithm terminates by returning the total number of positions p is pushed upward,
that is, 9.

Since the algorithm terminates when all candidates in A − {p} are dead, it is clear
that p becomes a Condorcet winner. The analysis of this greedy algorithm uses a linear
programming relaxation of the Dodgson score. Given the profile R with a set of voters
N and a set of m candidates A, denote by ri the rank of candidate p in the preference of
voter i. For every voter i ∈ N , denote by S i the subcollection that consists of the sets Si

k

for k = 1, . . . , ri − 1, where the set Si
k contains the live candidates that appear in posi-

tions ri − k to ri − 1 in the preference of voter i. We denote by S the (multiset) union
of the subcollections S i for i ∈ N . The problem of computing the Dodgson score of
candidate p on profile R is equivalent to selecting sets from S of minimum total size so
that at most one set is selected among the ones in S i for each voter i and each candidate
a ∈ A − {p} appears in at least deficit(p, a, R) selected sets. This can be expressed by
an integer linear program using a binary variable x(S) to denote whether the set S ∈ S
has been selected. We present the relaxation of this LP below, where the integrality
constraint for the variables has been relaxed to fractional values between 0 and 1:

Minimize
∑
i∈N

ri−1∑
k=1

k · x(Si
k)

subject to ∀a ∈ A − {p},
∑
i∈N

∑
S∈S i :a∈S

x(S) � deficit(p, a, R)

∀i ∈ N,
∑
S∈S i

x(S) � 1

∀S ∈ S, 0 � x(S) � 1.

Clearly, the Dodgson score of candidate p is an upper bound on the optimal objective
value of this LP.

The analysis uses a technique that is known as dual fitting and is similar to the
analysis of a greedy algorithm for the related constrained set multicover problem; see
Rajagopalan and Vazirani (1999) and Vazirani (2001, pp. 112–116). The idea is to
use the decisions taken by the algorithm and construct a feasible solution for the dual
(maximization) LP that has value at most the score returned by the algorithm divided
by Hm−1, where Hk = 1 + 1

2 + · · · + 1
k

denotes the kth harmonic number. By a simple
duality argument, this implies that the score returned by the algorithm is at most Hm−1

times the optimal objective value of the above LP and, consequently, at most Hm−1

times the Dodgson score of p.
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This suggests a different algorithm, in particular, an LP-based algorithm for approx-
imating the Dodgson score of a candidate p without explicitly providing a way of
pushing p upward in the preferences of some voters in a way making p become the
Condorcet winner. This algorithm just uses the LP relaxation above, computes its opti-
mal objective value, and returns this value multiplied by Hm−1 as a score for candidate
p. Then the approximation ratio of Hm−1 is obvious. The algorithm is also a Dodgson
approximation, since the score returned by this section’s greedy algorithm (which is
an upper bound for the Dodgson score of p) is not higher than the score returned by
the LP-based algorithm. The following statement summarizes our discussion.

Theorem 5.6 (Caragiannis et al., 2012b). This section’s greedy algorithm and LP-
based algorithm are Dodgson approximations, each with approximation ratio Hm−1.

5.6.2 Approximation Algorithms as Alternative Voting Rules?

A Dodgson approximation naturally induces a voting rule by electing the candidate(s)
with minimum score. Arguably, such a voting rule maintains some echo of the basic
philosophy behind Dodgson’s election system—more strongly so if it is a very good
approximation. But can it really be used as a voting rule? Trying to support a yes answer
to this question requires us to discuss an issue that we have not yet touched on. One
can argue that for a voting rule to be attractive, it should not only be easy to compute,
but also, ideally, should have certain properties that are considered desirable from a
social-choice point of view. Several such properties are not satisfied by Dodgson’s
rule, and this is the main reason why the rule has been criticized in the social-choice
literature, see, for example, Brandt (2009a) and the references therein.

We will see that Dodgson approximations, in return for their core disadvantage of
merely being an approximation to Dodgson’s rule, can satisfy desirable social-choice
properties, even while also providing polynomial-time algorithms. Before going on
to the three social-choice properties we will discuss, it is important to make clear
just how greatly Dodgson approximations can distort Dodgson’s rule, especially since
we commented above that Dodgson approximations in some way echo the flavor and
philosophy of Dodgson. The best Dodgson approximation we consider in this section
has an approximation ratio of 2. Consider a three-candidate election for which the
actual Dodgson scores of the candidates are 10, 11, and 12. A Dodgson approximation
having ratio 2 could give for these candidates, respectively, scores of 18, 16, and 14.
That is, the ordering of even an excellent Dodgson approximation can be a complete
inversion of the actual Dodgson ordering, and the worst Dodgson loser can be named
the unique winner. Clearly, the fact that even a 1.000001 approximation-ratio algorithm
can completely invert the entire ranking of the candidates is a troubling (but not far
from unavoidable—see the discussion at the end of Section 5.6.3) feature of using
approximations as voting rules.

In the following, when we say that a Dodgson approximation satisfies a social-choice
property we are referring to the voting rule induced by the algorithm. As a warm up,
observe that the voting rule induced by any Dodgson approximation (regardless of its
approximation ratio) is Condorcet-consistent, basically because anything times zero
is zero. So every Dodgson approximation, regardless of how bad its ratio is, must
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assign score of 0 to any Condorcet winner. But since Dodgson approximations never
underestimate scores, any candidate who is not a Condorcet winner will be assigned a
score of at least 1. So any Condorcet winner will be the one and only winner under any
Dodgson approximation. (Thank goodness Dodgson did not add a one in the definition
of his scores. That would destroy the above claim, which is deeply dependent on the
special nature of zero.) Of course, Dodgson’s system itself also is Condorcet-consistent.

We will now move on to discuss two other socially desirable properties: monotonicity
and homogeneity. We will see that these properties can be achieved by good Dodgson
approximations that run in polynomial time.

A voting rule is said to be monotonic if a winning candidate always remains winning
after it is pushed upward in the preferences of some of the voters. Dodgson’s rule is
known to be monotonic when there are at most three candidates and to be nonmonotonic
for each number of candidates greater than or equal to four (Fishburn, 1982, p. 132).
The intuition for the latter is that if a voter ranks x directly above y and y above z,
exchanging x and y may not help y if it already beats x, but may help z defeat x. The
two approximation algorithms presented in Section 5.6.1 are also nonmonotonic.

In contrast, the Dodgson approximation that returns (m − 1) ·∑y∈A−{x}
deficit(x, y, R) as the score of candidate x is monotonic as a voting rule. Indeed,
consider a preference profile R and a winning candidate x. Pushing x upward in
the preferences of some of the voters can neither increase its score (since its deficit
with respect to each other candidate does not increase) nor decrease the score of any
other candidate y ∈ A − {x} (since the deficit of y with respect to each candidate in
A − {x, y} remains unchanged and its deficit with respect to x does not decrease). So
we already have a monotonic Dodgson approximation with approximation ratio m − 1.
In the following we present much stronger results.

A natural “monotonization” of Dodgson’s voting rule yields a monotonic Dodg-
son approximation with approximation ratio of 2. The main idea is to define the
winning set of candidates for a given profile first and then assign the same score to
the candidates in the winning set and a higher score to the nonwinning candidates.
Roughly speaking, the winning set is defined so that it contains the Dodgson win-
ners for the given profile as well as the Dodgson winners of other profiles that are
necessary so that monotonicity is satisfied. More formally put, we say that an n-vote
election profile R′ is a y-improvement of profile R for some candidate y ∈ A if R′ is
obtained by starting from R and pushing y upward in the preferences of zero or more
voters.

Monotonization proceeds as follows. Let M denote the new voting rule we are
constructing. Denote by W (R) the set of winners of M (or the winning set) for profile R;
we will soon specify which candidates belong to W (R). Let � = maxy∈W (R) scD(y, R).
The voting rule M assigns a score of scM (y, R) = � to each candidate y ∈ W (R) and
a score of

scM (y, R) = max{� + 1, scD(y, R)}
to each candidate y /∈ W (R). All that remains is to define the winning set W (R). This
is done as follows: For each profile R∗ and each Dodgson winner y∗ of R∗, include y∗

in the winning set W (R′) of each profile R′ that is a y∗-improvement of R∗.
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Theorem 5.7 (Caragiannis et al., 2014b). M is a monotonic Dodgson approximation
with an approximation ratio of 2.

That M is monotonic and is a Dodgson approximation follow immediately from
the definitions of the winning set W (R) and the scores returned by M . The proof of
the approximation ratio bound is based on the following technical property: Pushing a
candidate y upward does not increase his or her Dodgson score and does not decrease
the Dodgson score of any other candidate by a factor larger than 2. The upper bound
provided by Theorem 5.7 is the best possible: No monotonic Dodgson approximation
can have an approximation ratio smaller than 2. This negative statement does not use any
complexity-theoretic assumptions and actually holds for exponential-time algorithms
as well. Actually, monotonization (in the rather naive approach described above) yields
an exponential-time algorithm.

So from the computational point of view, the above algorithm is not at all satisfactory.
Fortunately, a polynomial-time implementation of monotonization is possible, although
it involves an unavoidable (see Section 5.6.3) logarithmic loss in the approximation
ratio. There are two main obstacles that one has to overcome in order to implement
monotonization in polynomial time. First, as discussed in Section 5.3, computing
the Dodgson score and deciding whether a given candidate is a Dodgson winner
are computationally hard problems. This obstacle can be overcome using the score
returned by the polynomial-time LP-based Dodgson approximation that we presented
in Section 5.6.1 instead of using the Dodgson score itself. Even in this case, given
a profile R, we still need to be able to detect when a candidate y is the winner
according to the LP-based voting rule in some profile R′ of which the current one is
a y-improvement; if this is the case, y has to be included in the winning set W (R)
of profile R. This means that exponentially many profiles may have to be checked in
order to determine the winning set of the current profile. This obstacle is overcome
by Caragiannis et al. (2014b) using the notion of pessimistic estimators. These are
quantities defined in terms of the current profile only and are used to identify the
winning set in polynomial time. The next statement follows using these two high-level
ideas and additional technical arguments.

Theorem 5.8 (Caragiannis et al., 2014b). There exists a monotonic polynomial-time
Dodgson approximation with an approximation ratio of 2Hm−1.

Let us now turn to homogeneity. A voting rule is said to be homogeneous if, for
every integer k � 2, its outcome does not change when replacing each vote in the
preference profile with k identical copies of the vote. Fishburn (1977) observed that
Dodgson’s rule is not homogeneous. The intuition behind this is that if candidates x

and y are tied in a pairwise election the deficit of x with respect to y does not increase
by duplicating the profile, but if x strictly loses to y in a pairwise election then the
deficit scales with the number of copies.

Tideman (2006, pp. 199–201) presents the following simplified version of Dodgson’s
rule and proves that it is both homogeneous and monotonic. A Condorcet winner—if
one exists—in an election profile R is the sole winner according to Tideman’s rule.
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Otherwise, the rule assigns a score of

scTd(x, R) =
∑

y∈A−{x}
max {0, n − (2 · ‖{i ∈ N : x �i y}‖)}

to each candidate x, and the candidate(s) with the minimum score win. In the above
equation, the notation x �i y indicates that voter i prefers candidate x to candidate y.
Unfortunately, this score definition does not provide a Dodgson approximation. For
example, a candidate who is tied with some candidates and beats the rest has a score
of 0, yet 0 is lower than its Dodgson score. However, we in fact can give a different
scoring framework, Td′, that is a Dodgson approximation and that will elect exactly
the same winners as does Tideman’s simplified variant of Dodgson’s rule (and thus
will be monotonic and homogeneous). Td′ is defined as follows. If a candidate x is a
Condorcet winner, then it has score scTd′(x, R) = 0. Otherwise, Td′ “scales” the score
of x as follows:

scTd′(x, R) = m · scTd(x, R) + m(1 + log m).

Clearly, scTd′(x, R) can be computed in time polynomial in n and m.

Theorem 5.9 (Caragiannis et al., 2014b). Td ′ is a monotonic, homogeneous,
polynomial-time Dodgson approximation with an approximation ratio of O(m log m).

This approximation ratio is the best possible; a matching �(m log m) lower bound
holds for any algorithm that is homogeneous (Caragiannis et al., 2014b).

5.6.3 Hardness of Approximation

The best polynomial-time Dodgson approximations presented in Section 5.6.1
achieve—keeping in mind that Hm = ln n + �(1)—asymptotic approximation ratios
of O(log m). Under standard assumptions about NP, all polynomial-time Dodgson
approximations have approximation ratios that are �(log m), so the above-mentioned
approximations from the previous section have ratios that are optimal within a constant,
and in fact that constant can be kept down to 2. This claim is implicit in McCabe-Dansted
(2006). Later, Caragiannis et al. (2012b) explicitly obtained and stated the following
result, using a reduction from minimum set cover and well-known inapproximability
thresholds of Feige (1998) and Raz and Safra (1997).

Theorem 5.10 (Caragiannis et al., 2012b). There exists a constant β > 0 such that
it is NP-hard to approximate the Dodgson score of a given candidate in an election
with m candidates to within a factor of β ln m. Furthermore, for any ε > 0, there
is no polynomial-time

(
1
2 − ε

)
ln m-approximation for the Dodgson score of a given

candidate unless all problems in NP have algorithms running in time kO(log log k), where
k is the input size.

One might wonder why our particular notion of approximation has been used.
For example, a natural alternative approach would be to approximate some notion
of Dodgson ranking. Unfortunately, the following statement shows that this is an
impossible goal: Efficient approximation algorithms for Dodgson ranking are unlikely
to exist. For the purpose of the theorem below, a Dodgson ranking of an election
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instance is an ordering of the candidates such that if i < j then the ith candidate in the
ordering has Dodgson score no greater than the j th candidate in the ordering.

Theorem 5.11 (Caragiannis et al., 2012b). Given a profile with m candidates and a
special candidate p, it is NP-hard to decide whether p is a Dodgson winner or has
rank at least m − 6

√
m in any Dodgson ranking.

5.7 Bibliography and Further Reading

Dodgson’s election system first appeared in Dodgson’s 1876 pamphlet (Dodgson,
1876). The computational complexity of the winner problem for Dodgson’s system
was shown NP-hard in the seminal paper of Bartholdi et al. (1989b), and was shown
�

p
2 -complete by Hemaspaandra et al. (1997a), see also Brandt et al. (2010b, p. 54).

Young’s election system was defined by him in 1977 (Young, 1977), and the complexity
of StrongYoung was pinpointed as being �

p
2 -complete by Rothe et al. (2003). See

Brandt (2009a) and the references therein for perspectives on why Dodgson proposed
his system and discussions of Dodgson’s system in terms of not satisfying certain
properties.

A number of other papers discuss the complexity of Dodgson and Young elections
or variants of those elections (Hemaspaandra et al., 2009; Brandt et al., 2010a, 2010b,
2015b). Readers interested in the complexity of these election systems may be interested
in the work showing that Kemeny’s election system (Kemeny, 1959; Kemeny and Snell,
1960)—see also Chapter 4—has a �

p
2 -complete winner problem (Hemaspaandra

et al., 2005) and a �
p
2 -complete unique winner problem (Hemaspaandra et al., 2009).

Complexity has also been broadly used as a tool with which to block attacks on
elections, such as manipulation (Bartholdi et al., 1989a), bribery (Faliszewski et al.,
2009b), and control (Bartholdi et al., 1992); see Chapters 6 and 7, and see also the
surveys by Faliszewski et al. (2009d, 2010).

�
p
2 , in its “logarithmic number of sequential queries to NP” definition, was first

studied in the early 1980s, by Papadimitriou and Zachos (1983). Hemachandra (1989)
showed that that definition yields the same class of sets as the unbounded-parallel
definition. �

p
2 -completeness can also apply to a range of problems quite different

from the election problems discussed in this chapter. For example, determining when
greedy algorithms well-approximate maximum independent sets is known to be �

p
2 -

complete (Hemaspaandra and Rothe, 1998). The most important tool for proving �
p
2 -

completeness is Lemma 5.3, due to Wagner (1987). Readers more generally interested
in complexity will find an excellent, accessible introduction in the textbook of Bovet
and Crescenzi (1993), and a more advanced and technique-based tour is provided by
Hemaspaandra and Ogihara (2002).

The material presented in our heuristics section (Section 5.4) is based on the work
of Homan and Hemaspaandra (2009) about using greedy heuristics for Dodgson elec-
tions. The independent work of McCabe-Dansted et al. (2008) studies the use of
greedy heuristics for WeakDodgson elections. The two papers are based on the same
central insight and obtain related results. However, there are some nontrivial differ-
ences between the two papers and their claims; these differences are discussed in detail
in Section 1 of Homan and Hemaspaandra (2009).
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Readers interested in the theory of parameterized computational complexity can
find a systematic treatment in textbooks such as the ones by Downey and Fellows
(1999) and Niedermeier (2006). Betzler et al. (2012) survey the progress in that field in
relation to voting and cover both winner determination and other problems, for several
voting rules.

The first approximation algorithms for voting rules (e.g., Kemeny) are implicit in
the papers of Ailon et al. (2005), Coppersmith et al. (2006), and Kenyon-Mathieu and
Schudy (2007). The material presented in Section 5.6 is from Caragiannis et al. (2012b,
2014b). Several interesting results have not been covered. For example, as an alterna-
tive to Tideman’s simplified Dodgson rule, the maximin voting rule yields a Dodgson
approximation with approximation ratio m2 (Faliszewski et al., 2011b). Caragiannis
et al. (2014b) discuss additional social-choice properties that are more difficult than
monotonicity to achieve by good Dodgson approximations. Finally, observe that Sec-
tion 5.6 does not contain any results related to Young’s rule. Unfortunately, such good
(polynomial-time) approximations are unlikely to exist. For example, unless P = NP,
the StrongYoung score is not approximable within any factor by polynomial-time
algorithms (Caragiannis et al., 2012b).

Acknowledgments

We are grateful to Markus Brill, Jörg Rothe, and the editors for helpful suggestions
on an earlier version. Any remaining errors are the sole responsibility of the authors.
We appreciatively acknowledge the support of grants NSF-CCF-0915792, NSF-CCF-
1101452, and NSF-CCF-1101479.



CHAPTER 6

Barriers to Manipulation
in Voting

Vincent Conitzer and Toby Walsh

6.1 Introduction

In many situations, voters may vote strategically. That is, they may declare preferences
that are not their true ones, with the aim of obtaining a better outcome for themselves.
The following example illustrates this.

Example 6.1. Consider an election with three alternatives, a, b, and c, and three voters,
1, 2, and 3. Suppose the rule used is plurality—an alternative gets a point each time
it is ranked first by a voter, and the alternative with the most points wins—with ties
broken toward alternatives earlier in the alphabet. Suppose voter 3 knows (or strongly
suspects) that voter 1 will rank a first in her vote, and that voter 2 will rank b first.
Voter 3’s true preferences are c � b � a. If she votes truthfully, this will result in a
three-way tie, broken in favor of a which is 3’s least preferred alternative. If, instead,
voter 3 ranks b first, then b will win instead. Hence, voter 3 has an incentive to cast a
vote that does not reflect her true preferences.

This is often referred to as manipulation or strategic voting; we will use “manip-
ulation” throughout.1 Voting rules that are never manipulable are also referred to as
strategyproof. We start by reviewing the Gibbard-Satterthwaite impossibility result
(discussed also in Chapter 2), which states that with unrestricted preferences over three
or more alternatives, only very unnatural rules are strategyproof. The main focus of the
chapter is on exploring whether computational complexity can be an effective barrier
to manipulation. That is, we may not be concerned about manipulation of a voting rule
if it is computationally hard to discover how to manipulate it.

1 Of course, one may disagree, at least in some circumstances, that strategic voting is really “manipulative” in
the common sense of the word. We simply use “manipulation” as a technical term equivalent to strategically
reporting one’s preferences incorrectly. Nevertheless, we will give some reasons why it can be undesirable in
what follows.
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6.2 Gibbard-Satterthwaite and Its Implications

An important axiomatic result about the properties of voting rules is the Gibbard-
Satterthwaite Theorem:

Theorem 6.2 (Gibbard, 1973; Satterthwaite, 1975). Consider a (resolute)2 voting
rule that is defined for some number m of alternatives with m � 3, with no restrictions
on the preference domain. Then, this rule must be at least one of the following:

1. dictatorial: there exists a single fixed voter whose most-preferred alternative is chosen
for every profile;

2. imposing: there is at least one alternative that does not win under any profile;
3. manipulable (i.e., not strategyproof).

Properties 1 and 2 are not acceptable in most voting settings. Hence, under the
conditions of the theorem, we are stuck with property 3: there will exist profiles such
that at least one of the voters has an incentive to misreport her preferences.

Before discussing how we might address this, we should first discuss why manipu-
lability is a significant problem. It may not seem so. For example, consider a plurality
election with three alternatives. If one of the candidates3 is considered to have a poor
chance of winning the election (consider, for example, a third party in the United
States), then everyone might vote for one of the other two candidates, in order to avoid
wasting their votes. Is this a significant problem? Will it not simply result in the same
winner that plurality-with-runoff (or STV)4 would have chosen (if everyone had voted
truthfully), and is that so bad? Additionally, there are those who argue that democrats
should not be worried about manipulation (Dowding and Hees, 2008). There are,
however, several potential downsides to such manipulation, including the following.
(Formalizing all these downsides would go beyond the scope of this chapter, so we
present them informally; we hope the reader would be able to formalize these concepts
if needed.)

� Bad equilibria. In the above example, it is not at all clear that the resulting winner will
be the same as the true plurality-with-runoff winner. All that is required is that voters
expect the third alternative to have poor chances. It is possible that this alternative is
actually very much liked across the electorate, but nobody is aware of this. Even more
strikingly, it is possible that everyone is aware of this, and yet the alternative is expected
to perform poorly—for example, because nobody is aware that others are aware of the
alternative’s popularity. Hence, an alternative that is very much liked, and perhaps would
have won under just about any reasonable rule had everyone voted truthfully, may not
win.

2 Recall that a voting rule is resolute if it returns only a single alternative for every profile.
3 We use “alternatives” and “candidates” interchangeably.
4 Recall that under the plurality-with-runoff rule, the alternatives with the top two plurality scores proceed to

a runoff round, and the one that is preferred to the other by more voters wins. Under STV (also known as
Instant Runoff Voting), only the alternative with the lowest plurality score is eliminated in each round; it is then
removed from all the votes, so that votes that ranked it first now rank another alternative first. This procedure
is repeated until only one alternative—the winner—remains. (For an axiomatization of this rule, see Freeman
et al. (2014).)
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� Lack of information. Even if the bad equilibria described above are in fact avoided, we
cannot be sure that this is the case, because we will never know exactly how popular
that third alternative really was. This also interferes with the process of identifying more
desirable alternatives in the next election.

� Disenfranchisement of unsophisticated voters. Voters who are less well informed may
end up casting less effective votes than those who are well informed (for example,
votes for the third alternative). Knowledge is power—but in many elections, this is not
considered desirable.

� Wasted effort. Even if all agents manipulate to the same extent, still much effort, whether
of the computational, information gathering, or communicational variety, is expended
in figuring out how to manipulate well, and presumably this effort could have been more
productively spent elsewhere. This can be seen as a type of tragedy of the commons;
everyone would be better off if nobody spent effort on manipulation, but individually
voters are still better off manipulating.

In the theory of mechanism design—which applies not only to the design of voting
rules but also to that of auctions, matching mechanisms, and any other setting where
a decision must be made based on the preferences of multiple strategic agents—there
is generally a focus on designing mechanisms in which agents have no incentive
to misreport their preferences. This is justified by a result known as the revelation
principle. Stating it formally here would take us too far afield, but roughly speaking,
it says that for any mechanism that results in a good equilibrium (in a game-theoretic
sense), there exists another mechanism that results in the same outcomes, but in which
agents report their preferences directly and they have no incentive to misreport them.5

That is, at some level, we should be able to get incentives to report truthfully (i.e.,
use a truthful mechanism) for free. The revelation principle has been criticized on the
basis that it implicitly assumes agents to be computationally unbounded, and indeed it
has been shown that in some cases there exist mechanisms (that are not truthful) that
will perform at least as well as any truthful mechanism, and strictly better if agents are
unable to compute their strategically optimal actions (Conitzer and Sandholm, 2004).

Taken together, there seem to be several arguments for attempting to erect barriers to
manipulation. However, the Gibbard-Satterthwaite Theorem poses a fundamental limit
to such barriers. How can we get around it? We will first discuss some avenues that
are not computational in nature. Then, we devote most of the chapter to computational
avenues.

6.3 Noncomputational Avenues around Gibbard-Satterthwaite

One way of sidestepping the Gibbard-Satterthwaite Theorem is to restrict the domain
of preferences. Probably the best-known such restriction is that of single-peaked

5 It should be noted that the notion of not having any incentive to misreport here is weaker than strategyproofness.
Rather, it is Bayes-Nash equilibrium, which means that an agent is best off telling the truth in expectation over
a prior distribution over the other agents’ preferences—but the agent might be better off misreporting for a
particular realization of the reports. There is a version of the revelation principle that results in a strategyproof
mechanism, but this requires the original mechanism to have dominant strategies for all agents.
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preferences. Here, the assumption is that there exists an ordering < of the alternatives—
for example, political candidates may be ordered on the left-to-right political spectrum,
or the alternatives may be tax rates, locations along a single road, and so on. More-
over, the following assumption is made: if voter i’s most-preferred alternative is a,
and a < b < c or c < b < a, then b �i c (i prefers b to c). In this case (assuming,
for simplicity, an odd number of voters) consider the median voter rule: order the vot-
ers by their most-preferred alternatives, and choose the median voter’s most-preferred
alternative. (Note that this rule does not require voters to specify preferences beyond
their top choice.) This rule is strategyproof and always elects a Condorcet winner6. Of
course, the usefulness of this result is limited by the fact that we cannot simply make
the voters’ preferences single-peaked when they are not. We could declare any vote that
is not single-peaked invalid, but this just comes down to forcing voters to manipulate.
For more discussion of single-peaked preferences, see Chapter 2.

Another possible avenue is to use randomized rules, which map every profile of
votes to a probability distribution over the alternatives. For example, if we break the
ties of a voting rule randomly, then we have a randomized voting rule. However, there
are many other ways to obtain a randomized voting rule. The Gibbard-Satterthwaite
Theorem above applies to deterministic rules only, so one might hope that randomized
rules are not subject to such an impossibility. Unfortunately, as it turns out, there is
a subsequent result by Gibbard that generalizes the Gibbard-Satterthwaite Theorem
to randomized rules. To present this result, we first need to define strategyproofness
in the context of randomized rules, and for that, we need to define preferences over
lotteries over alternatives. For example, if a voter’s preferences are a � b � c, should
the voter prefer b, or a 50-50 lottery over a and c? Both could be reasonable. For
example, if the voter has utilities 3, 2, and 0 for the alternatives respectively, b would
give higher expected utility (2 > 1.5), but if the voter has utilities 3, 1, and 0, then the
50-50 lottery over a and c gives higher utility (1.5 > 1). Therefore, in this context,
a quite conservative definition of strategyproofness is often used: a randomized rule
is strategyproof if and only if for every utility function over the alternatives that is
consistent with the voter’s preferences over the (pure) alternatives, the voter maximizes
her utility by reporting these true preferences (regardless of how the others vote).7 We
can now present Gibbard’s result:

Theorem 6.3 (Gibbard, 1977). If there are no restrictions on the preference domain,
any strategyproof randomized rule is a randomization over a collection of the following
types of rules:

� unilateral rules, under which at most one voter’s vote affects the outcome;
� duple rules, under which there are at most two alternatives that have a possibility of

winning (i.e., that win under some profile).

The result makes it clear that randomization is not the answer to all our problems. A
coin flip results in the discarding of all but one of the votes, or in the discarding of all

6 Recall that an alternative a is a Condorcet winner if it wins all its pairwise contests. That is, for every other
alternative b, more voters prefer a to b than vice versa.

7 For studies of other ways of extending strategyproofness to randomized voting rules, see Aziz et al. (2013d)
and Aziz et al. (2014c).
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but two of the alternatives. In many situations, these rules will not be acceptable. Still,
the result allows for some randomized rules that are perhaps not entirely unreasonable.
For example, we can randomly choose a dictator (the theorem implies that, with
three or more alternatives, this is in fact the only way to guarantee a Pareto-optimal
outcome), or randomly choose two alternatives and have a majority election between
them. Barberà (1979) gives some characterizations of randomized strategyproof rules
as well; these are consistent with Gibbard’s result above, but seem to cast the rules
in a more positive light. More recently, Procaccia (2010) studied the extent to which
strategyproof randomized rules can achieve formal approximations to the scores from
common voting rules.

A final possible avenue is to use irresolute rules, which return a set of alternatives
(possibly larger than one) and leave it at that. Can such a rule be strategyproof (and
simultaneously reasonable)? To make sense of this question, we first need to say
something about what an agent’s preferences over sets of alternatives can be. Building
on earlier results, Brandt (2011b) and Brandt and Brill (2011) have recently provided
results that show that various irresolute rules are in fact strategyproof with respect to
various extensions of preferences to sets of alternatives.8 While these positive results
are encouraging, they do face a major limitation. In many voting settings, in the end, we
require a single winning alternative. If we add any procedure for going from the winning
set of alternatives to a single one—for example, choosing the lexicographically first
alternative in the set—then the combination of the irresolute rule and the subsequent
procedure is a resolute rule, and we run right back into the Gibbard-Satterthwaite
impossibility result. Similarly, if we randomly choose from the winning set, we run
into the impossibility results for randomized rules. Thus, for these positive results to
apply, the procedure for going from the selected set of alternatives to a single alternative
fundamentally needs to remain unspecified, and moreover the voters need to respond
to this lack of information in a particular way. For more detail, see Chapter 3.

6.4 Computational Hardness as a Barrier to Manipulation

Another potential barrier to manipulation is computational hardness. Even if we cannot
prevent a voting rule from being manipulable in principle, this may not be a significant
concern as long as determining how to manipulate it is computationally prohibitive.

The argument that the complexity of computing a manipulation might be a barrier to
strategic voting was first put forward in an influential paper by Bartholdi et al. (1989a).
A whole subfield of social choice has since grown from this proposal, studying the
computational complexity of manipulating different voting rules under several different
assumptions (e.g., Conitzer et al., 2007). For two recent surveys, see Faliszewski et al.
(2010) and Faliszewski and Procaccia (2010); Brandt et al. (2013a) also discuss the
topic at some length. In the remainder of this section, we discuss this line of work in
more detail.

8 Other extensions lead to negative results (Duggan and Schwartz, 2000). For more on strategyproofness and
other notions of monotonicity in this context, see Sanver and Zwicker (2012) and the references cited in that
work.
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6.4.1 The Basic Variant

The original paper (Bartholdi et al., 1989a) defined a basic model which has since been
investigated extensively. We suppose all but one voter, the manipulator, have voted and
that these votes and the rule to be used are known to the manipulator. We ask whether
it is possible for the manipulator to ensure that a given alternative wins. More formally,
we can define the following decision problem.

Manipulation Problem

Given. A profile of votes � cast by everyone but the manipulator, and a preferred alternative a.
Question. Is there a vote that the manipulator can cast so that a wins?

This problem is typically in NP as a simple witness is a vote that ensures a wins.
Supposing that the voting rule is polynomial to execute,9 this witness can be checked
in polynomial time. There is also a destructive variant of this question, where we
ask if it is possible for the manipulator to cast a vote so that a given alternative does
not win. Note that these problems correspond exactly to the predicament of voter 3
in Example 6.1, with the exception that the question is now whether she can make
a particular alternative win. One may wonder if a more natural problem would be
to determine the best (according to her own true preferences) alternative that she can
make win. This problem is effectively equivalent; to answer it, it is sufficient to evaluate
for each of the alternatives in turn whether she can make it win (and, conversely, it
is necessary to at least evaluate whether she can make her most-preferred alternative
win).

Of course, when the rule is plurality, this problem is computationally trivial: to see if
you can make alternative a win, it suffices to see what would happen if you submitted
a vote that ranks a first. Indeed, for many rules, the problem is in P. Bartholdi et al.
(1989a) provided an algorithm that solves the problem in polynomial time for many
voting rules.

Definition 6.1. Say that a voting rule satisfies the BTT conditions if

1. it can be run in polynomial time,
2. for every profile � and every alternative a, the rule assigns a score S(�, a) to a,
3. for every profile �, the alternative with the maximum score wins,10 and
4. the following monotonicity condition holds: for any �,�′, for any alternative a, if for

each voter i we have that {b : a �i b} ⊆ {b : a �′
i b}, then S(�, a) � S(�′, a). (That

is, if we modify a vote in a way that does not rank anyone ahead of a that was previously
ranked behind a, then a’s score cannot have decreased.)

Theorem 6.4 (Bartholdi et al., 1989a). The manipulation problem can be solved in
polynomial time for any rule satisfying the BTT conditions.

The algorithm for constructing a manipulator vote that successfully makes alterna-
tive a win (if any such vote exists) is quite straightforward. Rank a first. For the next

9 See earlier chapters in the book for discussion of rules for which this is not the case.
10 Assume, say, a fixed tie-breaking order.
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position in the vote, find some remaining alternative b that can be ranked there so that
a still wins. (To check this, complete the rest of the vote arbitrarily, and calculate b’s
score; by the monotonicity condition above, a and b’s scores will not depend on how
the rest of the vote is completed. This is because if we change the relative ordering
of the remaining alternatives, this is a modification that satisfies the condition, and so
cannot decrease a or b’s score; it can also not increase these scores, because then the
reverse modification would decrease it.) If no such alternative can be found, declare
failure; if the vote is completed, declare success; otherwise, repeat for the next position.
This algorithm applies not only to positional scoring rules such as plurality and Borda,
but also to rules such as Copeland and maximin.11

Bartholdi et al. (1989a) were also the first to show that the problem is NP-hard for
some rules. Specifically, they showed NP-hardness for manipulating the second-order
Copeland rule, under which an alternative’s score is the sum of the Copeland scores of
the alternatives that it defeats. (Note that this way of scoring violates the third condition
above: if in some vote, we change the relative ordering of the alternatives ranked (say)
behind a only, this can affect those alternatives’ Copeland scores, and thereby a’s
second-order Copeland score.) They also showed NP-hardness of manipulation for the
(first-order) Copeland rule when ties are broken by the second-order Copeland rule; we
will say more about the importance of the tie-breaking procedure later in this chapter.
Shortly after, Bartholdi and Orlin (1991) proved that the better-known STV rule is
NP-hard to manipulate in this sense. The problem has been shown to be NP-hard for
several other rules more recently, including ranked pairs (Xia et al., 2009), and Nanson
and Baldwin’s rules (Narodytska et al., 2011). The ranked pairs rule orders the pairwise
outcomes by the size of the victory. It then constructs a total ordering over alternatives by
taking these pairs in order and fixing the order unless this contradicts previous decisions.
The top of the order constructed in this way is the overall winner. Nanson and Baldwin’s
rules are elimination versions of Borda voting. Nanson’s rule repeatedly eliminates all
alternatives with less than the average Borda score. Baldwin’s rule, on the other hand,
successively eliminates the alternative with the lowest Borda score. Table 6.1 gives a
representative sample of complexity results for this manipulation problem, as well as
for some related manipulation problems discussed in the next subsections.

6.4.2 Coalitions of Manipulators

So far, we have considered the computational complexity of just one voter trying to
manipulate the election. In practice, multiple voters may collude to manipulate the
result. Indeed, it is often the case that we need a coalition of manipulators to be able to
change the result.

11 Recall that the Borda rule gives an alternative m − 1 points each time it is ranked first, m − 2 points each
time it is ranked second, . . . , and 0 points each time it is ranked last. More generally, a positional scoring rule
associates a score with each rank, and the alternative with the highest score wins. Under the Copeland rule, an
alternative a gets a point for each other alternative b such that more votes rank a ahead of b than vice versa
(and some fraction of a point if the number of votes ranking a ahead of b is the same as vice versa). Finally,
under the maximin rule, we find, for each alternative a, the alternative b that minimizes the number of votes
that rank a ahead of b (the worst pairwise outcome for a); this number is a’s score, and the alternative with the
maximum score wins.
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Table 6.1. Computational complexity of deciding the manipulation problem with a small
number of voters (unweighted votes) or a coalition of voters (weighted votes), for various
voting rules

unweighted votes weighted votes
constructive manipulation constructive destructive

# alternatives 2 3 4 �5 2 3 �4
# manipulators 1 � 2

plurality P P P P P P P P P
plurality with runoff P P P NP-c NP-c NP-c P NP-c NP-c

veto P P P NP-c NP-c NP-c P P P
cup P P P P P P P P P

Copeland P P P P NP-c NP-c P P P
Borda P NP-c P NP-c NP-c NP-c P P P

Nanson NP-c NP-c P P NP-c NP-c P P NP-c
Baldwin NP-c NP-c P NP-c NP-c NP-c P NP-c NP-c

Black P NP-c P NP-c NP-c NP-c P P P
STV NP-c NP-c P NP-c NP-c NP-c P NP-c NP-c

maximin P NP-c P P NP-c NP-c P P P
Bucklin P P P NP-c NP-c NP-c P P P
fallback P P P P P P P P P

ranked pairs NP-c NP-c P P P NP-c P P ?
Schulze P P P P P P P P P

Note: P means that the problem is polynomial, NP-c that the problem is NP-complete. For example, constructive
manipulation of the veto rule is polynomial for unweighted votes or for weighted votes with a coalition of 2
manipulators, but NP-hard for 3 or more manipulators. On the other hand, destructive manipulation of the veto
rule is polynomial for weighted votes with a coalition of 2 or more manipulators. We consider the variant of
Copeland where an alternative gets 1 point if it defeats an opponent, 0.5 points for a draw, and 0 if it loses.
“?” indicates that the computational complexity is open at the time of writing this chapter. For references, see:
Faliszewski et al. (2008) and Conitzer et al. (2007) for Copeland; Davies et al. (2011), Conitzer et al. (2007),
and Betzler et al. (2011) for Borda; Narodytska et al. (2011) and Davies et al. (2014) for Nanson and Baldwin;
Narodytska and Walsh (2013) for Black; Xia et al. (2009) for maximin; Xia et al. (2009) and Faliszewski et al.
(2014) for Bucklin; Faliszewski et al. (2014) for fallback; Xia et al. (2009) and Hemaspaandra et al. (2014c) for
ranked pairs; Parkes and Xia (2012) and Gaspers et al. (2013) for Schulze; and Conitzer et al. (2007) for other
results or references to them.

Coalitional Manipulation Problem

Given. A profile of votes � cast by everyone but the manipulators, a number of manipulators, and
a preferred alternative a.
Question. Is there a way for the manipulators to cast their votes so that a wins?

Again, it can be debated if this should be called “manipulation” because the manip-
ulators might not have to vote strategically to ensure their preferred alternative wins.
However, as has become common in the literature, we will refer to this problem as
coalitional manipulation. Coordinating even a small coalition of voters introduces fresh
computational challenges. For example, with the Borda rule, a simple greedy procedure
will compute an optimal strategic vote for one voter, but it is NP-hard to compute how
two voters together can manipulate the result (Davies et al., 2011; Betzler et al., 2011).
Similar results hold for Copeland voting (the first rule for which it was shown that the
problem is easy with one manipulator but hard with two) (Faliszewski et al., 2008),
other scoring rules (Xia et al., 2010b), maximin (Xia et al., 2009), and Black’s rule
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(Narodytska and Walsh, 2013). Intriguingly, in all these cases, it requires only two
manipulators to make manipulation hard. Black’s rule is the voting rule that elects the
Condorcet winner if it exists, and otherwise the Borda winner.

One criticism that can be made about the complexity results considered so far is that
they require the number of alternatives to grow in an unbounded fashion. If the number
of alternatives is held constant, then a single manipulator would have only a constant
number (m!) of votes to consider. Even for a coalition of n′ manipulators, if the rule is
anonymous, then the total number of joint votes for the coalition is the number of ways
n′ indistinguishable balls (voters) can be placed into m! urns (possible votes), which
is
(
n′+m!−1

m!−1

)
, which is polynomial in n′. Hence, as long as there is a polynomial-time

algorithm for executing the rule, a manipulation (if one exists) can be computed in
polynomial time when the number of alternatives is constant. However, this argument
fundamentally relies on the voters being indistinguishable, which is not the case when
voters have weights.

6.4.3 Weighted Votes

Weighted votes occur in a number of real-world settings (e.g., shareholder elections and
various parliaments). Weights are typically integers and a vote of weight k can be seen
as k identical and unweighted votes. It turns out that with weighted votes, we encounter
complexity in manipulation problems even with a small number of alternatives. We
consider the following decision problem for weighted votes.

Coalitional Weighted Manipulation Problem

Given. A profile of weighted votes � cast by everyone but a coalition of manipulators, a weight
for each of the manipulators, and a preferred alternative a.
Question. Is there a way for the manipulators to cast their votes so that a wins?

There is again a destructive variant of this problem where the coalition wants a given
alternative not to win.

With two alternatives, most common voting rules degenerate to majority voting. In
addition, by May’s Theorem, this is the only voting rule over two alternatives that is
anonymous, neutral, and positively responsive. With majority voting, the manipulators’
best action even when their votes are weighted is always to vote for the alternative that
they wish to win. With three or more alternatives, however, computing a manipulation
can be computationally hard, provided we have a coalition of manipulators (whose size
is allowed to increase) and votes that are weighted. For example, computing how to
manipulate the veto (aka. antiplurality) rule12 is polynomial with unweighted votes but
NP-complete with weighted votes and just 3 alternatives (Conitzer et al., 2007). Some
intuition for this result is as follows. The manipulators could find themselves in the
situation where, after counting the nonmanipulators’ votes, two alternatives (b and c)

12 Recall that under the veto rule, the winner is the alternative that is ranked last in the fewest votes. Equivalently,
it is the positional scoring rule in which the bottom rank receives 0 points and all other ranks receive 1 point.
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are tied for the lead (i.e., they have been vetoed the least), but the third alternative (a)
is the one that the manipulators want to win. Clearly the manipulators do not want to
veto a. To make a win, however, they may need to divide their total veto weight very
evenly between b and c, so that a comes out just barely ahead of each of them. Thus,
the manipulators face the problem of partitioning a set of integers (their weights) into
two subsets (vetoing b or vetoing c) so that each subset has the same weight—and this
is an NP-complete problem. This intuition can be turned into a formal NP-hardness
reduction as follows.

Theorem 6.5. The coalitional weighted manipulation problem is NP-complete under
the veto rule, even with only three alternatives.

Proof. The problem is in NP because a profile of votes for the manipulators will
serve as a certificate (because the veto rule is computationally easy to execute). To
prove NP-hardness, we reduce from the PARTITION problem, in which we are given
a set of integers w1, . . . , wn′ with

∑n′
i=1 wi = W (where W is even) and are asked

whether there exists a subset S ⊆ {1, . . . , n′} such that
∑

i∈S wi = W/2. We reduce
this problem to the coalitional weighted manipulation problem under the veto rule
with three alternatives, as follows. Let a, b, and c be the alternatives, where a is the
alternative that the manipulators would like to win. Create one nonmanipulator vote
with weight W − 1 that ranks a last. Furthermore, for each i ∈ {1, . . . , n′}, create a
manipulator (the ith manipulator) with weight 2wi .

We now show that the manipulators can succeed in this instance if and only if the
original partition instance has a solution. If the partition instance has a solution S, then
let the manipulators in S rank b last, and let the ones outside S rank c last. Then, a wins,
appearing in last place only for W − 1 of the weight, whereas b and c each appear in
last place for

∑
i∈S 2wi = 2W/2 = W of the weight.

Now suppose that the partition instance has no solution. This implies that for each
subset S ⊆ {1, . . . , n′}, either

∑
i∈S wi � W/2 − 1 or

∑
i /∈S wi � W/2 − 1 (due to the

integrality of the wi and W/2). Then, for any profile of votes for the manipulators, let S

be the set of manipulators that rank b last. Then, we have either
∑

i∈S 2wi � W − 2 <

W − 1, so that b ranks ahead of a, or
∑

i /∈S 2wi � W − 2 < W − 1, so that c ranks
ahead of a. So the manipulators cannot make a win.

Note that the reduction is set up in such a way that a cannot end up tied for the win,
so it does not matter how ties are handled. On the other hand, note that this is only
a weak NP-hardness result because the reduction is from PARTITION. Indeed, we
can compute a manipulation for a coalition of voters using dynamic programming in
pseudopolynomial time—that is, in polynomial time when the weights are represented
in unary (or equivalently, when the weights are small). Similar (though often more
involved) reductions can be given for many other rules. In fact, a dichotomy result
holds for positional scoring rules in general: every scoring rule that is not isomorphic
to plurality is NP-hard to manipulate with three or more alternatives and weighted
votes (Hemaspaandra and Hemaspaandra, 2007; Procaccia and Rosenschein, 2007b;
Conitzer et al., 2007).
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6.4.4 Tie-Breaking

For complexity-of-manipulation results like these, it is important to specify precisely
how ties are broken. This perhaps should not be surprising, because a single manipulator
can only change the result if the election is close to being tied. A common assumption
is that we break ties in favor of the manipulator. That is, we suppose that the preferred
alternative wins if it is among the set of co-winners. This is usually justified on the
grounds that if ties are broken, say, at random, then this corresponds to increasing
the probability that the given alternative wins. However, the choice of the tie-breaking
procedure is not a minor detail. It can actually change the computational complexity
of computing a manipulation. We can get different results if we break ties against the
manipulator (that is, we suppose that the manipulator’s preferred alternative wins only
if it is the unique winner).

The importance of tie-breaking can be seen in the earliest literature on computa-
tional social choice. Recall that Bartholdi et al. (1989a) proved that a single agent
can manipulate the result of a Copeland election (with “straightforward” tie-breaking
schemes) in polynomial time using their greedy algorithm, but when the second-order
tie-breaking rule is added manipulation becomes NP-hard.

Faliszewski et al. (2008) proved that for Copeland voting, changing the way that
pairwise ties (two alternatives that are each ranked above the other equally often) are
handled can change the computational complexity of manipulation. For example, with
weighted votes and three alternatives, if ties result in a score of 0, then it is NP-hard
for a coalition to compute a manipulation that makes a given alternative the unique
winner of the election, but this problem becomes solvable in polynomial time if ties
are given any other score. (Note that this is an “internal” form of tie-breaking, rather
than tie-breaking between multiple winners at the end of applying an irresolute rule.)
Also, if instead the manipulators seek to make that alternative just one of the winners,
then the problem is solvable in polynomial time when a tie results in a score of 1, but
NP-hard if ties are given any other score.

To study tie-breaking at random in more detail, Obraztsova et al. (2011) set up a
model where the manipulators have utilities over the alternatives and the goal is to
increase the expected utility of the result. All scoring rules, as well as Bucklin and
plurality with runoff, can be manipulated in polynomial time in such a situation. On
the other hand, Copeland, maximin, STV and ranked pairs are NP-hard to manipulate
in this case (Obraztsova and Elkind, 2011).

Another method to deal with ties is to select a vote at random and select the highest-
ranked of the tied alternatives from this vote (Tideman, 1987).13 Aziz et al. (2013f)
show that, in general, there is no connection between the complexity of computing a
manipulating vote when tie-breaking with a random alternative or with a random vote.
However, for common rules like k-approval, Borda, and Bucklin, the computational
complexity increases from polynomial to NP-hard when tie-breaking with a random
vote rather than at random among the co-winners. For other rules like plurality, veto, and
plurality with runoff, it remains possible to compute a manipulating vote in polynomial

13 For more on tiebreaking schemes in computational social choice, see Freeman et al. (2015).
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time. Finally, for rules like STV, computing a manipulation is NP-hard irrespective of
the tie-breaking method as it is possible to prove NP-hardness with a class of elections
in which there are never any ties.

6.4.5 Incomplete Information

So far, we have assumed that the manipulator has complete knowledge of the other
votes. This is a strong assumption that, extreme circumstances aside, is at best a rough
approximation of the truth. It is often defended on the grounds that if it is NP-hard to
compute a manipulation with complete information then it must remain so when we
have probabilistic information about the nonmanipulators’ votes (Conitzer et al., 2007).
There has, however, been some work relaxing this assumption. For example, Conitzer
et al. (2011a) consider the complexity of computing manipulations given only partial
information about the nonmanipulators’ votes. Given such partial information, they
consider whether the manipulator has a dominating nontruthful vote that makes the
winner always at least as preferable as, and sometimes more preferable than, the
alternative that would win if the manipulator voted sincerely. This was further studied
by Reijngoud and Endriss (2012).

6.4.6 Building in Hardness

Once we accept hardness of manipulation as a desirable property of voting rules, it
becomes an interesting question whether we can engineer voting rules to be more
computationally complex to manipulate. One general construction is to “hybridize”
together two or more existing voting rules. For example, we might add one elimination
pre-round to the election, in which alternatives are paired off and only the one preferred
by more voters goes through (Conitzer and Sandholm, 2003). This generates a new
voting rule that is often computationally hard to manipulate. In fact, the problem
of computing a manipulation can now move to complexity classes higher than NP
depending on when the schedule of the pre-round is announced. Such hybrid voting
rules also inherit some (but not all) of the properties of the voting rules from which they
are constructed. For example, if the initial rule is Condorcet consistent, then adding a
pre-round preserves Condorcet consistency.

Other types of voting rules can be hybridized together. For example, we can construct
a hybrid of the Borda and Copeland rules in which we run two rounds of Borda,
eliminating the lowest-scoring alternative each time, and then apply the Copeland rule
to the remaining alternatives. Such hybrids are often resistant to manipulation. For
example, many hybrids of STV and of Borda are NP-hard to manipulate (Elkind and
Lipmaa, 2005). More generally, voting rules that have multiple stages successively
eliminating alternatives tend to be more computationally difficult to manipulate than
one-stage rules (Coleman and Teague, 2007; Narodytska et al., 2011; Davies et al.,
2012; Walsh and Xia, 2012).

Another way to combine together two or more voting rules is to use some aspect
of the particular election (the votes, or the names of the alternatives) to pick which
voting rule is used to compute the winner. For example, suppose we have a list of k

different voting rules. If all the alternatives’ names (viewed as natural numbers) are
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congruent, modulo k, to i then we use the ith voting rule, otherwise we use the default
last rule. Such a form of hybridization gives elections which are often computationally
difficult to manipulate (Hemaspaandra et al., 2009). Another possibility is to just leave
it ambiguous which of the voting rules will be used; Elkind and Erdélyi (2012) have
studied how hard it is for the manipulators to select their votes so that they succeed for
any of a given set of rules. Finally, another possibility is that we have a runoff between
the winners of two voting rules. This also often makes manipulations more difficult to
compute (Narodytska et al., 2012).

6.5 Can Manipulation Be Hard Most of the Time?

NP-hardness is a worst-case notion. For NP-hard manipulation problems, supposing
P �= NP, any manipulation algorithm will face some families of instances on which it
does not scale polynomially. But it is not at all clear that these are the instances that
manipulators would need to solve in practice. They may be pathological. Hence, it is
possible that these NP-hardness results lull us into a false sense of security regarding
the manipulability of our voting rules. A much better type of result would be that the
manipulation problem is usually hard. Is such a result feasible, and what exactly does
“usually” mean here? To investigate this, it is helpful to first consider some actual
manipulation algorithms for voting rules that are NP-hard to manipulate.

6.5.1 Some Algorithms for NP-Hard Manipulation Problems

Assuming P �= NP, a manipulation algorithm for a voting rule that is NP-hard to
manipulate can only hope to either (1) succeed on all instances and require more than
polynomial time in the worst case, but still scale “reasonably,” particularly on “typical”
instances; or (2) run in polynomial time and succeed on many, but not all, instances.

For instance, under the STV rule, Coleman and Teague (2007) give a simple enu-
merative method for a coalition of k unweighted voters to compute a manipulation,
which runs in O(m!(n + mk)) time (where n is the number of voters voting and m is
the number of alternatives). For a single manipulator, Conitzer et al. (2007) give an
O(n1.62m) time recursive algorithm to compute the set of alternatives that can win an
STV election.

Such algorithms have been shown to perform well in practice. For example, Coleman
and Teague (2007) showed experimentally that only a small coalition is needed to
change the elimination order of the STV rule in many cases. As a second example,
Walsh (2010) showed that the Conitzer et al. (2007) algorithm could often quickly
compute manipulations of the STV rule even with hundreds of alternatives. Walsh
(2009, 2011b) also empirically studied the computational cost of manipulating the veto
rule by a coalition of weighted voters. Except in rather artificial and “hung” elections,
it was easy to find manipulations or prove that none exist.

An algorithm designed for the manipulation of one specific rule, however effective
it may be, may just be exploiting an idiosyncratic property of that particular rule. It
may well be the case that other desirable rules do not have this property and are, in fact,
“usually” hard to manipulate. One approach to addressing this criticism is to design
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manipulation algorithms that are not specific to one voting rule. Such algorithms, to
the extent that they avoid exhaustive search, are heuristic in nature and do not always
succeed. This category of algorithms includes some of the earliest work providing
technical results that cast doubt on whether worst-case hardness of manipulation has
any significant implications for the “typical” case. Procaccia and Rosenschein (2007b)
provide a greedy algorithm for rules based on a score, in which the manipulators
create their votes in sequence, at each point ranking their preferred alternative first
and the remaining alternatives in increasing order of their current score. Conitzer and
Sandholm (2006) provide an algorithm that attempts to find two possible winners,
by first choosing an arbitrary vote profile for the manipulators to find one possible
winner a1, and then, for every remaining alternative a, choosing a vote profile for the
manipulators where everyone ranks a first and a1 last. It is argued (and supported by
simulations) that usually, if the manipulators are pivotal (have a possibility of changing
the outcome of the election) at all, then they can only make two alternatives win. For
instances where this is so, and where the voting rule satisfies a weak monotonicity
property, the algorithm can be proved to find all alternatives that the manipulators can
make win.

All these empirical results suggest that we need to treat results about the NP-hardness
of manipulation with some care. Voters may still be able to compute a manipulation
successfully using rather simple and direct methods. The theoretically inclined reader,
however, may feel dissatisfied with these types of results. Beyond getting intuition from
simulations, can we actually prove that voting rules remain vulnerable to manipulation
in the typical case? In what follows we discuss some of the approaches that researchers
have taken to answer this question in the affirmative.

6.5.2 Approximation Methods

For almost all voting rules, we can easily make any alternative win provided we
have enough manipulators; the hardness results are merely due to a limited supply
of manipulators. With this in mind, we can consider manipulation as an optimization
problem, where we try to minimize the number of manipulators required to achieve a
given outcome. One option is to use approximation methods to tackle such optimization
problems.14

For example, Zuckerman et al. (2009) consider a variant of the algorithm by Pro-
caccia and Rosenschein (2007b) (presented above) to compute manipulations of the
Borda rule. Again, the algorithm constructs the vote of each manipulator in turn. The
alternative that the manipulators wish to win is put in first place, and the remaining
alternatives are placed in the manipulator’s vote in increasing order of their current
Borda scores. The method continues constructing manipulating votes until the desired
alternative wins. A rather long and intricate argument shows that this method requires
at most one additional manipulator relative to the optimal solution. Based on a con-
nection to a scheduling problem, Xia et al. (2010b) provide an algorithm that works

14 Another notion of approximation in manipulation problems is to approximately maximize an alternative’s
increase in score, given a fixed set of manipulators (Brelsford et al., 2008). Theorem 4 in that paper relates that
notion of approximability to the one discussed here.
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for all positional scoring rules, though it may require as many as m − 2 additional
manipulators.

6.5.3 Frequency of Manipulability

Again, whether the manipulators can achieve the result they want depends in large part
on their number. We may then wonder whether, given an instance of the coalitional
manipulation problem, we can quickly eyeball whether the manipulators are likely
to be successful, purely based on the size of their coalition relative to the size of the
electorate. It turns out that this is indeed the case. Building on earlier work by Procaccia
and Rosenschein (2007a),15 Xia and Conitzer (2008a) showed that for an extremely
large class16 of voting rules called generalized scoring rules, under some assumptions
on the distribution of votes, if the number of manipulators is O(np) for p < 1/2, the
probability that a random profile is manipulable goes to zero; whereas if it is �(np) for
p > 1/2, it goes to one. This leaves the knife-edge case of p = 1/2, which has been
studied both experimentally (Walsh, 2009) and analytically (Mossel et al., 2013).

Another line of research along these lines proves quantitative versions of the
Gibbard-Satterthwaite impossibility result. Here, the idea is not to be satisfied with
a statement that says that somewhere in the space of all possible profiles, there exists a
manipulable one; rather, these results state that, under Gibbard-Satterthwaite-like con-
ditions, a randomly chosen profile has a significant probability of being manipulable.
After a sequence of earlier partial results along this line (Friedgut et al., 2008; Dobzin-
ski and Procaccia, 2008; Xia and Conitzer, 2008b; Isaksson et al., 2012), Mossel and
Rácz (2012) seem to have achieved the gold standard. They prove that under a voting
rule with 3 or more alternatives that is ε-far away from the set of nonmanipulable
rules,17 a randomly chosen profile has a probability of being manipulable that is at
least inverse polynomial in n, m, and 1/ε.

6.5.4 Restricted Preferences

Finally, it is important to realize that it is unrealistic to assume that profiles of votes
are drawn uniformly at random; generally, the voters’ preferences over the alternatives
are quite structured. For example, the profile may be single-peaked. How does this
affect the complexity of the manipulation problem? Several papers have addressed this
question, showing that this restriction often, but not always, makes the manipulation
problem easier (Walsh, 2007; Faliszewski et al., 2009e; Brandt et al., 2010a). While it
may seem odd in this context to focus on single-peaked preferences—for which, after
all, a desirable strategyproof voting rule is available in the form of the median voter
rule18 —these results nevertheless provide important insight into how restricting the
space of profiles can cause complexity barriers to manipulation to fall apart.

15 See also Slinko (2004) and Pritchard and Wilson (2009).
16 Xia and Conitzer (2009) characterize this class as those rules that are anonymous and finitely locally consistent.
17 Here, the distance between two rules is the fraction of inputs on which they differ.
18 Moreover, under some assumptions on strategic behavior by the voters and/or candidates, even rules such as

plurality and STV end up returning the same winner as the median voter rule when preferences are single-peaked
(Brill and Conitzer, 2015).
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6.6 Fully Game-Theoretic Models

The computational problems studied in this chapter so far all make some major sim-
plifying assumptions. In most cases it is assumed that the votes of the other voters are
known exactly; even when this is not assumed, the other voters are not modeled as
strategic agents. If we do model them this way, this leads us into fully game-theoretic
models, and indeed these have received some attention in the computational social
choice community.

To make sense of this, a first issue that needs to be addressed is the staggering
multiplicity of equilibria in most voting scenarios.19 Often, most profiles will not allow
any single individual to change the outcome, and all of these profiles are Nash equilibria
as an immediate consequence. Many of these profiles will have voters vote in ways
that make no sense with respect to their true preferences. Based on this observation, we
may be able to rule out many of these equilibria—for example, we might require voters
not to play weakly dominated strategies.20 However, other issues are more difficult to
address. For example, in a plurality election, any two of the alternatives might be cast
in a “front-runner” role, resulting in an equilibrium where everyone votes for one of
these two, because to do otherwise would be to waste one’s vote. This also illustrates
that there will be many alternatives that win in some equilibrium.21

As it turns out, these issues are avoided when the voters, instead of voting simul-
taneously, vote in sequence, so that each voter has full knowledge of all the previous
votes. If we additionally assume that all the preferences are common knowledge (as
well as the order in which the voters vote, and the voting rule used), and all prefer-
ences are strict, then there is a unique alternative that wins in subgame-perfect Nash
equilibrium.22 This can be proved by induction on the number of voters, roughly as
follows. Suppose it is true for n − 1 voters. Then, in the case of n voters, consider the
first voter. For every vote that she might cast, she can, by the induction assumption,
determine the alternative that will win in equilibrium from that point on. From all these
options, she will then choose the one that ranks highest in her own preferences. (There
may be multiple votes for the first voter that achieve this, so the equilibrium votes
are not unique.) This raises several interesting questions. First of all, will this result
in good outcomes? Of course, it is tricky to give a general definition of what “good”
means in this context. As it turns out, though, for many rules, there exist profiles of
preferences that, in equilibrium, result in outcomes that are quite unambiguously bad.
Specifically, Xia and Conitzer (2010c) show that this is the case for rules with a low
domination index, which indicates how many more than half of the voters are needed

19 Recall that, given the voters’ true preferences, a Nash equilibrium consists of a profile of votes such that
no individual voter can obtain an outcome she prefers to the current one by unilaterally changing her
vote.

20 Recall that one strategy weakly dominates another if the former always delivers at least as good a result for the
agent, and in some cases a strictly better one.

21 A recent article investigates what game structures can emerge when multiple voters are considering strategically
changing their votes (Elkind et al., 2014b).

22 Recall that in a subgame-perfect Nash equilibrium, the strategies constitute a Nash equilibrium in every
subgame. In our case, when a subset of the voters has cast specific votes, the remainder of the voting game
constitutes a subgame.
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to force the outcome.23 Some counterintuitive examples for the plurality rule are also
given by Desmedt and Elkind (2010).

Another question is whether these equilibria can be efficiently computed. A natural
approach is to use a dynamic programming algorithm corresponding to the backward
induction process in game theory, as follows. First compute what the last voter would
do for every situation in which she might be placed; then compute what the second-
to-last voter would do for every situation in which she might be placed (which is now
possible because it is known at this point how the last voter would respond to any
vote that the second-to-last voter might cast); and so on. This algorithm is correct,
but its runtime depends on the number of possible “situations.” What is a “situation,”
anyway? One might interpret this as the entire partial profile of votes cast so far (i.e.,
the node in the extensive form of the game), but this will scale very poorly. It is also
overkill: for example, for a positional scoring rule, all that is needed is the total scores
of the alternatives so far, not the precise votes that led to this score. More generally,
the amount of information necessary to summarize the votes of a subelectorate is
known as the compilation complexity of a voting rule (Chevaleyre et al., 2009; Xia
and Conitzer, 2010b). Xia and Conitzer (2010c) exploit the connection to this concept
to obtain algorithms for solving the game that, while still exponential, scale much
better than the naı̈ve approach. (Desmedt and Elkind (2010) give a similar algorithm
for plurality.) Intriguingly, from simulations performed by Xia and Conitzer (2010c),
the game-theoretic outcomes on random profiles do not look as bad as the worst-case
results above might suggest. The exact complexity of the computational problem is not
known; it may be PSPACE-complete.

Still, is there nothing substantial that we can say about the equilibria of voting
games in which voters vote simultaneously? In fact, we can, if we are willing to make
some further assumptions about voters’ preferences in voting. One natural assumption
is that voters are truth-biased (Meir et al., 2010). This can be interpreted as follows:
voters derive most of their utility from the outcome of the election, but they also
derive a small amount of utility from voting truthfully. Hence, if it makes no difference
to the outcome, voters slightly prefer to tell the truth. Thompson et al. (2013) show
experimentally that for the plurality rule this dramatically reduces the set of equilibria.
(They also study Bayes-Nash equilibria of games in which voters are not sure about
each other’s preferences.) Obraztsova et al. (2013) study this model from a theoretical
perspective, again under the plurality rule.24 Another direction is to substitute the slight
preference for voting truthfully with a slight preference for abstaining (Desmedt and
Elkind, 2010). Yet another direction is to add dynamics where voters start at some
initial profile and iteratively update their vote to make themselves better off, until this
process converges (Meir et al., 2010; Lev and Rosenschein, 2012; Reyhani and Wilson,
2012; Rabinovich et al., 2014).

23 A similar negative result is given by Xia et al. (2011a) in a different context, where multiple related binary
decisions must be made and these issues are voted on in sequence (but with all the voters voting at the same
time on each issue). For more on voting in such combinatorial domains, please see Chapter 9.

24 They also consider strong Nash equilibria, in which no subset of the agents can deviate in a way that makes
them all better off, and draw a connection to Condorcet winners. More about the relationship between strong
equilibrium and Condorcet winners can be found in papers by Sertel and Sanver (2004), Messner and Polborn
(2007), and Brill and Conitzer (2015).
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The above approaches all rely on noncooperative game theory. However, as we have
already seen, it is natural to think about coalitions of voters coordinating their actions.
Doing so in a game-theoretic framework is tricky, because the voters in a coalition may
not all have the same preferences. This leads us to cooperative (or coalitional) game
theory. A common solution concept there is that of the core, which is the set of all
outcomes such that no coalition of agents could break off in a way that would make all
of its members happier. In the context of elections, when a group of agents deviates,
how happy this makes them depends on how the agents outside of the coalition end
up voting. For example, will the agents outside the coalition be able to react to the
votes of the coalition, or vice versa? These modeling choices correspond to the notions
of the α-core and the β-core. The computational complexity of these concepts in the
context of elections is studied by Zuckerman et al. (2011). Bachrach et al. (2011) study
the complexity of problems in cooperative game theory models of manipulation where
payments are possible.

6.6.1 Other Topics

So far, we have supposed that the manipulating coalition can communicate and coordi-
nate perfectly. In practice, this may be optimistic. For example, if the coalition is large,
then it may be difficult for the coalition to communicate, as well as to ensure everyone
votes appropriately. To address this, Slinko and White (2008) propose a more restricted
model of strategic voting in which a single coalition member broadcasts a strategic
vote and every member of the coalition either casts this vote or votes sincerely. In such
a situation, a safe strategic vote is a broadcast vote that never results in an undesirable
outcome, however many or few of the coalition follow it. The Gibbard-Satterthwaite
Theorem extends to this notion of manipulation. Polynomial-time algorithms for com-
puting a safe strategic vote have been given for k-approval, Bucklin, and Borda (Hazon
and Elkind, 2010; Ianovski et al., 2011).

Another type of manipulation is for a single agent to vote more than once. This is
often a concern in elections run in highly anonymous environments, such as Internet
voting. A rule is said to be false-name-proof (Yokoo et al., 2004) if there is never an
incentive for a voter to cast more than one vote. Conitzer (2008) gives a characterization
of false-name-proof rules similar in spirit to the characterization of strategyproof rules
by Gibbard (1977) that, perhaps unsurprisingly, is even more negative. Unlike in
the case of strategyproofness, under the constraint of false-name-proofness, even the
restriction of single-peaked preferences does not allow very appealing rules (Todo
et al., 2011).

6.7 Conclusions

Besides being of interest in their own right, the computational manipulation problems
discussed in this chapter are also important because of their implications for other,
closely related problems in computational social choice. For example, the constructive
manipulation problem is a special case of the possible winner problem, which asks,
given a profile of partial votes and a given alternative, whether it is possible to complete



acknowledgments 145

the profile in such a way that that alternative wins. Similarly, the destructive manipula-
tion problem is a special case of the necessary winner problem. For detailed analysis of
the complexity of these problems, see, for example, Konczak and Lang (2005), Walsh
(2007), Betzler and Dorn (2010), Xia and Conitzer (2011a), and Baumeister and Rothe
(2012). The necessary winner problem, in turn, is important in settings in which we
incrementally elicit voters’ rankings rather than collecting them all at once. In this
problem, we would like to be able to compute when we have elicited enough informa-
tion to announce the winner (Conitzer and Sandholm, 2002). For further discussion of
all of this, see also Chapter 10. There are also relations to control and bribery problems,
which will be discussed in Chapter 7.
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CHAPTER 7

Control and Bribery in Voting

Piotr Faliszewski and Jörg Rothe

7.1 Introduction

In this chapter we study control and bribery, two families of problems modeling various
ways of manipulating elections. Briefly put, control problems model situations where
some entity, usually referred to as the chair or the election organizer, has some ability
to affect the election structure. For example, the chair might be able to encourage new
candidates to join the election, or might be able to prevent some voters from casting their
votes. On the other hand, bribery models situations where the structure of the election
stays intact (we have the same candidates and the same voters), but some outside agent
pays the voters to change their votes. Naturally, such manipulative actions, dishonestly
skewing election results, are undesirable. Thus it is interesting to know if there are so-
called complexity shields against these attacks (see also Chapter 6 on manipulation and,
relatedly, Section 4.3.3 in the book chapter by Baumeister and Rothe (2015)). That is,
it is interesting to know the computational complexity of recognizing whether various
forms of such attacks are possible or not. However, there are also other interpretations
of control and bribery, many of them quite positive.

In this chapter we survey results on the complexity of control and bribery in elec-
tions, providing an overview of the specific problems studied, sketching sample proofs,
and reviewing some approaches to dealing with the computational hardness of these
control and bribery problems (see also Sections 4.3.4 and 4.3.5 in the book chapter
by Baumeister and Rothe (2015)). Seeking ways of dealing with the computational
hardness of control and bribery may seem surprising at first. However, on one hand,
if we interpret control and bribery as modeling attacks on elections, then we would
like to know the limitations of our complexity shields. On the other hand, if we take
other interpretations of control and bribery, then we simply would like to know how to
solve these problems. We survey some classical results on control in Section 7.3,
on bribery in Section 7.4, and then briefly discuss their various applications in
Section 7.5.

146
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Table 7.1. Three types of preference profiles required by different voting rules

(a) A Borda election
points: 5 4 3 2 1 0

voter 1: a c b f e d
voter 2: b a f c e d
voter 3: c d b a f e
voter 4: e d b f c a
voter 5: e d c b f a

winner: b with score 16

(b) An approval election
a b c d e f

voter 1: (1, 0, 0, 0, 0, 0)
voter 2: (1, 1, 0, 0, 0, 0)
voter 3: (1, 1, 1, 1, 0, 0)
voter 4: (0, 0, 0, 1, 1, 0)
voter 5: (0, 0, 0, 0, 1, 0)

AV score: 3 2 1 2 2 0

(c) A fallback election
level: 1 2 3 4

voter 1: a
voter 2: b a
voter 3: c d b a
voter 4: e d
voter 5: e

winner: a on level 4

7.2 Preliminaries

We start by recalling various voting rules, including preference-based voting rules
and (variants of) approval voting. For the former, an election (A, R) is given by a set
A of m alternatives (or candidates) and a preference profile R = (�1, . . . ,�n) over
A that collects n votes, each expressing a linear preference order over A. That is,
letting N = {1, . . . , n} be the set of voters, �i gives voter i’s preference order of the
alternatives. For example, the ranking a �1 b �1 c says that voter 1 (strictly) prefers
alternative a to alternative b, and b to c. From now on we omit stating “�i” explicitly
and simply rank the alternatives in a vote from left (most preferred) to right (least
preferred). That is, instead of, say, a �1 b �1 c we simply write a b c. Also, for (A, R)
an election and A′ ⊆ A, we write (A′, R) to denote the election with alternatives
A′ and the votes in R restricted to A′. For example, if (A, R) is the election from
Table 7.1(a) consisting of five voters who rank six alternatives and A′ = {b, c, d}, then
(A′, R) = ({b, c, d}, (c b d, b c d, c d b, d b c, d c b)).

We briefly recall some voting rules, see Chapter 2 for more details. Positional scoring
rules are defined by an m-alternative scoring vector  σ = (σ1, σ2, . . . , σm), where the σi

are nonnegative integers with σ1 � σ2 � · · · � σm. Each alternative scores σi points for
each vote where it is ranked in the ith position, and whoever scores the most points wins.
Examples are plurality voting with scoring vector (1, 0, . . . , 0), veto (aka antiplurality)
with (1, . . . , 1, 0), k-approval with (1, . . . , 1, 0, . . . , 0) having a 1 in each of the first
k � m positions (note that 1-approval is plurality), k-veto, which is the same as (m − k)-
approval (note that 1-veto is veto), and Borda count with (m − 1, m − 2, . . . , 0). For
example, in the election given in Table 7.1(a), e wins under plurality; d under 2-
approval; b under 3-approval; b, c, and f under veto; and b under Borda (with a
Borda score of 16, whereas a, c, d, e, and f score, respectively, 11, 15, 12, 12, and 9
points).

Under approval voting (or AV), proposed by Brams and Fishburn (1978, 2007),
instead of using preference orders the voters specify sets of alternatives they approve
of. Typically, such votes are represented as m-dimensional 0/1-vectors, where each
position corresponds to an alternative and 1-entries mean approval of respective alter-
natives. All alternatives with the most approvals win. For example, for the approval
vectors given in Table 7.1(b), a is the approval winner with a score of 3. A version
of approval voting (dubbed sincere-strategy preference-based approval voting (or SP-
AV) by Erdélyi et al. (2009)) combines approval information with preference-order
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information (the voters rank the candidates that they approve of). The rule was intro-
duced by Brams and Sanver (2006) and, in essence, is the same as approval, but the
additional preference-order information is used to deduce voter behavior when the
candidate set changes (we omit detailed discussion and point the reader to the original
papers and to the survey of Baumeister et al. (2010)).

Range voting (or RV) works just as approval voting, except that entries of the vectors
under k-range voting come from the set {0, 1, . . . , k} rather than from the set {0, 1}.
Normalized range voting (or NRV) is a variant of RV that alters the votes so that the
potential impact of each vote is maximized (see, e.g., the work of Menton, 2013).

Let us now move back to rules based on preference orders and, in particular, to
those rules that are based on pairwise comparisons of alternatives. A Condorcet win-
ner is an alternative that is preferred to every other alternative by a strict majority of
votes. For example, in the election from Table 7.1(a), c is preferred to every other
alternative by three of the five voters and thus is the Condorcet winner. It is easy to
see that there is at most one Condorcet winner in an election, but it is possible that
there is none.1 A voting rule is Condorcet-consistent if it elects the Condorcet winner
whenever there is one. If there is no Condorcet winner in a given preference profile,
many of the known Condorcet-consistent rules elect those candidates that are closest to
being Condorcet winners, one way or another. For example, under Copelandα voting,
α ∈ [0, 1], we organize a tournament among the candidates in the following way: Each
pair of candidates “plays” against each other and the one that is preferred by more
voters wins and receives a point (in case of a tie, both get α points). In the end, the
candidates with the highest number of points win. If we omit voter 1 from the election
in Table 7.1(a) then d is the unique Copelandα winner for α = 0 and α = 1/2 (with a
Copelandα score of 3 if α = 0, and of 3.5 if α = 1/2), but both c and e are Copelandα

winners with a score of 5 for α = 1. Other Condorcet-consistent rules are, for exam-
ple, the maximin rule (aka Simpson’s rule), ranked pairs due to Tideman (1987), or
Schulze’s rule (a rule proposed by Schulze (2011), which satisfies many normative
properties).

Other voting rules follow yet other principles, e.g., single transferable vote (STV)
proceeds in stages and eliminates the “weakest” candidates until only the winner
remains. We omit the details and point the reader to Chapter 2 instead. Under Bucklin
voting we first seek the smallest value 
 such that there is candidate ranked among
top 
 positions by a strict majority of the voters, and then declare as winners those
candidates that have highest 
-approval scores (or, under simplified Bucklin voting,
those candidates that are ranked among top 
 positions by some majority of the voters).
Fallback voting, introduced by Brams and Sanver (2009), is a rule that combines
Bucklin voting with approval voting (the voters rank only the candidates they approve
of and Bucklin is used; if there are no Bucklin winners—due to the fact that voters
do not have to rank all the candidates—fallback outputs the approval winners). For
example, in the partial rankings given in Table 7.1(c), a alone reaches a strict majority

1 If one requires voting rules to always have at least one winner, Condorcet voting (which elects the Condorcet
winner whenever there is one, and otherwise no one wins) would not be a voting rule. However, we take the
point of view that voting rules may have empty winner sets. Note that it has become a tradition to study (at
least) plurality, Condorcet, and approval on each new approach and each new idea regarding election control
(see, e.g., the papers of Bartholdi et al., 1992; Hemaspaandra et al., 2007; Faliszewski et al., 2011c).
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of !5/2" + 1 = 3 votes (namely, on the fourth level) and thus is the fallback winner.
However, if the first voter approved only of f instead of only of a, then no candidate
would reach a majority and fallback would output a, b, d, and e, the approval winners
of the election.

In Sections 7.3 and 7.4, we will define a large variety of decision problems, each
related to some specific control or bribery scenario. All these problems are members
of NP, the class of problems that can be solved in nondeterministic polynomial time,
and they will be classified to be either in P or NP-complete.2 Unlike, for instance, in
the case of Kemeny, Dodgson, and Young elections (which we do not consider here,
as their winner problems are not in P—see Chapters 4 and 5), the winner(s) can be
determined efficiently for all voting systems described earlier.

7.3 Control

Every election needs to be organized, and whoever is responsible for doing so can have
some influence on the outcome of the election by changing its structure. We will refer
to this person, or authority, as the chair of the election, and to the way the election
structure is changed by the chair as control type or control action. Many types of control
that the chair might exert are conceivable. We present those that have been studied in
the literature, starting with the four most important ones.

7.3.1 Constructive Control by Adding/Deleting Candidates/Voters

Bartholdi et al. (1992) were the first to introduce electoral control and to study it
in various scenarios from a computational perspective. In particular, they defined
constructive control types, where the chair’s goal in exerting some control action is to
make a given candidate p the unique winner of the resulting election.3 It is common to
assume that the chair has complete knowledge of all votes.

One control action the chair might exert is to change the candidate set, either by
adding some new candidates from a given set of spoiler candidates (hoping to make
p’s most competitive rivals weaker relative to p), or to delete up to k candidates from
the given election (to get rid of p’s worst rivals). For the former, Bartholdi et al.
(1992) originally defined a variant that allows adding an unlimited number of spoiler
candidates. To be in sync with the other control problems (e.g., control by deleting
candidates), Hemaspaandra et al. (2009) defined a variant of this problem where a
bound k on the number of spoiler candidates that may be added is given. We will see
later that the complexity of the resulting problems can sharply differ.

2 A problem B is NP-hard if every NP problem A reduces to B, where “reduction” always refers to a polynomial-
time many-one reduction, that is, a polynomial-time function r mapping instances of A to instances of B such
that for each x, x ∈ A ⇐⇒ r(x) ∈ B. B is NP-complete if it is NP-hard and in NP.

3 As we do here, control problems have commonly, most especially in the earlier papers on control, been studied
in their unique-winner variant. Alternatively, many papers on control consider the nonunique-winner (or co-
winner, or simply winner) variant where the chair’s goal is merely to make the designated candidate a winner.
The complexity of control problems is usually the same in both models, requiring only minor adjustments to
the proofs.
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Definition 7.1. Let f be a voting rule. In the Constructive-Control-by-Adding-
an-Unlimited-Number-of-Candidates problem for f (f -CCAUC), we are given
(a) a set A of qualified candidates, a set B of spoiler candidates, where A ∩ B = ∅,
and an election (A ∪ B, R) and (b) a preferred candidate p ∈ A. We ask if we can
choose a subset B ′ ⊆ B of the spoiler candidates such that p is the unique f -winner
of the election (A ∪ B ′, R). The Constructive-Control-by-Adding-Candidates
problem for f (f -CCAC) is defined similarly: In addition to (a) and (b) we are also
given (c) a bound k ∈ N, and we ask if there is a subset B ′ ⊆ B of spoiler candidates
such that |B ′| � k and p is the unique f -winner of (A ∪ B ′, R). In the Constructive-
Control-by-Deleting-Candidates problem for f (f -CCDC), we are given (a) an
election (A, R), (b) a preferred candidate p ∈ A, and (c) a bound k ∈ N. We ask if p

can be made a unique f -winner of the election resulting from (A, R) by deleting at
most k candidates.

The issue of control by changing the candidate set is very natural and, indeed, hap-
pens in real-life political elections. For example, it is widely speculated that “adding”
Nader to the 2000 U.S. presidential election had the effect of ensuring Bush’s victory
(otherwise, Gore would have won). Similarly, there are known cases where “spoiler”
candidates were added to political elections to confuse the voters (see, e.g., the New
York Times article of Lacey (2010) for a reported example). It is also easy to imag-
ine control by deleting candidates: Some of the candidates who perform poorly in
pre-election polls may be forced (or persuaded) to withdraw.

Example 7.1. For a Borda-CCAUC instance, let (A ∪ B, R) be the election from
Table 7.1(a), where A = {a, b, c, d} is the set of qualified candidates and B = {e, f } is
the set of spoiler candidates. Table 7.2(a) shows the restriction (A, R) of this election
to the qualified candidates, which has the Borda winner c scoring 9 points, while the
Borda scores of a, b, and d, respectively, are 4, 6, and 8. Supposing that b is the chair’s
favorite candidate, we have a yes-instance of Borda-CCAUC, since adding both spoiler
candidates makes b the unique Borda winner (see Table 7.1(a)).

To turn this into a Borda-CCAC instance, we in addition need to specify an addition
limit, k. If k = 1, we have a yes-instance of the problem: Though the chair will not
succeed by adding e (which gives the election in Table 7.2(c), still won by c), adding f

(giving the election in Table 7.2(b)) will make b the unique Borda winner with a score
of 13, while a, c, d, and e score 8, 12, 11, and 6 points.

Finally, consider again the Borda election in Table 7.1(a) with winner b, and suppose
the chair, who now wants to make c win, is allowed to delete one candidate. Deleting
the current champion, b, will reach this goal. Alternatively, the chair can delete f (see
Table 7.2(c)) to turn c into the unique winner with a Borda score of 12, while the Borda
scores of a, b, d, and e, respectively, are reduced to 8, 11, 9, and 10. Thus this is a
yes-instance of the problem Borda-CCDC.

The chair might also change the voter set, either by encouraging further voters to
participate (knowing that their votes will be beneficial for p), or by excluding certain
voters from the election (knowing that deleting their votes will help p). In real life,
political parties often try to influence the outcome of elections by such actions (e.g.,
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Table 7.2. CCAUC, CCAC, and CCDC for the Borda election in Table 7.1(a)

(a) Without spoilers e and f

points: 3 2 1 0

voter 1: a c b d
voter 2: b a c d
voter 3: c d b a
voter 4: d b c a
voter 5: d c b a

winner: c (score 9)

(b) Deleting e

points: 4 3 2 1 0

voter 1: a c b f d
voter 2: b a f c d
voter 3: c d b a f
voter 4: d b f c a
voter 5: d c b f a

winner: b (score 13)

(c) Deleting f

points: 4 3 2 1 0

voter 1: a c b e d
voter 2: b a c e d
voter 3: c d b a e
voter 4: e d b c a
voter 5: e d c b a

winner: c (score 12)

think of targeted “get-out-the-vote” drives on one hand, and of voter suppression efforts
or even disenfranchisement of voters, on the other).

Definition 7.2. Let f be a voting rule. In the Constructive-Control-by-Adding-
Voters problem for f (f -CCAV), we are given (a) a list R of already registered
votes, a list S of as yet unregistered votes, and an election (A, R + S), where “pro-
file addition” means concatenation of profiles, (b) a preferred candidate p ∈ A, and
(c) a bound k ∈ N. We ask if we can choose a sublist S ′ ⊆ S of size at most k such
that p is the unique f -winner of (A, R + S ′). In the Constructive-Control-by-
Deleting-Voters problem for f (f -CCDV), we are given (a) an election (A, R),
(b) a preferred candidate p ∈ A, and (c) a bound k ∈ N, and we ask if we can make
p a unique f -winner of the election resulting from (A, R) by deleting no more than k

votes.

Example 7.2. Look again at the Borda election in Table 7.1(a) and assume that the
chair wants to make c win. If one voter may be deleted, the chair’s goal can be reached
by deleting voter 2: c then is the unique Borda winner with a score of 13, while a,
b, d, e, and f score only 7, 11, 12, 11, and 6 points, so this is a yes-instance of the
problem Borda-CCDV. On the other hand, if a were the chair’s favorite choice, the
chair would not succeed even if two votes may be deleted, giving rise to a no-instance
of Borda-CCDV. As an example of a Borda-CCAV instance, suppose voters 1 and 2
from the election in Table 7.1(a) are registered already, but 3, 4, and 5 are not. The
current winner is a. Suppose the chair wants to make c win and is allowed to add two
voters. Adding any single one of the as yet unregistered voters is not enough (the best
c can reach, by adding voter 3, is to tie with a and b for first place, each having 11
points). Adding either {3, 4} or {4, 5} is not successful either. However, adding {3, 5}
makes c the unique Borda winner with a score of 14, while a, b, d, e, and f score only
11, 13, 8, 7, and 7 points.

Depending on the voting rule, it may never (for no preference profile at all) be
possible for the chair to successfully exert some control action (e.g., constructive
control by deleting voters) in the sense that p can be turned (by deleting voters) from
not being a unique winner into being one. If that is the case, we say this voting rule
is immune to this type of control. Otherwise (i.e., if there is at least one preference
profile where the chair can successfully exert this control action), we say this voting
rule is susceptible to this type of control. For a voting rule f that is susceptible to
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some type of control (e.g., to constructive control by adding voters), f is said to be
vulnerable (respectively, resistant) to this control type if the corresponding problem
(e.g., f -CCAV) is in P (respectively, NP-hard).

Immunity results appear to be very desirable. Indeed, if a voting rule is immune to a
given type of control, then it is impossible to compromise its result by a corresponding
type of malicious action. Nonetheless, as we will soon see, immunity can also bring
some undesired side effects. First, however, let us argue that immunity for candidate
control is rare. This is so due to the study of strategic candidacy of Dutta et al.
(2001) (see also recent work on strategic candidacy of Lang et al. (2013) and Brill and
Conitzer (2015)). They have considered a setting where the candidates have preferences
regarding election outcomes, and can strategically choose to join the race or not.
Dutta et al. (2001) have shown that for most typical election rules there are settings
where some candidates would prefer not to participate in the election. In effect, such
rules cannot be immune to candidate control. Nonetheless, in some rare cases (e.g.,
for Condorcet and approval voting) immunity results for candidate control hold (see
Table 7.3).

For the case of voter control, immunity is not only rare, but also is utterly undesirable.
Indeed, it is natural to expect that if we add sufficiently many voters with the same
preference order, then their most preferred candidate becomes a winner. Formally, this
is known as voting rule continuity (or, as the Archimedean property). Continuity says
that if some candidate c is a winner in some election (A, R), then for every election
(A, R′), there is a natural number t such that c is a winner in an election of the form
(A, R′ + tR), where tR refers to a profile of t copies of profile R. See, for example,
the work of Smith (1973).

The first voting rules studied with respect to control were plurality, Condorcet, and
approval voting. The following theorem summarizes some of the results obtained for
them by Bartholdi et al. (1992) and Hemaspaandra et al. (2007).

Theorem 7.3 (Bartholdi et al., 1992; Hemaspaandra et al., 2007).

1. Condorcet and approval voting are immune and plurality is resistant to constructive
control by adding (respectively, adding an unlimited number of) candidates.

2. Condorcet and approval voting are vulnerable and plurality is resistant to constructive
control by deleting candidates.

3. Condorcet and approval voting are resistant and plurality is vulnerable to constructive
control by both adding and deleting voters.

These immunity claims generally follow from the fact that Condorcet and approval
voting satisfy the (“unique” version of the) Weak Axiom of Revealed Preference,
which states that a unique winner p in a set A of alternatives always is also a unique
winner among each subset A′ ⊆ A including p. Hemaspaandra et al. (2007) identify
many links (i.e., implications and equivalences) among the susceptibility/immunity
statements for the control types defined previously and to be defined in Section 7.3.2.
We refrain from repeating them here but point the reader to Figure 4.16 in the book by
Rothe et al. (2011) for an overview.

The vulnerability claims in Theorem 7.3 follow by simple P algorithms. For example,
that approval-CCDC is in P follows from this algorithm: On input ((A, R), p, k), if p
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already is the unique winner in (A, R) (which is easy to test), output “yes”; otherwise,
if no more than k candidates have at least as many approvals as p, output “yes” (as p

can be made a unique winner by deleting them all), and else output “no.” By contrast,
vulnerability proofs for the partitioning cases to be defined in Section 7.3.2 are often
much more involved (and are omitted here).

The resistance claims in Theorem 7.3 typically follow by reductions from NP-
complete problems such as Exact-Cover-by-3-Sets (X3C), which given a base set
B = {b1, . . . , b3k}, k > 0, and a sequence S = (S1, . . . , Sn) of 3-element subsets of B,
asks whether B can be exactly covered by k sets chosen from S . For example, to show
that approval-CCDV is NP-hard, let (B,S) be an instance of X3C. Let 
j = |{Si ∈
S | bj ∈ Si}| for each j , 1 � j � 3k. Construct from (B,S) the election (A, R) with
A = B ∪ {p} and R consisting of the following 2n voters: (1) For each i, 1 � i � n,
one voter in R approves of all candidates in Si and disapproves of all other candidates;
(2) there are n voters v1, . . . , vn in R such that, for each i, 1 � i � n, vi (a) approves
of p, and (b) approves of bj if and only if i � n − 
j . Thus, every candidate in (A, R)
has exactly n approvals. If there is an exact cover for B, then deleting the k votes from
R corresponding to the exact cover turns p into the unique winner. Conversely, suppose
that p can be turned into a unique approval winner by deleting at most k votes from R

(where we may assume that none of them approves of p, so only votes from group (1)
have been deleted). For p to become the unique approval winner, every bj ∈ B must
have lost at least one approval. Thus, the deleted votes correspond to an exact cover
for B.

The next system to be comprehensively studied regarding control was Copelandα .

Theorem 7.4 (Faliszewski et al., 2009c). For each rational number α, 0 � α � 1,
Copelandα is resistant to all types of control from Definitions 7.1 and 7.2, except
for α ∈ {0, 1} where Copelandα is vulnerable to constructive control by adding an
unlimited number of candidates.

The most interesting point to note in Theorem 7.4 is that Copelandα-CCAUC is in
P for α = 0 and α = 1, but is NP-complete for all other values of α. The vulnerability
results are proven by the following simple P algorithm: On input ((A ∪ B, R), p),
set D1 to be the set of all b ∈ B such that the Copelandα score of p in ({b, p}, R)
is 1; initialize D to be D1; and then successively delete every b from D such that the
Copelandα score of p in (A ∪ D, R) is no greater than that of b. Correctness of the
algorithm follows from (1) the observation that for each D ⊆ B, whenever p is the
unique Copelandα winner in (A ∪ D, R), then so is p in (A ∪ (D1 ∩ D), R), and (2) a
more involved argument showing that if p is the unique winner in (A ∪ D, R) for some
D ⊆ D1, yet the above algorithm computes a set D′ such that p is not a unique winner
in (A ∪ D′, R), then this leads to a contradiction. On the other hand, NP-hardness
of Copelandα-CCAUC for 0 < α < 1 follows by a reduction from the NP-complete
problem Vertex-Cover (and is omitted here).

Unlike Copelandα-CCAUC, Copelandα-CCAC is NP-complete for all (rational)
values of α ∈ [0, 1]. In fact, Copelandα with 0 < α < 1 (including the original system
by Copeland (1951)) is the first family of voting rules known to be fully resistant
to all types of constructive control, including those to be defined in Section 7.3.2.
Other voting rules having this property have followed: SP-AV (Erdélyi et al., 2009),
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Table 7.3. The complexity of control problems for various voting rules

Voting Rule C
A

U
C

C
A

C

C
D

C

C
PC

-T
E

C
PC

-T
P

C
R

PC
-T

E

C
R

PC
-T

P

C
A

V

C
D

V

C
PV

-T
E

C
PV

-T
P

C D C D C D C D C D C D C D C D C D C D C D

plurality R R R R R R R R R R R R R R V V V V V V R R

(Bartholdi et al., 1992; Hemaspaandra et al., 2007)

Condorcet I V I V V I V I V I V I V I R V R V R V R V

(Bartholdi et al., 1992; Hemaspaandra et al., 2007)

approval I V I V V I V I I I V I I I R V R V R V R V

(Hemaspaandra et al., 2007)

Copelandα

for α = 0 V V R V R V R V R V R V R V R R R R R R R R

0 < α < 1 R V R V R V R V R V R V R V R R R R R R R R

α = 1 V V R V R V R V R V R V R V R R R R R R R R

(Faliszewski et al., 2009c)

maximin V V R V V V – – – – – – – – R R R R – – – –

(Faliszewski et al., 2011b)

Borda – – R V R V – – – – – – – – R V – V – V – –

(Russel, 2007; Elkind et al., 2011a; Loreggia et al., 2014; Chen et al., 2015)

SP-AV R R R R R R R R R R R R R R R V R V R V R R

(Erdélyi et al., 2009)

fallback R R R R R R R R R R R R R R R V R V R R R R

(Erdélyi and Rothe, 2010; Erdélyi et al., 2011; see also Erdélyi et al., 2015a)

Bucklin R R R R R R R R R R R R R R R V R V R R R S

(Erdélyi et al., 2011; see also Erdélyi et al., 2015a)

RV I V I V V I V I I I V I I I R V R V R V R V

(Menton, 2013)

NRV R R R R R R R R R R R R R R R V R V R R R R

(Menton, 2013)

Schulze R S R S R S R V R V R V R V R V R V R R R R

(Parkes and Xia, 2012; Menton and Singh, 2013)

Key: “I” means immunity, “S” susceptibility, “V” vulnerability, and “R” resistance. We write “–” if a given result
is not directly available in the literature.

fallback and Bucklin voting (Erdélyi and Rothe, 2010; Erdélyi et al., 2011, 2015a),
NRV (Menton, 2013), and Schulze voting (Parkes and Xia, 2012; Menton and Singh,
2013), as shown in Table 7.3.

7.3.2 The Partitioning Cases and Destructive Control

In addition to control by adding/deleting candidates/voters, Bartholdi et al. (1992) also
introduced various types of control by partitioning either candidates or voters, modeled
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by elections proceeding in two stages. While their original definitions were a bit unclear
about what happens when more than one candidate wins some first-stage pre-election,
Hemaspaandra et al. (2007) defined two rules for how to handle such pre-election ties:
TE (“ties eliminate”) says that whenever at least two candidates are tied for winner
in a pre-election, no candidate proceeds to the final stage from it (i.e., only unique
pre-election winners move forward); TP (“ties promote”) says that all pre-election
winners, no matter how many, proceed forward.

Definition 7.3. Let f be a voting rule. In the Constructive-Control-by-Runoff-
Partition-of-Candidates problem for f under TE or TP (f -CCRPC-TE or f -
CCRPC-TP), we are given (a) an election (A, R), and (b) a preferred candidate p ∈ A.
We ask if we can partition A into A1 and A2 such that p is the unique f -winner of
the election (W1 ∪ W2, R), where Wi , i ∈ {1, 2}, is the set of those pre-election (Ai, R)
winners that are promoted to the final stage according to the tie-handling rule (TE
or TP). The Constructive-Control-by-Partition-of-Candidates problem for f

under TE or TP (f -CCPC-TE or f -CCPC-TP) is defined similarly, except that we ask
if p can be made a unique f -winner of the election (W1 ∪ A2, R) by partitioning A

into A1 and A2, i.e., there is only one pre-election (A1, R) whose winners proceed
(according to the tie-handling rule, TE or TP) to the final stage to face all of A2.

Example 7.5. Let (A, R) be the Borda election in Table 7.1(a) again, and let c be the
distinguished candidate the chair wants to win. This is a yes-instance in all four cases,
for both CCRPC and CCPC, each in TE and TP, as witnessed by the partition of A

into A1 = {a, f } and A2 = {b, c, d, e}. It does not matter whether we are in the TE
or TP model,4 since both subelections have a unique winner: a alone wins (A1, R),
and c alone wins (A2, R) (with a score of 9, while b, d, and e score only 7, 6, and
8 points). For CCRPC, both subelection winners, c and a, proceed to the final stage,
which c wins. For CCPC, the winner of the first subelection, a, faces all candidates of
A2 in the final stage, and as we have seen in Table 7.2(c), the unique Borda winner of
({a, b, c, d, e}, R) is c, again as desired by the chair.

The analogues of f -CCRPC-TE/TP where not the candidates but the voters are
partitioned model a very basic kind of gerrymandering. (Note that it would not make
sense to define voter-partition analogues of f -CCPC-TE/TP, at least not for natural
voting systems f .5)

Definition 7.4. Let f be a voting rule. In the Constructive-Control-by-Partition-
of-Voters problem for f under TE or TP (f -CCPV-TE or f -CCPV-TP), we are
given (a) an election (A, R), and (b) a preferred candidate p ∈ A. We ask if R can
be partitioned into R1 and R2 such that p is the unique f -winner of (W1 ∪ W2, R),

4 By contrast, partitioning A into A′
1 = {a, b, c} and A′

2 = {d, e, f } would reveal a difference between the two
tie-handling models: Since b and c tie for winning (A′

1, R), they both proceed to the final stage in model TP
(where they face e, the winner of (A′

2, R), and c wins the final stage), but b and c eliminate each other in model
TE (so e alone proceeds to the final stage and wins).

5 In such an analogue, given an election (A, R) and p ∈ A, we would partition R into R1 and R2 just as in
Definition 7.4, but there is only one pre-election, say (A, R1), whose TE/TP-winners W1 would then face all
candidates in the final stage, yet (W1 ∪ A, R) = (A, R) is just the original election.
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where Wi , i ∈ {1, 2}, is the set of those pre-election (A, Ri) winners that are promoted
to the final stage according to the tie-handling rule (TE or TP).

Example 7.6. Again looking at the Borda election (A, R) in Table 7.1(a) with preferred
candidate c, the chair will succeed (in both TE and TP) by partitioning R into R1 =
{1, 2, 4, 5} and R2 = {3}: b alone wins (A, R1) (with a score of 13, while a, c, d, e,
and f score only 9, 10, 8, 12, and 8 points), and c alone wins (A, R2). Thus they both
proceed to the final stage where c beats b by 3 to 2.

The proofs that show the complexity of control by partitioning candidates or voters
are often based on similar constructions as analogous proofs for the case of deleting
candidates or voters, but usually are more involved technically.

For each constructive control problem, there is also a destructive variant, introduced
by Hemaspaandra et al. (2007), where the chair’s goal is to preclude a given candidate
from being the unique winner of the election resulting from the chair’s control action.
We denote the destructive control problems analogously, replacing the initial “C” by a
“D,” as, for example, in DCDC for “destructive control by deleting candidates.” (In this
problem, it is forbidden to delete the designated candidate p; otherwise, the problem
would be trivial.)

7.3.3 Overview and Some Other Approaches to Control

Table 7.3 summarizes the control complexity results for some prominent voting rules.
In most cases we have full knowledge of the complexity of all the basic types of
control, but for Borda and maximin some types of control were never studied, and for
Bucklin and Schulze for some types of control there are only susceptibility results in
the literature.

We already mentioned that besides Copelandα voting, 0 < α < 1, also SP-AV
(Erdélyi et al., 2009), fallback and Bucklin voting (Erdélyi and Rothe, 2010; Erdélyi
et al., 2011, 2015a), NRV (Menton, 2013), and Schulze voting (Parkes and Xia, 2012;
Menton and Singh, 2013) are resistant to all constructive control types. Among those,
Schulze has many vulnerabilities to destructive control types, but SP-AV is vulnerable
to only three of them (DCAV, DCDV, and DCPV-TE), and fallback, Bucklin, and
NRV even to only two (DCAV and DCDV), where the case of Bucklin-DCPV-TP is
still open. Note that SP-AV is a somewhat unnatural system (as has been discussed by
Baumeister et al. (2010) in detail), due to a rule introduced by Erdélyi et al. (2009)
that, to cope with certain control actions, can move the voters’ approval lines after they
have cast their votes. It may be argued that NRV has a similar issue (though perhaps
to a lesser extent), since after the voters have cast their votes (namely, their range
voting vectors), the normalization process can change the points the alternatives will
score from the votes. Fallback’s drawback, on the other hand, is that it is a hybrid of
two “pure” voting rules, Bucklin and approval, and requires the voters to report both
approval vectors and rankings. All three voting systems have the disadvantage that
it is rather complicated (even though far less complicated than in Schulze voting) to
determine the winners; for example, it is hardly conceivable that many of the voters in
a real-world political election would be fully aware of the effect of normalization in
NRV. But this is the price to pay if we wish to have a (relatively) natural voting rule
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with P-time winner determination that is resistant to as many control actions as these
voting rules are resistant to. On the other hand, if one is willing to accept an artificial
voting rule, Hemaspaandra et al. (2009) have shown how to combine well-known rules
to obtain ones that are resistant to all types of control. While their method produces
rules that are not attractive in practice (even though they satisfy some natural normative
properties), it suggests that indeed there might exist natural voting rules with P-time
winner determination that are resistant to all types of control considered here.

Now, let us quickly point to some related work and to other approaches to con-
trol. Meir et al. (2008) study control for multiwinner voting rules. In the multiwinner
setting, we are given an election (A, R) and an integer k, and the goal is to pick a
“committee” of k winners. Multiwinner voting rules can be used to choose parliaments
(or other collective bodies), to choose finalists in competitions, or even within recom-
mendation systems (see, e.g., the work of Lu and Boutilier (2011a) for the application
in recommendation systems and the work of Elkind et al. (2014a) for a recent gen-
eral discussion of multiwinner voting). To study control in the multiwinner setting (and
analogous approaches apply to other manipulative scenarios), Meir et al. (2008) assume
that the election chair associates some utility value with each candidate and his or her
goal is to ensure that the sum of the utilities of the candidates in the elected committee
is as high as possible. As a side effect, this approach creates a natural unification of
the constructive and destructive cases: In the constructive case the chair would have
positive utility only for the most preferred candidate, whereas in the destructive setting
the chair would have positive, equal utilities for all the candidates except the despised
one.

Faliszewski et al. (2011b) provide a unified framework to capture “multimode
control attacks” that simultaneously combine various of the control actions considered
here. Specifically, in their setting the chair can, for example, simultaneously add some
candidates and remove some voters. One of the conclusions of this work is that,
typically, the complexity of such a multimode control attack is the same as that of
the hardest basic control type involved. In particular, if a voting rule is vulnerable to
several basic types of control, it is also vulnerable if the chair can perform these control
types simultaneously (i.e., coordinating the attacks is easy). However, this conclusion
is based on studying a number of natural voting rules and is not a general theorem
(indeed, such a general theorem does not hold).

Fitzsimmons et al. (2013) study the complexity of control in the presence of manip-
ulators, both in the case where the chair and the manipulators coordinate their actions
and in the case where they compete with each other. While all the related cooperative
problems are in NP, they show that the competitive problems can be complete for the
second and the third level of the polynomial hierarchy for suitably designed artificial
voting systems (though their complexity is much lower for many natural voting sys-
tems). Another approach to unifying different types of strategic behavior is due to Xia
(2012b), who proposes a general framework that is based on so-called vote operations
and can be used to express, for example, bribery and control by adding or deleting
voters. Xia (2012b) shows that if the votes are generated i.i.d. with respect to some
distribution, then, on the average, the number of vote operations (e.g., the number of
voters that need to be added) necessary to achieve a particular effect (e.g., ensuring
that some candidate is a winner) is either zero (the effect is already achieved), or is
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proportional to the square root of the number of original voters, or is linear with respect
to the number of original voters, or the effect is impossible to achieve.

Going in a somewhat different direction, Chen et al. (2014) consider control by
adding candidates in a combinatorial setting, where one can add whole groups of
voters at unit cost. They show that even for the plurality rule, for which standard voter
control is very easy, the combinatorial setting is challenging (indeed, combinatorial
control by adding voters is NP-hard for plurality even in the settings where the groups
of voters to add contain at most two voters each).

Hemaspaandra et al. (2014b) established the first control-related dichotomy result,
showing for which pure scoring rules CCAV is easy to solve and for which this
problem is NP-complete (however, Faliszewski et al. (2013) study voter control in
weighted elections and in the technical report version of their paper show a dichotomy
result as well). This complements similar dichotomy results of Hemaspaandra and
Hemaspaandra (2007) on manipulation and of Betzler and Dorn (2010) and Baumeister
and Rothe (2012) on the possible winner problem.

Some researchers investigate not only the classical complexity, but also the parame-
terized complexity of control problems, with respect to such parameters as the solution
size (e.g., “number of added voters”) or the election size (e.g., “number of candidates”);
for example, see the work of Liu et al. (2009) for a discussion of plurality, Condorcet,
and approval; Liu and Zhu (2010, 2013) for maximin, Copeland, Borda, Bucklin, and
approval; Betzler and Uhlmann (2009) and Faliszewski et al. (2009c) for Copelandα;
Erdélyi et al. (2015a) for Bucklin and fallback; and Hemaspaandra et al. (2013b) for
Schulze and ranked-pairs voting. On the other hand, Brelsford et al. (2008) study the
approximability of control, manipulation, and bribery. Faliszewski et al. (2013) discuss
approximation algorithms for voter control under k-approval.

Faliszewski et al. (2011b, 2011a) and Brandt et al. (2010a) study to what extent
complexity shields for manipulation and control disappear in elections with domain
restrictions, such as in single-peaked or nearly single-peaked electorates (see also the
book chapter by Hemaspaandra et al., 2015). Magiera and Faliszewski (2014) show
similar results for single-crossing electorates.

Hemaspaandra et al. (2013a) compare the decision problems for manipulation,
bribery, and control with their search versions and study conditions under which
search reduces to decision. They also notice that two destructive control types that
previously have been viewed as distinct are in fact identical (in both the unique-
winner and the nonunique-winner model): DCRPC-TE = DCPC-TE (and, in only the
nonunique-winner model, they additionally show equality of another pair of control
types: DCRPC-TP = DCPC-TP).

So far, almost all the research on the complexity of control has been theoretical,
establishing NP-hardness of various problems. Recently, Rothe and Schend (2012)
have initiated the experimental study of control (see also the survey by Rothe and
Schend (2013) and the work of Erdélyi et al. (2015b)), showing that NP-hard control
problems can, sometimes, be solved efficiently in practice (cf. the work of Walsh
(2011a) for such studies on manipulation).

Finally, there are a number of problems that are very closely related to control, but
that, nonetheless, are usually not classified as “standard control types.” These problems
include, for example, candidate cloning (see the brief discussion in Section 7.5), fixing
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knockout tournaments (see Chapter 19 for more details), the problem of controlling
sequential elections by choosing the order of voting on related issues (see the work
of Conitzer et al., 2009a), and online control in sequential elections (see the work
of Hemaspaandra et al., 2012a, 2012b), which is inspired by online manipulation in
sequential elections due to Hemaspaandra et al. (2014a). Ideas originating from election
control have also found applications in other settings. For example, Baumeister et al.
(2012b, 2013b) have studied control for the case of judgment aggregation (for more
details on judgment aggregation, see Chapter 17 and the book chapter by Baumeister
et al. (2015)).

7.4 Bribery

Let us now move on to the study of bribery in elections. As opposed to the case of
control, this time it is not possible to affect the structure of the election at hand (that is,
the sets of candidates or voters cannot be changed), but it is possible to change some of
the votes instead. Election bribery problems, introduced by Faliszewski et al. (2009b),
model situations where an outside agent wants a particular alternative to win and pays
some of the voters to vote as the agent likes. The problem name, bribery, suggests
settings where an outside agent is dishonestly affecting election results, but there are
other interpretations of these problems as well. For example, the formal framework
of bribery can capture scenarios such as political campaign management and election
fraud detection. We discuss such aspects of bribery (and control) in Section 7.5; for now
we focus on the algorithmic properties of bribery problems without making judgments
as to their morality.

The briber’s task has two main components. First, the briber needs to decide who to
bribe. Second, the briber has to decide how to change the chosen votes. In that sense,
election bribery combines a control-like action (picking which voters to affect) with a
manipulation-like action (deciding how to change the selected votes; see Chapter 6 and
Section 4.3.3 in the book chapter by Baumeister and Rothe (2015) for more details on
manipulation). Furthermore, it might be the case that while a voter agrees to change her
vote in some ways, she may refuse to change it in some other ways (e.g., the voter might
agree to swap the two least preferred alternatives, but not to swap the two most preferred
ones). The following definition, based on the ones given by Faliszewski et al. (2009b)
and—later—by Elkind et al. (2009c),6 tries to capture these intuitions. (A careful reader
should see that this definition is not sufficient for algorithmic applications; however, it
will be a convenient base for further refinements.)

Definition 7.5. Let f be a voting rule. In the priced bribery problem for f , we are
given (a) an election (A, R), where the set of voters is N = {1, . . . , n} and R contains
a preference order �i for each i ∈ N , (b) a preferred alternative p ∈ A, (c) a budget
B ∈ N, and (d) a collection of price functions � = (π1, . . . , πn). For each i, 1 � i � n,
and each preference order � over A, πi(�) is the cost of convincing the ith voter to

6 To provide historical perspective, let us mention that the paper of Faliszewski et al. (2009b) was presented in
2006 at the 21st National Conference on Artificial Intelligence (AAAI).
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cast vote � (we require that for each i, 1 � i � n, πi(�i) = 0). We ask if there exists a
preference profile R′ = (�′

1, . . . ,�′
n) such that (i) p is an f -winner of election (A, R′),

and (ii)
∑n

i=1 πi(�′
i) � B.7

Informally speaking, in condition (i) we require that the bribery is successful (p
becomes a winner) and in condition (ii) we require that it is cheap enough (i.e., within
our budget B). However, it is impossible to use this definition directly in our algorithmic
analysis. The problem is that given an election (A, R), each price function should be
defined for |A|! different arguments. If we represented each price function by listing all
the |A|! argument-value pairs, the encoding of the problem would grow exponentially
and for most natural voting rules the problem could be solved by brute force (yet
without giving any real insight into the nature of election bribery). In other words, to
make the problem interesting (and practical), we have to limit our attention to families
of price functions that can be described succinctly. To this end, researchers have mostly
focused on the following families of functions (in the following description we use
the notation from Definition 7.5; we use the terms discrete and $discrete to unify the
discussion of bribery problems even though these terms did not appear in the original
papers):

1. We say that the price functions are discrete if for each πi , 1 � i � n, and for each
preference order �, it holds that πi(�) = 0 if � = �i , and πi(�) = 1 otherwise.

2. We say that the price functions are $discrete if for each πi , 1 � i � n, there is an
integer ci such that for each preference order �, it holds that πi(�) = 0 if � = �i , and
πi(�) = ci otherwise. (Each voter can have a different value ci .)

3. We say that the price functions are swap-bribery price functions if for each πi , 1 � i � n,
and for each two alternatives x, y ∈ A, there is a value c

{x,y}
i such that for each preference

order �, πi(�) is the sum of the values c
{x,y}
i such that � ranks x and y in the opposite

order than �i does.

That is, discrete functions give cost one for changing a vote (irrespective of which
vote it is or how it is changed), $discrete functions give a (possibly different) cost for
changing each vote (irrespective of the nature of the change), and swap-bribery price
functions define a cost for swapping each two alternatives and, then, sum up these
costs. Clearly, functions in each of these families can be described succinctly.

From the historical perspective, the first paper on the complexity of bribery in
elections (due to Faliszewski et al., 2009b) focused largely on discrete and $discrete
functions. Swap-bribery functions were introduced first by Faliszewski et al. (2009c)
in the context of so-called irrational votes, and were later carefully studied by Elkind
et al. (2009c) in the standard setting of linear preference orders. Naturally, one can also
define other families of cost functions (and some researchers—including the ones just
cited—have done so) but in this chapter we will focus on these three.

Definition 7.5 can be applied to weighted elections as well. In such a case, it is
tempting to introduce some explicit relation between the voters’ weights and the costs

7 As opposed to the case of control, research on bribery typically focuses on the nonunique-winner model; the
unique-winner model has been considered in addition in some papers on bribery (see, e.g., Faliszewski et al.,
2015).
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of changing their votes. However, doing so is not necessary and we assume that such
dependencies, if needed, are embedded in the price functions.

7.4.1 Bribery, Weighted-Bribery, $Bribery, Weighted-$Bribery, and
Swap-Bribery

We focus on the bribery problems that can be derived using discrete, $discrete, and
swap-bribery price functions. For the former two, consider the following definition.

Definition 7.6 (Faliszewski et al., 2009b). Let f be a voting rule. By f -Bribery we
denote the priced bribery problem with discrete price functions and by f -$Bribery
we denote the priced bribery problem with $discrete price functions. The problems
f -Weighted-Bribery and f -Weighted-$Bribery are defined in the same way, but
for weighted elections.

Example 7.7. Consider the Borda election in Table 7.1(a) and suppose that each voter
has the same unit price, and that the goal is to ensure the victory of f through bribery.
Prior to the bribery, b has 16 points and f has 9. It suffices to bribe voter 3 to cast vote
f d a c e b. (Afterward, b, e, and f have score 13 each, and a, c, and d have score 12
each.) This means that there is a successful bribery with cost one. On the other hand, if
voters 1 and 5 had cost one and the remaining voters had cost three each, then it would
be better to bribe voters 1 and 5 to shift f to the top positions in their votes.

For swap-bribery price functions, Elkind et al. (2009c) have defined the following
problem (they have not studied swap bribery for weighted elections).

Definition 7.7 (Elkind et al., 2009c). Let f be a voting rule. By f -Swap-Bribery
we denote the priced bribery problem with swap-bribery price functions.

Example 7.8. Consider the Borda election in Table 7.1(a) once again. This time, by
applying swap bribery, we want to ensure victory of candidate d. We assume that
swapping each two adjacent candidates has unit cost. Prior to the bribery, b has 16
points, c has 15 points, d and e have 12 points, a has 11 points, and f has 9 points. We
perform the bribery as follows: We swap b in the preference order of voter 1 first with
f , then with e, and finally with d. This way b loses three points and d, e, and f gain
one point each. Thus b, d, and e have score 13 each, a and f score less than 13 points,
but c still has 15 points. So, next we swap c and d in the preference order of voter 3.
This way both c and d have score 14 and they both tie as winners. This is a successful
swap bribery of cost four (and, indeed, it is the cheapest successful swap bribery for d

in this scenario).

To familiarize ourselves with bribery problems further, let us consider their com-
plexity for the plurality rule.

Theorem 7.9. For plurality voting it holds that:

1. Bribery, Weighted-Bribery, and $Bribery are each in P, but Weighted-$Bribery
is NP-complete (Faliszewski et al., 2009b), and

2. Swap-Bribery is in P (Elkind et al., 2009c).

It is easy to see that plurality-Bribery can be solved by (repeating in a loop)
the following greedy algorithm: If the preferred alternative is not a winner already,
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then pick one of the current winners and bribe one of her voters to vote for the
preferred alternative. Unfortunately, such greedy approaches do not work for plurality-
Weighted-Bribery. For example, consider an algorithm that works in iterations and
in each iteration bribes the heaviest voter among those that vote for one of the current
winners. Let (A, R) be an election where A = {p, a, b, c} and where we have 9 weight-
1 voters voting for a, a single weight-5 voter voting for b, and a single weight-5 voter
voting for c. Clearly, it suffices to bribe the two weight-5 voters, but the heuristic would
bribe five voters with weight 1 each. On the other hand, bribing the heaviest voter
first does not always work either (Faliszewski et al. (2009d) give a counterexample
with A = {p, a, b}, p receiving no votes at first, a receiving three weight-2 votes
and one weight-1 vote, and b receiving two weight-3 votes; to make p a winner it
suffices to bribe one weight-2 vote and one weight-3 vote, but the heuristic bribes three
votes). Nonetheless, a combination of these two heuristics does yield a polynomial-time
algorithm for plurality-Weighted-Bribery.

Let us consider some weighted plurality election and let us say that somehow we
know that after an optimal bribery, our preferred alternative p has at least T points.
Naturally, all the other alternatives have to end up with at most T points (and we can
assume that at least one of them will get exactly T points). Thus for each alternative a

that has more than T points, we should keep bribing its heaviest voters until its score
decreases to at most T (this corresponds to running the bribe the current winner’s
heaviest voter heuristic). If, after bringing each alternative to at most T points, the
preferred alternative still does not have T points, we bribe the globally heaviest voters
to vote for the preferred alternative. We do so until the preferred alternative reaches
at least T points (this corresponds to running the bribe the heaviest voter heuristic).
If we chose the value of T correctly, by this point we would have found an optimal
bribery strategy. But how do we choose T ? If the weights were encoded in unary, we
could try all possible values, but doing so for binary-encoded weights would give an
exponential-time algorithm. Fortunately, we can make the following observation: For
each alternative a, we bribe a’s voters in the order of their nonincreasing weights.
Thus, after executing the above-described strategy for some optimal value T , a’s score
is in the set {a’s original score, a’s score without its heaviest voter, a’s score without
its two heaviest voters, . . .}. Thus it suffices to consider values T of this form only (for
each candidate) and to pick one that leads to a cheapest bribery.

It is an easy exercise for the reader to adapt the plurality-Weighted-Bribery
algorithm to the case of plurality-$Bribery. On the other hand, solving plurality-
Swap-Bribery requires a somewhat different approach. The reason is that under
Swap-Bribery it might not always be optimal to push our preferred candidate to the
top of the votes, but sometimes it may be cheaper and more effective to replace some
high-scoring alternatives with other, low-scoring ones. To account for such strategies,
Elkind et al. (2009c) compute, for each vote v, the lowest cost of replacing v’s current
top-alternative with each other one, and then run a flow-based algorithm of Faliszewski
(2008) to find the bribing strategy. We omit the details here.

For plurality-Weighted-$Bribery, it is easy to see that the problem is in NP and
so we only show NP-hardness. We give a reduction from the Partition problem
to plurality-Weighted-$Bribery. Recall that in the Partition problem the input
consists of a sequence of positive integers that sum up to some value S, and we ask
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Table 7.4. The complexity of f -Bribery for various voting rules

f f -Bribery reference

plurality P Faliszewski et al. (2009b)
veto P Faliszewski et al. (2009b)
2-approval P Lin (2012)
k-veto, k ∈ {2, 3} P Lin (2012)
k-approval, k � 3 NP-complete Lin (2012)
k-veto, k � 4 NP-complete Lin (2012)
Borda NP-complete Brelsford et al. (2008)
STV NP-complete Xia (2012a)
Bucklin NP-complete Faliszewski et al. (2015)
fallback NP-complete Faliszewski et al. (2015)
maximin NP-complete Faliszewski et al. (2011b)
Copeland NP-complete Faliszewski et al. (2009c)
Schulze NP-complete Parkes and Xia (2012)
ranked pairs NP-complete Xia (2012a)

approval NP-complete Faliszewski et al. (2009b)
range voting NP-complete follows from the approval result

if it is possible to partition this sequence into two subsequences that both sum up to
S/2 (naturally, for that S needs to be even). Let (s1, . . . , sn) be the input sequence and
let S = ∑n

i=1 si . We form an election (A, R), with A = {p, d} and with R containing
n voters voting for d; for each i, 1 � i � n, the ith voter has weight si and her price
function is “it costs si to change the vote.” The budget B is S/2. In effect, any bribery
of cost at most B can give p a score of at most S/2. The only such briberies that would
ensure that p is among the winners must give p score exactly S/2, by solving the original
Partition instance. This result is particularly useful because its proof easily adapts
to most other typical voting rules, showing that Weighted-$Bribery is NP-complete
for them as well.

Theorem 7.9 suggests that, perhaps, for various voting rules f , not only is f -Bribery
easy but so are even its more involved variants, f -$Bribery and f -Weighted-
Bribery. However, in-depth study of f -Bribery has shown that the problem is
NP-complete for most natural voting rules f . We survey these results in Table 7.4.
Naturally, the hardness results for Bribery immediately transfer to $Bribery and
Weighted-Bribery.

Theorem 7.10 (Faliszewski et al., 2009b). For each voting rule f , f -Bribery reduces
to f -$Bribery and to f -Weighted-Bribery.

Furthermore, for the case of $Bribery we can inherit multiple hardness results from
the coalitional manipulation problem, through a simple reduction.

Definition 7.8 (Conitzer et al., 2007). Let f be a voting rule. In the (constructive,
coalitional) f -Manipulation problem we are given (a) an election (A, R), (b) a
preferred alternative p ∈ A, and (c) a collection R′ of voters with unspecified preference
orders. We ask if it is possible to ensure that p is an f -winner of election (A, R + R′)
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by setting the preference orders of the voters in R′. The (constructive, coalitional) f -
Weighted-Manipulation problem is defined analogously, but for weighted elections,
where the manipulators’ weights are given.

Theorem 7.11 (Faliszewski et al., 2009b). For each voting rule f , f -Manipula-
tion reduces to f -$Bribery, and f -Weighted-Manipulation reduces to f -
Weighted-$Bribery.

For the case of Swap-Bribery, hardness results are even more abundant. Elkind
et al. (2009c) have shown that the problem is NP-complete for k-approval (for k � 2)8

and for Borda, Copeland, and maximin (for the latter three systems, NP-hardness holds
even for Shift-Bribery, a special case of Swap-Bribery where the swaps have to
involve the preferred candidate). Furthermore, the Swap-Bribery problem generalizes
the Possible-Winner problem, which itself generalizes the Manipulation problem.

Definition 7.9 (Konczak and Lang, 2005). Let f be a voting rule. In the f -Possible-
Winner problem we are given (a) an election (A, R), where the voters in R are
represented through (possibly) partial orders, and (b) an alternative p ∈ A. We ask if
it is possible to extend the partial orders in R to linear orders in such a way that p is an
f -winner of the resulting election.

Theorem 7.12 (Elkind et al., 2009c). For each voting rule f , f -Possible-Winner
reduces to f -Swap-Bribery.

Xia and Conitzer (2011a) have shown hardness of Possible-Winner for a number
of voting rules (including STV, ranked pairs, Borda, Copeland, maximin, and many
other rules); Betzler and Dorn (2010) together with Baumeister and Rothe (2012) show
a dichotomy result regarding the complexity of Possible-Winner for pure scoring
rules, obtaining hardness for almost all of them (see Chapter 10 and Section 4.3.2 in
the book chapter by Baumeister and Rothe (2015) for more details on the Possible-
Winner problem and on related issues). By Theorem 7.12, these hardness results
immediately translate to hardness results for Swap-Bribery and the same voting rules.

Such an overwhelming number of hardness results (either shown directly or implied
by Theorems 7.11 and 7.12) suggests that, perhaps, Swap-Bribery is too general
a problem. That is why Elkind et al. (2009c) defined Shift-Bribery, a variant of
Swap-Bribery where, as mentioned earlier, the only legal briberies shift the preferred
candidate up in the voters’ preference orders. While this problem turned out to typi-
cally be NP-complete as well, Elkind et al. (2009c), Elkind and Faliszewski (2010), and
Schlotter et al. (2011) have found some interesting polynomial-time algorithms, exact
and approximate, and Bredereck et al. (2014b) have studied the parameterized com-
plexity of Shift-Bribery (see Section 7.5 for more motivating discussions regarding
Shift-Bribery).

We now show that (the optimization variant of) Borda-Shift-Bribery can be effi-
ciently approximated within a factor of 2.

Theorem 7.13 (Elkind et al., 2009c). There is a polynomial-time 2-approximation
algorithm for the cost of a cheapest shift bribery under Borda voting.

8 The result for k = 2 follows from the work of Betzler and Dorn (2010); for k = 1 the problem is in P; for
k = m/2, where m is the number of alternatives, Elkind et al. (2009c) have shown hardness even for the case of
a single voter.
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Proof sketch. Consider an instance of our problem where the goal is to ensure candidate
p’s victory. By definition, the only possible actions are shifting p forward in (some of)
the votes (costs are specified through swap-bribery price functions where swaps that
do not involve p have infinite cost and we can think of shifting p forward in terms of
its swaps with other candidates).

We start with two observations. First, there is a polynomial-time algorithm that
given an instance of the optimization variant of Borda-Shift-Bribery computes the
cost of a cheapest shift bribery that gives p a given number of points (the algorithm
uses standard dynamic programming). Second, if there is a successful shift bribery that
increases the score of p by K points, then every shift bribery that increases p’s score
by 2K points is successful (the best imaginable shift bribery gets K points for p in
such a way that in each swap it increases the score of p and decreases the score of
its strongest competitor; we achieve the same—or better—effect by getting 2K points
for p).

Now the algorithm proceeds as follows: First, we guess the number K of points
that p gets in the optimal solution. Then, we guess a number K ′, K ′ � K . (Because
we are dealing with Borda elections, both guesses boil down to trying polynomially
many computation paths.) We compute a cheapest shift bribery S1 that gives K points
to p. Then, we compute a cheapest shift bribery S2 that gives K ′ additional points to
p (we apply S2 after we have applied S1). We claim that S1 + S2 (that is, the two shift
briberies taken together) form a 2-approximate solution.

Why is this so? Consider some optimal shift bribery O that ensures that p wins.
By assumption, this shift bribery obtains K points for p. Now imagine the following
situation: We start with the original election and perform only those swaps that are
included in both O and S1. In effect, p gains some K ′′ points. If we continued with
the optimal solution, p would obtain additional K − K ′′ points and would become a
winner of the election. By our second observation, this means that if after performing
the swaps that occur both in O and in S1 we obtain additional 2(K − K ′′) points for
p, p certainly wins. We obtain the first of these K − K ′′ points by simply performing
the remaining swaps from S1. For the second K − K ′′ points, we can assume that we
guessed K ′ = K − K ′′. In effect, performing the swaps from S2 ensures p’s victory.
Furthermore, by definition of S1 we know that its cost is no higher than that of O. On
the other hand, the cost of S2 also has to be at most as high as that of O because, by
definition, the cost of S2 cannot be higher than the cost of the shift bribery that contains
exactly the swaps that are in O but not in S1.

So far, there has been relatively little research on how to cope with the hardness of
bribery problems (except for results regarding special cases such as Shift-Bribery, as
seen in the preceding theorem). For example, many parameterized-complexity results
boil down to polynomial-time algorithms for the case where the number of candi-
dates is constant. In this case, bribery problems can either be solved by an appro-
priate brute-force search, or by solving a linear integer program using the algorithm
of Lenstra, Jr. (1983); see the papers of Faliszewski et al. (2009b, 2011b), Elkind
et al. (2009c), Dorn and Schlotter (2012), and Hemaspaandra et al. (2013b) for exam-
ples. These approaches, however, do not work for weighted elections and, indeed, for
weighted elections bribery problems are typically NP-hard (see, e.g., the dichotomy
results of Faliszewski et al. (2009b)). On the other hand, there are several detailed
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studies of parameterized complexity of Swap-Bribery (due to Dorn and Schlotter,
2012), Support-Bribery (Schlotter et al. (2011); we omit the discussion of Support-
Bribery), and Shift-Bribery (Bredereck et al., 2014b).

Another natural way of coping with the hardness of bribery problems would be to
design approximation algorithms. Brelsford et al. (2008) have made some attempts
in this direction (though, using a rather involved goal function instead of approxi-
mating the cost of a successful bribery), Faliszewski (2008) gave a fully polynomial-
time approximation scheme for plurality-Weighted-$Bribery, and Xia (2012a) gave
several approximation algorithms for destructive bribery problems (where the goal
is to ensure, through buying votes, that some candidate does not win the election).
There are also approximation results regarding Shift-Bribery (due to Elkind and
Faliszewski, 2010; Bredereck et al., 2014b). While surprising at first, this limited
enthusiasm for studying approximation algorithms for bribery problems can, to some
extent, be understood. Theorems 7.11 and 7.12 show how to reduce the Manipulation
and Possible-Winner problems to appropriate $Bribery and Swap-Bribery prob-
lems, and they do so via showing that a given Manipulation (Possible-Winner)
instance is a “yes” instance if and only if there is a zero-cost bribery. This means
that, unless P = NP, those $Bribery and Swap-Bribery problems whose hardness
can be shown via Theorems 7.11 and 7.12 do not have constant-factor polynomial-
time approximation algorithms (for finding the cheapest successful bribery). Nonethe-
less, it is interesting to study the approximability of f -Bribery for various voting
rules f .

It would also be interesting to study the complexity of bribery in elections with
restricted domains, for example, in single-peaked elections. While this direction has
been pursued successfully for the case of control, we are aware of only a single paper
that attempted it for bribery (Brandt et al., 2010a), showing that, indeed, for single-
peaked elections bribery problems often become easy (see also Section 5.4 in the book
chapter by Hemaspaandra et al. (2015)).

7.4.2 Other Bribery Problems

So far, we have focused on the most standard election model, where voter preferences
are represented by total orders over the set of alternatives. Naturally, there are numerous
other settings in which bribery was studied, and in what follows we give several (though
certainly not all) examples of such settings.

Mattei et al. (2012a) have considered bribery in combinatorial domains, where
the voters express their preferences over bundles of alternatives in a certain compact
way. This compact representation can lead to quite interesting results. The particular
language used to express preferences in the work of Mattei et al. (2012a) (CP-nets)
does not allow one to express certain preference orders and, as a result, Bribery for
k-approval becomes easy in this model (see Chapter 9 for more details on voting in
combinatorial domains). If there are no direct interrelations between the bundles of
items, it may be more reasonable to model bribery as the lobbying problem (studied by
Christian et al. (2007) and later on by Bredereck et al. (2014a) and Binkele-Raible et al.
(2014)): We are given a collection of yes/no votes over all items independently, where
an item is accepted with a simple majority of yes votes, and is rejected otherwise. The
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lobby’s goal is to change the outcome to its liking by bribing certain voters without
exceeding its budget.

Examples of bribery problems in other settings include, for example, the work of
Baumeister et al. (2011) on bribery in judgment aggregation (see Chapter 17 and the
book chapter by Baumeister et al. (2015) for more details on judgment aggregation), the
work of Rey and Rothe (2011) and Marple et al. (2014) on bribery in path-disruption
games, and the work of Mattei et al. (2012b) on bribery in tournaments.

7.5 A Positive Look

There are a number of settings where control and bribery (and similar problems) have
positive interpretations (from particular points of view). In the following we very briefly
list a few examples of such settings.

Election control problems deal with affecting their structure in order to change the
winner. Instead of viewing this as someone manipulating the result, we can think of it
as predicting the winners given how the election’s structure may change. For example,
this research direction was pursued by Chevaleyre et al. (2012) and Baumeister et al.
(2012c). Specifically, Chevaleyre et al. (2012) have studied a situation where we have
already elicited voters’ preferences regarding some set of candidates, but afterward
some new candidates appeared, of whom we have no knowledge whatsoever. Naturally,
possibly each new candidate can be better than each old one, so each of them, possibly,
might win the election. However, can we decide which of the original candidates still
have chances of winning? This problem of predicting possible winners is very close in
spirit to control by adding candidates (and to cloning; see later), though—formally—it
is a special case of the Possible-Winner problem (and, as such, it is a special case of
the Swap-Bribery problem).

Another way of predicting election winners was suggested by Wojtas and Fal-
iszewski (2012), who have used counting variants of election control problems. In
particular, they considered the following setting: We know the preference orders of the
voters, but we do not know which of them will eventually cast votes. Having some prior
distribution on the number of voters that do cast votes (and assuming that if k voters
participate in the election, then each size-k subset of voters is equally likely to vote),
what is the probability that a given candidate wins? Formally, this problem reduces to
counting the number of ways of adding (deleting) voters to (from) an election to ensure
a given candidate’s victory.

Quite interestingly, many of the problems that model attacks on elections have
direct applications in protecting them. For example, in the margin-of-victory problem
(see, e.g., the work of Cary (2011), Magrino et al. (2011), Xia (2012a), and Reisch
et al. (2014)) we ask how many voters need to cast different votes to change the
result of an election. If this number is high then it is unlikely that the election was
tampered with. However, if this number is low, it means that it would have been easy to
manipulate the result in some way and thus we should carefully check the election. The
margin-of-victory problem is, in some sense, simply a destructive bribery problem.
Similarly, Birrell and Pass (2011) have used bribery-related problems in the context of
approximate strategyproofness of voting rules. Yet another application of a control-like
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problem to protect elections was given by Elkind et al. (2012a). They have considered
the problem of candidate cloning, where some candidate c is replaced by a number of
clones, c1, . . . , ct , that—from the point of view of the voters—are indistinguishable
(consider, for example, a party submitting several candidates for a given position and
the voters forming their preference orders based on party membership only). If an
election is single-peaked and we clone a candidate, it is likely that this election ceases
to be single-peaked. Motivated by this observation, Elkind et al. (2012a) have given
an algorithm that finds an optimal “decloning” of the candidates, so that the resulting
election is single-peaked (similar results, though in a different context, were later
given by Cornaz et al. (2012, 2013); we also mention that cloning, originally defined
by Tideman (1987) and by Zavist and Tideman (1989), resembles control by adding
candidates; its computational analysis is due to Elkind et al. (2011a)).

Finally, let us mention some positive interpretations of bribery problems. In political
elections, prior to casting the votes, the candidates run their campaigns and wish to
convince the voters to rank them as highly as possible. Naturally, running a campaign
has cost (both in terms of money and in terms of invested time) and it is important for the
candidates to decide which voters they should try to convince. However, deciding how
much effort to spend on each voter (or, group of voters) is just the bribery problem (see
the work of Hazon et al. (2013) for a different twist on this idea). With the campaign
management interpretation in mind, it is natural to study various special cases of the
bribery problems. Indeed, Shift-Bribery of Elkind et al. (2009c), where we can only
convince the voters to rank the preferred candidate higher and we cannot affect the
relative order of the other candidates, models campaign management in a natural way.
While the Shift-Bribery problem is NP-hard for many voting rules, Elkind et al.
(2009c) have given a 2-approximation algorithm for this problem with Borda’s rule
(see Theorem 7.13 here), Elkind and Faliszewski (2010) have extended this result to all
scoring rules (and provided weaker approximations for Copeland and maximin), and
Schlotter et al. (2011) have shown that Shift-Bribery is in P for Bucklin and fallback
voting. These results for Bucklin and fallback voting were recently complemented
by Faliszewski et al. (2015) who studied various bribery problems for these rules,
including so-called Extension-Bribery, introduced by Baumeister et al. (2012a) in
the context of campaign management in the presence of truncated ballots.

7.6 Summary

We surveyed the known results on control and bribery. While often studied in the
context of attacking elections, these problems also have many other applications and
interpretations, often very positive ones. Many NP-hardness results have been obtained,
yet recent work focuses on solving these problems effectively, either by approximation
or fixed-parameter tractable algorithms, or efficient heuristics. We strongly encourage
the readers to study control and bribery and to add their own contributions to the field.



CHAPTER 8

Rationalizations of Voting Rules

Edith Elkind and Arkadii Slinko

8.1 Introduction

From antiquity to these days, voting has been an important tool for making collective
decisions that accommodate the preferences of all participants. Historically, a remark-
ably diverse set of voting rules have been used (see, e.g., Brams and Fishburn, 2002),
with several new voting rules proposed in the last three decades (Tideman, 1987;
Schulze, 2003; Balinski and Laraki, 2010). Thus, when decision-makers need to select
a voting rule, they have plenty of choice: should they aggregate their opinions using
something as basic as Plurality voting or something as sophisticated as Ranked Pairs?
Or should they perhaps design a new voting rule to capture the specific features of their
setting?

Perhaps the best known way to answer this question is to use the axiomatic approach,
that is, identify desirable properties of a voting rule and then choose (or construct) a rule
that has all of these properties. This line of work was initiated by Arrow (1951) and led to
a great number of impossibility theorems, as it turned out that some desirable properties
of voting systems are incompatible. By relaxing these properties, researchers obtained
axiomatic characterizations of a number of classical voting rules, such as Majority
(May, 1952), Borda (Young, 1975), and Kemeny (Young and Levenglick, 1978); see
the survey by Chebotarev and Shamis (1998) as well as Chapter 2.

However, early applications of voting suggest a different perspective on this question.
It is fair to say that in the Middle Ages voting was most often used by religious
organizations (Uckelman and Uckelman, 2010). The predominant view in ecclesiastical
elections was that God’s cause needed the most consecrated talent that could be found
for leadership in the church. Moreover, it was believed that God knew who the best
candidate was, so the purpose of elections was to reveal God’s will. It is therefore not
surprising that when the Marquis de Condorcet (1785) undertook the first attempt at
systematization of voting rules, he was influenced by the philosophy of church elections.
His view was that the aim of voting is to determine the “best” decision for the society
when voters are prone to making mistakes. This approach assumes that there is an
objectively correct choice, but voters have different opinions due to errors of judgment;

169
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absent these errors, they would all agree on the most suitable alternative. Thus, one
should aim to design a voting rule that maximizes the probability of identifying the
best choice. Depending on the model of “noise” or “mistakes” in voters’ judgment, we
get different voting rules. In statistics, this approach is known as maximum likelihood
estimation (MLE): it tries to estimate the state of the world (which is hidden) that is
most likely to produce the observed noisy data.

A somewhat different, but related approach, which takes its roots in ideas of Charles
Dodgson (1876), can be called consensus-based. The society agrees on a notion of
a consensus (for example, we could say that there is a consensus if all voters agree
which alternative is the best, or if there exists a Condorcet winner), and the result of
each election is viewed as an imperfect approximation to a consensus. Specifically, if a
preference profile R is a consensus, then we pick the consensus winner, and otherwise
we output the winners of consensus profiles R′ that are as close to R as possible.
Alternatively, we may say that the society looks for a minimal change to the given
preference profile that turns it into a profile with an indisputable winner. At the heart
of this approach is the agreement as to (1) which preference profiles should be viewed
as consensual and (2) what is the appropriate notion of closeness among preference
profiles. It turns out that many common voting rules can be explained and classified by
different choices of these parameters.

In this chapter we will survey the MLE framework and the consensus-based frame-
work, starting with the latter. We demonstrate that both frameworks can be used to
rationalize many common voting rules, with the consensus-based framework being
somewhat more versatile. We also establish some connections between the two frame-
works. We remark that these two frameworks are not the only alternatives to the
axiomatic analysis. For instance, Camps et al. (2014) put forward an approach that
is based on propositional logic. Furthermore, in economic literature the term “ratio-
nalization” usually refers to explaining the behavior of an agent or a group of agents
via an acyclic (or transitive) preference relation, and there is a large body of literature
that investigates which voting rules are rationalizable in this sense (see Bossert and
Suzumura, 2010, for a survey). In this chapter, we focus on the MLE framework and
the consensus-based framework because these two methods for rationalizing voting
rules are interesting from a computational perspective: as we will see, explaining a
voting rule via a consensus and a “good” measure of closeness implies upper bounds
on its algorithmic complexity, whereas MLE-based voting rules are desirable for many
applications, such as crowdsourcing, and therefore implementing them efficiently is of
paramount importance.

In what follows, we assume that the set of alternatives is A and |A| = m; we use the
terms alternatives and candidates interchangeably. Also, unless specified otherwise,
voters’ preferences and ballots are assumed to be linear orders over A.

8.2 Consensus-Based Rules

The goal of the consensus-based approach is to reach a compromise among all voters,
that is, to arrive at a situation where there is agreement in society as to which outcome
is the best. This may require persuading some voters to modify their opinions in minor
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ways, and, as a result, to make small changes to their ballots. Obviously it is desirable
to minimize the number and magnitude of these changes. Thus, the best alternatives
are the ones for which the agreement can be reached at the smallest cost (measured
by the total amount of changes). In other words, given an arbitrary preference profile,
we proceed by identifying the consensual profiles that are most similar to it and
outputting their winners. The result then depends on how we define consensual profiles
and how we measure the magnitude of change in votes. The latter question is usually
addressed by using a distance over the space of profiles; this is why voting rules that
can be obtained in this manner are called distance rationalizable. Often, this distance is
obtained by computing the number of “unit changes” needed to transform one profile
into the other, where the notion of “unit change” may vary from one voting rule to
another.

This method of constructing voting rules can be traced back to Dodgson (1876), who
was the first to define a voting rule in this manner (for a specific notion of consensus and
a specific distance between profiles, see Section 8.2.1). More recently, it was formalized
and studied by Nitzan (1981), Lerer and Nitzan (1985), Campbell and Nitzan (1986),
and Baigent (1987), and subsequently by Meskanen and Nurmi (2008) and Elkind
et al. (2010a, 2010b, 2011b, 2012b); we also point the reader to the survey of Eckert
and Klamler (2011). It turns out that many classic voting rules can be obtained in this
manner; Meskanen and Nurmi (2008) put together an extensive catalogue of distance
rationalizations of common voting rules, with additional examples provided by Elkind
et al. (2010b, 2012b). Furthermore, many properties of voting rules can be derived from
their distance rationalizations: a voting rule can be shown to have “nice” properties if
it can be rationalized via a “nice” consensus class and a “nice” distance. This makes
the distance rationalizability approach eminently suitable for constructing new voting
rules: it allows us to combine known distances and consensus classes, and derive
conclusions about the resulting rules based on the properties of their components.

We start by presenting a few examples that illustrate the concepts of consensus and
distance to consensus, followed by a formal definition and a discussion of properties
of distance rationalizable voting rules.

8.2.1 Examples

The examples in this section are taken from the work of Meskanen and Nurmi (2008)
and Elkind et al. (2012b); see these papers for additional references. We provide brief
descriptions of the voting rules we consider; for formal definitions the reader is referred
to Chapter 2.

Dodgson. Perhaps the most canonical example of the consensus-based approach is
the Dodgson rule. Recall that winner determination under this rule proceeds as
follows. If the given preference profile has a Condorcet winner, that is, a candidate
that beats every other candidate in a pairwise election, then this candidate is
declared the unique Dodgson winner. Otherwise, for every candidate c we compute
her Dodgson score, that is, the number of swaps of adjacent candidates in voters’
ballots that need to be performed in order to make c a Condorcet winner. We then
output all candidates with the smallest Dodgson score. This definition follows the
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principles of the distance rationalizability framework: the underlying notion of
agreement is the existence of a Condorcet winner, and the unit changes are swaps
of adjacent candidates. This notion of unit change corresponds to a distance on
rankings known as the swap distance, which is the number of swaps of adjacent
candidates needed to transform one ranking into the other. We refer the reader to
Chapter 5 for a complexity-theoretic analysis of the Dodgson rule.

Kemeny. The Kemeny rule is also defined in terms of the swap distance. While it is
more common to view this rule as a social preference function, that is, a mapping
that, given a preference profile, outputs a set of rankings, in this section we will
be interested in the interpretation of this rule as a social choice function. Under
the Kemeny rule, we identify all rankings that minimize the total swap distance
to the voters’ ballots. The associated social preference function then outputs all
such rankings, whereas the Kemeny social choice function (which we will refer
to as the Kemeny rule) outputs all candidates that are ranked first in at least one
of these rankings. This rule can be viewed as another example of the distance
rationalizability approach: the consensual profiles are ones where all votes are
identical, and the unit changes are the same as for the Dodgson rule, that is, swaps
of adjacent candidates.

Plurality. Under Plurality rule, each candidate gets one point from each voter who
ranks her first; the winners are the candidates with the largest number of points.
Because Plurality considers voters’ top candidates only, it is natural to use a
notion of consensus that also has this property: we say that there is an agreement
in the society if all voters rank the same candidate first. Now, consider an n-voter
preference profile. If some candidate a receives na ≤ n Plurality votes, there are
n − na voters who do not rank her first. Thus, if we want to turn this profile into a
consensus where everyone ranks a first, and we are allowed to change the ballots
in any way we like (at a unit cost per ballot), we have to modify n − na ballots. In
other words, if our notion of a unit change is an arbitrary modification of an entire
ballot, then the number of unit changes required to make a candidate a consensus
winner is inversely related to her Plurality score. In particular, the candidates for
whom the number of required unit changes is minimal are the Plurality winners.
Alternatively, we can define a unit change as a swap of two (not necessarily
adjacent) candidates; the preceding argument still applies, thereby showing that
this construction also leads to the Plurality rule.

Borda. Recall that the Borda score of a candidate a in an n-voter, m-candidate pro-
file is given by (m − r1) + · · · + (m − rn) = nm −∑

i ri , where ri , i = 1, . . . , n,
is the rank of a in the ith ballot. To distance rationalize this rule, we use the same
notion of consensus as for the Plurality rule (i.e., all voters agree on who is the
best candidate) and the same notion of unit change as for the Dodgson rule and
the Kemeny rule, namely, a swap of adjacent candidates. Indeed, to ensure that
a is ranked first by voter i, we need to perform ri − 1 swaps of adjacent candi-
dates. Consequently, making a the unanimous winner requires

∑
i ri − n swaps.

That is, the number of swaps required to make a candidate a consensus winner
is inversely related to her Borda score. This construction, which dates back to
Farkas and Nitzan (1979), can be extended to scoring rules other than Borda, by
assigning appropriate weights to the swaps (Lerer and Nitzan, 1985).
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Copeland. The Copeland score of a candidate a can be defined as the number of
pairwise elections that a wins (a may also get additional points for the pairwise
elections that end in a tie; in what follows we focus on elections with an odd
number of voters to avoid dealing with ties). The Copeland winners are the
candidates with the highest Copeland score. For this rule, an appropriate notion
of consensus is the existence of a Condorcet winner. As for the notion of unit
change, it is convenient to formulate it in terms of the pairwise majority graph.
Recall that the pairwise majority graph G(R) of a profile R over a candidate set
A is the directed graph whose vertex set is A and there is a directed edge from
candidate a to candidate b if a strict majority of voters in R prefer a to b. Consider
two n-voter profiles R1 and R2 over a candidate set A; assume that n is odd. A
natural notion of a unit change in this setting is an edge reversal, that is, a pair
(a, b) ∈ A × A such that in G(R1) there is an edge from a to b, whereas in G(R2)
there is an edge from b to a. The distance between R1 and R2 is then defined as the
number of edge reversals. To see that this distance combined with the Condorcet
consensus rationalizes the Copeland rule, note that if a candidate’s Copeland score
is s, she can be made the Condorcet winner by reversing m − 1 − s edges, so
the number of edge reversals and the candidate’s Copeland score are inversely
related.

Maximin. The Maximin score of a candidate a in an n-voter profile R over a
candidate set A is the number of votes that a gets in her most difficult pairwise
election (i.e., minb∈A nab, where nab is the number of voters in R who prefer
a to b); the winners are the candidates with the highest score. Suppose that
R has no Condorcet winner, and consider a candidate a ∈ A. Let b be a’s most
difficult opponent, that is, a’s Maximin score is sa = nab; note that sa ≤ n

2 < n+1
2 ,

because a is not a Condorcet winner. Then if we add n + 1 − 2sa ballots where a

is ranked first, a will be the Condorcet winner in the resulting profile (which has
2n + 1 − 2sa voters, with n + 1 − sa of these voters ranking a above c for every
c ∈ A). On the other hand, if we add k < n + 1 − 2sa ballots, we obtain a profile
where at least n − sa voters out of n + k prefer b to a; as 2(n − sa) ≥ n + k, this
means that at least half of the voters in this profile prefer b to a, so a is not a
Condorcet winner. Thus, a candidate’s Maximin score is inversely related to the
number of ballots that need to be added in order to obtain a profile where this
candidate is the Condorcet winner.

This argument explains the Maximin rule in the language of agreement and
changes. However, this explanation does not quite fit our framework, because
it uses a notion of unit change (adding a single ballot) that does not directly
correspond to a distance. The problem here is that a distance is supposed to be
symmetric (see Section 8.2.2), whereas adding ballots is an inherently asym-
metric operation: if we can turn R into R′ by adding s ballots, we cannot turn
R′ into R by adding s ballots. It turns out, however, that the Maximin rule
can be rationalized via the distance that measures the number of ballots that
need to be added or deleted to turn one profile into another (see Elkind et al.,
2012b, for details). Intuitively, this is because for the purpose of reaching a
Condorcet consensus adding a ballot is always at least as useful as deleting a
ballot.
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We remark that there is another voting rule that is defined in terms of deleting
ballots so as to obtain a Condorcet consensus, namely, the Young rule, which is
discussed in Chapter 5. While the Young rule, too, can be distance-rationalized,
the construction is quite a bit more complicated than for Maximin (Elkind et al.,
2012b).

These examples raise a number of questions. First, is it the case that all voting
rules can be explained within the consensus-based framework? Second, what are the
appropriate notions of consensus and distance to consensus? Third, can we derive any
conclusions about a voting rule based on the notion of consensus and distance that
explain it? To answer these questions, we need to define our framework formally.

8.2.2 Formal Model

The consensus-based framework that has been introduced informally so far has two
essential components: the definition of what it means to have an agreement in the
society and the notion of distance between preference profiles. We will now discuss
both of these components in detail. Our presentation mostly follows Elkind et al.
(2010b).

Consensus Classes

Informally, we say that a preference profile R is a consensus if it has an undisputed
winner reflecting a certain concept of agreement in the society. Formally, a consensus
class for a set of candidates A is a pair K = (X , w) where X is a nonempty set of
profiles over A and w : X → A is a mapping that assigns a unique candidate to each
profile in X ; this candidate is called the consensus choice (winner).1 We require K to
be anonymous and neutral, in the following sense: For every profile R ∈ X a profile
R′ obtained from R by permuting voters satisfies R′ ∈ X and w(R′) = w(R), and
the profile R′′ obtained from R by renaming candidates according to a permutation
π : A → A satisfies R′′ ∈ X and w(R′′) = π(w(R)) (i.e., the winner under R′′ is
obtained by renaming the winner under R according to π).

The following classes of preference profiles have been historically viewed as situa-
tions of consensus:

Strong unanimity. This class, denotedS , consists of profiles where all voters report
the same preference order. The consensus choice is the candidate ranked first by
all voters. The reader may note that we have used this notion of consensus in
Section 8.2.1 to rationalize the Kemeny rule. Interestingly, it can also be used to
provide an alternative rationalization of the Plurality rule (Elkind et al., 2010a).

Unanimity. This class, denoted U , consists of profiles where all voters rank some
candidate c first (but may disagree on the ranking of the remaining candidates).
The consensus choice is this candidate c. This consensus class appears in our

1 One can also consider situations in which the voters reach a consensus that several candidates are equally well
qualified to be elected; this may happen, for example, under Approval voting when all voters approve the same
set of candidates. However, in what follows we limit ourselves to consensus classes with unique winners.
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rationalizations of Plurality and Borda. It is also used to rationalize other scoring
rules (Lerer and Nitzan, 1985; Elkind et al., 2009a).

Majority. This class, denoted M, consists of profiles where more than half of the
voters rank some candidate c first. The consensus choice is this candidate c. This
notion of consensus can be used to rationalize Plurality and a simplified version
of the Bucklin rule (Elkind et al., 2010b).

Condorcet. This class, denoted C, consists of profiles with a Condorcet winner.
The consensus choice is the Condorcet winner. This notion of consensus appears
in our rationalizations of the Dodgson rule, the Copeland rule, and Maximin.

Transitivity. This class, denoted T , consists of profiles whose majority relation
is transitive, that is, for every triple of candidates a, b, c ∈ A it holds that if a
majority of voters prefer a to b and a majority of voters prefer b to c, then a
majority of voters prefer a to c. Such profiles always have a Condorcet winner, so
we define the consensus choice to be the Condorcet winner. This consensus class
can be used to rationalize the Slater rule (Meskanen and Nurmi, 2008).

It is easy to see that we have the following containment relations among the consen-
sus classes: S ⊂ U ⊂ M ⊂ C and S ⊂ T ⊂ C. However, U and T are incomparable,
that is, U �⊆ T and T �⊆ U . Similarly, we have M �⊆ T and T �⊆ M.

Remark 8.1. A consensus class (X , w) can be viewed as a voting rule with domain
X that always outputs a unique candidate. Conversely, every anonymous and neutral
voting rule f such that |f (R)| = 1 for at least one profile R defines a consensus class:
if f is defined on the set of all profiles over a candidate set A, we can define a consensus
class Kf = (Xf , wf ) by setting Xf = {R | |f (R)| = 1} and for each R ∈ Xf defining
wf (R) to be the unique candidate in f (R). That is, this consensus class consists of all
profiles on which f makes a definitive choice. The condition that |f (R)| = 1 for some
profile R is necessary to ensure that Xf �= ∅.

There are other consensus classes one could consider: for example, one could study
a 2/3-variant of the majority consensus M, where more than 2/3 of the voters rank the
same candidate first (this choice of threshold stems from the observation that in many
countries changes to the constitution require the support of two thirds of the eligible
voters). However, these five classes appear to be representative enough to rationalize
many interesting voting rules.

Distances

To capture the idea of measuring the magnitude of changes in a preference profile, we
use distances on profiles. Recall that a distance on a set X is a mapping d : X × X →
R ∪ {+∞} such that for every x, y, z ∈ X the following four conditions are satisfied:

(a) d(x, y) � 0 (nonnegativity);
(b) d(x, y) = 0 if and only if x = y (identity of indiscernibles);
(c) d(x, y) = d(y, x) (symmetry);
(d) d(x, y) � d(x, z) + d(z, y) (triangle inequality).

A mapping that satisfies (a), (c), and (d), but not (b), is called a pseudodistance.
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For distance rationalizability constructions, we need distances that are defined on
pairs of profiles. Usually, it is enough to only consider pairs of profiles with the same
set of candidates (this will be the case for all distances considered in this chapter), and
in many cases it suffices to only consider pairs of profiles with the same number of
voters. In particular, to construct a distance on the space of all n-voter profiles over a
fixed set of candidates A, we can take a suitable distance d on the space L(A) of all
linear orders over A and extend it to a distance d̂ over the space of all n-voter preference
profiles Ln(A) by setting

d̂ ((u1, . . . , un), (v1, . . . , vn)) = d(u1, v1) + . . . + d(un, vn). (8.1)

It can be shown that d̂ satisfies all distance axioms whenever d does. This method of
building distances over profiles from distances over votes will play an important role
in our analysis (see Section 8.2.4).

We will now present several examples of distances on the space of preference
profiles. Some of these distances should look familiar to the reader, as they were used
to rationalize voting rules in Section 8.2.1.

Discrete distance. The discrete distance is defined on pairs of profiles with the
same set of candidates A and the same number of voters n using formula (8.1);
the underlying distance on L(A) is given by

ddiscr(u, v) =
{

0 if u = v,

1 if u �= v.

This distance was used in our rationalization of the Plurality rule.
Swap distance. The swap distance, which is also known as the Kendall tau dis-

tance, the Kemeny distance, the Dodgson distance, and the bubble-sort distance
(Kendall and Gibbons, 1990), is also defined using formula (8.1). The underlying
distance on L(A) is the swap distance between individual votes: dswap(u, v) is
the number of pairs (c, c′) ∈ A × A such that u ranks c above c′, but v ranks c′

above c.
(Weighted) footrule distance. This distance is also known as Spearman distance,

or Spearman footrule (Kendall and Gibbons, 1990). Let pos(u, c) denote the
position of candidate c in vote u (the top candidate in u has position 1, and the
bottom candidate in u has position m). Then the footrule distance on L(A) is
given by

dfr(u, v) =
∑
c∈A

|pos(u, c) − pos(v, c)|.

That is, we measure the displacement of each candidate as we move from u to
v, and then we take the sum over all candidates. This distance is extended to
preference profiles using formula (8.1). The reader can verify that we can use
the footrule distance d̂fr instead of the swap distance in our rationalization of the
Borda rule.
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Furthermore, let α = (α1, . . . , αm) be a vector of m nonnegative rationals
(weights). We define a (pseudo)distance dfr-α(u, v) on L(A) by setting

dfr-α(u, v) =
∑
c∈A

|αpos(u,c) − αpos(v,c)|. (8.2)

When all weights are distinct, dfr-α is a distance. However, when some of the
weights coincide, dfr-α is a pseudodistance, but not a distance. The reader can
verify that for α = (m − 1, . . . , 1, 0) the distance dfr-α coincides with dfr. It can be
shown that by using d̂fr-α we can rationalize the scoring rule with the score vector
α (Elkind et al., 2009a), that is, the rule that, given a profile R = (v1, . . . , vn),
outputs the set argmaxa∈A(αpos(v1,a) + · · · + αpos(vn,a)).


∞-Sertel distance. This distance, denoted by d̂sert
∞, is also obtained by extending

a distance on rankings to n-voter profiles; however, in contrast with all distances
considered so far, it is not defined via formula (8.1). Let u(i) denote the candidate
ranked in position i in vote u. We define the distance dsert : L(A) × L(A) → R
by setting

dsert(u, v) = max{i | u(i) �= v(i)},
with the convention that dsert(u, v) = 0 if u = v. The 
∞-Sertel distance on n-voter
preference profiles is then defined by setting

d̂sert
∞((u1, . . . , un), (v1, . . . , vn)) = max

i=1,...,n
dsert(ui, vi).

The reason for having the symbol 
∞ in the name of this distance and the notation

d̂sert
∞ will become clear in Section 8.2.4. This distance, together with the majority

consensus, can be used to provide a rationalization of a simplified version of the
Bucklin rule (Elkind et al., 2010b).

Edge reversal (pseudo)distance. This distance is defined over the set of all profiles
with an odd number of voters. Given two profiles R1, R2 over A, we set

drev(R1, R2) = |{(a, b) ∈ A × A | a >R1 b, b >R2 a}|,
where we write a >R b to denote that a majority of voters in the profile R prefer
a to b. This distance counts the number of edges in the pairwise majority graph
of R1 that need to be reversed to obtain the pairwise majority graph of R2. The
edge reversal distance was used in our rationalization of the Copeland rule; it can
also be used to rationalize the Slater rule (Meskanen and Nurmi, 2008).

Note that, technically speaking, drev is a pseudodistance rather than a distance:
we have drev(R1, R2) = 0 whenever R1 and R2 have the same pairwise majority
graph. It is perhaps more natural to think of the domain of drev as the space of all
tournaments over A, in which case drev satisfies all distance axioms.

Vote insertion (pseudo)distance. This distance is also defined over the set of all
profiles with a given candidate set. Consider two profiles R1 and R2 over a
candidate set A whose multisets of votes are given by V 1 and V 2 respectively.
The vote insertion distance dins between R1 and R2 is the size of the symmetric
difference between V 1 and V 2. This distance computes the cost of transforming
R1 into R2 (or vice versa) if we are allowed to add or delete votes at a unit cost.
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Elkind et al. (2012b) show that by combining this distance with the Condorcet
consensus we obtain the Maximin rule. Again, dins is a pseudodistance rather than
a distance: dins(R1, R2) = 0 if R1 and R2 have the same multiset of votes. It can
be viewed as a distance on the space of voting situations, that is, multisets of votes
over A.

We are now ready to put together the two components of our framework.

Definition 8.1. Let d be a (pseudo)distance on the space of preference profiles over
a candidate set A, and let K = (X , w) be a consensus class for A. We define the
(K, d)-score of a candidate a in a profile R to be the distance (according to d) between
R and a closest profile R′ ∈ X such that a is the consensus winner of R′. The set of
(K, d)-winners in a profile R consists of all candidates in A whose (K, d)-score is the
smallest.

Definition 8.2. A voting rule f is distance rationalizable via a consensus class K and
a distance d over profiles (or, (K, d)-rationalizable) if for every profile R a candidate
is an f -winner in R if and only if she is a (K, d)-winner in R.

We can now formalize our analysis of the six examples in Section 8.2.1: our
arguments show that the Dodgson rule is (C, d̂swap)-rationalizable, the Kemeny rule
is (S, d̂swap)-rationalizable, Plurality is (U , d̂discr)-rationalizable, the Borda rule is
(U , d̂swap)-rationalizable, the Copeland rule is (C, drev)-rationalizable, and Maximin
is (C, dins)-rationalizable. Observe that three of these well-known voting rules can be
rationalized using the same distance (but different consensus classes). Further examples
can be found in the work of Nitzan (2010): Chapter 6 of his book provides a summary
of rules that are rationalizable with respect to the unanimity consensus. Meskanen and
Nurmi (2008) describe distance rationalizations for several other voting rules; while
some of these rationalizations are very appealing, others appear less intuitive. Moti-
vated by this observation, we will now try to formalize what it means to have a “good”
distance rationalization.

8.2.3 Universal Distance Rationalizability

It turns out that the unrestricted distance rationalizability framework defined in Sec-
tion 8.2.2 is too powerful: Lerer and Nitzan (1985) show that if we do not impose any
restrictions on the distance used, then essentially any voting rule is rationalizable with
respect to all the standard consensus classes. This result was subsequently rediscovered
by Elkind et al. (2010b), and our presentation follows their work.

To formally state this universal distance rationalizability result, we need a notion of
compatibility between a voting rule and a consensus class.

Definition 8.3. A voting rule f is said to be compatible with a consensus class
K = (X , w), or K-compatible, if f (R) = {w(R)} for every profile R in X .2

2 One might think that the term “K-consistent” would be more appropriate than “K-compatible.” Indeed, a voting
rule that elects the Condorcet winner whenever one exists is usually referred to as Condorcet-consistent. We
chose to use the term “K-compatible” to avoid confusion with the normative axiom of consistency.



8 .2 consensus-based rules 179

We will now show that every voting rule is distance rationalizable with respect to
every consensus class that it is compatible with.

Theorem 8.2. Let A be a set of candidates, let f be a voting rule over A, and let
K = (X , w) be a consensus class for A. Then f is (K, d)-rationalizable for some
distance d if and only if it is K-compatible.

Proof. Let f be a voting rule that is (K, d)-rationalizable for some consensus class
K = (X , w) and distance d. Let R be some profile in X . There is only one profile at
distance 0 from R—namely, R itself. Hence, the unique (K, d)-winner in R is w(R).
Thus, f is K-compatible.

Conversely, suppose that f is K-compatible. We will now define a distance d over
the set of all profiles over the candidate set A as follows. We set d(R, R′) = 0 if R = R′.
We set d(R, R′) = 1 if (a) R ∈ X and w(R) ∈ f (R′) or (b) R′ ∈ X and w(R′) ∈ f (R).
In all other cases, we set d(R, R′) = 2. It is easy to check that d satisfies all distance
axioms. It remains to argue that f is (K, d)-rationalizable.

Consider a profile R ∈ X . Because f is K-compatible, we have f (R) = {w(R)}.
Furthermore, we have d(R, R) = 0 and there is no profile R′, R′ �= R, such that
d(R, R′) = 0. Thus, the unique (K, d)-winner in R is w(R), too.

On the other hand, consider a profile R �∈ X . Note that d(R, R′) ≥ 1 for every
profile R′ ∈ X . Because K is neutral and X �= ∅, for each a ∈ f (R) there exists a
consensus profile Ra in which a is the consensus winner. By construction, we have
d(R, Ra) = 1. Furthermore, we have d(R, R′) = 2 for every profile R′ ∈ X such that
w(R′) �∈ f (R). Thus, the set f (R) is exactly the set of (K, d)-winners in R, and the
proof is complete.

Theorem 8.2 implies that being compatible with any of our five standard consensus
classes suffices for distance rationalizability. Now, almost all common voting rules are
compatible with the strong unanimity consensus S , and hence distance rationalizable.
This argument does not apply to voting rules that do not have unique winners on
strongly unanimous profiles, such as Veto and k-Approval for k > 1 (recall that k-
Approval is the scoring rule with the score vector (1, . . . , 1︸ ︷︷ ︸

k

, 0, . . . , 0︸ ︷︷ ︸
m−k

), and Veto is

simply the (m − 1)-Approval rule). However, both Veto and k-Approval can be shown
to be distance rationalizable by a slightly different argument.

Corollary 8.3. For every anonymous neutral voting rule f over a set of candidates A

such that |f (R)| = 1 for some profile R there exist a consensus class K = (X , w) and
a distance d such that f is (K, d)-rationalizable.

Proof. We can use the consensus class Kf = (Xf , wf ) defined in Remark 8.1: by
definition, f is Kf -compatible, so Theorem 8.2 implies that f is (Kf , d)-rationalizable
for some distance d.

Clearly, both Veto and k-Approval satisfy the conditions of Corollary 8.3, so they
are distance rationalizable as well.

Yet, intuitively, the distance used in the proof of Theorem 8.2 is utterly unnatural. For
instance, we have seen that the Dodgson rule and the Kemeny rule can be rationalized
via the swap distance, which is polynomial-time computable. In contrast, Elkind et al.
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(2010b) show that applying Theorem 8.2 to either of these rules results in a rationaliza-
tion via a distance that is not polynomial-time computable (assuming P �= NP)—this
follows from the fact that winner determination for these rules is computationally hard,
as discussed in Chapter 5.

Thus, knowing that a rule is distance rationalizable—even with respect to a standard
notion of consensus—by itself provides no further insight into the properties of this
rule; for a rationalization to be informative, the distance used must be natural. Conse-
quently, we will now shift our focus from distance rationalizability per se to quality of
rationalizations, and seek an appropriate subclass of distances that would be expres-
sive enough to capture many interesting rules while allowing us to draw nontrivial
conclusions about rules that they rationalize.

8.2.4 Votewise Distances

In this section, we focus on distances that are obtained by first defining a distance on
preference orders and then extending it to profiles. The reader may observe that the

distances d̂discr, d̂swap, d̂fr, and d̂sert
∞ defined in Section 8.2.2 are constructed in this way.

This class of distances was identified by Elkind et al. (2010b), and our presentation in
this section is based on their work.

Definition 8.4. A norm on Rn is a mapping N : Rn → R that has the following
properties:

(a) positive scalability: N (αu) = |α|N (u) for all u ∈ Rn and all α ∈ R;
(b) positive semidefiniteness: N (u) ≥ 0 for all u ∈ Rn, and N (u) = 0 if and only if u =

(0, 0, . . . , 0);
(c) triangle inequality: N (u + v) ≤ N (u) + N (v) for all u, v ∈ Rn.

A well-known class of norms on Rn is that of p-norms 
p, p ∈ Z+ ∪ {∞}, given by


p(x1, . . . , xn) =
(

n∑
i=1

|xi |p
) 1

p

for p ∈ Z+, 
∞(x1, . . . , xn) = max{|x1|, . . . , |xn|}.

In particular, 
1(x1, . . . , xn) = |x1| + · · · + |xn|.
Definition 8.5. Let A be a fixed set of candidates, fix n > 0, let d be a distance on
L(A), and let N be a norm on Rn. We say that a distance D on the space of n-voter
profiles over the candidate set A is N-votewise if for every pair of profiles R and R′

over A with R = (u1, . . . , un) and R′ = (v1, . . . , vn) we have

D(R, R′) = N(d(u1, v1), . . . , d(un, vn)). (8.3)

It is easy to check that for every distance d on L(A) and every norm N on Rn the
function defined by (8.3) is a (pseudo)distance. We will denote this (pseudo)distance by
d̂N . If N = 
p for some p ∈ Z+ ∪ {∞}, we will write d̂ p instead of d̂ 
p . Furthermore,
because many distance rationalizations use 
1 as the underlying norm, we will write
d̂ instead of d̂ 1 (note that this notation is consistent with the one used earlier in this
chapter for d̂swap, d̂discr, d̂fr, and d̂sert

∞).
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Given a norm N , we say that a rule is N -votewise if it can be distance rationalized
via an N-votewise distance; we say that a rule is votewise if it is N-votewise for some
norm N .

Votewise distances are expressive enough to rationalize many classic voting rules.
For instance, the rationalizations of the Dodgson rule, the Kemeny rule, Plurality,
and the Borda rule described in Section 8.2.1 demonstrate that all these rules are 
1-
votewise, and the results of Lerer and Nitzan (1985) and Elkind et al. (2009a, 2010b)
imply that the class of votewise rules includes essentially all scoring rules,3 a simplified
version of the Bucklin rule, and several other less common voting rules.

We will now demonstrate that votewise rules have a number of desirable properties,
both from a normative and from a computational perspective.

Normative Properties of Votewise Rules

An important feature of the votewise distance rationalizability framework is that one
can derive properties of votewise rules from the properties of their components, that
is, the underlying distance on votes, the norm, and the consensus class. Elkind et al.
(2010b, 2011b) consider such classic normative properties of voting rules as anonymity,
neutrality, continuity, consistency, homogeneity and monotonicity, and, for each of
them, derive sufficient conditions on the components of a votewise rationalization for
the resulting rule to have the respective property. We present a sample of these results
in the following.

Anonymity. Recall that a voting rule is said to be anonymous if its result does not
change when the ballots are permuted. It turns out that anonymity of a votewise rule
is inherited from the corresponding norm. Specifically, a norm N on Rn is said to be
symmetric if it satisfies N(x1, . . . , xn) = N(xσ (1), . . . , xσ (n)) for every permutation σ

of {1, . . . , n}; note that all p-norms are symmetric. Elkind et al. (2010b) show the
following easy result.

Proposition 8.4. Suppose that a voting rule f is (K, d̂N )-rationalizable for some
pseudodistance d over L(A), a consensus class K, and a symmetric norm N . Then f

is anonymous.

Neutrality. A voting rule is said to be neutral if its result does not depend on the
candidates’ names. Neutrality of a votewise rule is a property of the underlying distance
on votes. Namely, a distance d on L(A) is said to be neutral if for every permutation
π : A → A and every pair of votes u, v ∈ L(A) it holds that d(u, v) = d(u′, v′) where
u′ and v′ are obtained from, respectively, u and v by renaming the candidates according
to π . The following proposition is due to Elkind et al. (2010b).

Proposition 8.5. Suppose that a voting rule f is (K, d̂N )-rationalizable for some norm
N , a consensus class K, and a neutral pseudodistance d over L(A). Then f is neutral.

Consistency. A voting rule f is said to be consistent if for every pair of profiles
R1, R2 such that f (R1) ∩ f (R2) �= ∅, the preference profile R1 + R2 obtained by

3 The exceptions are rules like Veto, which are not compatible with any standard consensus class; however, even
such rules are votewise rationalizable via a pseudodistance.
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concatenating R1 and R2 satisfies f (R1 + R2) = f (R1) ∩ f (R2). Consistency is a very
demanding property: while all common voting rules are anonymous and neutral, the
class of voting rules that are anonymous, neutral and consistent consists of compositions
of scoring rules (Young, 1975). Nevertheless, Elkind et al. (2010b) obtain a sufficient
condition for a distance rationalizable voting rule to be consistent.

Proposition 8.6. Suppose that a voting rule f is (U , d̂ p)-rationalizable for some
p ∈ Z+ and some pseudodistance d over L(A). Then f is consistent.

Homogeneity. A voting rule f is said to be homogeneous if for every profile R and
every positive integer k it holds that f (R) = f (kR), where kR is the preference profile
obtained by concatenating k copies of R. This notion can be seen as a relaxation of
the notion of consistency. Elkind et al. (2011b) present several sufficient conditions for
homogeneity of a votewise rule. For instance, they show that many of the voting rules
that can be rationalized via the 
∞ norm are homogeneous.

Proposition 8.7. Suppose that a voting rule f is (K, d̂∞)-rationalizable for some
pseudodistance d over L(A) and a consensus class K ∈ {S,U ,M}. Then f is homo-
geneous.

Monotonicity. A voting rule f is said to be monotone if moving a winning candidate
upward in some voters’ preference orders (without changing the relative order of other
candidates) does not make him a loser. To identify sufficient conditions for monotonicity
of a votewise rule, Elkind et al. (2011b) introduce several notions of monotonicity for
distances over votes. In particular, they define relatively monotone distances. These are
the distances over L(A) such that for every candidate a ∈ A the following condition
holds. Suppose that we have:

(i) two votes y, y ′ ∈ L(A) such that y and y ′ rank all candidates in A \ {a} in the same
order, but y ′ ranks a higher than y does, and

(ii) two votes x, z ∈ L(A) such that x ranks a first and z does not.

Then

d(x, y) − d(x, y ′) � d(z, y) − d(z, y ′). (8.4)

Elkind et al. (2011b) show that the relative monotonicity condition is satisfied by the
swap distance. Moreover, they prove the following result.

Proposition 8.8. Suppose that a voting rule f is (K, d̂)-rationalizable for some rel-
atively monotone distance d over L(A) and a consensus class K ∈ {S,U}. Then f is
monotone.

Algorithmic Properties of Votewise Rules

Votewise rules are also appealing from a complexity-theoretic perspective: it turns out
that we can show tractability results for them under a mild condition on the underlying
distance. For the definitions of the complexity classes mentioned in this section, we
refer the reader to the book of Hemaspaandra and Ogihara (2002).



8 .2 consensus-based rules 183

Definition 8.6. We say that a distance D on the space of profiles over a candidate set
A is normal if:

(a) D is polynomial-time computable;
(b) D takes values in the set Z+ ∪ {+∞};
(c) if R1 and R2 have a different number of votes, then D(R1, R2) = +∞.

Given a voting rule f , we consider the problem of determining whether a given
candidate is one of the winners in a given profile under f ; we refer to this problem as
f -Winner. Elkind et al. (2010b) show the following set of results for this problem.
Suppose that a voting rule f is (K, D)-rationalizable for some normal distance D and
a consensus class K ∈ {S,U ,M, C}. Then:

(i) f -Winner is in PNP;
(ii) if there exists a polynomial p such that for every pair of n-voter m-candidate profiles

R1, R2 it holds that D(R1, R2) ≤ p(m + n), then f -Winner is in �
p
2 ;

(iii) if there exists a distance on votes d such that D = d̂, then f -Winner is fixed-parameter
tractable with respect to the number of candidates;

(iv) if there exists a distance on votes d such that D = d̂ or D = d̂∞, K ∈ {U ,M}, and D

is neutral, then f -Winner is in P/poly.

The first two results extend to the transitivity consensus T (which was not considered
by Elkind et al. (2010b)); note also that for these results the distance D is not required
to be votewise. However, it is not clear if the FPT algorithm in (iii) can be extended to
T as well.

We emphasize that it is not the case that for every votewise rule the winner deter-
mination problem is in P (unless P = NP). In fact f -Winner may be intractable even
if f is 
1-votewise rationalizable with respect to a standard consensus class via an
easy-to-compute distance on votes: examples are provided by the Dodgson rule and
the Kemeny rule, which are known to be computationally hard (Hemaspaandra et al.,
1997a, 2005).

Votewise Distances: Discussion

We have seen that many common voting rules admit votewise distance rationaliza-
tions, and that distance rationalizable voting rules have several desirable properties.
On the other hand, the “trivial” distance rationalization presented in Theorem 8.2
is clearly not votewise. Furthermore, some voting rules (most notably, STV) can be
shown not to admit a votewise distance rationalization with respect to the standard
consensus classes (Elkind et al., 2010a); we remark that the known distance rational-
ization for STV (Meskanen and Nurmi, 2008) is rather complex. Thus, the concept of
a votewise distance appears to be useful for distinguishing between “good” and “bad”
rationalizations.

Note, however, that the rationalizations of the Copeland rule and Maximin given
in Section 8.2.1 are not votewise, despite being quite simple and intuitive. In fact, it
is not known whether these rules are votewise distance rationalizable. It remains a
challenge to come up with a definition of a “good” distance rationalization that covers
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all intuitively appealing rationalizations, but excludes the rationalization described in
Theorem 8.2.

8.3 Rules as Maximum Likelihood Estimators

We will now turn our attention to voting rules that can be represented as maximum
likelihood estimators. We start by revisiting the probabilistic model put forward by
Condorcet (1785), and its interpretation by Young (1988).

Briefly, the basic assumption of Condorcet’s model is that there always exists a
correct ranking of the alternatives, which, however, cannot be observed directly. Voters
derive their preferences over the alternatives from this ranking: when comparing two
alternatives, each voter is more likely to make the correct judgment than the incorrect
one. Moreover, voters make their decisions independently from each other, and a priori
each ranking is equally likely to be correct.

Formalizing Condorcet’s ideas turned out to be a challenging task; in what follows,
we discuss some of the reasons for this. However, from a historical perspective, his
ideas are very important, as they represent one of the earliest applications of what
is now known as the maximum likelihood estimation approach. Under this approach,
one computes the likelihood of the given preference profile for each possible “state
of the world,” that is, the true ranking of the alternatives. The best ranking(s) of the
alternatives are then the one(s) that have the highest likelihood of producing the given
profile. If we assume a uniform prior over the space of all possible rankings, this
procedure can be interpreted as estimating the most likely state of the world given the
preference data (the equivalence of the two interpretations follows immediately from
the Bayes rule).

Condorcet’s approach can be extended in two different directions: First, we can
consider different noise models, that is, ways in which voters’ preferences may arise
from the true state of the world. Second, instead of associating a state of the world
with a ranking of the alternatives, we can associate it with the identity of the best
alternative (or, more generally, a set of pairwise comparisons between the alternatives);
this approach is particularly attractive if the goal is to determine a single election winner
rather than a full ranking of the alternatives (and in particular if there is indeed a unique
“correct solution” to the decision problem at hand). In what follows, we survey recent
research that explores these directions.

8.3.1 Two Alternatives: Condorcet Jury Theorem

When there are only two alternatives to choose from, it is natural to use majority voting,
that is, select an alternative that is supported by at least half of the voters (breaking
ties arbitrarily). It turns out that this is also the right strategy in Condorcet’s model; in
fact, as the number of voters grows, the probability that majority voting identifies the
better alternative approaches 1. This result is known as the Condorcet Jury Theorem,
and dates back to the original paper of Condorcet (1785).

Theorem 8.9. Suppose that |A| = 2, and a priori each of the alternatives in A is
equally likely to be the better choice. Suppose also that there are n voters, and each voter
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correctly identifies the better alternative with probability p, 1/2 < p ≤ 1; further, each
voter makes her judgment independently from the other voters. Then the probability
that the group makes the correct decision using the simple majority rule approaches 1
as n → +∞.

Theorem 8.9 follows immediately from the Chernoff bound (see, e.g., Alon and
Spencer, 2008); Condorcet’s proof was based on a direct combinatorial argument.

Theorem 8.9 can be extended in a variety of ways. For instance, it can be generalized
to the case where voters are a priori not identical, that is, voter i’s probability to make
the correct choice is pi and not all pis are equal: Nitzan and Paroush (1982) and
Shapley and Grofman (1984) show that in this case it is optimal to use weighted voting,
assigning a weight of log pi

1−pi
to voter i. However, in practice the probabilities pi are

often not known; to mitigate this, Baharad et al. (2011, 2012) propose a procedure for
estimating them. Other extensions deal with settings where voters are not independent
(see, e.g., Shapley and Grofman, 1984; Berg, 1993a, 1993b; Ladha, 1992, 1993, 1995;
Dietrich and List, 2004) or strategic (Austen-Banks and Smith, 1994; McLennan, 1998;
Peleg and Zamir, 2012), or a priori the alternatives are not symmetric and the voters’
probabilities of making the correct choice depend on the state of nature (Ben-Yashar
and Nitzan, 1997).

When |A| > 2, the analysis becomes more complicated. In particular, it depends on
whether the goal is to identify the most likely ranking of alternatives or the alternative
that is most likely to be ranked first. We will now consider both of these options,
starting with the former.

8.3.2 Condorcet’s Model and Its Refinements

In his original paper, Condorcet made the following assumptions.

(1) In every pairwise comparison each voter chooses the better alternative with some fixed
probability p, where 1/2 < p ≤ 1.

(2) Each voter’s judgment on every pair of alternatives is independent of her judgment on
every other pair.

(3) Each voter’s judgment is independent of the other voters’ judgments.
(4) Each voter’s judgment produces a ranking of the alternatives.

However, assumptions (2) and (4) are incompatible. Indeed, if a voter ranks every
pair of alternatives correctly with some fixed probability, then she may end up with
a nontransitive judgment, which is prohibited by (4). In other words, if we insist that
voters always produce a linear order as their judgment, then their judgments on different
pairs of alternatives are no longer independent.

There are two differing opinions on how exactly Condorcet’s model should be
understood. Some believe that we should allow intransitive preferences, arguing that
the vote is not really a preference, but rather the voter’s best approximation to the
correct ranking as she perceives it. It may happen that the best approximation is in fact
intransitive (see, e.g., Truchon, 2008); however, it cannot be ignored, as it provides
useful information.
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Another interpretation of Condorcet’s proposal is as follows: a voter forms her
opinion by considering pairs of alternatives independently, but if the result happens to
be intransitive, she discards it and tries to form her opinion again until a valid (acyclic)
preference order is obtained. In statistics, the resulting probabilistic model is known
as the Mallows noise model (Mallows, 1957). Note, however, that this model violates
condition (2) (see, e.g., Gordon and Truchon, 2008).

Commenting on Condorcet’s writings, Young (1988) wrote: “One must admit that
the specific probabilistic model by which Condorcet reached his conclusions is almost
certainly not correct in its details.” He went further to say that the plausibility of any
solution based on Condorcet’s ideas must therefore be subjected to other tests. However,
he went on and developed Condorcet’s framework to see what Condorcet would have
obtained if he possessed the necessary technical skills to perform his analysis to
the end. We will now present Young’s analysis, together with some refinements and
extensions.

8.3.3 MLE for Choosing a Ranking

In this section, we describe an MLE approach to selecting the best ranking(s) of the
alternatives. Recall that a social preference function is a mapping that given a list
of rankings of the alternatives outputs a nonempty set of aggregate rankings; thus,
in this section we focus on representing social preference functions within the MLE
framework.

We start by presenting Young’s analysis of Condorcet’s proposal (see Young, 1988),
followed by a discussion of a more general approach put forward by Conitzer and
Sandholm (2005a) and Conitzer et al. (2009b).

Let u ∈ L(A) be the true state of the world, and let v ∈ L(A) be some ranking
that agrees with u on k pairs of alternatives. Note that we have dswap(v, u) = (

m
2

)− k.
Then under both interpretations of Condorcet’s model discussed in Section 8.3.2 the
probability that a voter forms opinion v is proportional to

pk(1 − p)(
m
2)−k = p(m

2)−dswap(v,u)(1 − p)dswap(v,u).

If each voter forms her opinion independently from other voters, the probability of
a profile (v1, . . . , vn) given that u is the true state of the world is proportional to

n∏
i=1

(
p

1 − p

)−dswap(vi ,u)

=
(

p

1 − p

)−∑n
i=1 dswap(vi ,u)

.

If each state of the world is a priori considered equally likely, the rankings that are most
likely to be correct are the ones that maximize the probability of the observed data, or,
equivalently, minimize

∑n
i=1 dswap(vi, u) (note that p > 1/2 and hence p

1−p
> 1). Thus,

Condorcet’s approach results in a social preference function fCond that given a profile
R = (v1, . . . , vn) over a candidate set A, outputs the set argminu∈L(A)

∑n
i=1 dswap(vi, u).

This is exactly the social preference function associated with the Kemeny rule (see
Section 8.2.1).
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General r-Noise Models

Young’s analysis is based on a specific noise model, that is, a way voters’ judgments are
formed given an underlying state of the world. By considering other noise models, we
can obtain other social preference functions. To pursue this agenda, we need a formal
definition of a noise model.

Definition 8.7. A noise model for rankings, or an r-noise model, over a candidate set
A is a family of probability distributions P(· | u)u∈L(A) on L(A). For a given u ∈ L(A),
P(v | u) is the probability that a voter forms a preference order v when the correct
ranking is u.

We emphasize that the parameters of a noise model are assumed to be the same for
all voters and do not depend on the number of voters. That is, we think of voters as
independent agents that are influenced by the same factors in the same way.

Example 8.10. The Mallows model (Mallows, 1957) is a family of r-noise models(
Pdswap,p

)
1/2<p<1

given by

Pdswap,p(v | u) = 1

μp

ϕ−dswap(v,u), where ϕ = p

1 − p
and μp =

∑
v∈L(A)

ϕ−dswap(v,u).

Here, μp is the normalization constant; because dswap is a neutral distance, the value of
μp does not depend on the choice of u (Mallows, 1957).

Under the MLE approach, every r-noise model leads to a social preference function.

Definition 8.8. A social preference function f over A is the maximum likelihood
estimator (MLE) for an r-noise model P over A if for every positive integer n and
every n-voter profile R = (v1, . . . , vn) it holds that

f (R) = argmax
u∈L(A)

n∏
i=1

P(vi | u).

A very general method of constructing r-noise models was proposed by Conitzer
et al. (2009b), who introduced the notion of a simple ranking scoring function.

Definition 8.9. A social preference function f over A is said to be a simple ranking
scoring function (SRSF) if there exists a mapping ρ : L(A) × L(A) → R such that for
every positive integer n and every n-voter profile R = (v1, . . . , vn) it holds that

f (R) = argmax
u∈L(A)

n∑
i=1

ρ(vi, u). (8.5)

Intuitively, ρ(v, u) assigns a score to v based on the similarity between v and u,
and f chooses u so as to maximize the total score of the given profile. We say that
a mapping ρ : L(A) × L(A) → R is neutral if ρ(v′, u′) = ρ(v, u), where rankings v′

and u′ are obtained by renaming alternatives in v and u according to some permutation
π : A → A. Conitzer et al. (2009b) show that a simple ranking scoring function f is
neutral if and only if there exists a neutral mapping ρ satisfying (8.5).
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Example 8.11. Every distance d on L(A) defines a simple ranking scoring function:
we can set ρ(v, u) = −d(v, u). The corresponding social preference function maps
a profile R = (v1, . . . , vn) to the set of rankings argminu∈L(A)

∑n
i=1 d(vi, u). Observe

that this social preference function is closely related to the voting rule that is distance
rationalizable via d̂ and the strong unanimity consensus S .

Every SRSF corresponds to an infinite family of r-noise models: If f is the SRSF
defined by a mapping ρ, then for every ϕ ∈ (1,+∞) we can set

Pρ,ϕ(v | u) = 1

μρ,ϕ,u

ϕ ρ(v,u), where μρ,ϕ,u =
∑

v∈L(A)

ϕ ρ(v,u); (8.6)

Conitzer et al. (2009b) use ϕ = 2 in their paper. By construction, f is the maximum
likelihood estimator for Pρ,ϕ for every ϕ ∈ (1,+∞).

Conitzer et al. (2009b) show that for social preference functions that are neutral
(i.e., their output does not depend on the names of the candidates) the converse is also
true. More precisely, they prove the following characterization result.

Theorem 8.12. A neutral social preference function is an MLE if and only if it is an
SRSF.

Theorem 8.12 provides a convenient way to show that a given social preference
function f is an MLE: it suffices to exhibit a mapping ρ witnessing that f is an SRSF.
Conitzer et al. (2009b) apply this method to show that for every score vector α =
(α1, . . . , αm) the corresponding social preference function fα is an MLE. In the rest of
this section, we give a sketch of their argument.

Recall that fα is the social preference function that orders the candidates by their
α-scores, where the α-score of a candidate a in a profile R = (v1, . . . , vn) is given
by sα(R, a) = ∑n

i=1 αpos(vi ,a); if some candidates have the same score, fα outputs all
rankings that can be obtained by breaking such ties in some way.

To show that fα is an SRSF, let β1, . . . , βm be a monotonically decreasing sequence
(e.g., we can take βj = m − j ), and set

ρα(v, u) =
∑
a∈A

βpos(u,a)αpos(v,a), (8.7)

We claim that fα is the simple ranking scoring function that corresponds to ρα . Indeed,
for a given profile R = (v1, . . . , vn) we obtain

n∑
i=1

ρα(vi, u) =
∑
a∈A

βpos(u,a)

(
n∑

i=1

αpos(vi ,a)

)
=
∑
a∈A

βpos(u,a)sα(R, a).

Thus, for u to maximize the expression
∑n

i=1 ρα(vi, u), we should have βpos(u,a) >

βpos(u,b) (and hence pos(u, a) < pos(u, b)) whenever sα(R, a) > sα(R, b), that is, u

orders the candidates by their α-score from the highest to the lowest, breaking ties
arbitrarily. Theorem 8.12 then implies the following corollary.

Corollary 8.13. The social preference function fα is an MLE.
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8.3.4 MLE for Choosing a Winner

In the previous section we described an MLE approach to selecting the best ranking(s).
However, typically our goal is to select a single winner (or possibly a set of winners)
rather than a ranking of the candidates. To extend the MLE framework to this setting,
we can simply output the top candidate(s) in the best ranking(s). Alternatively, we can
estimate the likelihood that a given candidate is the best. To this end, for each candidate
we determine the total probability mass (with respect to the uniform distribution) of
the rankings where she is the top choice, and output the candidate(s) that maximize this
quantity; the validity of this method follows from the Bayes rule. We will now discuss
these approaches in more detail.

Deducing Winners from Rankings: MLERIV Rules

In Section 8.2.1 we transformed the social preference function associated with the
Kemeny rule into a voting rule, by picking the top candidate in each ranking output by
this social preference function. By extending this procedure to arbitrary MLE social
preference functions, we obtain a class of rules known as MLERIV (Conitzer and
Sandholm, 2005a).

Definition 8.10. Let f be a social preference function that is MLE for an r-noise model
P . Let f̂ be a voting rule defined by f̂ (R) = {top(u) | u ∈ f (R)}, where top(u) denotes
the top candidate in ranking u. This rule is called the maximum likelihood estimator
for ranking under identically distributed independent votes (MLERIV) for P .

According to Definition 8.10, the Kemeny rule is MLERIV for the Mallows noise
model. Another family of MLERIV rules is provided by Example 8.11: Theorem 8.12
implies that for every neutral distance d over L(A) the (S, d̂)-rationalizable voting rule
is MLERIV. Furthermore, Corollary 8.13 implies that every scoring rule is MLERIV.

Estimating the Winners: Young’s Interpretation of Condorcet’s Proposal

The MLERIV-based approach provides a simple way to cast many voting rules within
the MLE framework. However, it is not appropriate if our goal is to output the candidate
that is most likely to be ranked first. Indeed, under an r-noise model the probability
that a candidate is ranked first in the true ranking is obtained by adding together the
probabilities of all rankings where she appears on top, and it is entirely possible that the
top candidate in the most likely ranking is a, but the cumulative probability of rankings
that have a on top is lower than the cumulative probability of rankings that have some
other candidate b on top.

This was clearly understood by Condorcet himself, who probably did not have the
technical skills to pursue this line of reasoning. Young (1988) argues that this approach
would lead him to the Borda rule, at least when p is sufficiently close to 1/2. Young
also speculates on reasons why Condorcet might have chosen to abandon this train
of thought (see Young, 1988, for an amusing account of the relationship between
Condorcet and Borda).
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We will now present Young’s extension of Condorcet’s analysis. While it aims to
estimate the most likely winner under the Mallows model, it makes the simplifying
assumption that in the prior distribution over the states of the world all pairwise
comparisons between the alternatives are independent from each other. For the Mallows
model this assumption is not true: if A = {a, b, c} and the prior distribution over the
states of the world is uniform over L(A), knowing that in the true state of the world a

is ranked above b influences our beliefs about the outcome of the comparison between
a and c. Thus, Young’s analysis can be seen as a heuristic algorithm for computing the
most likely winner; later, we will see that its output may differ from that of the exact
algorithm (see also Xia, 2014a).

Given a pair of candidates a, b ∈ A, let nab denote the number of voters in a given
profile (v1 . . . , vn) who prefer a to b. Let S be a fixed set of voters of size nab, and
consider the event that the voters in S prefer a to b, while the remaining voters prefer b

to a; denote this event by ES . If in the true state of the world a is preferred to b, then the
probability of ES is exactly pnab (1 − p)nba . Conversely, if in the true state of the world b

is preferred to a, then the probability of ES is (1 − p)nabpnba . The prior probability that
in the true state of the world a is preferred b is exactly 1/2. Therefore, the probability
of the event ES is 1

2 (pnab (1 − p)nba + (1 − p)nabpnba ). Hence, by the Bayes rule, the
probability that in the true state of the world a is preferred to b is proportional to

pnab (1 − p)nba

pnab (1 − p)nba + (1 − p)nabpnba
. (8.8)

To compute the probability that in the true state of the world a is preferred to every
other candidate, we take the product of probabilities (8.8) over all b �= a; note that this
step makes use of the assumption that in the prior distribution over the states of the
world all pairwise comparisons are independent. It follows that the probability that a

is the true winner given that the observed profile is (v1, . . . , vn) is given by∏
b∈A\{a}

pnab (1 − p)nba

pnab (1 − p)nba + (1 − p)nabpnba
=

∏
b∈A\{a}

1

1 +
(

1−p
p

)nab−nba
.

Thus, the most likely winners are the candidates that minimize the expression

κa(ϕ) =
∏

b∈A\{a}

(
1 + ϕnba−nab

)
, where ϕ = p

1 − p
. (8.9)

Now, the behavior of this expression crucially depends on the value of ϕ = p
1−p

. We
will consider two cases: (1) p is very close to 1 and hence ϕ → +∞ (i.e., a voter is
almost always right) and (2) p is very close to 1/2 and hence ϕ → 1 (a voter has only
a slight advantage over a random coin toss). We denote the corresponding voting rules
by MLE∞

intr and MLE1
intr, respectively (the reasons for this notation are explained in

Remark 8.14). The following analysis is based on the work of Elkind and Shah (2014).

p → 1, ϕ → +∞. The rate of growth of κa(ϕ) as ϕ → +∞ depends on the degree
of its highest-order term, that is,

∑
b∈A\{a}:nba>nab

(nba − nab): slowest-growing
functions correspond to the most likely candidates.

Thus, to determine the MLE∞
intr-winners, we first compute the score of each

candidate a ∈ A as the sum of a’s loss margins in all pairwise elections she
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loses: sT (a) = ∑
b∈A\{a}:nba>nab

(nba − nab). If there is a unique candidate with the
minimum score, this candidate wins. In case of a tie among a1, . . . , ak , MLE∞

intr
takes into account the coefficients of the highest-order terms as well as the lower-
order terms of κa1 (ϕ), . . . , κak

(ϕ); the resulting tie-breaking procedure is quite
complicated (but can be shown to be polynomial-time computable). The voting
rule that outputs the set arg mina∈A sT (a) was proposed by Tideman (1987) as an
approximation to the Dodgson rule, and is now known as the Tideman rule; thus,
our analysis shows that MLE∞

intr is a refinement of the Tideman rule. The Tideman
rule has been studied by McCabe-Dansted et al. (2008), as well as by Caragiannis
et al. (2014b), who refer to it as the simplified Dodgson rule; an overview of their
results can be found in Chapter 5.4

p → 1/2, ϕ → 1. In this case, we are interested in the behavior of κa(ϕ) as ϕ → 1.
We have κa(1) = 2m−1 for all a ∈ A. Furthermore, the derivative of κa(ϕ) at ϕ = 1
is
∑

c �=a(nca − nac)2m−2 = ∑
c �=a(n − 2nac)2m−2. To minimize this expression,

we need to maximize
∑

c �=a nac, which is the Borda score of a. Hence, MLE1
intr is

a refinement of the Borda rule: it selects the Borda winner when it is unique, and if
there are several Borda winners, it breaks ties by taking into account higher-order
derivatives of κa(ϕ) at ϕ → 1.

Remark 8.14. One can think of Young’s procedure as estimating the most likely
winner under a different noise model, namely, one where the prior distribution assigns
equal probability to all tournaments over A, that is, the state of the world is described
by the outcomes of

(
m
2

)
comparisons, and all vectors of outcomes are considered to be

equally likely. Voters’ preferences are tournaments as well; in each vote, the direction
of every edge agrees with the ground truth with probability p and disagrees with it
with probability 1 − p, with decisions for different edges made independently from
each other. We emphasize that this distribution assigns nonzero probability to “states of
the world” that violate transitivity. For this noise model, Young’s procedure correctly
identifies the candidate with the largest cumulative probability of the states of the world
where she wins all her pairwise elections.

It is often claimed that MLE1
intr is the Borda rule. We will now show that this claim

is inaccurate: while MLE1
intr chooses among the Borda winners, it may fail to select

some of them.

Example 8.15. Let A = {a, b, c, d} and consider a 4-voter profile over A given by
(adcb, bcad, abdc, bcad) (where we write xyzt as a shorthand for x � y � z � t).
The Borda winners in this profile are a and b, and their Borda score is 8. On the other
hand, we have κa(ϕ) = 4(1 + ϕ−4), κb(ϕ) = 2(1 + ϕ−2)2. The reader can verify that
κa(1.2) ≈ 5.93, κb(1.2) ≈ 5.74, and

dκa

dϕ

∣∣∣
ϕ=1

= dκb

dϕ

∣∣∣
ϕ=1

= −16, but
d2κa

(dϕ)2

∣∣∣
ϕ=1

= 48,
d2κb

(dϕ)2

∣∣∣
ϕ=1

= 32,

so b emerges as the unique winner under MLE1
intr.

4 Young (1988) appears to suggest that MLE∞
intr is Maximin; our argument shows that this is not the case.
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Estimating the Winners under an r-Noise Model

It is natural to ask whether we can estimate the most likely winner under the Mallows
model without making the simplifying assumption that in the prior distribution over
the states of the world all pairwise comparisons are independent. To the best of our
knowledge, Procaccia et al. (2012) were the first to do this for p → 1/2; their argument
extends to more general noise models and to settings where the goal is to select a
fixed-size subset of candidates. They have also considered the case p → 1 (see also
the work of Elkind and Shah, 2014). Just as in Young’s analysis, the result turns out to
depend on the value of p: when p → 1 (and ϕ = p

1−p
→ +∞), we obtain a refinement

of the Kemeny rule, and when p → 1/2 (and ϕ → 1), we obtain a refinement of the
Borda rule. We will now present the arguments both for ϕ → +∞ and for ϕ → 1; we
refer to the resulting rules as MLE∞

tr and MLE1
tr, respectively.

For every candidate a ∈ A let La denote the set of all rankings in L(A) where a

is ranked first. Recall that under the Mallows noise model the probability of a profile
(v1, . . . , vn) given that the true state of the world is described by a ranking u is
proportional to ϕ−∑n

i=1 dswap(vi ,u). Thus, to compute the most likely winner, we need to
find the candidates that maximize the expression

τa(ϕ) =
∑
u∈La

ϕ−∑n
i=1 dswap(vi ,u).

p → 1, ϕ → +∞. The rule MLE∞
tr returns a set of candidates S such that for

every a ∈ S, b ∈ A \ S we have τa(ϕ) > τb(ϕ) for all sufficiently large values
of ϕ. To see that S is not empty, note that functions τa(ϕ), a ∈ A, are Laurent
polynomials (i.e., sums of powers of ϕ), and therefore any two of these functions
either coincide or have finitely many intersection points. Moreover, for each a ∈ A

the most significant summand of τa(ϕ) at ϕ → +∞ is

ϕ−∑n
i=1 dswap(vi ,u

′), where u′ ∈ argmin
u∈La

n∑
i=1

dswap(vi, u).

Hence, MLE∞
tr is a refinement of the Kemeny rule.

p → 1/2, ϕ → 1. We have τa(1) = (m − 1)! for all a ∈ A. Furthermore, the deriva-
tive of τa(ϕ) at ϕ = 1 is given by

dτa

dϕ

∣∣∣
ϕ=1

= −
∑
u∈La

n∑
i=1

dswap(vi, u) = −
n∑

i=1

∑
u∈La

dswap(vi, u).

It is easy to show by induction on j that if pos(vi, a) = j then we have∑
u∈La

dswap(vi, u) = j (m − 1)! + Cm, where Cm is a function of m (i.e., does
not depend on vi). As

∑n
i=1(m − pos(vi, a)) is exactly the Borda score of a, it

follows that a ∈ argminc∈A
dτc

dϕ

∣∣
ϕ=1 if and only if a is a Borda winner. Hence,

MLE1
tr is a refinement of the Borda rule. Furthermore, it can be checked that

it is distinct from the Borda rule, that is, it may fail to elect some Borda win-
ners; this can happen when τa(ϕ) and τb(ϕ) are different from each other, even
though their derivatives at ϕ = 1 coincide. Furthermore, it can also be shown that
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MLE1
tr �= MLE1

intr (Elkind and Shah, 2014), that is, these two rules are two distinct
refinements of the Borda rule.

We can apply a similar procedure to other r-noise models. It turns out that for noise
models that are derived from neutral simple ranking scoring functions via Equation 8.6
in the case ϕ → 1 we obtain a voting rule that is a refinement of some scoring rule.

In more detail, consider a neutral SRSF given by a mapping ρ : L(A) × L(A) → R,
a value ϕ ∈ (1,+∞), and the corresponding r-noise model Pρ,ϕ(v | u) = 1

μρ,φ,u
ϕρ(v,u).

Because ρ is neutral, μρ,ϕ,u is the same for all u ∈ L(A). Assume that each ranking of
the alternatives is a priori equally likely. A direct application of the Bayes rule shows
that the probability that the true state of the world is a ranking where a is placed first
given that the input profile is (v1, . . . , vn) is proportional to∑

u∈La

ϕ
∑n

i=1 ρ(vi ,u). (8.10)

Let MLE1
ρ be the voting rule that maps (v1, . . . , vn) to the set of candidates that

maximize expression (8.10) for values of ϕ that are close to 1.
We can view expression (8.10) as a function of ϕ; its derivative at ϕ = 1 equals

∑
u∈La

n∑
i=1

ρ(vi, u) =
n∑

i=1

∑
u∈La

ρ(vi, u).

This means that the set of MLE1
ρ-winners is a (possibly strict) subset of W =

argmaxa∈A

∑n
i=1

∑
u∈La

ρ(vi, u). Let MLE1
ρ be a coarsening of MLE1

ρ that, given a
profile (v1, . . . , vn), outputs the entire set W . Because ρ is neutral, the value of the

expression
∑

u∈La
ρ(vi, u) only depends on the position of a in vi . Thus, MLE1

ρ is a

scoring rule. Conversely, every scoring rule can be obtained as MLE1
ρ for a suitable

function ρ: for example, for the rule fα we can use the function ρα defined by (8.7).

Noise Models for Winners: MLEVIW Rules

We have seen how to derive a voting rule from an r-noise model by considering the
cumulative probability of rankings with a given winner. Conitzer and Sandholm (2005a)
put forward a direct MLE-based approach for defining voting rules. It is based on a
simplified noise model, where the “state of the world” is simply the identity of the best
candidate, and the likelihood of a given vote depends on the position of this candidate
in the vote.

Definition 8.11. A noise model for winners, or a w-noise model, over a candidate set
A, |A| = m, is a family of probability distributions P(· | a)a∈A on {1, . . . , m}. For a
given a ∈ A, P(j | a) is the probability of a vote where a is ranked in position j given
that a is the correct winner. We require P(j | a) > 0 for all a ∈ A, j = 1, . . . , m.

A voting rule f over a candidate set A is a maximum likelihood estimator for
winner under identically distributed independent votes (MLEWIV) with respect to a
w-noise model P over A if for every positive integer n and every preference profile
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R = (v1, . . . , vn) ∈ L(A)n it holds that

f (R) = argmax
a∈A

n∏
i=1

P(pos(vi, a) | a). (8.11)

However, the power of this approach is somewhat limited, at least if we require
neutrality: neutral MLEWIV rules are simply scoring rules (Conitzer and Sandholm,
2005a; Elkind et al., 2010b). Note the some form of neutrality is implicit in the definition
of a w-noise model: by construction, this model assigns the same probability to any
two votes that rank a in the same position, irrespective of how they rank the remaining
candidates.

Proposition 8.16. For every score vector α = (α1, . . . , αm) the scoring rule fα is
MLEWIV. Conversely, every neutral MLEWIV rule is a scoring rule.

Proof. Given a score vector α = (α1, . . . , αm), define a w-noise model Pα as
Pα(j | a) = 1

μα
2αj , where μα = ∑m

j=1 2αj . Now, consider an arbitrary profile R =
(v1, . . . , vn) over A and a candidate a ∈ A. For each i = 1, . . . , n, let pi = pos(vi, a).
The α-score of a in R is given by sα(R, a) = ∑n

i=1 αpi
. On the other hand, we have

n∏
i=1

Pα(pos(vi, a) | a) = 1

μn
α

n∏
i=1

2αpi = 1

μn
α

2 sα(a,R). (8.12)

Hence, the set of most likely candidates under Pα is exactly the set of fα-winners.
Conversely, let f be a neutral MLEWIV rule for a w-noise model P . It is easy

to verify that P is neutral, that is, P(j | a) = P(j | b) for every j = 1, . . . , m and
every a, b ∈ A. Now, fix some a ∈ A and set αj = log2 P(j | a) for all j = 1, . . . , m.
Equation (8.12) shows that the scoring rule fα coincides with f .

Proposition 8.16 provides an alternative characterization of scoring rules, thus com-
plementing the well-known results of Smith (1973) and Young (1975). Equivalently,
one can say that the results of Smith and Young provide a characterization of MLEWIV
rules in terms of standard axiomatic properties. A natural open question, which was
suggested by Conitzer et al. (2009b), is whether a similar characterization can be
obtained for MLERIV rules.

To conclude our discussion of the MLEWIV rules, we note that these rules arise
naturally from the ranking-based model considered in the previous section. Indeed, for

a neutral function ρ the rule MLE1
ρ is MLEWIV. To see this, note that given a candidate

a ∈ A, we can pick ϕ ∈ (1,+∞) and m rankings v1, . . . , vm such that pos(vj , a) = j

for j = 1, . . . , m, and set

P(j | a) = 1

μ
ϕ
∑

u∈La
ρ(vj ,u), where μ =

m∑
j=1

ϕ
∑

u∈La
ρ(vj ,u).

It is easy to verify that for any choice of ϕ ∈ (1,+∞) and v1, . . . , vm the MLEWIV

rule that corresponds to this noise model is exactly MLE1
ρ .

Finally, we remark that Ben-Yashar and Paroush (2001) consider another approach to
estimating winners under noise: in their model, each voter has to specify one candidate
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(rather than a ranking of the candidates), and a voter’s probability of voting for the
true winner depends on the identity of the winner, and may vary from one voter to
another. Ben-Yashar and Paroush present an extension of Condorcet’s Jury Theorem
(see Section 8.3.1) to this setting.

8.4 Conclusions and Further Reading

We have discussed two approaches to rationalizing voting rules: a consensus-based
approach that leads to the distance rationalizability framework and a probabilistic
approach that leads to the MLE framework. We showed how to rationalize many
common voting rules in each of these frameworks. For some rules, such as the Kemeny
rule, the rationalizations provided by both frameworks are closely related, while for
others (e.g., scoring rules), they seem to be quite different, and thus provide different
perspectives on the rule in question.

Due to space constraints, we were not able to overview the entire body of
research on these two frameworks; we will now briefly mention some of the relevant
papers.

Service and Adams (2012a) consider randomized strategyproof approximations to
distance rationalizable voting rules. Boutilier and Procaccia (2012) relate the concept
of distance rationalizability to the framework of dynamic social choice (Parkes and
Procaccia, 2013). Distance-based approaches have also been considered in the context
of judgment aggregation (Lang et al., 2011; Dietrich, 2014), as well as in other areas
of social choice (see Eckert and Klamler, 2011, and references therein).

Xia et al. (2010a) apply the MLE framework to voting in multi-issue domains, and
Xia and Conitzer (2011b) extend it to partial orders, and a more general notion of “state
of the world”; for instance, they consider settings where the goal is to estimate the top
k alternatives for k ≥ 1. The latter problem is explored in more detail by Procaccia
et al. (2012).

Caragiannis et al. (2013) investigate a complementary issue: given a noise model
and a fixed voting rule, how many samples do we need to generate so that this rule
identifies the correct winner? They also consider voting rules that perform well with
respect to families of noise models; such rules are further explored by Caragiannis
et al. (2014a) and Xia (2014b). Drissi-Bakhkhat and Truchon (2004) modify the Mal-
lows model by relaxing the assumption that the probability of correctly ordering two
alternatives is the same for all pairs of alternatives. They let this probability increase
with the distance between the two alternatives in the true order, to reflect the intuition
that a judge or voter is more prone to errors when confronted with two comparable
alternatives than when confronted with a good alternative and a bad one. Truchon
(2008) shows that when this probability increases exponentially with the distance, the
resulting ranking orders the candidates according to their Borda scores. MLE analysis
admits a Bayesian interpretation: if we assume the uniform prior over the true states
of the world, then an MLE rule outputs the maximum a posteriori estimate. Pivato
(2012) considers a more general class of statistical estimators (in particular, settings
where the prior distribution over the possible states of the world need not be uniform)
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and domains other than preference aggregation (including judgment aggregation and
committee selection).
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CHAPTER 9

Voting in Combinatorial
Domains

Jérôme Lang and Lirong Xia

9.1 Motivations and Classes of Problems

This chapter addresses preference aggregation and voting on domains which are the
Cartesian product (or sometimes, a subset of the Cartesian product) of finite domain
values, each corresponding to an issue, a variable, or an attribute.

As seen in other chapters of this handbook, voting rules map a profile (usually, a
collection of rankings, see Chapter 1) to an alternative or a set of alternatives. A key
question has to do with the structure of the set of alternatives. Sometimes, this set
has a simple structure and a small cardinality (e.g., in a presidential election). But in
many contexts, it has a complex combinatorial structure. We give here three typical
examples:

� Multiple referenda. On the day of 2012 U.S. presidential election, voters in California
had to decide whether to adopt each of 11 propositions.1 Five referenda were categorized
as budget/tax issues. Specifically, two of them (Propositions 30 and 38) both aimed to
raise taxes for education, with different details on the type and rate of the tax. Similarly,
in Florida voters had to vote on 11 propositions, eight of which were categorized as
budget/tax issues.

� Group configuration or group planning. A set of agents sometimes has to make a
common decision about a complex object, such as a common menu (composed for
instance of a first course, a main course, a dessert and a wine, with a few possible values
for each), or a common plan (for instance, a group of friends have to travel together to
a sequence of possible locations, given some constraints on the possible sequences).

� Committee elections and more generally multiwinner elections. A set of agents has to
choose a group of delegates or representatives of some given size, from a larger set of
candidates. As another example, a group of friends wants to choose a set of DVDs to
purchase collectively, from a larger set, subject to some budget constraints.

1 http://en.wikipedia.org/wiki/California elections, November 2012.
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In these three examples, the set of alternatives has a combinatorial structure: it
is a Cartesian product A = D1 × . . . × Dp, where for each i, Di is a finite value
domain for a variable Xi , or, in the third example, a subset of a Cartesian product (see
further). For the menu example, we may have for instance D1 = {soup, salad, quiche},
D2 = {beef , salmon, tofu}, and so on. For the multiple referenda example, or more
generally in the case of binary variables (which for the sake of simplicity we assume
in most of the chapter), we write Di = {0i , 1i} for each i. Also, when all variables are
binary, we usually drop indices and parentheses: for instance, (11, 02, 13) is denoted
simply by 101.

Each of these examples has specific properties that may call for specific ways of
solving them, which we review in this chapter. Still, the major issue for all classes of
problems mentioned, is the trade-off between expressivity and cost. This is illustrated
in the following example for multiple referenda by Lacy and Niou (2000):

Example 9.1. We have three issues, and three voters with the following preferences:

� Voter 1: 110 � 101 � 011 � 001 � 100 � 010 � 000 � 111
� Voter 2: 101 � 011 � 110 � 010 � 100 � 001 � 000 � 111
� Voter 3: 011 � 110 � 101 � 100 � 010 � 001 � 000 � 111

At one extreme, we can allow the voters to be fully expressive: each voter submits
a full ranking over all 23 alternatives. The number of alternatives grows exponentially
in the number of issues, which imposes a high cognitive cost on the voters to construct
their rankings as well as a high communication cost to report these rankings to the
central authority that has to gather the votes and compute the outcome (cf. Chapter 10).

At the other extreme, we could ask each voter to report only her top-ranked alterna-
tive. This approach is almost cost-free, but the lack of expressivity can cause serious
problems. Applying plurality voting (see Chapter 1) for winner selection is quite arbi-
trary, because three alternatives are tied in the first place by receiving a single vote.
Applying the majority rule (see Chapter 1) to each issue separately, as commonly done
for multiple referenda, leads to an even worse outcome: the winner, 111, is ranked last
by all voters!

We consider separately the case where the common decision to be taken consists
of choosing the members of a committee. Benoı̂t and Kornhauser (1991) consider two
classes of committee elections: designated post committees, and at-large committees.
In designated post committees, candidates run for a specific post (and the size of the
committee is the number of posts); in at-large committees, they do not run for a specific
post, and the size of the committee is specified explicitly. Designated post committee
elections are naturally expressed as elections on a combinatorial domain: variables
correspond to posts, and the domain of each variable is the set of candidates applying
for the post. The case of at-large elections is more subtle. An obvious choice consists in
having binary variables corresponding to candidates, but then the cardinality constraint
restricts the set of feasible committees: we are here in a case of constrained voting on a
combinatorial domain, where the set of alternatives is not simply the Cartesian product
of the domains but a subset of it. Voting for at-large committees takes this cardinality
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constraint into account for restricting the set of admissible outputs2 (and, sometimes,
the set of admissible inputs), and gives rise to widely used voting rules for multiwinner
elections (Brams and Fishburn, 2002).

Consider again Example 9.1. At one extreme, one could view all these domains
as ordinary domains, and proceed as usual by eliciting voters’ preferences over the
set of alternatives A and then applying a given voting rule. Because the number of
alternatives grows exponentially with the number of variables, this is unrealistic as
soon as one has more than a few variables; we can definitely not expect individuals
to spend hours or days expressing rankings explicitly on thousands of alternatives.
At the other extreme, one may think of considering each variable or issue separately,
and then organizing votes in parallel for each of them. (This is the way it is usually
done in multiple referenda, where each voter has to cast a yes/no ballot for each of
the variables simultaneously.) This is much less expensive in terms of communication
and computation, but amounts to making the very strong assumption that voters have
separable preferences, that is, voters’ preferences for the value of any variable do
not depend on the values of other variables. This assumption is patently unrealistic in
many contexts. In multiple referenda, it is likely that a voter’s preference over some
of these referenda depends on the outcomes of the other referenda, especially when
budget/tax issues are concerned, because voters typically have some maximal budget or
tax amount they are willing to pay. In group configuration, the value taken by a variable
(such as the main course) may have a dramatic influence on a voter’s preferences on
other variables (such as the wine). In a committee election, it is often the case that a
voter’s preference for having A over B in the committee depends on whether C is also
in the committee, because for instance she wants some balance between genders or
between members of different communities.

There are several criteria on which we may assess the practical implementability
of a method for voting in combinatorial domains. Perhaps the most important one
is the communication cost necessary to elicit the votes. Because the communication
burden is borne by the voters, making sure that it is reasonably low is a crucial
requirement. A second criterion is the computational cost needed to compute the
outcome. A third criterion is the generality of the approach, that is, its applicability to
a large variety of profiles: some are widely applicable, whereas some rely on strong
domain restrictions. Lastly, and crucially, is the quality of the outcome: as we shall
soon see, some approaches may lead to extremely controversial, sometimes absolutely
unacceptable, outcomes, while others may satisfy desirable social choice axiomatic
properties such as Pareto Optimality that give a guarantee about the quality of the
solution.

Each of the following sections focuses on families of methods for implementing
elections on combinatorial domains. Section 9.2 considers simultaneous voting. As we
shall see, simultaneous voting may perform extremely poorly when separability does
not hold (and may perform poorly—although much less so—even when separability
holds); more precisely, we will list a few important criteria for evaluating methods
for implementing elections in combinatorial domains, and will show that simultane-
ous voting performs poorly on all of them except communication and computation

2 Designated post committees also need constraints if some candidates apply for more than one post.
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cost. In Section 9.3 we discuss methods that assume that voters’ preferences are par-
tially specified and then completed automatically using some completion principle.
Various completion principles are discussed in subsections: using a distance between
alternatives is discussed in Section 9.3.1; using a preference extension from single-
tons to subsets is discussed in Section 9.3.2; and more generally, using a language
for compact preference representation such as CP-nets (Section 9.3.3), lexicographic
preferences trees (Section 9.3.4), and languages for cardinal preference representation
(Section 9.3.5). In Section 9.4 we present methods based on sequential voting, where
variables (or groups of variables) are voted on one after another. Section 9.5 concludes
by discussing the respective merits and drawbacks of different classes of methods, and
briefly addresses related problems.

9.2 Simultaneous Voting and the Separability Issue

9.2.1 Preliminaries

In this chapter, X = {X1, . . . , Xp} is a set of variables, or issues, where each issue
Xi takes a value in a finite local domain Di . The set of alternatives, or the domain, is
A = D1 × . . . × Dp. For  x = (x1, . . . , xp) ∈ A, and I ⊆ {1, . . . , p}, we denote  xI =
(xi)i∈I . We also make use of the notational convention −i = {1, . . . , p} \ {i}.

Let � be a linear order (a transitive, irreflexive and complete preference relation) on
A. We say that � is separable (Debreu, 1954) if and only if for all i � p, xi, yi ∈ Di

and ( x−i ,  y−i) ∈ D−i we have (xi,  x−i) � (yi,  x−i) if and only if (xi,  y−i) � (yi,  y−i).
When � is separable, the �i is defined by xi �i yi if and only if (xi,  x−i) � (yi,  x−i)
for an arbitrary  x−i .

Given n voters, a profile is a collection R = 〈�1, . . . ,�n〉 of linear orders on A.
A profile R is separable when each of �i is separable. Given a separable profile over
a domain composed of binary variables, the simultaneous3 majority outcome m(R) is
defined by m(R) = (x∗

1 , . . . , x∗
p), where a majority of voters prefer x∗

i to the opposite
value 1 − x∗

i (for the sake of simplicity we assume an odd number of voters, so that
there are no ties and the majority outcome is uniquely defined). When variables are not
binary, simultaneous voting uses a specific voting rule for each variable. In the rest of
this section, for the sake of simplicity we focus on binary variables.

In simultaneous voting, each voter only has to report a ranking over Di

for each i, therefore the communication requirement of simultaneous voting is
O(n

∑
i |Di | log |Di |). Because all variables are binary, each voter has only to report a

ballot consisting of a (preferred) value for each variable, hence the requirement com-
plexity is O(np). For instance, if a voter prefers 11 over 01, 02 over 12 and 13 over
03, then she reports the ballot 101, which represents 110213. In this case, separability

3 The terminology “simultaneous voting” is used by Lacy and Niou (2000). It is also called standard voting by
Brams et al. (1997a), propositionwise aggregation by Brams et al. (1998), and seat-by-seat voting by Benoı̂t
and Kornhauser (2010). We choose the terminology ‘simultaneous voting’ although it is a little bit ambiguous:
it does not only mean that voters vote simultaneously, but also that they vote simultaneously and separately on
all issues. Approaches reviewed in Section 9.3 do not satisfy that, although, in some sense, they may also be
considered as being ‘simultaneous’ in the sense that all voters vote simultaneously.
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implies that this ballot also corresponds to her most preferred alternative: in other
words, simultaneous voting is a tops-only voting rule.

How good is simultaneous voting? We know already that it has a low communication
cost, as well as a very low computation cost when variables are binary (and more
generally for most commonly used voting rules, when variables are not binary). Things
become much worse when we turn to the quality of the outcome. Even though there is
no single way of measuring the quality of the outcome, in most cases a popular type
of negative results is to show that simultaneous voting is prone to paradoxes, called
multiple election paradoxes, or paradoxes of multiple referenda (see next subsection).
Positive results, on the other hand, proceed by showing that some desirable axiomatic
properties are satisfied.

A key issue in assessing the quality of the outcome is whether we assume voters to
have separable preferences or not. We start with the general case.

9.2.2 Simultaneous Voting with Nonseparable Preferences

When preferences are not separable, a first problem that arises is that if a voter’s
preferred alternative is  x = (x1, . . . , xp), then there is no guarantee that she will report
x1 as her preferred value for X1. For example, if her preference relation is 111 �
000 � 001 � 010 � 100 � 110 � 101 � 011, then for three of the four combinations
of values of X2 and X3, 01 is preferred to 11, and similarly for X2 and X3; therefore,
even though the value of X1 in her preferred alternative is 111, she might well report
01 as her preferred value for X1, as well as 02 and 03 as her preferred values for
X2 and X3. A voter whose preferred value for Xi is always the value of Xi in her
preferred alternative will be called optimistic, because reporting in such a way comes
down to assuming that the outcome over all other issues will be the most favorable
one. In our example, if the voter is optimistic then she should vote for 11, for 12 and
for 13. More generally, choosing a preferred value to report for an issue depends on
the voter’s beliefs about the outcomes of the other issues, which in turn depends on
her beliefs about the other voters’ behavior. A game-theoretic analysis of this complex
phenomenon is given by Ahn and Oliveros (2012).

The multiple election paradoxes studied by Brams et al. (1998) and Scarsini (1998)
occur when the winner of simultaneous voting receives the fewest votes.

Example 9.2 (Brams et al., 1998). There are 3 issues and 3 voters voting respectively
for 110, 101 and 011. Simultaneous voting outputs 111, whereas 111 receives support
from none of the voters.

An even more striking paradox, again due to Brams et al. (1998), is obtained with 4
issues, with the outcome being 1111 whereas 1111 is the only alternative that receives
no vote and 0000 is the only alternative that receives the most votes.

Whether these are paradoxical outcomes or not depends on the voters’ preferences
over the whole domain. The implicit assumption in these examples is that voters have
plurality-based preferences: each voter i submits her preferred alternative  xi , prefers
 xi to all other alternatives, and is indifferent between any two alternatives different
from  xi . Such dichotomous, plurality-based preferences are not separable. Under this
assumption, in the three-issue example above, 111 is Pareto-dominated by 110, 101
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and 011; in the four-issue example, 1111 is Pareto-dominated by all other alternatives,
which is clearly a very undesirable outcome.

The assumption that preferences are plurality-based is very demanding and is very
often not plausible. A weaker assumption is top-consistency: which only states that
each voter prefers her reported alternative  xi to all other alternatives. If, instead of
assuming plurality-based preferences, we only assume top-consistency, the quality of
the outcome can be even worse, as it can be seen on the following example.

Example 9.3. We have two issues: building a swimming pool or not (1S or 0S), and
building a tennis court or not (1T or 0T ). We have 2k + 1 voters:

� k voters: 1S0T � 0S1T � 0S0T � 1S1T
� k voters: 0S1T � 1S0T � 0S0T � 1S1T
� 1 voter: 1S1T � 0S1T � 1S0T � 0S0T

It is unclear what the first k voters will report when choosing between 1S and 0S .
Indeed, their preferences are nonseparable: they prefer the swimming pool to be built
if the tennis course is not, and vice versa. Now, if they vote for 1S , their vote, when it
is a decisive, leads to either 1S0T or 1S1T , that is, to the voter’s best alternative or to
her worst alternative. On the other hand, voting for 0S , again when it is a decisive vote,
leads to either 0S0T or 0S1T , that is, to one of the voter’s ‘intermediate’ alternatives.
This shows why the first k voters may be hesitant to vote for 1S or for 0S . They may
also be hesitant to vote for 1T or for 0T , although the situation here is a bit different
(a decisive vote for 1T leads to the second-ranked or to the worst alternative, while a
decisive vote for 1T leads to the best or to the third-ranked alternative). If we assume
that these first k voters do not have any knowledge about the others’ preferences (or
even if they do, but do not use this information for voting strategically), then these
voters will feel ill at ease when voting and may experience regret once they know the
final outcome (e.g., if they vote for 1S , wrongly believing that the group will decide not
to build the tennis court). The case for the next k voters is symmetric (with the roles
of S and T being swapped). Only the last voter, who has separable preferences, has no
problem voting for 1S and for 1T and does not experience regret after the election. The
analysis of the paradox by Lacy and Niou (2000) assumes that voters choose to vote
optimistically (thus the first k voters would vote for 1S)4: under this assumption, the
simultaneous voting outcome 1S1T is ranked last by all but one voters.

Take the profile in Example 9.1 as another example. Assuming again that voters
vote optimistically, the simultaneous voting outcome (111) is ranked last by all voters,
which is, arguably, a very bad decision.

These paradoxes are partly due to the implicit assumption that voters do not have
any knowledge about other votes. However, even if voters’ preferences are common
knowledge, and voters vote strategically, strong paradoxes can still arise (Lacy and
Niou, 2000) (see also Section 9.4.2). As argued by Saari and Sieberg (2001), the source
of these paradoxes is the loss of information that occurs when separating the input
profile into smaller profiles for single issues.

4 This assumption is often reasonable, even if it has a certain level of arbitrariness.
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9.2.3 Simultaneous Voting with Separable Preferences

Assuming separability allows us to avoid some of the paradoxes described above. First,
when all voters have separable preferences, they can vote safely for their preferred
value, for each one of the issues, and without any risk of experiencing regret (this is
called simple voting by Benoı̂t and Kornhauser (1991)). Second, under the separability
assumption, simultaneously voting enjoys some desirable properties, including the
election of a Condorcet winner when there is one (Kadane, 1972).5

However, some paradoxes still remain. In particular, the outcome may be Pareto-
dominated by another alternative (Özkal-Sanver and Sanver, 2006; Benoı̂t and Korn-
hauser, 2010), as shown in the following example.

Example 9.4 (Özkal-Sanver and Sanver, 2006). We have three issues, and three
voters whose preferences are as follows:

� Voter 1: 111 � 011 � 101 � 001 � 110 � 010 � 100 � 000
� Voter 2: 100 � 000 � 101 � 001 � 110 � 010 � 111 � 011
� Voter 3: 010 � 011 � 000 � 001 � 110 � 111 � 100 � 101

Note that these preferences are separable: voter 1 prefers 11 to 01, whichever the values
of X2 and X3 (that is, she prefers 100 to 000, 101 to 001, 110 to 010, and 111 to 011),
prefers 12 to 02, whichever the values of X1 and X3, and 13 to 03, whichever the values
of X1 and X2. Similar reasoning shows that preferences for voters 2 and 3 are also
separable. The outcome of simultaneous voting is 110, which is Pareto-dominated by
001, that is, all three voters prefer 001 to 110.

Benoı̂t and Kornhauser (2010) prove a more general result. One may wonder whether
there could be rules other than issue-wise majority that would escape the paradox.
Unfortunately this is not the case: as soon as there are at least three issues, or when there
are exactly two issues, one of which has at least three possible values, then simultaneous
voting is efficient if and only if it is dictatorial. This result was generalized to irresolute
voting rules by Xia and Lang (2009).

9.2.4 Discussion

Evaluating simultaneous voting on the criteria evoked in the introduction (Section 9.1),
it is now clear that simultaneous voting has a low communication cost, and has also a
low computation cost, provided that the “local” rules used to determine the outcome
for each variable are easy to compute (which is obviously the case if variables are
binary). Then, there are two possibilities: either we are able to assume separability,
and in that case the outcome has some quality guarantees (even in this case it remains
prone to some paradoxes, see Section 9.2.3); or we do not assume separability, and
then the quality of the outcome can be extremely bad. We note that separability is a
very strong assumption: the proportion of preferences on a combinatorial domain that
are separable is very low (Bradley et al., 2005), and there are many domain-specific

5 This holds both in the assumption that voters vote sincerely and in the assumption that voters’ preferences are
common knowledge and voters vote strategically.
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arguments (such as budget constraints) showing that in many domains, it is almost
hopeless to expect that voters’ preferences are separable.

9.3 Approaches Based on Completion Principles

One way of escaping the paradoxes of simultaneous voting, discussed in particular by
Brams et al. (1997a) and Lacy and Niou (2000), consists in having voters vote on com-
binations (or bundles) or values. This section discusses various ways of implementing
this. Before addressing several classes of more complex methods, we mention three
very simple solutions, which are relevant in some cases.

1. Voters rank all alternatives (i.e., all combinations) and a classical voting rule, such as
Borda, is used.

2. Voters give only their top alternatives, and the plurality rule is used.
3. Voters rank a small number of pre-selected alternatives, and use a classical voting

rule.

The first way is clearly the best method when the set of alternatives is small (say,
up to four or five binary variables). It becomes inapplicable when the number of issues
becomes more than a few, since asking voters to rank explicitly more than a few
dozens of alternatives is already hopeless. The second way, advocated by Brams et al.
(1997a), has the obvious advantage that it is relatively inexpensive both in terms of
communication and computation; it is feasible provided that the set of alternatives is
small enough with respect to the set of voters; when this is not the case, the plurality
votes are likely to be completely dispersed (for instance, with 10 binary variables
and 100 voters, the number of alternatives (210) is ten times larger than the number
of voters and it may plausibly happen that each alternative will get no more than
one vote), which does not help much making a decision. The third way avoids both
problems, but the arbitrariness of the preselection phase can make the whole process
very biased, and gives too much power to the authority who determines the preselected
alternatives.

Ideally, methods should avoid the arbitrariness of methods 2 and 3 and the commu-
nication requirement of method 1. Recall that simultaneous voting has a low elicitation
cost, at the price of considering all issues independently. One way of introducing links
between issues while keeping the low communication cost of simultaneous voting
consists in asking voters to specify a small part of their preference relations and then
complete them into full (or, at last, more complete) preference relations using a fixed
completion (or extension) principle. After this completion has been performed, we may
apply a classical voting rule, or a voting rule specifically designed for this extension
principle. We consider several families of completion principles, in increasing order of
sophistication.

� Top-based input: the voters submit their preferred alternative and the completion prin-
ciple makes use of a predefined distance over alternatives (typically, the Hamming
distance); the completion principle ranks all alternatives according to their proximity to
the preferred alternative.
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� Singleton ranking-based input: this completion principle works only for binary variables;
voters specify a ranking over single issues; the completion principle then extends it into
a preference relation over all alternatives. This class of methods is often used for the
selection of a set of items (typically, a committee).

� Hypercube-based input: the input consists of a compact representation of each voter’s
preference between all pairs of alternatives that are identical on all issues but one (this
set of pairs of alternatives is also called the hypercube associated with A).

� Inputs based on more sophisticated inputs, such as conditionally lexicographic prefer-
ence trees, weighted or prioritized logical formulas, generalized additive independence
networks, or weighted constraints.

9.3.1 Top-Based Inputs and Distance-Based Completion Principles

One way to express a small part of the agents’ preferences and to complete them auto-
matically consists of asking each voter to specify her top alternative  x∗, and then apply-
ing the following intuitive completion principle: the closer to  x∗ with respect to a pre-
defined distance d between alternatives, the more preferred. Formally: given a voter’s
top alternative  x∗, � is d-induced if for all  y,  z ∈ A,  y �  z iff d( y,  x∗) < d( z,  x∗), and
� is d-consistent iff for all  y,  z ∈ A, d( y,  x∗) < d( z,  x∗) implies  y �  z.

A trivial choice of a distance is the Dirac (or drastic) distance, defined by d( x,  y) = 0
if  x =  y and d( x,  y) = 1 if  x �=  y. We recover here the plurality-based extension
principle discussed in Section 9.2.2, which can thus be seen as a distance-based
extension.

While many choices of a nontrivial distance can be made, the most obvious one is
perhaps the Hamming distance dH : for all  x,  y ∈ A, dH ( x,  y) is the number of issues
on which  x and  y disagree. We say that � is Hamming-induced (resp. Hamming-
consistent) iff it is dH -induced (resp. dH -consistent).

Once such a preference extension principle has been fixed, we can apply a voting
rule to select the winner. A prominent example of such a rule is minimax approval
voting, defined by Brams et al. (2007) in the context of committee elections (although
there is no reason not to apply it in more general contexts); for this reason, we describe
the rule in a committee election setting, thus, with binary variables (also, it is not
entirely trivial to extend minimax approval voting to nonbinary domains). There are n

voters, p candidates, k � p positions to be filled; each voter casts an approval ballot
Vi = (v1

i , . . . , v
p
i ) ∈ {0, 1}p, where v

j
i = 1 if voter i approves candidate j . Then for

every subset S of k candidates, let dH (S, (V1, . . . , Vn)) = maxi=1,...,n dH (S, Vi) be the
largest Hamming distance between S and a ballot. Minimax approval voting selects a
committee S minimizing dH (S, (V1, . . . , Vn)). Minimax approval voting makes sense
if there are few voters, but much less so in large electorates, because a single voter can
have a huge influence, even if everyone else agrees. Note that minimizing the sum of
Hamming distances would be equivalent to outputting the candidates with the k largest
approval scores (see Section 9.3.2).

Example 9.5. Let n = 4, p = 4, k = 2. The ballots are defined as follows, together with
the computation of Hamming distance between the votes and any subset S composed



206 9 voting in combinatorial domains

of 2 candidates (there are 6 such candidates):

V1 : 1110 V2 : 1101 V3 : 1010 V4 : 1010 max

1100 1 1 2 2 2

1010 1 3 0 0 3

1001 3 1 3 3 3

0110 1 3 2 2 3

0101 3 1 4 4 4

0011 3 3 2 2 3

The winning committee under minimax approval voting is 1100. Minimizing the
sum of Hamming distances would lead to selecting 1010.

Because there are
(
p
k

)
possible committees, winner determination for minimax

approval voting is computationally intractable: finding a winning committee is NP-
hard (Frances and Litman, 1997). LeGrand et al. (2007) give a polynomial-time 3-
approximation algorithm; a better approximation (with ratio 2) is given by Caragiannis
et al. (2010).

Another line of research that makes use of preference extensions based on the Ham-
ming distance is that of Laffond and Lainé (2009) and Cuhadaroǧlu and Lainé (2012).
Recall from Section 9.2 that even if voters’ preferences are separable, the simulta-
neous voting outcome can be Pareto-dominated. If furthermore voters’ preferences
are Hamming-consistent, then two positive results arise: (a) the simultaneous voting
outcome cannot be Pareto-dominated, (b) the simultaneous voting outcome is in the
top cycle (a fortiori, simultaneous voting is Condorcet-consistent). However, weaker
negative results remain: not only may the outcome be majority-defeated but it can also
fail to be in the uncovered set (Laffond and Lainé, 2009). To which extent are the
positive results specific to the Hamming extension principle? An answer is given by
Cuhadaroǧlu and Lainé (2012), who show that under some mild conditions, the largest
set of preferences for which the simultaneous voting outcome is Pareto-efficient is the
set of Hamming-consistent preferences.

Distance-based approaches have a lot in common with belief merging (see a recent
survey by Konieczny and Pino Pérez (2011)), which aggregates several propositional
formulas K1, . . . , Kn into a collective propositional formula �(K1, . . . , Kn). The set of
alternatives corresponds to the set of propositional valuations (or interpretations). Per-
haps the most well-studied family of belief merging operators is the class of distance-
based merging operators: there is a predefined, integer-valued, agent-independent dis-
tance d over propositional valuations (typically, the Hamming distance), and a sym-
metric, nondecreasing aggregation function � over integers, and the output is a formula
whose models minimize �{d(., Ki)|i = 1 . . . n}, where d( x, Ki) = min y|=Ki

d( x,  y).
The complexity of distance-based belief merging is addressed by Konieczny et al.
(2004). Although coming from a different area, distance-based belief merging shares
a lot with combinatorial voting with distance-based preference extensions (especially
minimax approval voting). Two important differences are that in belief merging: (a) the
input may consist of a set of equally most preferred alternatives, rather than a single
one; and (b) the input is represented compactly by a logical formula.
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9.3.2 Input Based on Rankings over Single Variables

In this section we focus specifically on the selection of a collective set of items S by
a group of agents. The meaning we give here to “items” is extremely general and can
cover a variety of situations, with two typical examples being committee elections,
where the “items” are representatives, and group recommendations, where items are
objects such as books, movies, and so on.

Formally, this can be cast as a combinatorial domain where the set of binary issues
is X = {X1, . . . , Xp}, with Di = {0i , 1i} for each i. These binary issues correspond
to a set of items C = {c1, . . . , cp}, where Xi = 1i (resp. 0i) means that item ci is
(resp. is not) in the selection S. Because of the focus on the selection of a subset
of items, we change the notational convention by denoting an alternative  x ∈ A =
{01, 11} × . . . × {0p, 1p} as a subset of issues S composed of items cis with Xi = 1i .
Thus, alternatives are elements of 2C .

In most cases, the set of feasible subsets is a proper subset of 2C , defined by a
constraint � restricting the set of feasible or allowed subsets. In committee elections,
the most common constraints are cardinality constraints that restrict the size of a
committee, by specifying an exact size k, or a lower and/or an upper bound. More
generally, Lu and Boutilier (2011a) consider budget constraints, defined by a price
for each item and a maximum total cost—hence the terminology budgeted social
choice.

The approaches discussed in this section proceed by first eliciting from each agent
some preference information (typically, a ranking) over single items, then extend-
ing these preferences over single items to preferences over sets of items, and finally
selecting a set of items S.

The most obvious way of doing so is multiwinner approval voting (which can,
to some extent, be seen as the multiwinner version of simultaneous voting): each
voter approves as many candidates as she wants, and the winners are the k candidates
approved most often. In single nontransferable vote (SNTV) and bloc voting, there
is an additional restriction on the number of candidates approved: 1 in SNTV and k

in bloc voting (these rules are thus multiwinner versions of plurality and k-approval,
respectively). Finally, in cumulative voting, voters distribute a fixed number of points
among the candidates, and the winners are the k candidates maximizing the number
of points. The common point of all these rules is that voters’ preferences are assumed
to be separable; reformulated in terms of preference extensions, each input defines a
score over single candidates, and the total score of a candidate is the sum of the scores
it gets from the voters. Computational aspects of strategic behavior (manipulation by
a single voter and control by the chair) for these multiwinner voting rules have been
studied by Meir et al. (2008).

In the remainder of this section, we focus on classes of methods where the input
consists of rankings over single items.

In committee elections, where the items are individuals supposed to represent the
voters, the rationale for the last step is that a committee election is used to elect an
assembly whose members will make decisions on behalf of the society. As argued
by Betzler et al. (2013), finding a committee of representatives should satisfy two
criteria: representativity (the composition of the committee should globally reflect
the will of the voters), and accountability (each voter should be represented by a
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given member of the committee). In consensus recommendations, the rationale for
the last step is that each user will benefit from the best option according to her own
preferences (Lu and Boutilier, 2011a); in this case, the “representative” of a voter is
her most preferred item in S.6,7 The latter interpretation leads to an obvious choice
for defining representative items for voters: if the set of items S is chosen, then the
representative item of voter i is c ∈ S if c �i c′ for all c′ ∈ C \ {c}. Alternatively, we
say that each agent is represented by an item in S. In committee elections, this principle
is the basis of the Chamberlin and Courant multiwinner election scheme (discussed
later).

We now describe these multiwinner election schemes (grouped under the termi-
nology “fully proportional representation”) more formally. For each voter i and each
item c there is a misrepresentation value μi,c, representing the degree to which item c

misrepresents voter i. A positional misrepresentation function makes use of a scoring
vector  s = 〈s1, . . . , sp〉 such that s1 � . . . � sp. In particular, the Borda scoring vector
 sB is defined by sk = k for all k. By posi(c) we mean the position of item c in i’s

preference ranking (from 1 for the most preferred item to p for the least preferred
one). The misrepresentation function induced by  s is μi,c = sposi (c). Intuitively, si is the
amount of dissatisfaction that a voter derives from being represented by an alternative
that she ranks in position i. Another simple way of defining a misrepresentation based
on approval ballots is: every voter submits a subset of candidates that she approves,
and μi,c is 0 if i approves c, and 1 otherwise.

An assignment function π maps every voter to an item in the selected subset S.
The misrepresentation of voter i under π is μi,π(i). Once individual misrepresentation
has been defined, we need to define the global misrepresentation of the society when
selecting a subset S of items. There are two traditional ways of doing so: utilitarianism
(global misrepresentation is the sum of all individual misrepresentation) and egalitar-
ianism (global misrepresentation is the misrepresentation of the least well-represented
agent). Formally, the global misrepresentation of assignment π is defined as:

� (utilitarianism) μU (π ) = ∑
i�n μi,π(i).

� (egalitarianism) μE(π ) = maxi�n μi,π(i).

Finally, let F be the set of feasible subsets of items; typically, if k items are to be
elected then F is the set Sk of all subsets of C of size k.

The Chamberlin and Courant scheme (Chamberlin and Courant, 1983) simply
outputs the committee of size k that minimizes μU . Because there is no constraint on
the assignment function, every voter is assigned to her preferred item in the selected
subset S. That is, π(i) = arg minc∈S μi,c. Then, her misrepresentation when selecting
the feasible subset S is equal to μi,S = minc∈S μi,c. The best committee is then the
feasible subset S minimizing μU (π) (under utilitarianism) or S that minimizes μE(π)
(under egalitarianism). The Monroe scheme (Monroe, 1995) additionally requires that

6 As discussed by Lu and Boutilier (2011a), this can also be seen as a segmentation problem (Kleinberg et al.,
2004), where one more generally seeks k solutions to some combinatorial optimization problem that will be
used by n � k different users, each with a different objective value on items; optimization requires segmenting
users into k groups depending on which of the k items gives them the greatest benefit.

7 Skowron et al. (2015) generalize this scheme by taking into account more than one item by agent, but still giving
more importance to an agent’s most preferred item than to her second best preferred item, etc.
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the assignment π is balanced: each candidate in S must be assigned to at least !n/k"
voters.8 Formally, the Monroe scheme selects the allocation π minimizing μU (π)
subject to the constraints |π−1(s)| � !n

k
" for all s ∈ Range(π).

Budgeted social choice (Lu and Boutilier, 2011a) generalizes Chamberlin-Courant
by redefining feasibility via a budget constraint: Each item c has a fixed cost (to be
counted if x is selected) and a unit cost (to be counted k times if k agents are represented
by the item), the maximum budget is K , and F is the set of all assignments with total
cost � K .

The egalitarian version of multiwinner schemes is due to Betzler et al. (2013). Elkind
et al. (2014a) discuss some properties of multiwinner voting schemes.

Example 9.6. Let C = {c1, c1, c3, c4}, K = 2, and the following 4 agents’
preferences:

〈 c1 � c2 � c3 � c4,

c1 � c2 � c3 � c4,

c1 � c3 � c2 � c4,

c1 � c3 � c2 � c4,

c2 � c4 � c3 � c1,

c4 � c3 � c2 � c1 〉.
For the Borda misrepresentation function, the optimal Chamberlin-Courant committee
of 2 items is {c1, c4}, whereas for Monroe it is {c1, c2}. For the egalitarian versions,
both {c1, c4} and {c2, c3} are optimal for Chamberlin-Courant and {c2, c3} is optimal
for Monroe.

Because the set of feasible subsets is generally exponentially large, finding the opti-
mal subset is highly nontrivial. Brams and Potthoff (1998) were the first to discuss the
computation of the Chamberlin-Courant and the Monroe voting schemes, showing that
the optimal committee can be determined using integer programming. This provides
a method that works in practice when the number of voters and items are small, but
may not scale up well. They formulate an improved integer program for settings where
the number of agents is large, but this modified integer program is still too large to be
solved when the number of items is large.

One cannot really do better in the general case; indeed, we have the following
hardness results:

� Winner determination for the Chamberlin-Courant and the Monroe schemes with
approval ballots are both NP-complete (Procaccia et al., 2008)

� Winner determination for the Chamberlin-Courant scheme with the Borda misrepresen-
tation function is NP-complete (Lu and Boutilier, 2011a)

� Winner determination for the minimax versions of the Chamberlin-Courant and Monroe
schemes is NP-complete (Betzler et al., 2013)

8 In indirect democracy, that is, when the set of representatives has to make a decision on behalf of the society, it
may be a good idea to give more power to people who represent more people than to those who represent less
people; for instance, Chamberlin and Courant suggested to give to each committee member a weight equal to
the number of voters she represents.
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Some slightly more positive results are obtained:

� Parameterized complexity. Procaccia et al. (2008) show that winner determination for
Chamberlin-Courant and Monroe is tractable for small committees: if the size of the
subset to be selected is constant, then winner determination is polynomial for both voting
schemes. Betzler et al. (2013) investigate further the parameterized complexity of fully
proportional representation by establishing a mixture of positive and negative results:
they mainly prove fixed-parameter tractability with respect to the number of candidates
or the number of voters, but fixed-parameter intractability with respect to the number of
winners.

� Approximation: Lu and Boutilier (2011a) give a polynomial algorithm with approxi-
mation ratio 1 − 1

e
for Chamberlin-Courant with the Borda misrepresentation function.

Skowron et al. (2013a,c) give further approximability results.
� Domain restrictions: for single-peaked profiles, most multiwinner problems discussed

above become polynomial; the only rule that remains NP-hard for single-peaked elec-
torates is the classical Monroe rule (Betzler et al., 2013). These results are extended
by Cornaz et al. (2012) to profiles with bounded single-peaked width, and by Yu et al.
(2013) who consider profiles that are more generally single-peaked on a tree. Skowron
et al. (2013b) address the case of single-crossing profiles.

Finally, the generalization of full proportional representation schemes to incomplete
preferences was considered by Lu and Boutilier (2013) (see also Chapter 10).

The notion of Condorcet winning set (Elkind et al., 2015a) also evaluates a subset
according to a best item in it. The criteria for selecting a “best” subset does not use
a misrepresentation function but is simply based on the Condorcet principle: S ⊆ C

is a Condorcet winning set if for every z /∈ S, a majority of voters prefers some s ∈ S

to z. For every m-candidate profile, there is a Condorcet winning set of size at most
log2 m + 1, therefore, finding a Condorcet winning set can be done by enumerating
all subsets of candidates of size !log2 m" + 1, i.e., in quasipolynomial time. It may
actually be even easier: it is an open issue whether for all k there exists a profile for
which the smallest Condorcet winning set has size k.

9.3.3 Hypercube-Based Inputs

Specifying top-based inputs (respectively, rankings over variables) needs O(np)
(respectively, O(np log p)) space, hence the communication requirement of the two
previous subclasses of methods is low: each agent needs only to report O(np) (respec-
tively, O(np log p)) bits to the central authority. On the other hand, their applicability
is very weak, because only a tiny fraction of preference relations comply with the
required domain restrictions. We now consider more expressive approaches that are
based on compact representations: the votes, or a significant part of the votes, are not
given extensively but are described in some formal language that comes with a func-
tion mapping any input of the language to a (partial or complete) vote (Lang, 2004).
Formally, a compact preference representation language is a pair L = 〈�L, IL〉 where
�L is a formal language, and IL is a function from �L to the set of preference relations
over A. IL(�L) is the set of all preference relations expressible in L. A language L1 is
more expressive than L2 if IL1 (�L1 ) ⊃ IL2 (�L2 ) and more succinct than L2 if there is a
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function f : �L2 → �L1 and a polynomial function pol such that for all σ ∈ �L2 , we
have (i) |f (σ )| � pol(|σ |) and (ii) IL1 (f (σ )) = IL2 (σ ). Conditions (i) and (ii) together
mean that any preference relation expressible in L2 can also be expressed in L1 without
a superpolynomial increase in the size of expression.

If a language L is totally expressive (i.e., IL(�L) is the set of all rankings over D)
then the worst-case size necessary for expressing a ranking is exponentially large in the
number of variables.9 Therefore, there is a trade-off to be made between having a fully
expressive language which, at least for some preference relations, will not be compact
at all, or making a domain restriction that will allow for a compact input in all cases.

Some of the solutions advocated in the previous sections were, to some extent,
making use of very rough compact preference representation languages. Expressing
only the top alternative, say 111, is a compact representation of the partial preference
relation

111 � A \ {111}
or, in the case of the Hamming distance completion, of the complete preorder

111 �
110
101
001

�
100
010
001

� 000.

Expressing a ranking over single items is a compact representation of a partial or
complete preorder over committees: for 2-committees and the Chamberlin-Courant
scheme, for instance, 1 � 2 � 3 � 4 is a compact representation of

{1, 4}
{1, 2}
{1, 3}

� {2, 3}
{2, 4} � {3, 4}.

As already discussed, these first two compact representation languages are admit-
tedly very compact, but also very inexpressive. We now give some examples of more
expressive languages.

The first compact representation language we consider is that of conditional pref-
erence networks (CP-nets). CP-nets (Boutilier et al., 2004) allow for a compact rep-
resentation of the preference hypercube associated with a preference relation over D.
Given a preference relation � over D = ∏n

i=1{0i , 1i}, the preference hypercube �H

is the restriction of � to the set of pairs of alternatives  x,  y differing on only one
variable (such as, for instance, 0101 and 0111). CP-nets are based on the notion of con-
ditional preferential independence (Keeney and Raiffa, 1976): given a strict preference
relation �, Xi ∈ X , Y ⊆ X \ {Xi} and Z = X \ ({Xi} ∪ Y ), we say that Xi is preferen-
tially independent of Y given Z with respect to � if for any xi, x

′
i ∈ Di ,  y,  y ′ ∈ DY , and

 z ∈ DZ , we have (xi,  y,  z) � (x ′
i ,  y,  z) if and only if (xi,  y ′,  z) � (x ′

i ,  y ′,  z). A CP-net
N over A consists of two components.

9 A simple proof of this fact in the case of binary variables: for p variables there are (2p)! possible rankings, and
the best we can do to express a ranking is to use log((2p)!) bits in the worst case; and log((2p)!) is exponential
in p.
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� The first component is a directed graph G expressing preferential independence relations
between variables: if ParG(Xi) denotes the set of the parents of Xi in G, then every
variable Xi is preferentially independent of X \ (Par(Xi) ∪ {Xi}) given Par(Xi).

� The second component is, for each variable Xi , a set of linear orders �i
 u over Di , called

conditional preferences, for each  u ∈ DParG(Xi ). These conditional preferences form the
conditional preference table for issue Xi , denoted by CPT (Xi).

The preference relation �N induced by N is the transitive closure of

{(ai,  u,  z) � (bi,  u,  z) | i � p;  u ∈ DParG(Xi ); ai, bi ∈ Di, ai �i
 u bi

 z ∈ D−(ParG(Xi )∪{Xi })}.
When all issues are binary, �N is equivalent to a preference hypercube and N is a
compact representation of this preference hypercube, whose size is the cumulative size
of all its conditional preference tables.

Example 9.7. Let p = 3. The following represents a CP-net N together with its
induced preference hypercube �N . For the sake of simplicity, 000 represents the
alternative 010203, and so on.

X1 X2 X3

01 11
01 : 02 12

11 : 12 02

02 : 03 13

12 : 13 03

000 001

010 011

100 101

110 111

Group decision making in multi-issue domains via CP-net aggregation has been
considered in a number of papers, which we briefly review in a nonchronological
order. We will discuss in Section 9.4 the role of CP-nets in sequential voting (Lang and
Xia, 2009; Airiau et al., 2011): this way of proceeding sequentially leads to interleave
elicitation and aggregation, and elicits only a small part of the voters’ CP-nets. Another
way of proceeding consists in first eliciting the voters’ CP-nets entirely, then proceeding
to aggregation. Then, two ways are possible.

The first aggregation consists of mapping each of the individual CP-nets to its asso-
ciated preference relation, and aggregating these into a collective preference relation.
This method was initiated by Rossi et al. (2004), who consider several such aggregation
functions, and was studied further by Li et al. (2010), who give algorithms for com-
puting Pareto-optimal alternatives with respect to the preference relations induced by
the CP-nets, and fair alternatives with respect to a cardinalization of these preference
relations.

A second technique, considered by Xia et al. (2008), Li et al. (2011), and Conitzer
et al. (2011b), consists of aggregating the individual CP-nets into a collective CP-
net, and then outputting the nondominated alternatives of this collective CP-net. No
domain restriction is made on the individual CP-nets. For every set of “neighboring”
alternatives (differing only in the value of one issue), a local voting rule (typically
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majority if domains are binary) is used for deciding the common preferences over this
set, and finally, optimal outcomes are defined based on the aggregated CP-net.

Example 9.8. We have two issues, X1 and X2, and the following three CP-nets.

voter 1

X1 X2

01 11
01 : 12 02

11 : 02 12

voter 2

X1 X2

02 : 11 01

12 : 01 11
02 12

voter 3

X1 X2

11 01 12 02

The majority aggregation of N1, N2 and N3 is the following CP-net, depicted with
its induced preference relation.

X1 X2

02 : 11 01

12 : 01 11

01 : 12 02

11 : 02 12

0102

0112

1102

1112

The dependency graph of this collective CP-net contains an edge from X1 to X2

(resp., from X2 to X1) because the dependency graph of voters 1 (resp., 2) CP-net does.
In the preference table for X1, we have 02 : 11 � 01 because voters 2 and 3 (unlike
voter 1) prefer 11 to 01 when X2 = 02.

Once the CP-nets from agents have been aggregated to a common CP-net N ∗, the
next task consists of finding a set of solutions. Because N ∗ only specifies pairwise
preferences between neighbor alternatives, usual solution concepts are not directly
applicable. In particular, there is generally no way of checking whether a Condorcet
winner exists; however, we can check if there are hypercubewise Condorcet winners
(HCW), that is, alternatives that dominate all of their neighbours in N ∗. Unlike Con-
dorcet winners, a profile may possess no HCW, one HCW, or several HCW (in Example
9.8 there are two, namely, 0112 and 1102). The notion of a HCW was first defined by Xia
et al. (2008) and studied further by Li et al. (2011), who study some of its properties
and propose (and implement) a SAT-based algorithm for computing them, whereas
the probability of existence of a HCW is addressed by Conitzer et al. (2011b). More
solution concepts (such as the top cycle, Copeland, maximin, or Kemeny) can also be
generalized to profiles consisting of preference hypercubes (Xia et al., 2008; Conitzer
et al., 2011b), while new solution concepts, based on distances between alternatives in
the hypercube, have been proposed by Xia et al. (2010a).

9.3.4 Conditionally Lexicographic Preferences

A conditionally lexicographic preference can be represented compactly by a lexico-
graphic preference tree (LP-tree) (Booth et al., 2010), consisting of (i) a conditional
importance tree, where each node is labeled by a variable Xi and has either one child,
or two children associated with the values 0i and 1i taken by Xi ; (ii) and, for each node
v of the tree, labeled by Xi , a conditional preference table expressing a preference
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order on Di for all possible combination of values of (some of) the ancestor variables
that have not yet assigned a value in the branch from the root to v.

Example 9.9. An LP-tree with p = 3 is illustrated in the following.

The most important variable is X1, and its preferred value is 01; when X1 = 01 then the
second most important variable is X2, with preferred value 02, then X3 with preferred
value 03; when X1 = 11 then the second most important variable is X3, with preferred
value 13, then X2, with preferred value 02 if X3 = 03 and 12 if X3 = 13. The preference
relation induced by an LP-tree compares two alternatives by looking for the first node
(starting from the root) that discriminates them: for instance, for  x = 111 and  y = 100,
this is the node labeled by X3 in the branch associated with X1 = 11. Because 13 � 03

at that node,  x is preferred to  y. The complete preference relation associated with the
preceding LP-tree is 001 � 000 � 011 � 010 � 111 � 101 � 100 � 110.

Assuming preferences are conditionally lexicographic imposes an important domain
restriction (as does separability), but for some voting rules, determining the outcome
is efficient in communication and computation (Lang et al., 2012a). We give an exam-
ple with 2p−2-approval. Given an LP-tree T compactly expressing a ranking �T , an
alternative is one of the 2p−2 best alternatives (i.e., in the top quarter) if and only if
it gives the preferred value to the most important variable (in the preceding example,
X1 = 01) and the preferred value to the second most important variable given this value
(X2 = 02). This gives, for every voter, a conjunction of two literals (here ¬X1 ∧ ¬X2);
the 2p−2-approval winners are exactly those who satisfy a maximal number of such
formulas, thus the winner determination problem can be solved using a maxsat solver.
Note that, although the problem is NP-hard, there are efficient maxsat solvers (and a
maxsat track of the SAT competition). Results about other rules can be found in the
work of Lang et al. (2012a).

Example 9.10. Let n = 3, p = 3, and consider the three LP-trees in Figure 9.1. The
first LP-tree is the same as that in Example 9.9, and an alternative is ranked in its top
2p−2 = 2 positions if and only if ¬X1 ∧ ¬X2 is satisfied. In the second LP-tree, the
top 2p−2 alternatives can be represented as ¬X1 ∧ X2. In the third LP-tree, the top
2p−2 alternatives can be represented as X2 ∧ X3. These are the formulas in the maxsat
instance and the winner for 2-approval is 011.
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Figure 9.1. Three LP-trees.

9.3.5 Cardinal Preferences

In general, voting rules are using ordinal inputs. Allowing for a numerical represen-
tation of preferences (and possibly assuming interpersonal comparison of preference)
opens the door to a different class of approaches, based on the maximization of an aggre-
gation function. Many languages for compact preference representation of numerical
preferences have been defined and equipped with efficient algorithms, especially val-
ued CSPs (Bistarelli et al., 1999) and GAI-nets (Bacchus and Grove, 1995; Gonzales
and Perny, 2004). In both cases, local utility functions are defined over small (and
possibly intersecting) subsets of variables S1, . . . , Sq , and the global utility function is
the sum (or more generally the aggregation, for some suitable aggregation function) of
the local utilities obtained from the local tables by projecting the alternatives on each
of the Sis. Gonzales et al. (2008) use such a representation based on GAI-nets and
study algorithms for finding a Pareto-optimal alternative. Lafage and Lang (2000) and
Uckelman (2009) assume that individual preferences are compactly represented using
weighted propositional formulae, and that a collectively optimal alternative is defined
through the maximization of a collective utility function resulting in the aggregation
of individual utilities, for some suitable aggregation function (which requires not only
that preferences be numerical but also that they be interpersonally comparable). See
also the work by Dalla Pozza et al. (2011), discussed in Section 9.4.

9.4 Sequential Voting

The basic principle of sequential voting is that at each step voters’ preferences over
the values of a single issue are elicited, the decision about this variable is taken using
a local voting rule, and the outcome is communicated to the voters before they vote
on the next variable. Formally, a sequential voting protocol on A is defined by (1) an
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order O over X – without loss of generality, we let O = X1 � X2 � · · ·� Xp; and
(2) for each i � p, a resolute voting rule ri over Di . The sequential voting protocol
SeqO(r1, . . . , rp) (Lang and Xia, 2009) is defined as follows.

Algorithm 1 Sequential Voting Protocol
Input: An order O = X1 � X2 � · · ·� Xp over X ; p local voting rules r1, . . . , rp.
Output: The winner (d1, . . . , dp)
1 for t = 1 to p do
2 Ask every agent i to report her preferences �i

t over Dt given (d1, . . . , dt−1).
3 Let Pt = 〈�1

t , . . . ,�n
t 〉 and dt = rt (Pt ).

4 Communicate dt to the voters.
5 end
6 return (d1, . . . , dp)

This definition can easily be extended to irresolute voting rules. In the remainder of
this section, we will use SeqO as a shorthand notation for SeqO(r1, . . . , rp).

We have not discussed yet agents’ behavior in each step. The main complication is
that a preference for one issue may depend on the results for other issues, hence the
difficulty for a voter to decide her local preferences to report.

Example 9.11. Let X1 and X2 be two binary issues and let P denote the following
3-voter profile:

1112 � 0112 � 1102 � 0102

1102 � 1112 � 0112 � 0102

0112 � 0102 � 1102 � 1112

If the order O is X2 � X1, then voters 2 and 3 cannot unambiguously report their
preferences over X2, because they depend on the value of X1 (for instance, voter 2
prefers 02 to 12 when X1 = 11 and 12 to 02 when X1 = 01), which has not been fixed
yet. In other terms, marginal (or local) preference over X2 does not have a precise
meaning here.

9.4.1 Safe Sequential Voting

The condition that ensures that voters can report their preferences unambiguously is O-
legality: given O = X1 � X2 � · · ·� Xp, a preference relation � over A is O-legal if
for every k � p, Xk is preferentially independent of Xk+1, . . . Xp given X1, . . . , Xk−1;
or, equivalently, � extends the preference relation �N induced by a CP-net whose
dependency graph is compatible with O (i.e., does not contain any edge from Xi to Xj

such that Xj � Xi). Let Legal(O) denote the set of all O-legal profiles.

Example 9.11, continued. P is not (X2 � X1)-legal, because voters 2 and 3 have
preferences over X2 that depend on X1. On the other hand, P is (X1 � X2)-legal,
because all voters have unconditional preferences on X1: voters 1 and 2 prefer 11 to
01, and voter 3 prefers 01 to 11, independently of the value of X2.
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In presence of the O-legality domain restriction, we say that sequential voting is safe.
In this section we assume O to be fixed and apply sequential voting to the domain of
O-legal profiles only. A crucial property of simultaneous voting under the separability
restriction carries over to safe sequential voting: it makes sense for a voter to report her
local preferences on the current issue given the value of earlier issues, without having
to wonder about the values of issues that have not been decided yet.

When all agents’ preferences are O-legal, a sequential voting protocol can also be
considered as a voting rule, because a voter’s preference on the values of Xi given the
values of earlier variables is unambiguously defined given her preference relation over
A. More precisely, given any O-legal profile P , SeqO(P ) is defined to be the output of
the sequential voting protocol where in step 2, Pt = 〈�1

t , . . . ,�n
t 〉 where �i

t represents
local preferences of agent i over Dt given X1 = d1, . . . , Xt−1 = dt−1.

Example 9.12. Suppose there are two binary issues X1 and X2. Let P denote the
same profile as in Example 9.11. Let O = X1 � X2. As we discussed, P is O-legal.
To apply SeqO(maj, maj), where maj denote the majority rule, in step 1 the voters
are asked to report their (unconditional) preferences on X1, which gives P1 = 〈11 �
01, 11 � 01, 01 � 11〉. Therefore, d1 = maj(P1) = 11. In step 2, the voters report their
preferences over D2 given X1 = 11, which leads to P2 = 〈12 � 02, 02 � 12, 02 � 12〉,
and then d2 = maj(P2) = 02. Therefore, SeqO(maj, maj)(P ) = 1102.

Normative Properties

We recall from Chapter 2 that one classical way to assess voting rules is to study
whether they satisfy certain normative properties. In this subsection we examine the
normative properties of safe sequential voting.

Classical normative properties are defined for voting rules where the input is com-
posed of linear orders over the alternatives. We note that SeqO(P ) is only defined
for O-legal profiles. Some normative properties can be easily extended to SeqO(P ),
for example anonymity and consistency, while others need to be modified. For exam-
ple, the classical neutrality axiom states that for any profile P and any permutation
M of the alternatives, r(M(P )) = M(r(P )). However, even if P is O-legal, M(P )
might not be O-legal. Therefore, we will focus on a weaker version of neutrality that
requires r(M(P )) = M(r(P )) for all P and M such that both P and M(P ) are O-legal.
Monotonicity can be modified in a similar way.

Whether SeqO satisfies a specific normative property often depends on whether the
local voting rules satisfy the same property. Some properties are inherited by sequential
compositions from their local rules ri ; for others, satisfaction of the property by the
local voting rules is merely a necessary but not sufficient condition.

Theorem 9.13 (Lang and Xia, 2009).

� SeqO(r1, . . . , rp) satisfies anonymity (respectively, consistency) if and only if ri satisfies
anonymity (consistency) for all i = 1, . . . , p;
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� if SeqO(r1, . . . , rp) satisfies neutrality (respectively, Condorcet-consistency, partici-
pation, and Pareto-efficiency) then ri satisfies neutrality (respectively, Condorcet-
consistency, participation, and Pareto-efficiency) for all i = 1, . . . , p;

� SeqO(r1, . . . , rp) satisfies monotonicity if and only if rp satisfies monotonicity.

Proofs for the normative properties mentioned in Theorem 9.13 follow a similar
pattern. Take consistency, for example. Recall that a voting rule r satisfies consistency if
for all disjoint profiles P1 and P2 such that r(P1) = r(P2), we have r(P1 ∪ P2) = r(P1)
(see Chapter 1). We first prove that consistency can be lifted from all local rules to
their sequential composition SeqO(r1, . . . , rp). For any disjoint sets of profiles P1 and
P2 such that SeqO(r1, . . . , rp)(P1) = SeqO(r1, . . . , rp)(P2), let  d denote the outcome.
We then prove that SeqO(r1, . . . , rp)(P1 ∪ P2) =  d = (d1, . . . , dp) by induction on the
round t of sequential voting. When t = 1, let P 1

1 and P 1
2 denote the agents’ preferences

over X1, which are well-defined because P1 and P2 are O-legal. Due to consistency
of r1, we have r1(P 1

1 ∪ P 1
2 ) = d1. Suppose the outcome of sequential voting is the

same as in  d up to round k − 1. It is not hard to verify that in round k, the winner is
dk by considering agents’ preferences over Xt conditioned on previous issues taking
d1, . . . , dk−1. This proves that SeqO(r1, . . . , rp) satisfies consistency.

Conversely, if SeqO(r1, . . . , rp) satisfies consistency and for the sake of contradic-
tion suppose that a local rule does not satisfy consistency. Let t denote the smallest
number such that rt is not consistent, and let P t

1 , P
t
2 denote the profiles over Xt with

rt (P t
1 ) = rt (P t

2 ) �= rt (P t
1 ∪ P t

2 ). Let r1, . . . , rt−1, rt+1, . . . , rp be rules that always out-
put the same winner regardless of the local profile. We can extend P t

1 and P t
2 to

profiles P1, P2 over the whole combinatorial domain so that SeqO(r1, . . . , rp)(P1) =
SeqO(r1, . . . , rp)(P2), and agents’ local preferences over Xt are P t

1 and P t
2 . It is not

hard to verify that SeqO(r1, . . . , rp)(P1) �= SeqO(r1, . . . , rp)(P1 ∪ P2), which contra-
dicts the assumption that SeqO(r1, . . . , rp) satisfies consistency.

In fact, for neutrality and Pareto-efficiency, a stronger result has been proved for
irresolute sequential voting rules: Xia and Lang (2009) show that except in the case
where the domain is composed of two binary issues, the only neutral irresolute sequen-
tial voting rules are dictatorships, antidictatorships,10 and the trivial irresolute rule that
always outputs the whole set of alternatives; and the only Pareto-efficient irresolute
sequential voting rules are dictatorships and the trivial irresolute rule. When the domain
is composed of two binary issues, sequential majority is neutral and Pareto-efficient.

Strategic Behavior

In the previous subsection, when we talked about normative properties, it was implicitly
assumed that agents were truthful. However, in practice an agent may misreport her
preferences at step 2 of the sequential voting protocol (Algorithm 1). If some variables
are nonbinary, then sequential voting will inherit manipulability from the local rules,
even if the profile is separable. However, in case all variables are binary, it is not imme-
diately clear if a sequential voting rule defined over O-legal profiles is strategyproof

10 A rule is an antidictatorship if there exists an agent such that the winner is always her least preferred alternative.
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(see Chapters 2 and 6), since the Gibbard-Satterthwaite Theorem is not directly appli-
cable. The following example shows that sequential voting is not strategyproof, even
when all variables are binary, and the agents’ preferences are O-legal for some O.

Example 9.14. Let P be the profile defined in Example 9.11. If agent 1 knows the
preferences of agent 2 and agent 3, then she has no incentive to vote truthfully on issue
X1, even though her preference relation is separable: if she votes for 1 sincerely, then
the outcome is 10. If she votes for 0 instead, then the outcome is 01, which is better to
her.

The problem of characterizing strategyproof voting rules in binary multi-issue
domains has received some attention. Barberà et al. (1991) characterize strategyproof
voting rules when the voters’ preferences are separable, and each issue is binary. Ju
(2003) characterizes all strategyproof voting rules on binary multi-issue domains (sat-
isfying a mild additional condition) where each issue can take three values: “good,”
“bad,” and “null.” Le Breton and Sen (1999) prove that if the voters’ preferences
are separable, and the restricted preference domain of the voters satisfies a rich-
ness condition, then a voting rule is strategyproof if and only if it is a simultane-
ous voting rule for which each local voting rule is strategyproof over its respective
domain.

We may wonder whether this extends to safe sequential voting. However, the follow-
ing impossibility theorem of Xia and Conitzer (2010a) answers the question negatively:
there is no strategyproof sequential voting rule on Legal(O)n that satisfies nonimposi-
tion, except a dictatorship. Xia and Conitzer (2010a) also prove a positive result in the
further restricted case of O-legal conditionally lexicographic preferences: essentially,
the strategyproof rules on this domain are generalized sequential voting rules, where
the choice of the local rule to apply on a given issue may depend on the values taken
by more important issues.

9.4.2 Sequential Voting: The General Case

In the absence of O-legality, sequential voting suffers from the same problem as
simultaneous voting in the absence of separability: there is no clear way for voters to
report their local preferences on the domain of an issue, since it may depend on the
value of issues yet to be decided. Moreover, choosing the agenda (the order on which
the issues are decided) can be tricky: What is a good agenda? Who chooses it? This
problem is raised by Airiau et al. (2011), who suggest designing a voting procedure
for choosing the agenda: each voter reports its dependency graph and these graphs
are aggregated into an acyclic graph, for instance using a distance-based aggregation
function. Another approach to unrestricted sequential voting is described by Dalla
Pozza et al. (2011), who assume that at each stage, voters report their local preferences
according to the projection of a weighted CSP on the current variable.

Another challenge in the analysis of sequential voting without the O-legality
assumption is that the outcome may depend on the order in which the issues are
decided. This can give the chair (or whoever chooses the order) an effective way of
controlling the election (see Chapter 7). This can be seen in the following example:
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Example 9.3, continued. Suppose the voters report their preferences optimistically,
which is known to the chair. If S is decided before T , then we get k + 1 votes for 1S ,
k votes for 0S , leading to the local outcome 1S ; then, given S = 1S , we have 2k votes
for 0T and 1 vote for 1T , therefore the final outcome is 1S0T . Symmetrically, if T is
decided before S, the final outcome is 0S1T . Therefore, the chair’s strategy can be to
choose the order S � T if she prefers 1S0T to 0S1T , and the order T � S otherwise.
(Note that 1S1T and 0S0T cannot be obtained).

This shows that the chair can sometimes, and to some extent, control the election by
fixing the agenda (see also Chapter 7). This drawback of sequential voting is however
tempered by the fact that under some reasonable assumptions about the way the voters’s
behaviors are represented, in most cases, most of these agenda control problems are
NP-hard (Conitzer et al., 2009a).

We mentioned above that in the absence ofO-legality, there is no clear way for voters
to report their local preferences on the domain of a variable. However, there is a case
where voters may in fact be able to determine valid reports of their local preferences.
When voters’ preferences are assumed to be common knowledge, the sequential voting
protocol can be framed as an extensive-form game, called a strategic sequential voting
process, denoted by SSVO (Xia et al., 2011a). We assume that all variables are binary.
Without loss of generality, let O = X1 � · · ·� Xp. The game is defined as follows:

� The players are the voters; their preferences are linear orders over A; their possible
actions at stage t � p are 0t and 1t .

� In each stage t , all voters vote on Xt simultaneously, rt is used to choose the winning
value dt for Xt , and dt is reported back to the voters.

� We assume complete information: all voters know the other voters’ preferences, the
local voting rules r1, . . . , rp and the order O.

When all issues are binary, SSVO can be solved by backward induction where in each
stage all voters move simultaneously and perform a dominant strategy, as illustrated in
the following example.

Example 9.15. Let P be the profile defined in Example 9.11. If the outcome of the
first stage of sequential voting is 11, then in the second stage it is voter 1’s dominant
strategy to vote for 12 because 1112 �1 1202 and the majority rule is strategyproof.
Similarly, in this case voters 2 and 3 will vote for 02. Therefore, by the majority rule,
the winner will be 1102. Similarly, if the outcome of the first stage of sequential voting
is 01, then the votes at the second stage will be unanimously 02, and the winner will
be 0112. Given this reasoning, in the first stage, each agent is comparing 1102 to 0112,
and will vote 11 if he prefers 1102 to 0112 and 01 if he prefers 0112 to 1102. Again we
have two alternatives, and the majority rule is strategyproof. This means that voter 1
will vote for 01, voter 2 will vote for 11, and voter 3 will vote for 01. Hence, the winner
for X1 is 01, and the overall winner is 0112. This backward induction process is shown
in Figure 9.2.

In Example 9.15, the backward induction winner is unique. This observation can be
extended to an arbitrary number of binary issues. Let SSVO(P ) denote the backward
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Figure 9.2. Backward induction tree for Example 9.15.

induction winner when the voters’ true preferences are P .11 Despite being unique, this
outcome is extremely undesirable in the worst case: Xia et al. (2011a) prove that for
any p ∈ N and any n � 2p2 + 1, there exists a profile P such that (1) SSVO(P ) is
ranked within the bottom !p/2 + 2" positions in every voter’s true preferences, and (2)
SSVO(P ) is Pareto-dominated by 2p − (p + 1)p/2 alternatives. We note that when p

is not too small, !p/2 + 2" and (p + 1)p/2 are much smaller than |A| = 2p. Therefore,
the SSV winner can indeed be extremely undesirable. A stronger form of the theorem
and a similar negative result for O-legal profiles are given by Xia et al. (2011a).

9.4.3 Discussion

The key property of sequential voting is that it interleaves preference elicitation and
winner determination, whereas the approaches outlined in Sections 9.2 and 9.3 proceed
in a more usual fashion, by eliciting preferences in one round, and determining the
winner afterward. As a result, sequential voting can save a lot in communication costs,
but is applicable only when it is realistic to elicit preferences step by step. Now, the
quality of the outcome obtained by sequential voting primarily depends on whether
it is realistic to assume that voters’ preferences are O-legal for some common order
O: if so, then sequential voting enjoys some good properties; if not, it offers far fewer
quality guarantees. Therefore, one criticism of sequential voting is that it still needs a
strong domain restriction to work well (Xia et al., 2008); but still, when compared to
the separability restriction needed for simultaneous voting, O-legality is much weaker
(Lang and Xia, 2009). Conitzer and Xia (2012) evaluate the quality of the outcome of
sequential voting w.r.t. a scoring function, which can be seen as numerical versions of
multiple election paradoxes.

There could be other ways of interleaving elicitation and winner determination. A
completely different way of proceeding was proposed very recently by Bowman et al.
(2014), who propose an iterative protocol that allows voters to revise their votes based
on the outcomes of previous iterations.

9.5 Concluding Discussion

After reviewing several classes of methods for voting in combinatorial domains, we are
left with the (expected) conclusion that none of them is perfect. More precisely, when

11 This should be distinguished from the classical social choice setting, where the input consists of the reported
preferences.
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choosing a method, we have to make a trade-off between generality, communication
(and, to a lesser extent, computation) costs, and the quality of the outcome, evaluated
with respect to classical social choice criteria. If specific domain restrictions such
as separability or, more generally, O-legality, are realistic for the case at hand, then
many of the methods discussed in this chapter work reasonably well. Otherwise, one
has to be prepared to make some trade-off between communication requirements and
the quality of the outcome. One possibility that has not really been developed yet
is to choose some intermediate method that requires some weak domain restriction,
some reasonable communication and computation costs, and offers some reasonable
guarantees about the quality of the outcome.

Voting in combinatorial domains is related to several other issues studied in this
book and elsewhere:

� Incomplete information and communication (Chapter 10): as some communication sav-
ing can be made by eliciting only a part of the voters’ preferences, winner determination
in combinatorial domains can benefit from approaches to winner determination from
incomplete preferences as well as from the design of communication-efficient voting
protocols.

� Judgment aggregation (Chapter 17) is also concerned with making common decisions
about possibly interrelated issues. There are interesting parallels between judgment
aggregation and voting in combinatorial domains. Simultaneous voting corresponds to
some extent to proposition-wise voting: while the first works well when preferences are
separable, the second outputs a consistent outcome if the agenda enjoys an independence
property that resembles separability. Note that in judgment aggregation, difficulties are
often caused by the logical relations between the elements of the agenda, while in voting
in combinatorial domains, they are mainly due to preferential dependencies. Relating
both areas is a promising research direction; see Grandi and Endriss (2011) for some
first steps in this direction.

� Fair division of indivisible items (Chapter 12) is another field where a common decision
has to be made on a combinatorial space of alternatives (the set of all allocations). In the
settings we reviewed in this chapter, we assumed that all agents were equally concerned
with all issues (which is patently false in fair division, where agents are primarily –
sometimes even exclusively – concerned by their share); but in some settings, some
issues concern some (subsets of) voters more than others, which will call for introducing
fairness criteria into multi-issue voting.

Acknowledgments

We would like to thank Craig Boutilier, Vince Conitzer, Ulle Endriss, and Umberto
Grandi for very helpful feedback.



CHAPTER 10

Incomplete Information and
Communication in Voting

Craig Boutilier and Jeffrey S. Rosenschein

Many voting schemes (and other social choice mechanisms) make stringent assump-
tions about the preference information provided by voters, as well as other aspects of
the choice situation. Realizing these assumptions in practice often imposes an unde-
sirable and unnecessary burden on both voters and mechanism designers with respect
to the provision of such information. This chapter provides an overview of a variety
of topics related to the information and communication requirements of voting. One
theme underlying much of the work discussed in this chapter is its focus on deter-
mining winners or making decisions with incomplete or stochastic information about
voter preferences—or in some cases, about the alternatives themselves. This includes
work on the computational complexity of determining possible/necessary winners and
regret-based winner determination; the query or communication complexity of eliciting
preferences; practical schemes for preference elicitation; winner determination under
alternative uncertainty; the sample complexity of learning voting rules; and compilation
complexity.

10.1 Introduction

Voting methods are extremely attractive as a means for aggregating preferences to
implement social choice functions. However, many voting schemes (and other social
choice mechanisms) make stringent assumptions about the preferences provided by
voters. For instance, it is usually assumed that each voter provides a complete pref-
erence ranking of all alternatives under consideration. In addition, such schemes are
often implemented assuming complete knowledge of the set of alternatives under con-
sideration, and over which voters provide their preferences.

While these modeling requirements are reasonable in many domains—especially
high-stakes settings such as political elections—increasingly we see the methods of
social choice applied to lower-stakes, higher frequency domains, including web search,
product recommendation, market segmentation, meeting scheduling, group travel plan-
ning, and many others. For such problems, demanding complete preference information
is not viable for several key reasons. First, the number of options from which a winning
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alternative is to be selected is often extremely large (e.g., the set of possible products
under consideration) and may even be combinatorial in nature (e.g., the set of feasi-
ble schedules or plans). Second, requiring the complete specification of a preference
ordering may impose unwarranted cognitive and communication demands given the
stakes involved. It may even be unnecessary in many instances—partial information
may be sufficient to reach the correct decision. Third, the frequency of decisions often
gives rise to considerable data that allows (statistical) prediction of voter preferences.
Finally, the set of alternatives over which decisions are made may be uncertain or
change dynamically. This all argues for a deeper analysis of the communication and
informational requirements of voting rules, and methods for reducing such require-
ments, even to the point of “approximating” the ultimate decision. Such methods may
allow for the broader practical application of voting methods. Understanding infor-
mational requirements is equally important in high-stakes domains, and may provide
significant benefits. For instance, reducing cognitive and communication complexity
may reduce voting errors (e.g., due to choice confusion), increase voter participation,
and decrease the time needed to reach decisions.

In this chapter, we overview a number of models and techniques developed to address
such issues, namely, the information and communication requirements of voting. One
theme underlying much of the work discussed in this chapter is its focus on determining
winners or making decisions with incomplete or stochastic information about voter
preferences—or in some cases, about the alternatives themselves. This includes: models
for determining winners with partial preference information, including possible and
necessary winners and regret-based winner computation; theoretical analyses of the
communication complexity of eliciting preferences, as well as practical schemes for
eliciting preferences from voters; methods for determining winners when the set of
viable alternatives is unknown or uncertain; results on the compilation complexity
of voting rules, that is, the ability to concisely summarize voter preferences; and
techniques for learning voting rules, that is, designing voting rules that “perform well”
given some model of voter utility.

The remainder of the chapter is organized as follows. We describe basic notation
and the models of partial preferences used throughout the chapter in Section 10.2.
In Section 10.3 we introduce several key solution concepts for winner determination
with partial preferences. In Sections 10.4 and 10.5 we outline key theoretical results on
communication and query complexity for vote elicitation and describe recent elicitation
techniques and their analysis. We present several models for dealing with uncertainty
in the set of alternatives in Section 10.6. Section 10.7 focuses on recent results in
compilation complexity, or the summarization of vote profiles. In Section 10.8 we
describe models and methods that support the analysis and design of voting rules that
are intended to maximize social welfare assuming voters have cardinal utilities over
alternatives. We conclude in Section 10.9 with some general observations and a brief
discussion of open issues.

10.2 Models of Partial Preferences

While incomplete information for various elements of a voting situation has been
mentioned, incomplete information about voter preferences is almost certainly the
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most fundamental. Furthermore, communicating voter preferences to the mechanism
represents probably the most critical communication bottleneck in voting. We begin
by introducing notation and defining several models of partial preferences that will be
used throughout this chapter.

10.2.1 Basic Notation and Concepts

We assume a set of alternatives A = {a1, . . . , am}, representing the space of possible
choices, and a set of voters N = {1, . . . , n}. Each voter i has a preference order �i

over A, which is a total order over A, with aj �i ak denoting that i prefers aj to ak .1 We
sometimes view this ordering as a permutation σi of A, in which case: σi(j ) denotes
the position of aj in i’s ranking; and σ−1

i (j ) denotes the alternative ranked in the j th
position. Let R(A) denote the set of all such preference orders over A. A preference
profile R = 〈�1, . . . ,�n〉 is a collection of preferences for each voter.

Given a preference profile R, a social choice function or voting rule f selects a
winning alternative f (R) ∈ A for that profile.2 We refer to Chapters 2–5 for further
discussion of various voting rules and approaches.

Many voting rules are defined by schemes that explicitly score each alternative a ∈ A

given a preference profile R, using some “natural” scoring function s(a, R) that mea-
sures the quality of a given R. The rule selects an alternative f (R) ∈ argmaxa∈A s(a, R)
with maximum score. Usually some method of breaking ties is assumed, but the precise
method used has little impact on the discussion in this chapter. In some cases, however,
we will use the term co-winner to refer to any alternative a with maximum score
s(a, R) (independent of tie-breaking), especially in Section 10.3. If one interprets the
scoring function s as a measure of social welfare, such voting rules can be viewed as
maximizing social welfare. Voting rules based on scoring rules (e.g., plurality, Borda,
veto, k-approval), Copeland, Bucklin, maximin, and many others can be defined this
way.3

10.2.2 Partial Votes and Profiles

One natural way to reduce the communication and informational requirements of voting
is to elicit or otherwise obtain partial information about voter preferences and attempt
to implement a voting rule using only the information at hand.

Abstractly, we let πi denote the partial preference of voter i, and � = 〈π1, . . . , πn〉
a partial profile. In what follows, we will usually assume that πi is a partial order
over A, or equivalently (the transitive closure of) a consistent collection of pairwise
comparisons of the form aj �i ak .

1 Allowing indifference between alternatives has little impact on the main concepts that follow, though it does
sometimes affect algorithmic details and complexity analysis.

2 Not all voting rules require the specification of the complete rankings (e.g., plurality), and certain rules, such as
approval voting or range voting cannot be defined purely as a function of a voter’s ranking.

3 We emphasize that natural measures of quality are the norm; trivially, any rule can be defined using a scor-
ing function that is a simple indicator function for the winner. We note that while Xia and Conitzer (2008a)
propose a class of generalized scoring rules, they show that it is not broad enough to encompass all vot-
ing rules, not even all anonymous rules; however, this class does seem to capture most “natural” scoring
functions.
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A partial vote πi can represent information about voter i’s preferences gleaned from
a variety of sources: revealed preference data (e.g., based on past choices), collaborative
filtering predictions, or responses to queries about her preferences. We note that the
responses to most natural preference queries induce constraints on preferences that can
be represented as a partial order. These include: arbitrary pairwise comparisons (is a

preferred to b?); top-k queries (what are your k most preferred alternatives?), choice
queries (which alternative in set S is most preferred?), and others.4

Let πi be the partial ranking of voter i. A completion of πi is any vote �i that extends
πi . Let C(πi) denote the set of completions of πi , that is, the set of all (complete) votes
�i that extend πi . A partial profile is a collection of partial votes � = 〈π1, . . . , πn〉. Let
C(�) = C(π1) × . . . × C(πn) be the set of completions of �. We take the perspective
in this chapter that partial votes and profiles reflect the epistemic or information state of
a voting mechanism, agent, decision maker or other party implementing a voting rule
or social choice function. We assume that voter i has true preferences corresponding
to some completion of πi . The partial vote does not reflect uncertainty, incompleteness
or indecision on the part of the voter, merely the mechanism’s incomplete information
about those preferences.5

10.2.3 Probabilistic Preference Models

If one is given partial information about the preferences of voters, but is forced to make
a decision (e.g., select the winner of an election), or evaluate the value of eliciting
further information, several styles of approach can be used, including worst-case or
probabilistic analyses. We consider both in what follows. Probabilistic analysis requires
the specification of some prior distribution over voter preferences or preference profiles,
so we briefly review several key probabilistic models.

Probabilistic analysis has a rich history in social choice, though until recently it has
been used primarily to study the likelihood that various phenomena (e.g., Condorcet
cycles, manipulability) occur in randomly drawn voter populations, rather than as a
basis for decision making or elicitation with incomplete information. Abstractly, a
distribution over � ∈ R(A) can be viewed as a “culture” indicating the probability
that a random voter will hold a particular preference ranking (Garman and Kamien,
1968). By far the most commonly studied distribution is the impartial culture (IC), in
which each ranking �∈ R(A) is equally likely to be a voter’s preference, and all voter
preferences are independent (Black, 1958; Gehrlein and Fishburn, 1976; Regenwetter
et al., 2006). Related, but taking a slightly different form, is impartial anonymous
culture (IAC) which provides a uniform distribution over all preference profiles. Berg
(1985) proposes a general Polyá-Eggenberger urn model that encompasses both of
these (and has been used, e.g., to study the probability and empirical hardness of
manipulation (Walsh, 2009)). See Regenwetter et al. (2006) for a discussion of other
cultures studied in social choice.

4 One exception involves constraints that are naturally disjunctive, e.g., a response to the question “What alternative
is ranked kth?” cannot generally be mapped to a set of pairwise preferences unless the positions k are queried
in ascending or descending order.

5 For approaches to voting with truly incomplete preferences represented by partial orders, see (Pini et al., 2009;
Xia and Conitzer, 2011b), and a discussion of approaches based on maximum likelihood in Chapter 8.



1 0 .3 solution concepts with partial preferences 227

It is widely recognized that impartial cultures do not accurately reflect real-world
preferences (Regenwetter et al., 2006). More realistic probabilistic models of pref-
erences, or parameterized families of distributions over rankings, have been pro-
posed in statistics, econometrics and psychometrics. These models typically reflect
some process by which people rank, judge or compare alternatives. Many models
are unimodal, based on a “reference ranking” from which user rankings are gener-
ated as noisy perturbations. A commonly used model, adopted widely in machine
learning is the Mallows φ-model (Mallows, 1957). It is parameterized by a modal
or reference ranking σ and a dispersion parameter φ ∈ (0, 1]; and for any rank-
ing r we define: P (r; σ, φ) = 1

Z
φd(r,σ ), where d is the Kendall tau distance and

Z = ∑
r ′ φ

d(r ′,σ ) = 1 · (1 + φ) · (1 + φ + φ2) · · · (1 + · · · + φm−1) is a normalization
constant.6 When φ = 1 we obtain the uniform distribution over rankings (i.e., impar-
tial culture), and as φ → 0 we approach the distribution that concentrates all mass on
σ . A variety of other models have been proposed that reflect different interpretations
of the ranking process (e.g., Plackett-Luce, Bradley-Terry, Thurstonian) and many of
these have found application in computer science, machine learning, and recommender
systems; we refer to Marden (1995) for a comprehensive overview of these models.
Mixtures of such models, which offer additional modeling flexibility (e.g., by admit-
ting multimodal distributions), are also commonly used (Murphy and Martin, 2003;
Meilǎ and Chen, 2010; Lebanon and Mao, 2008; Lu and Boutilier, 2011b). A variety
of statistical techniques have been developed to learn the parameters of such models
from (partial, noisy) voting or preference data.

The riffle independence model (Huang and Guestrin, 2009), has a somewhat different
nature, partitioning A into two sets: a ranking of each set is generated stochastically
(and independently); then a stochastic process is used to interleave or “riffle” the two
resulting rankings to produce a combined ranking. The model can also be defined
hierarchically, with the same process used to generate the subrankings.

10.3 Solution Concepts with Partial Preferences

Two fundamental questions arise in voting situations in which we have access to
incomplete preference profiles. First, is the information provided sufficient to determine
the winner (or have certain alternatives have been ruled out as possible winners)?
Second, if required to choose a winning alternative under such conditions, what are the
right criteria for doing so? We discuss both questions in this section.

10.3.1 Possible and Necessary Winners

Suppose we are given a voting rule f but have only a partial profile �. This partial
information may or may not be sufficient to determine the true winner under f .
However, if the winner cannot be determined, � may still contain enough information
to rule out certain alternatives as potential winners. Konczak and Lang (2005) introduce
the notions of possible and necessary winners to reflect these possibilities. We say that

6 See Chapters 4 and 8 for a discussion of the Kemeny rule, a voting method based on the same distance function.
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a is a possible winner under � iff there is some R ∈ C(�) such that f (R) = a; and
a is a necessary winner under � iff f (R) = a for all R ∈ C(�). The applications
of these concepts are many. For instance, if a is a necessary winner under �, no
further elicitation or assessment of voter preferences is needed to make a decision
(as we discuss later). Knowing whether a is a possible winner is tightly related to the
coalitional manipulation problem as well (see Chapter 6). Assume a partial profile � in
which the votes of the nonmanipulators are fully specified, while no information is given
for the manipulators: if a is not a possible winner with respect to �, the manipulating
coalition cannot (constructively) manipulate the election to install a; conversely if
a is a possible winner, then a is susceptible to (constructive) manipulation;7 related
connections between destructive manipulation and necessary winners also exist. The
computation of possible and necessary winners under various voting rules is thus of
key importance.

Computationally, the complexity of the possible and necessary winner problems,
denoted PW and NW, respectively, varies considerably with the voting rule in question
and the setting. We focus our attention here primarily on results that allow for general
partial profiles (for results on the special case where some votes are completely known
and others are completely unknown, see Chapter 6 on manipulation). First, it is easy
to observe that if the number m of alternatives A is bounded—assuming voters are
not weighted (we briefly discuss weighted voters in what follows) and the voting rule
satisfies anonymity—then both PW and NW are computable in polynomial time if the
voting rule supports polynomial winner determination (Conitzer et al., 2007; Walsh,
2007). This is so because there are only a constant number of distinct votes b = m!
that may be cast by any voter. By anonymity, the number of voters casting each vote is
sufficient to determine a winner, and there are at most (n + 1)b such “count” profiles
that need to be enumerated.

However, the complexity as a function of the number of alternatives can vary
considerably. The first result along these lines was due to Bartholdi and Orlin (1991),
who, in the context of manipulation, show that PW is NP-complete and NW is coNP-
complete for STV (even with the restricted partial profiles allowed in manipulation
settings). Konczak and Lang (2005) show that PW and NW are polytime solvable for
the Condorcet winner problem (i.e., is a necessarily or possibly a Condorcet winner).
Xia and Conitzer (2011a) analyze a wide collection of common voting rules. For
example, they show that: PW and NW are both polytime solvable for plurality and
veto; for maximin and Bucklin, NW is polytime solvable but PW is NP-complete; and
for Copeland, ranked pairs, and voting trees (including Cup), NW is coNP-complete
and PW is NP-complete. They also analyze a special class of positional scoring rules
which include Borda and k-approval as special cases, showing that NW is polytime
solvable, while PW is NP-complete. Betzler and Dorn (2010) and Baumeister and
Rothe (2010) fully characterize PW for positional scoring rules, showing that it is
NP-complete for all such rules apart from plurality and veto.

Many of the hardness results are shown by reduction from problems such as Exact-
3-Cover (Xia and Conitzer, 2011a; Betzler and Dorn, 2010). Easiness of NW is

7 A “hybrid” question when nonmanipulator votes are partial—is a a possible winner given any completion of
nonmanipulators’ votes—seems to have been unaddressed in the literature.
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Figure 10.1. A partial profile illustrating necessary winner computation.

generally shown by constructing algorithms that will effectively find a completion of
a vote profile that disproves the claim. For instance, suppose we have a rule based on
a scoring function s(a, R). To determine if a is a necessary winner, one can attempt to
find a completion of partial profile � that makes some competing alternative w beat
a by maximizing the difference between the score of w and the score of a. If such a
completion is found that gives w a higher score than a, then a cannot be a necessary
winner. If this is tested for all w �= a without any w “defeating” a, then a is a necessary
winner. As long as constructing such a profile for any fixed w �= a is polytime solvable
in the number of alternatives, then NW is also polytime solvable.

Example 10.1. We illustrate the technique developed by Xia and Conitzer (2011a)
for determining whether an alternative a is a necessary winner for the Borda scoring
rule. Consider the simple partial vote profile in Figure 10.1, over four voters and four
alternatives. Notice that this partial profile has 144 possible completions: voter 1 has
only 1 completion since it is fully specified; voter 2 has 12 completions; voter 3 has 6
completions; and voter 4 has 2 completions.

To test whether a is a necessary winner, we try to “disprove” this fact by showing
that one of b, c or d has a higher Borda score sB in some completion of the profile. We
test each of the alternatives w ∈ {b, c, d} in turn, attempting to find a completion of
the vote profile that maximizes the score difference sB(w) − sB(a). If this difference
is positive, then w beats a in some completion, hence a is not a necessary winner or
co-winner. If it is negative, w is not a possible winner (since there is no completion
in which it even beats a). Finally, if the maximum score difference for each of the
w is negative, then a is a necessary winner. (If each difference is nonpositive, a is a
necessary co-winner.)

It is straightforward to compute the maximum score difference—since the contri-
bution sB(w, i) of each vote i to alternative w’s Borda score is independent, we can
complete each voter’s partial vote independently to maximize this difference. Consider
alternative b:

� Since voter 1’s vote is complete, the score difference sB(b, 1) − sB(a, 1) = −1 is fixed.
� Voter 2’s vote can be completed in several different ways, but a must be positioned

above b, so sB(b, 2) − sB(a, 2) � −1 in any completion. To maximize this (negative)
difference, any completion that places neither of c or d between a and b ensures
sB(b, 2) − sB(a, 2) = −1.
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� Voter 3’s vote can be completed by placing c and d between b and a, giving completion
b � c � d � a and a maximum difference of sB(b, 3) − sB(a, 3) = 3.

� Voter 4’s vote can be completed in two ways, but in each case we have a maximum
difference of sB(b, 3) − sB(a, 3) = −3.

Summing these maximum differences gives a profile that maximizes the score differ-
ence sB(b) − sB(a) = −2. Hence b does beat a in any completion, so cannot be used to
refute the fact that a is a necessary co-winner. (This also shows that b is not a possible
winner).

We can apply the same reasoning to construct a profile that maximizes sB(c) − sB(a).
Vote by vote it is not hard to see that the maximum possible difference between c and
a is: −2 in vote 1; 2 in vote 2 (using completion c � d � a � b); 3 in vote 3 (using
completion c � d � b � a); and −1 in vote 4 (using completion a � c � d � b).
In other words, we have a profile where sB(c) − sB(a) = 2.8 This means a is not a
necessary winner (or co-winner). For completeness, we note that sB(d) − sB(a) = 0 is
the maximum difference for alternative d.

These intuitions can be translated straightforwardly into an O(nm) algorithm for
computing completions, hence an O(nm2) algorithm for testing whether an alternative
a is a necessary winner (or co-winner) (Xia and Conitzer, 2011a).

We note that in this partial profile:

� a is a possible winner: the completions a � b � c � d, b � a � c � d, a � d � c � b,
of votes 2, 3, and 4, respectively, render a the unique Borda winner.

� b is not a possible winner (the detailed reasoning sketched earlier shows that b’s maxi-
mum score advantage over a is negative, so b cannot beat a in any completion).

� c is a possible winner (using the completion and detailed reasoning sketched previously).
� d is a possible co-winner: the completions d � c � a � b, c � d � b � a, a � d �

c � b, of votes 2, 3, and 4, respectively, give d a Borda score of 7, that is, equal to that
of both a and c and higher than that of b. Note that there is no completion that renders
d a unique Borda winner.

� There is no necessary winner, because there are at least two possible winners. �

While computing possible and necessary winners is generally easy with a bounded
number of alternatives, this is no longer the case for many rules when voters are
weighted. For instance, rules such as Borda, Copeland, maximin, and veto have NP-
complete possible winner problems for a bounded number of voters. We do not discuss
weighted models in depth, but refer to recent work by Conitzer and Sandholm (2002),
Walsh (2007), and Lang et al. (2012b) for a selection of results using this model.

10.3.2 Minimax Regret

While possible and necessary winners are valuable concepts for providing (normative)
constraints on the decisions one might make given a partial profile, they do not provide
a general means for selecting winners given arbitrary partial profiles. Specifically,

8 It is easy to verify that c also has a higher score than both b and d in this completion—hence c is a possible
winner.
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necessary winners generally will not exist without a substantial amount of preference
information, while possible winners can only be used to narrow the set of alternatives. In
circumstances when one is required to make a decision without complete information—
or where the cost of obtaining further preferences outweighs the benefit—the following
questions remain: which of the possible winners should one select? and is it reasonable
to select an alternative that is not a possible winner?

Lu and Boutilier (2011c) propose the use of minimax regret to address this problem.9

Assume a voting rule f defined using some scoring function s(a, R). In this section,
we treat this score as a measure of societal “utility” or social welfare. Given a partial
profile �, the quality of a proposed winning alternative a under � is defined to be the
difference between the score of a and the score of the winner (i.e., alternative with
the optimal score), in the worst case (i.e., given any completion of �). The minimax
optimal alternative is that which is closest to optimal in the worst case. More formally,
define:

Regret(a, R) = max
a′∈A

s(a′, R) − s(a, R) (10.1)

= s(f (R), R) − s(a, R),

PMR(a, a′, �) = max
R∈C(�)

s(a′, R) − s(a, R), (10.2)

MR(a, �) = max
R∈C(�)

Regret(a, R)

= max
a′∈A

PMR(a, a′, �), (10.3)

MMR(�) = min
a∈A

MR(a, �), (10.4)

a∗
� ∈ argmin

a∈A

MR(a, �). (10.5)

Here Regret(a, R) is the loss (or regret) of selecting a as a winner instead of choosing
the true winning alternative under rule f (or scoring function s). PMR(a, a′, �) denotes
the pairwise max regret of a relative to a′ given partial profile �, namely, the worst-case
loss—under all possible realizations of the full profile—of selecting a rather than a′.
The maximum regret MR(a, �) is the worst-case loss associated with a, assuming an
adversary selects some completion R of � to maximize the loss between the selected
alternative a and the true winner under R. The goal is thus to find the a with minimum
max (minimax) regret: here MMR(�) denotes minimax regret under partial profile �,
while a∗

� denotes the minimax optimal alternative. Note that the minimax winner may
not be unique (indeed, given a complete profile R several alternatives may be tied with
the best score, requiring some form of tie-breaking).

Measuring the loss of choosing an incorrect alternative using scores in this way is
not without controversy, but has been used in other contexts; for example, Smith (2000)

9 Minimax regret was proposed by Savage (1951) as a means for making decisions in the context of strict (or
nonprobabilistic) uncertainty over world states. It has since been advocated for robust decision making with
partial preference or utility functions in both single-agent and multiagent settings; see Boutilier (2013) for an
overview.
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Figure 10.2. A partial profile where the minimax-optimal alternative is not a possible winner
under 2-approval (Lu and Boutilier, 2011c).

uses score-based (indeed, utility-based) regret to measure the performance of various
voting rules, including range voting.

Minimax regret has strong connections to possible and necessary winners. First,
notice that if MR(a, �) = 0 then a is a necessary (co-)winner w.r.t. �. This implies
that the max-regret decision problem (i.e., determining whether MR(a, �) � ε) is at
least as computationally difficult as the necessary (co-)winners problem for any rule
f ; thus voting rules such as Copeland and ranked pairs have coNP-hard max-regret
decision problems. Interestingly, the alternative a∗

� with minimax regret given � need
not be a possible winner w.r.t. �: Lu and Boutilier (2011c) describe a partial profile
under 2-approval where every possible winner has higher max regret than the minimax
optimal a∗

�.

Example 10.2. Consider the partial profile � in Figure 10.2 under 2-approval voting.
Notice that b has score 2k in each completion. One of a or c must be in the first position
of every vote in set III, so either a or c receive at least k + 1 approvals from set III.
Hence max(s(a), s(c)) � 2k + 1, and both of a and c are possible winners, while b is
not. At the same time, MR(b, �) = k + 1—simply consider a completion that places a

in position one of all votes in set III. But MR(a, �) = MR(c, �) = 2k + 1: if a (resp.,
c) is chosen as the winner, placement of e and c (resp., d and a) above a (resp., c) in each
vote in set III gives s(a) = k and s(c) = 3k + 1 (resp., s(c) = k and s(a) = 3k + 1).

�

The connections to possible and necessary winners also extend to algorithms for
computing minimax regret. By Equations (10.3) and (10.4) we see that minimax regret
can be computed by determining the pairwise max regret PMR(a, a′, �) for all pairs
(a, a′), maximizing regret for each a, and selecting a∗

� with minimum max regret. Lu
and Boutilier (2011c) describe polytime algorithms, based on the same intuitions for
forming profile completions used for necessary winner computation (Xia and Conitzer,
2011a), for positional scoring rules, maximin, Bucklin, and “egalitarian” voting.10

Example 10.3. Example 10.1, which demonstrates necessary winner computation for
alternative a in Borda voting, also illustrates max regret computation for a under Borda
scoring. Indeed, the maximum of the three score differences (in this case sB(b) −

10 An “egalitarian” scheme chooses a winner whose lowest rank position taken over all voters (i.e., it maximizes the
worst rank of the selected alternative, making the worst-off voter as well off as possible, realizing a Rawlsian
form of social welfare maximization). This can be expressed in the distance rationalizability framework
discussed in Chapter 8 using the distance metric d̂∞

swap (i.e., maximum swap distance) and the unanimity
consensus class U .
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sB(a) = 2) is precisely the max regret of alternative a under the partial profile in
question. Computing max regret for all four alternatives shows that minimax regret can
be computed in O(nm3) time for Borda scoring. In this example, a is the minimax-
optimal alternative. �

10.3.3 Probabilistic Solution Concepts

A different approach to the analysis of winners with partial information uses probabilis-
tic information about voter preferences. Notice that possible and necessary winners are
purely epistemic notions that do not prescribe a general method for choosing winners
under partial profiles. Minimax regret does provide a general method for selecting win-
ners in such circumstances, but quantifies loss using a worst-case analysis, ignoring the
probability of specific completions. By contrast, at least in cases where probabilistic
preference models are available, a more refined analysis of the likelihood of various
completions can be used to make decisions.

Naturally, probabilistic models have been used extensively in the analysis of voting,
but typically they are used to assess the odds of certain phenomena arising in (complete
knowledge) voting settings under specific culture or other preference assumptions. For
example, theoretical and empirical analysis of the probability of a Condorcet cycle
occurring in a vote profile are very common (Gehrlein and Fishburn, 1976; Regenwetter
et al., 2006; Mattei, 2011). Probabilistic models are used to study, both theoretically
and empirically, the probability that manipulation opportunities can arise in elections
as well as to offer average-case analysis of the computational hardness of manipulation
(see Chapter 6 or Faliszewski and Procaccia (2010) for an overview). Such models are
also required to analyze voting equilibria (i.e., Bayes-Nash equilibria in the incomplete
information game played by strategic voters against one another; Majumdar and Sen,
2004; Ángel Ballester and Rey-Biel, 2009), and have been used to analyze the expected
loss induced by the use of voting rules under certain social welfare measures (Hillinger,
2005; Smith, 2000) (see connections to our discussion in Section 10.8).

Here we focus on the probabilistic analysis of partial profiles, which can be used
to answer several important questions. The probabilistic analog of the possible winner
problem is computing the probability Pr(win(a)|�) that a specific alternative a wins
under a voting rule f given partial profile �. Bachrach et al. (2010b) consider a
restricted form of this problem—counting the number of completions in C(�) of
partial profile � for which a is the winner, which they dub #PW. Given that counting
the number of linear extensions of a partial order is #P-hard (Brightwell and Winkler,
1991), they show that #PW is also #P-hard for plurality and veto. However, they also
provide a polytime (randomized) approximation algorithm for #PW that can be used
for any voting rule for which winner determination is polytime solvable. By sampling
completions uniformly at random (which can be done in polynomial time), and apply-
ing Hoeffding bounds to determine the requisite number of samples, they prove that the
fraction of sampled profiles in which a wins is close to the true fraction of such comple-
tions with high probability. This work is restricted in that it assumes voter preferences
are independent and drawn from a uniform distribution (i.e., impartial culture).

Hazon et al. (2012) consider a model that allows for arbitrary distributions of voter
preferences (though they still assume independence of voter preferences) and provide a
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general dynamic programming algorithm to compute the probability that (any) a wins
under a variety of voting rules under fairly general circumstances. For example, given
a constant-bounded number of alternatives and weighted votes—where weights are
themselves polynomially bounded in n—they show that computing the probability of
an alternative winning is polytime solvable for any voting rule with polytime winner
determination. The dynamic programming model uses a compact representation of
voting scenarios tightly tied to work on compilation complexity (see Section 10.7).
The approach assumes that each voter i’s distribution is given in explicit form; that
is, a probability is specified for each possible ranking the voter may hold (e.g., one
for each �i∈ C(πi)). This representation is straightforward when m is small, but
becomes problematic for larger m, where prior distributions are usually represented
using parametric distributions, and for which conditioning on partial preferences is
often intractable (Lu and Boutilier, 2011b). Much like Bachrach et al. (2010b), when
the number of alternatives is taken as a parameter, Lu and Boutilier (2011b) show
the problem to be #P-hard for k-approval, Borda, Copeland, Bucklin, and plurality.
For such larger problems, they propose using a sampling approach to estimate the
probability that a specific a wins, treating this as a binomial experiment and providing
confidence bounds (in contrast to the Hoeffding approach used by Bachrach et al.
(2010b)).

Computing the probability that specific alternatives win, just like computing pos-
sible winners, may not be sufficient to support selection of a winner given a partial
profile �. Given a partial profile �, the probabilistic approach can be combined with
the decision-making capabilities of score-based voting or regret-based optimization to
make decisions that exploit distributional information. For example, given a partial pro-
file �, the dynamic programming and sampling algorithms of Hazon et al. (2012) could
be adapted, or in some cases used directly, to compute the expected score or expected
regret (assuming a score-based voting rule) of each alternative, allowing Bayesian-
optimal winners to be chosen given �. Suitable sample-complexity results would need
to be derived to provide confidence in the results. Lu and Boutilier (2011d) take such
a decision-making perspective on the use of probabilistic models, but use this to drive
a particular elicitation process (see Section 10.5). This probabilistic, decision-making
perspective is also adopted in the analysis of manipulation given partial vote profiles
offered by Lu et al. (2012). However, in general, truly decision theoretic analysis of vot-
ing and preference aggregation mechanisms remains a relatively under-studied topic.

10.4 Communication and Query Complexity

One of the main reasons to implement social choice functions with partial profiles
is to minimize the amount of information needed to reach a group decision. While
the previous section described several techniques for making decisions given a specific
partial profile, in this section and the next we describe techniques for eliciting the “right”
(partial) preference information needed to implement a voting rule. In this section we
overview formal models of communication and query complexity that quantify the
amount of information needed in the worst case to realize specific voting rules. In the
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next section, we turn our attention to more practical, heuristic elicitation methods that
tend to reach correct (or good) decisions with relatively small amounts of preference
information.

Formal models of the communication demands of voting rules come in two varieties.
One approach uses the tools of communication complexity (Yao, 1979; Kushilevitz and
Nisan, 1996), measuring the number of bits of information that need to be commu-
nicated by voters to the voting mechanism before a winner can be determined using
some voting rule. The other approach measures the number of queries that voters need
to answer in order to allow the determination of a winner. In this model, results can
be very sensitive to the precise form of query used, since certain queries may carry
significantly more information than others. Notice, however, that some queries may
be more or less natural for voters, and more or less difficult to answer—their cog-
nitive complexity may not stand in direct relation to the information they carry (in
bits), and may vary from one voter to another.11 Naturally, bounds on the number of
queries needed can be translated directly into upper bounds on communication com-
plexity by simply using the number of bits needed to respond to a query of the type in
question.

Before outlining these models, we list several natural forms of queries that can be
used to communicate information about voter preferences:

� Full ranking queries: a voter i provides her entire ranked list of alternatives �i .
� Set ranking: voter i is asked to rank all alternatives (w.r.t. each other) in a subset S ⊆ A.

If S = A, this corresponds to a full ranking.
� Top-k queries: i provides the top k (ranked) alternatives from �i for some 1 � k � m.

Notice that setting k = 1 corresponds to plurality, while the use of full ranking queries
corresponds to setting k = m (or k = m − 1). Bottom k queries can be defined similarly.

� Next-best-alternative queries: in sequential elicitation schemes, voter i can be asked to
state her “next most preferred alternative;” the kth such query asks for her kth-ranked
alternative, assuming that the first k − 1 have already been provided (the complete
information set corresponds to answering a top-k query).

� Pairwise comparisons: voter i is asked to state which of two alternatives, a or a′, is
preferred to the other.

� Set choice: voter i is presented with a subset S ⊆ A, and asked which alternative in S

is most preferred. If |S| = k, the response is equivalent to answering (a specific set of)
k − 1 pairwise comparisons.12

� Positional: voter i is asked which alternative is ranked in position t in her ranking �i .
� Approval: voter i is asked to approve of any number of alternatives, or a fixed number k

of alternatives. For fixed k-approval, such queries are similar to top k queries in that the

11 For instance, a pairwise comparison of the form “do you prefer a to a′?” may be more difficult for a voter who
is almost indifferent between the two than for a voter who strongly prefers one of the two and strongly dislikes
the other. Yet both responses can be communicated to a voting mechanism using one bit. Certain psychometric
models of choice (e.g., the Luce-Shepard model (Luce, 1959; Shepard, 1959)) capture choice “errors” that are
exponentially less likely the more distinguishable two alternatives are w.r.t. their utility.

12 Specifically, if a ∈ S is revealed as most preferred, this response contains the same information as the k − 1
comparisons: a � a′, for all a′ ∈ S \ {a}. Of course, one cannot determine which k − 1 pairwise comparisons
would “simulate” this set choice prior to the received response.
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top k alternatives are identified, but differ because these are not ranked relative to one
another. Veto is defined analogously and bears the same relation to bottom k queries;
and for a fixed k, k-veto is equivalent to (m − k)-approval.

� Split queries: voter i is asked to partition a subset S ⊆ A into two or more blocks of
alternatives, each of some specified size, and an ordering of these blocks, such that each
alternative in a higher ranked block is preferred to all alternatives in any lower ranked
block. k-approval is a special case where two blocks are used of sizes k and m − k.

Conitzer and Sandholm (2005b) study the communication complexity of a variety
of common voting rules using the standard model used in the study of distributed
algorithms (Yao, 1979; Kushilevitz and Nisan, 1996). A protocol that implements a
voting rule can be interpreted (somewhat informally) as follows: each voter i has an
input �i corresponding to its ordering of alternatives, and the collection of voters wants
to compute the function f (R), where R is the profile and f is the voting rule in question.
A (deterministic) protocol proceeds in stages: at each stage, one voter i reveals a single
bit of information based on her ranking, where the choice of voter and the bit revealed
are dependent on all bits revealed at prior stages. The process terminates when the
output f (R) of the voting rule can be determined (i.e., the bits revealed are sufficient
to determine a necessary winner). The (deterministic) communication complexity of
a voting rule f is the number of bits required by the best (information minimizing)
protocol in the worst case (i.e., given the input profile R that maximizes the number of
bits communicated through this protocol). Nondeterministic protocols can be defined
similarly.

To determine upper bounds on the communication complexity of a voting rule,
Conitzer and Sandholm (2005b) provide deterministic protocols that realize the rule.
For example, a universal upper bound of O(nm log m) bits is easy to see for any rank-
based rule: each voter can communicate the rank (one of m positions) of each of m

alternatives using log m bits. An upper bound of O(n log m) for plurality is easy to
see since each voter need only communicate the identity (using log m bits) of its most
preferred alternative. We discuss additional upper bounds later.

Lower bounds are shown for many voting rules using the fooling set technique: a
fooling set of size k for rule f is any set of k distinct profiles R1, . . . , Rk—where
each Rj = 〈�j

1, . . . ,�j
n〉—such that for each i � k, f (Ri) = a for some a ∈ A (i.e.,

each profile has the same winner); but for any i, j � k there is some mixture of the
two profiles of the form Rij = 〈�x

1, . . . ,�x
n〉, where �x


=�i

 or �x


=�j

 , such that

f (Rij ) �= a. If such a fooling set exists, then the communication complexity of f is at
least log k. This must be so since any protocol must distinguish each pair of inputs in
the fooling set (Kushilevitz and Nisan, 1996): if it failed to distinguish Ri from Rj , it
could not tell if the input profile was actually Rij and thus could not in fact implement
f . By constructing fooling sets of the appropriate size, lower bounds are provided on
a variety of rules.

For many rules, Conitzer and Sandholm (2005b) are able to provide matching lower
and upper bounds: for plurality (including with runoff), O(n log m) and �(n log m); and
for Borda, ranked pairs and Copeland, �(nm log m), which matches the universal upper
bound. Other rules analyzed include maximin, approval, cup, Bucklin and Condorcet,
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which have upper bounds of O(nm) and lower bounds of �(nm); and STV, which is
O(n(log m)2) and �(n log m).13

To illustrate, we outline the proof sketch of Conitzer and Sandholm (2005b) demon-
strating the O(mn) upper bound for Bucklin (which is tighter than the universal
O(nm log m) upper bound). Recall that the (simplified) Bucklin rule chooses as the
winner the alternative a such that a lies within the top l positions of the rankings of at
least half of the voters for the minimum value of l for which the property holds (see
Chapters 2–4).

Proof sketch. The following protocol for Bucklin essentially performs a binary search
for the minimum value l � m such that at least half of the voters rank some a

within the top l positions, maintaining upper and lower bounds U, L on this posi-
tion. Given the current upper and lower bounds (initialized at m, 0 resp.), we need
to test whether k = !(U + L)/2" > l (and update the appropriate bound based on the
answer). To do so, we can ask each voter to report, for each alternative a, whether
a lies within the top k positions of their ranking. This can be answered with m bits
per voter (a yes-no response for each alternative); and since the binary search requires
at most log m iterations, this straightforward approach requires at most O(nm log m)
bits.

However, the number of bits required per voter can be cut in half at each iteration.
Simply observe that at any iteration t + 1, the past responses of voter i reveal the
identities of 2t−1

2t m alternatives that lie above or below the queried threshold k at that
iteration. For example, the first query asks each voter to indicate which alternatives are
in their top m/2 positions. Suppose we determine l � m/2, so that each voter is next
asked to reveal which alternatives lie in their top m/4 positions: since in response to
the prior query, each voter indicated m/2 alternatives that lie outside their top half,
these same m/2 alternatives must also lie outside their top quarter. Hence at iteration
two, each voter needs to reveal only m/2 bits (denoting which alternatives in their top
half also lie in their top quarter). Ignoring rounding due to imperfect splitting, we have
that each voter reveals

∑log m
t=0

1
2t m � 2m bits in total. This proves the upper bound of

O(nm) bits. �

The communication complexity of determining approximate winners is also of
interest. For instance, for voting rules defined using natural scoring functions, we
can use the score difference between alternatives as a measure of approximation as
discussed in Section 10.3.2; it may be that the communication complexity of approxi-
mate winner determination is less than that of exact winner determination. Service and
Adams (2012b) analyze several voting rules in this fashion. Borda voting, for exam-
ple, can benefit from approximation—the communication complexity of determining
a (1 − ε)-approximate winner is O( 1

ε
nm), which stands in contrast to the �(nm log m)

13 The cup voting rule is essentially a tournament specified by a balanced binary tree. Each alternative is initially
assigned to a single leaf. Each pair of siblings (children of the same parent in the tree) “face off” against
each other in a pairwise election, with the winner assigned to the parent. The winner of the tournament is the
alternative assigned to the root of the tree.
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needed for exact winner determination described earlier.14 By contrast, they show that
approximating Bucklin to degree ρ requires �(nm

ρ2 ) communication, meaning that any
constant factor approximation offers little savings in the worst case relative to exact
winner determination (which is O(nm)). They also provide an analysis of Copeland
and consider several nonconstant approximation bounds.

An example using a slightly different model of query complexity, rather than direct
communication complexity, is provided by Procaccia (2008). He analyzes the num-
ber of queries needed to determine a Condorcet winner, where each query is allowed
to ask about the existence of a directed edge between two alternatives in the tour-
nament graph induced by a profile R. Notice that the answer to such a query does
not provide direct information about the preferences of any individual voter—thus,
a set of such responses does not correspond to a partial profile under our preceding
definition. However, it still constrains possible vote profiles. Procaccia shows that a
Condorcet winner can be determined using 2m − log m − 2 such edge queries. Since
each edge query could be determined by asking each of the n voters to answer a single
pairwise comparison query, this provides an upper bound of O(nm) on communica-
tion complexity. He also provides a matching lower bound on the number of edge
queries (note, however, that this does not provide a lower bound on communication
complexity, since the analogous �(nm) bound only applies if one is restricted to edge
queries).

A very different axiomatic perspective on the complexity of communication is
provided by Sato (2009). He considers the number of distinct messages each voter can
send in various (one-shot) protocols associated with specific voting rules and considers
the impact of minimizing the number of messages allowed. Define the informational
size of a voting rule to be the total number of distinct messages (across all voters)
that can be sent (e.g., the information size of plurality is nm since each of n voters
can send one of m messages). Assume that each voter preference determines a unique
message (hence messages partition the space of orderings or preferences R(A)). Sato
then characterizes the voting rules that are informationally minimal, with respect to
their informational size, among all rules satisfying certain combinations of axiomatic
properties. As one example, he shows that among (nontrivial) anonymous, neutral and
monotonic voting rules, only those (loosely) corresponding to either plurality or veto
are informationally minimal. This perspective is somewhat different than that taken
above in that (a form of) informational complexity is being suggested as a property by
which one might choose to use one voting rule rather than another, in the same spirit
as much axiomatic analysis of voting.

When voter preferences have special structure, specific mechanisms can be used
to exploit this structure for a variety of purposes. One of the most widely studied
such structures is single-peakedness (Black, 1948) for which the median mechanism
and various generalizations are strategyproof, and require that voters simply reveal
their most preferred alternative rather than their entire ranking (see Chapters 2 and 6
for further discussion of single-peaked preferences). While single-peaked preferences

14 Service and Adams (2012b) derive multiplicative approximation ratios, rather than the additive error used to
define max regret in Section 10.3.2. Hence, a ρ-approximate winner a is one whose (Borda, or other) score
ratio w.r.t. the true winner w satisfies s(a)/s(w) � ρ.
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and the median mechanism already support making decisions with relatively little
information, Conitzer (2009) addresses the communication complexity of additional
voting problems when preferences are single-peaked. He considers several different
settings, including cases where voter preferences are both ordinal and cardinal (e.g.,
determined by some distance metric), and the axis (i.e., positions of the alternatives)
may be known or unknown a priori. Restricting our attention to the case of ordinal
preferences with a known axis, he first observes that the median rule can be implemented
with n log m (pairwise comparison) queries using a binary search to determine each
voter’s most preferred alternative—all that is needed to determine the median—giving
an O(n log m) upper bound on communication complexity. Determining a voter’s
complete ranking can be accomplished with O(m) queries, with log m queries needed
to determine the peak and m − 1 queries needed to “interleave” the induced left and
right subrankings. He also addresses the problem of determining the full tournament
graph (which, assuming n is odd, is acyclic and can be interpreted as a consensus
ranking). He shows that this requires �(nm) queries, and thus essentially requires
enough information to construct each voter’s ranking.15

10.5 Preference Elicitation

In the previous section, we discussed several forms of analysis that provided upper and
lower bounds on the number of queries or bits required to determine the outcome of
various voting rules. These theoretical analyses show the limits of what is possible;
but algorithms that minimize worst-case communication complexity may sometimes
elicit more information than necessary in practice. Furthermore, these analyses do
not address the informational complexity of determining decisions (or winners) that
“approximate” the optimal decision (one exception is the work of Service and Adams
(2012b)). In this section, we discuss approaches to preference elicitation that are driven
by more practical considerations, although several of the models also offer theoretical
analyses of these practical aims (e.g., how much information is needed to determine
approximate winners, or true winners with high probability).

10.5.1 Incremental and Partial Preference Elicitation

The abstract goal of any preference elicitation technique is to elicit a partial profile from
voters with “just enough” information to determine a winning outcome of “sufficiently
high quality.” The notion of “just enough” information can be measured formally using
the communication or query complexity measures described in the previous section.
Many of the methods discussed in this section focus on heuristic minimization of
query complexity. More critically, elicitation schemes may use different measures for
the quality of the resulting outcome selected using the elicited partial profile. Among
the elicitation goals considered in this section are the following:

15 Lackner (2014) considers the problem of determining whether a partial profile can be completed in such a way
that it is single-peaked, showing that it is computationally difficult in general, but providing polytime methods
for specific classes of partial profiles.
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� determining the optimal outcome (i.e., a winner or a necessary co-winner) w.r.t. the
underlying (complete) vote profile

� determining the optimal outcome (i.e., true winner) with high probability
� determining an outcome that is close to optimal (e.g., has low max regret)
� determining an outcome that is close to optimal with high probability

Each of the models described in what follows assumes one (or more) of these abstract
objectives, and uses specific metrics to formalize decision quality and error probability.

10.5.2 The Computational Complexity of Preference Elicitation

One early line of research in vote elicitation deals with the computational complexity
of various elicitation questions. Conitzer and Sandholm (2002) consider two classes of
elicitation schemes, with a focus on determining the true winner (no approximation,
no probabilistic guarantees). Coarse elicitation methods are restricted to asking a voter
for her entire preference ranking or vote. The aim in coarse elicitation is to minimize
the number of voters who provide their votes while still determining the true winner.
By contrast, fine elicitation schemes can ask more general queries, for example, of the
form described in Section 10.4—abstractly, a query corresponds to some partitioning
of the space R(A) of votes, with each response selecting some element of the partition
(those votes consistent with the response).

Conitzer and Sandholm analyze two main classes of computational questions. Elic-
itation Not Done (END) asks, given a partial profile consisting of the votes from a
subset S ⊆ N of voters and an alternative a, can the remaining votes be cast so that
a loses. This question anticipates subsequent developments in the theory of possible
and necessary winners: if the answer is no, a must be a necessary co-winner, and in
certain circumstances this may be sufficient to terminate the vote elicitation proce-
dure. Indeed, the problem is equivalent to the necessary co-winner problem (given this
restricted form of partial profile).16 They show that END is NP-complete for STV, even
when the partial profile consists of all votes but one (exploiting a result of Bartholdi
and Orlin (1991), see Section 10.3.1). Since the result is cast in terms of coarse elic-
itation, it naturally applies to any fine elicitation scheme that can simulate coarse
elicitation (as most would). They show, by contrast, that END can be solved in poly-
nomial time for plurality, Borda, Copeland, approval and maximin (for fine or coarse
elicitation).

They consider a second problem as well: Effective Elicitation (EE) asks whether,
given a partial profile of votes from S ⊆ N , there is a subset of the remaining voters,
of size at most k, whose votes determine the winner. From an elicitation perspective,
this question assumes the protocol knows the responses it will obtain (or has “perfect
suspicions”). While unrealistic, this suggests the computational problem given less that
perfect knowledge will be even more difficult. Conitzer and Sandholm (2002) show
that EE is NP-complete for several different voting rules, including approval, Borda,
Copeland and maximin.

16 Since they cast the problem in terms of coarse elicitation, this is also equivalent to the problem of (coalitional)
destructive manipulation; see Chapter 6.
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Walsh (2008) continues this line of investigation, analyzing the END problem for a
variety of other voting rules and considers weighted voting schemes as well. Of special
note, Walsh shows that END is computationally easier using coarse elicitation than
fine elicitation for several different (weighted) voting rules under various conditions.
For instance, END for the Cup rule is coNP-complete (with four or more alternatives)
using fine elicitation, but can be solved in polynomial time if we restrict attention to
coarse elicitation.

10.5.3 Incremental Vote Elicitation

We now describe several approaches for the elicitation of voter preferences. In many
cases, the methods have been analyzed empirically to assess their effectiveness in prac-
tical circumstances. Several are supported by theoretical analyses as well to determine
how much information is required to reach “high quality” decisions.

Kalech et al. (2011) were among the first to develop and evaluate significant, practi-
cal vote elicitation schemes that allowed the selection of winners using partial profiles.
They propose two elicitation schemes designed for use with scoring-based rules (e.g.,
Borda, range voting), using specific forms of queries and possible and necessary win-
ners as the primary solution concept. Their first technique, dubbed Iterative Voting,17

is used to determine a true winner (no approximation) and proceeds in rounds. At each
round, each voter is queried for their next best alternative; hence by round t each voter
has (incrementally) answered a top-t query. At the end of each round, necessary and
possible winner computation on the current partial profile is used to determine termina-
tion: if every possible winner is a necessary (co-)winner, the process stops and returns
the full set of necessary winners. (The algorithm could also be terminated once any
necessary winner is found.) Empirical analysis of range voting and Borda voting, using
small vote profiles (up to 30 voters and 50 alternatives) generated randomly and from
real-world ratings data, shows that this scheme can reduce the number of alternatives
the average voter has to rank by 10%–40%, with the larger gains possible when user
preferences are more uniform.

Kalech et al.’s second algorithm, Greedy Voting, proceeds for a predetermined num-
ber of rounds T . Given the current partial profile �t at round t , each alternative is
evaluated to determine its minimum and maximum possible scores (over all comple-
tions R of �t ) relative to the scoring function s(a, R) for the voting rule in question.
Then each voter is asked to rank the set of Q alternatives with the largest minimum
scores (maximum scores are used to break ties), for some small Q. Since termination
is predetermined after T rounds, necessary winners may not result, so possible winners
are returned. One attractive feature of this model is the batching of queries (voters are
only queried a fixed, ideally small, number of times, though each query may request
more information than in the other schemes discussed later). Such batching can mini-
mize user interruption as well as user latency (since voters are required to wait until the
responses of other voters are delivered before their next query is received). This scheme
provides no guarantee of winner optimality or any bounds on quality, hence Kalech

17 This should not be confused with iterative schemes in which voters change their votes in response to the current
vote profile.
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et al. (2011) empirically evaluate the (post hoc) quality of the resulting winners relative
to the true winners that would have resulted had the full vote profile been available.18

In small domains, winner quality is shown to be relatively high and naturally improves
with the number of rounds permitted.

Lu and Boutilier (2011c) propose an elicitation scheme that exploits minimax regret
to determine winners given a partial profile and that uses the solution of the MMR
problem to guide the selection of queries. Two different forms of queries are con-
sidered: simple pairwise comparisons, and “next best alternative queries.” As earlier,
the process proceeds in rounds. Let �t be the partial profile at round t with minimax
regret MMR(�t ) and minimax optimal solution a∗ = a∗

�t . Let a′ be an alternative that
maximizes the regret of a∗, that is, an a′ that maximizes Equation 10.3. This a′ is an
“adversarial witness” that has maximum advantage (w.r.t. scoring function s) over a∗

in the worst-case.
If MMR(�t ) falls below some threshold τ , elicitation can stop and an approximate

winner (with an additive error bound of τ ) is returned. Thus the Lu-Boutilier scheme
supports approximate winners (note that setting τ = 0 guarantees true winners are
returned). If not, a query is selected that will refine the partial profile. They propose a
current solution heuristic for selecting queries. Specifically, the alternatives a∗ and
a′ are used to identify: (i) the voter for whom the worst-case profile completion
provides the maximum “controllable” advantage of a′ over a∗, where the advantage
is controllable if it can be reduced using a different completion; and (ii) a pairwise
comparison query such that a positive response would provide the greatest reduction
in that advantage.19 They provide techniques for effectively determining these queries
for positional scoring rules.

Example 10.4. In Example 10.1 (see discussion in Example 10.3) a’s max regret is 2
(it is easy to verify that a is minimax optimal). A query to voter 3 that asks if a � c, if
answered positively, reduces c’s advantage over a in vote 3 from 3 to −1, thus reducing
PMR(a, c) from 2 to −2 and the max regret of a from 2 to 0, hence proving a is a
necessary (co)-winner. �

Lu and Boutilier (2011c) evaluate their method, using Borda voting, on both ran-
domly generated and real-world preference and electoral data sets (with up to 20 items
and up to 5000 voters). They show that on the real-world data sets, the current solution
scheme can reduce the number of queries needed to find the true winner by 50%–65%
relative to the number of (comparable) queries needed to construct the entire profile;
and on synthetic Mallows profiles they show that reductions of up to 80% are possible
when preferences are very correlated; but even 25% reductions are possible under fully
random (impartial culture) preferences. Just as importantly, their scheme has the ability
to provide approximate winners with provable quality guarantees. Indeed, approximate
winners with low max regret can be found using a small fraction of the queries needed
to find the true winner.

18 Note that this is possible only in experimental situations. In any practical deployment, the true profile will be
unavailable and no such evaluation is possible.

19 For next-best-alternative queries, no choice of query needs to be made, only choice of a voter.
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Other approaches to incremental vote elicitation exploit the use of probabilistic
models of voter preferences (e.g., Goel and Lee, 2012; Dery et al., 2010). We examine
two other models that exploit probabilistic models in the next section.

One drawback of the Lu-Boutilier scheme is that it asks one query of a single voter
at each round. By contrast, the scheme of Kalech et al. (2011) asks all voters to answer
a particular query simultaneously, and (at least in the Greedy Voting scheme) can vary
the granularity of that query to effectively reduce the number of rounds. In essence,
there are important trade-offs among several key metrics that should addressed when
designing practical elicitation schemes:

1. Winner quality: approximating the winner usually allows for less preference information,
but at the cost of outcome quality.

2. Amount of information elicited: higher quality outcomes and fewer rounds of elicitation
can usually be achieved at the cost of additional preference information.

3. Number of rounds of elicitation: multiple rounds of elicitation can often reduce the
amount of information needed to reach a decision of the same quality by conditioning
queries on past responses. However, additional rounds of elicitation impose costs in
terms of interruption, cognitive/context switching and latency (voters waiting on the
responses of other voters).

Lu and Boutilier (2011d) develop a general framework for framing these trade-offs
using multiround elicitation protocols. They evaluate this model in the specific context
of single-round protocols, as we discuss next.

10.5.4 One-Shot Partial Vote Elicitation

Lu and Boutilier (2011d) address the question of whether high quality winners (as
measured using max regret) can be guaranteed using a single round of elicitation. In
more detail, they ask whether one can determine a value k such that asking a top-k query
of every voter allows one to determine an approximate winner with low max regret
(assuming a scoring-function based voting rule that admits max regret computation).
In general, such guarantees are not possible in the worst-case for most voting rules
(see Section 10.4), so they assume that voter preferences (or vote profiles if voter
preferences can be correlated) are drawn according to some distribution P . Rather than
assuming a specific form of the distribution, they assume only that it can be sampled
effectively. They then defined a sampling procedure that determines the minimum
value of k such that top-k voting results in a profile with low minimax regret (hence an
alternative that is an approximate winner) with high probability. Specifically, given a
desired solution accuracy ε > 0, solution confidence δ > 0, sampling accuracy ξ > 0,
and sampling confidence η > 0, they determine the number of sampled profiles that
must be drawn to determine an empirical estimate of k that ensures that if a top-k partial
profile �[k] is elicited, then P [MMR(�[k]) � ε] > 1 − δ − 2ξ (where the number of
sampled profiles is proportional to ln 2m/η and 1/ξ 2). Empirically, they show that
the sampling approach can be used not only to determine the appropriate value of k

for top-k voting, but also to assess the trade-offs between the amount of preference
information elicited (value of k) and the distribution over solution quality (resulting
MMR).
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Oren et al. (2013) also analyze top-k voting, but rather than sampling profiles from
an unknown distribution, they assess the values of k needed to ensure the true winner
is found with high probability for specific preference distributions. Their focus is on
asymptotic analysis, specifically whether top-k voting determines a correct winner with
probability approaching 1 as the number of alternatives m (and indirectly, the number of
voters n) increases.20 They show that top-k voting may not offer significant savings for
Borda voting under impartial culture—they provide a lower bound of k = �(m/ log m)
(for n sufficiently large relative to m). They also consider the extreme case of zero-
elicitation protocols: assuming voter preferences are drawn from a Mallows model,
under what conditions will selecting the alternative at the top of the (modal) reference
ranking be the winner with high probability? In other words, can setting k = 0 still
determine the true winner? They provide a bound on the number of voters required
to ensure this holds that depends logarithmically on m and in a complex way on φ

(the Mallows dispersion parameter). For distributions that are not too uniform (say,
φ � 0.75), relatively few voters are needed to ensure zero elicitation works.

It is also interesting to consider the difficulty of the possible and necessary winner
problems for restricted classes of partial preferences, such as those of the top-k form.
For certain voting rules, these restricted problems may be computationally easier
than with unrestricted partial profiles. Baumeister et al. (2012a) explicitly consider
truncated ballots of the top-k form, the bottom-k form, as well as “doubly truncated”
votes (with top and bottom segments provided). They discuss the relationship of the
possible winner problem for these forms of truncated ballots to each other and to the
unweighted coalitional manipulation problem.21

10.6 Voting with an Uncertain Set of Alternatives

We now turn our attention to the incompleteness or uncertainty regarding the set
of alternatives A that may be available for selection by our voters N . As we’ve seen,
several key questions regarding incomplete preferences are related to strategic questions
of misreporting and manipulation. Similarly, models in which alternatives may or may
not materialize are closely related to strategic questions regarding control by adding or
deleting alternatives (see Chapter 7) and questions of strategic candidacy (Dutta et al.,
2001). We only briefly mention such connections in this section, but refer to Chapter 7
for deeper discussion of such strategic considerations.

In this section, we generally assume that the set of alternatives A is a “potential set,”
but that some of the alternatives may in fact be unavailable for selection by voters.
Voter preferences are defined over the entire potential set A, but the voters are uncertain
as to which alternatives are in fact available at the time they vote. The question is how
voting mechanisms should be modified or analyzed under such conditions.

20 They add the wrinkle of considering determining winners when alternatives may become “unavailable” (as
defined in Section 10.6), which means that, even in plurality voting, voters may need to provide more than their
top alternative to ensure a feasible winner is found. We ignore this variation here. They also provide several
worst-case analyses.

21 They also describe various other forms of manipulation and campaigning in such cases, but this analysis is less
relevant here.
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Several motivations can be offered for models of this type. In labor markets, alter-
natives may declare themselves eligible for multiple positions, but hiring committee
decisions may require voting (or aggregating preferences) over interviewed candidates
who may ultimately take jobs elsewhere. In some group decision contexts, determining
the availability or feasibility of specific alternatives may be quite costly (e.g., calling
restaurants to see if reservations are possible; planning a public project or family vaca-
tion to determine whether it satisfies feasibility, time and budget constraints). In these
cases, it often makes sense to cast votes to determine the most preferred (or reason-
able consensus) alternatives prior to investing time, effort or money to determine the
feasibility of options that may not be selected given voter preferences.

Lu and Boutilier (2010) develop the unavailable candidate model to capture such
situations. In this model, the set of available alternatives V ⊆ A is unknown at the time
votes are cast. Assume a distribution P over 2A, where P (V ) is the probability that V

is the true set of available alternatives. Given a vote profile R and voting rule f , the
fundamental difficulty is that we may have f (A) �∈ V , that is, the winner of the full
vote may not be available. Of course, one could simply collect preferences and then
apply f to the available set V once it is revealed. But in some settings this may not be
viable, for example, when the availability of an alternative may only be determined by
declaring them the winner (e.g., offering a job to a candidate, or attempting a booking
at an exclusive restaurant). Under this assumption, one can aggregate the preferences
into a ranking policy, an ordering � of A such that each alternative will be “offered the
win” in turn until an available alternative is discovered. In other words, � is effectively
a rationalizable group choice function.

Since no nondictatorial, unanimity preserving voting rule is robust to the deletion of
nonwinning alternatives (Dutta et al., 2001), selecting alternatives in this fashion may
produce a winner that is not in fact the true winner relative to the realized set V . This is
so not just because of the restrictive nature of the rationalizable policy, but also because
the process may never discover the true set V . For this reason, one requires methods for
computing the policy that minimizes the expected disagreement (difference in winner
choice) between the ranking policy and the true voting rule f , where expectation is
taken w.r.t. P (V ). Lu and Boutilier (2010) show that this problem is NP-hard in certain
circumstances. As a result, they offer a polynomial-time approximation scheme (PTAS),
as well as a greedy algorithm with a 1+p2

(1−p)2 approximation ratio when all alternatives
are (independently) unavailable with probability p. Empirical results show this greedy
algorithm to provide excellent results in practice. Other forms of rank aggregation may
not provide good ranking policies. For instance, the Kemeny consensus of the profile
R need not be a good ranking policy in general; but for large values of p, any Kemeny
consensus is close to optimal (in terms of expected disagreement), and at least one
Kemeny consensus is in fact optimal (Lu and Boutilier, 2010).

Baldiga and Green (2013) independently developed a model virtually identical to
the unavailable candidate model, using rather different motivations, and also draw
connections to the Kemeny consensus.

Notice that Lu and Boutilier assume that availability can only be tested by actually
selecting a tentative winner—hence they attempt to minimize the odds of selecting an
“incorrect” winner. Boutilier et al. (2014) approach the unavailable candidate model
from a different perspective: they assume that testing availability is expensive, but can
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be accomplished without actually selecting a winner. They address the problem of
minimizing the number (or cost) of such tests needed to determine the true winner.
Specifically, assume some voting rule f , a given vote profile R. Suppose the alternative
set A is partitioned into three sets: KA (known available alternatives), KU (known
unavailable), and U (unknown availability). The true available set V can be any KA ⊆
V ⊆ KA ∪ U . They define a robust winner to be any a such that f (R[V ]) = a for all
V ⊆ KA ∪ U , that is, a is a winner for any realizable available set V (here R[V ] is
the restriction of profile R to available set V ). Of course, determining robust winners
is difficult for some voting rules f and easy for others; as the authors point out, this
problem has tight connections to the problem of control by candidate addition (see
Chapter 7).

If no robust winner exists, then determining the true winner requires testing the
availability of certain additional alternatives until we reach a point (state of information
about KA and KU) that admits a robust winner. Boutilier et al. (2014) develop a dynamic
programming method that will produce the optimal (minimum cost) availability testing
policy, as well as a myopic search technique based on decision tree induction that
heuristically minimizes the cost of the policy. They also provide simple worst-case
analysis of the “availability test complexity” of plurality, Borda and Copeland that
shows essentially all alternatives must be tested in the worst case. They also describe
simple test policies that are optimal for extreme availability probabilities.

Chevaleyre et al. (2012) study a different issue associated with alternative uncer-
tainty, namely, the possible winner problem when votes are provided over some initial
set of alternatives A, then a fixed number c of new alternatives are added to the set.
They study the computational complexity of determining whether an alternative a ∈ A

(i.e., one of the initial alternatives) is a possible winner given the addition of the new
alternatives for various voting rules—here uncertainty lies over voter preferences for
these new alternatives. Note that this problem (as in possible and necessary winner
determination with a known set of alternatives as discussed earlier) bears a tight con-
nection to certain forms of manipulation, specifically, the notions of cloning and control
by adding candidates (see Chapter 7).

Chevaleyre et al. (2012) provide a complete classification of the family of k-approval
rules (including plurality). For k ∈ {1, 2} (i.e., plurality and 2-approval), they show
that the possible winner problem can be solved in polynomial time for any fixed c

(the construction for 2-approval uses a reduction to a max-flow problem). For k � 3
and c = 2 they show that the problem can also be solved in polynomial time; but for
k � 3 and c � 3, they use a reduction from 3D Matching to show that the possible
winner problem is NP-complete. They also provide a polytime method for Borda
voting (indeed, for a more general class of scoring rules that includes Borda). Xia et al.
(2011b) adopt the same model and show that several additional voting rules have NP-
complete possible winner problems with new alternatives, namely, Bucklin, Copeland
(with pairwise ties in voting giving a score of 0 for both alternatives), maximin and
approval.22

22 In fact, they consider several different ways in which a voter can extend her approval vote given c new
alternatives. In the arguably most natural, the problem is NP-complete, while for the others it is straightforwardly
polytime solvable or a trivial problem.
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10.7 Compilation Complexity

A subset of voter preferences embodies some inherent partial information regarding the
ultimate result of a vote. Such a subset of preferences, or partial profile �, can of course
be held in its raw form, as the original linear orders of the subset of voters. However,
several researchers have considered the idea of compressing this information into a
smaller number of bits, which still represents the essence of the partial information in
that it allows one to determine the ultimate winner of an election once the remaining
votes are received (Chevaleyre et al., 2009; Xia and Conitzer, 2010b; Chevaleyre et al.,
2011). The minimum number of bits required to represent this relevant information,
for a given voting rule f , is called the compilation complexity of f .

There are several reasons one might want to compile a partial (or complete) vote
profile in this way. Compilation may offer privacy benefits by discarding full voter infor-
mation in favor of statistical or other summaries. It may allow for faster computation
of the final result once all votes become available.23 It may also ease communication
complexity when partial vote results from multiple locations need to be aggregated.
Finally, if vote profiles need to be stored for future validation or audits, compilation
may reduce space requirements. There are also some possible drawbacks of compila-
tion; for example, it may make further elicitation more costly in some circumstances,
when a specific voter has to be questioned again.

Research on compilation complexity to date has largely focused on the following
questions: the space needed for storing compiled partial voting results when the number
of remaining voters is unknown (Chevaleyre et al., 2009); the space needed when that
number is known along with the number who have already voted, or one or the
other might be unknown (Xia and Conitzer, 2010b); and the relationship between
compilation complexity and communication complexity (see Section 10.4) when the
set of alternatives is dynamic (Chevaleyre et al., 2011).

To illustrate the main ideas behind compilation complexity, consider the summariza-
tion of partial results in plurality voting. Suppose k voters, from an ultimate electorate
of size n > k, have already expressed their ordered preferences among m alternatives.
Since each alternative can be specified using %log m& bits, this partial vote could be
stored in its raw form and used to compute the winner once the remaining votes are
received. This very naive storage scheme required k%log(m!)& bits to store all bal-
lots (namely, specifying for each voter which of m! possible permutations matches
their vote). However, the partial input can be represented more concisely, recording
only the number of first-place votes received by each of the m alternatives—this uses
m%log(k + 1)& bits. When the remaining n − k votes are submitted, the only data that
matters from the initial k votes for the purposes of winner computation are alternative
first-place vote totals.

Of course, we can do even better. Rather than store all first-place vote totals, we
can normalize them by subtracting the score of the lowest-scoring alternative from all
alternative scores, hence needing to represent smaller totals (assuming no alternative
received zero votes). Moreover, if the difference between the partial votes already

23 Note that when faster computation of the final result is the primary objective, it may sometimes be useful to
‘compile’ into a structure using more space.
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received by the front-runner and those received by the second-place alternative is
greater than the number of votes yet to be cast by the remaining n − k voters—
assuming this number of votes yet to be cast is known—the ultimate result of the
election is already determined, and the only thing that needs to be stored is the identity
of the winning alternative.

Based on these intuitions, we can immediately make several simple observa-
tions (Chevaleyre et al., 2009). First, the compilation complexity of any voting rule
is at most k%log(m!)& bits—we simply store all voters’ votes. For any anonymous
voting rule, the compilation complexity will be at most the minimum of k%log(m!)&
and m!%log(k + 1)&, since with an anonymous rule we can store, for each ballot (linear
order), the number of voters that chose it, if that requires fewer bits. A dictatorial voting
rule has compilation complexity of %log m&—only the choice of the dictator needs to
be stored if she is among the original voters (and nothing otherwise).

To formalize the compilation complexity problem, following Xia and Conitzer
(2010b), consider a set of voters divided into a subset of k known votes, and a sub-
set of u unknown votes. The k votes, constituting a partial profile �, are summa-
rized by a string of bits via a compilation function c: c(�) ∈ {0, 1}∗. For the func-
tion to be an effective summary for voting rule f , if we have profiles �1 and �2,
and c(�1) = c(�2), then for any profile of the remaining u votes Q it must be the
case that f (�1 ∪ Q) = f (�2 ∪ Q). We say that �1 and �2 are f -equivalent in this
case.

The minimum number of bits required to summarize a partial profile � of a sub-
electorate of size k, for a given voting rule f , u unknown votes, and m alternatives,
is called the compilation complexity of f , and is denoted by Cm,k,u(f ). It reflects
the most space-effective function c. Chevaleyre et al. (2009) also consider the case
where u is unknown. This can be represented using the preceding notation as Cm,k,?(f )
(the question mark replacing u). This is the minimum number of bits required to
summarize the profile of a sub-electorate of size k, for a given voting rule f , when
there are m alternatives, and the remaining number of votes u is unknown.

The definition of f -equivalence establishes equivalence classes among profiles and
allows one to store a partial profile by storing the index of its equivalence class. If
g(f, k, m) denotes the number of equivalence classes for voting rule f , already-voted
sub-electorate k, and m alternatives, then the compilation complexity of a voting rule f

is precisely %log g(f, k, m)&. To derive the compilation complexity for various voting
rules, we can count the relevant equivalence classes for each.

Cm,k,?(f ) is related to several of the problems described in earlier sections:

1. The complexity of terminating elicitation (Section 10.5.2): is the winner already deter-
mined after we have been given a subset of the votes?

2. The complexity of possible and necessary winner determination (Section 10.3.1): if we
have a set of incomplete votes (partial orders), is there an extension where a given
alternative c is the winner?

3. Communication complexity of voting rules (Section 10.4): what is the smallest number
of bits that needs to be communicated among voters and the central authority to compute
the winner of an election? Note that compilation complexity can be interpreted as “one-
round communication complexity” (the message being sent by the initial voters).
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4. Chevaleyre et al. (2011) consider a variant of the communication complexity problem,
namely, the relationship of compilation complexity and communication complexity
when the set of alternatives is dynamic, that is, new alternatives can be added over time
(see Section 10.6).

Results

It is clear that the compilation complexity of plurality is at most m%log(k + 1)& (storing
the score between 0 and k for each alternative). Chevaleyre et al. (2009) show that this
can be improved (with an unknown number of additional voters) to⌈

log

(
m + n − 1

k

)⌉
.

Exploration of compilation complexity concerns variations on the basic model. As
mentioned, Chevaleyre et al. consider Cm,k,?(f ), where the remaining number of votes
u (replaced by a question mark) was the only unknown. Xia and Conitzer (2010b)
expand this by considering the relationship among Cm,k,?(f ), Cm,?,u(f ) (where the
number of already-cast votes is the unknown), and Cm,k,u(f ) (where the number of
already-cast and the number of yet-to-be cast votes are both known). Chevaleyre et
al. show that Cm,k,?(f ) and Cm,?,u(f ) furnish upper bounds on Cm,k,u(f ). Xia and
Conitzer prove that one can find upper bounds on Cm,k,?(f ) and Cm,?,u(f ) from
the upper bound of Cm,k,u(f ), assuming the voting rule f is anonymous and there
exists an h-profile � that always “cancels out”; this simply means that, for some
h ∈ N there exists an h-profile � that always “cancels out,” that is, f (� ∪ �′) =
f (�′) for every profile �′. Most common voting rules satisfy “h-canceling-out” for
some h.

Xia and Conitzer also derive upper and lower bounds on the compilation complexity
of many common voting rules, including l-approval, Borda, Bucklin, Copeland, max-
imin, plurality with runoff, ranked pairs, and voting trees. They derive asymptotically
tight bounds on all three types of compilation complexity (i.e., Cm,k,?(f ), Cm,?,u(f ),
and Cm,k,u(f )) for some rules. Notably, when k and u are both larger than m1+ε for some
ε > 0, their bounds are asymptotically tight. Xia and Conitzer’s (2010b) results, along
with Chevaleyre et al.’s (2009) results, are summarized in Table 10.1 which appears
in Xia and Conitzer (2010b). WMG-based rules refer to voting rules that rely on the
weighted majority graph to uniquely determine a winner (see Chapter 4); OPE-based
rules refer to voting rules where winner determination can be done by comparing the
magnitudes of pairwise results; UMG-based rules refer to voting rules in which winner
determination is done using the signs (but not magnitudes) of pairwise results (see
Chapter 3).

As mentioned above, Chevaleyre et al. (2011) consider the relationship of com-
pilation complexity and communication complexity when the set of alternatives is
dynamic. They show that bounds on communication complexity can be derived from
the type of storage used to hold partial results; they consider three types of storage,
namely, full storage of initial votes of the sub-electorate, null storage where nothing
is held, and anonymous storage, where for each possible ranking over initial alterna-
tives, the number of voters who had that preference is stored. They show that certain
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communication protocols for a given voting rule are asymptotically optimal by deriving
their communication complexity for a given type of storage.

10.8 Social Choice from a Utilitarian Perspective

Much of the research in computational social choice takes the classical perspective in
which voters are assumed to have ordinal preferences that can be aggregated via social
choice functions that satisfy certain normative criteria. There is, however, a different,
utilitarian approach to the aggregation of group preferences that assumes individuals
have cardinal utility functions that quantify the desirability of various outcomes. The
aggregation of these utility functions typically focuses on choosing an outcome that
maximizes the sum of the individual utilities, that is, social welfare. Social welfare
maximization is a clear criterion by which to evaluate an aggregation scheme (though
see later), whereas the choice of normative criteria to use in ordinal voting can be more
controversial.

In this section, we consider computational social choice techniques that adopt this
utilitarian perspective, that is, that assume voters have cardinal utilities over alter-
natives. Work is this area can be broadly broken down into two main streams. The
first considers the distortion of social welfare induced by applying ordinal preference
aggregation methods to cardinal preferences, assuming that some mapping is used
to transform individual voter utilities into ordinal preferences. The second develops
learning-theoretic models to compute “sample-optimal” ordinal social choice func-
tions, based on sampled utility profiles from some distribution.

The connections between the use of ordinal and cardinal preferences are subtle. In
various settings, one or the other might be the appropriate approach. For example, it is
generally assumed that ordinal preferences are easier to extract from voters, who may
not be able to compute or articulate their cardinal utilities for outcomes (easily or at
all). Even when utility functions can be assumed to (explicitly or implicitly) exist and
to be accessible, there exists little basis for valid interpersonal comparisons of those
utilities. Some researchers assume that voter utility functions are normalized, which
“solves” the problem of the interpersonal comparison; in effect, all voters are assumed
to carry equal weight in any utility maximization or voting calculation. It is also not
clear that the maximization of the sum of individual utilities ought to be the goal of
aggregation—while this criterion is clearly defined, it may not be appropriate in all
circumstances.

The most direct aggregation approach to utility maximization, of course, is simply
for each individual to provide the center with its utility for each alternative, and
have the center choose the outcome that maximizes the sum.24 The models described
in this section assume either that communication bandwidth is limited, and ordinal
preferences can be expressed more concisely than utility values for all alternatives,
or that it is too difficult or unnatural to extract cardinal preferences from the voters.
Hence, a mapping from cardinal utilities to a linear ordering is used to reduce the
communication or elicitation burden. This linear ordering is then used by a suitable

24 Ensuring that such reports are truthful of course requires careful mechanism design.
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preference aggregation or voting rule, and ideally approximates the maximization of
social welfare.

The decentralized transformation of utility functions over alternatives to prescriptive
votes has the potential to dramatically reduce the communication required to find an
alternative that maximizes social welfare. Consider an example due to Caragiannis and
Procaccia (2011). Suppose each voter must communicate a utility score, on a scale of
1 to one million, for each of one million alternatives. This requires the transmission of
106 × log(106) bits from each voter. If plurality voting is used, an embedding of that
utility function into plurality votes requires the transmission of only 20 bits. There are
scenarios where power restrictions, communication bandwidth limitations, cognitive
costs, or privacy concerns make this kind of reduced communication attractive. The
maximization of social welfare is particularly relevant in scenarios where the agents are
part of a cooperative multiagent system, for example, where they have been designed
to cooperatively carry out some task (such as distributed sensing).

10.8.1 Distortion

In cases where cardinal scores/utilities exist, it is natural to select the alternative that
maximizes social welfare as the winner. However, if the cardinal scores are mapped
into ordinal rankings for use by a voting rule, the potential for “distortion” of the
original cardinal preferences arises. In other words, when a particular voting rule, for
example Borda, uses the induced ordinal rankings to choose a winning alternative, the
winner may not be the alternative that maximizes social welfare.

Procaccia and Rosenschein (2006) consider several issues relating to this distortion
of cardinal scores when mapped into ordinal preferences. They define distortion of a
social choice function as the worst-case ratio of the total utility of the alternative that
maximizes social welfare to that of the selected alternative (where the worst-case is
with respect to all possible utility profiles, i.e., profiles of utilities that are consistent
with the reported rankings).

The formal definition is as follows. Let f be a social choice function, A a set of
alternatives, R a preference profile over A, and sw(x, R) the social welfare of alternative
x given profile R. Then the distortion dist of social choice function f on a preference
profile R is defined as

dist(v, R) = maxy∈A sw(y, R)

minx∈f (R) sw(x, R)
.

This is the worst-case ratio of the most popular alternative’s social welfare, and the
least popular winner’s social welfare (“least popular winner” handles the case where
there are ties, and the worst-case analysis assumes the worst of the tied alternatives is
ultimately chosen, as in the preceding definition).

Consider the case where the sum of utilities assigned to the alternatives by each
of the voters is identical (i.e., as if each voter has a fixed number of “utility points”
to distribute across the alternatives). Every social choice function in this model has
distortion greater than 1. In other words, the social-welfare maximizing alternative has
greater utility than the selected alternative in the worst case, even when the number
of voters and of alternatives are small; several well-known scoring protocols have
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Table 10.1. The misrepresentation of common
voting protocols

Voting Protocol Misrepresentation

Borda 1
Veto Unbounded
Plurality = m − 1
Plurality with Runoff = m − 1
Copeland � m − 1
Bucklin � m
Maximin � 1.62(m − 1)
STV � 1.5(m − 1)

unbounded distortion. With the removal of the assumption that all voters have an
equal “sum of utilities,” the situation is even worse, as it is not possible to bound the
distortion (Procaccia and Rosenschein, 2006).

Now consider an alternative model in which voters may have different sums of utili-
ties to distribute among the alternatives, but winner selection using the mapped ordinal
rankings is realized using a weighted election, with each voter’s ballot weighted by its
utility sum. The reformulated model is, in fact, equivalent to the original unweighted
version (Procaccia and Rosenschein (2006) also prove that a particular problem asso-
ciated with calculating distortion is NP-complete when utilities are unconstrained).

Procaccia and Rosenschein also reformulated the concept of distortion as misrepre-
sentation, a concept originally defined by Monroe (1995). The main difference between
the two settings is that in misrepresentation the voters’ cardinal preferences are defined
in a very restricted way. The misrepresentation of voter i for alternative j is the alterna-
tive’s ordinal position from the top of the ranking minus 1 (e.g., the misrepresentation of
the most-preferred alternative is 0), and the overall misrepresentation of an alternative
is the sum of its misrepresentations over all voters. Misrepresentation values can be
interpreted as very restricted cardinal preferences, where voter i’s utility for alternative
j is precisely the number of total alternatives m, minus j ’s misrepresentation, minus
1 (e.g., the utility of the most-preferred alternative is m − 1). They establish a neces-
sary and sufficient condition for a social choice function to be optimal with respect to
misrepresentation, and also characterize those scoring protocols that have unbounded
misrepresentation. Bounds are provided—including several tight bounds—for the mis-
representation of specific voting protocols (summarized in Table 10.1).

Caragiannis and Procaccia (2011) expand the work on distortion. Their basic setting
is similar: a group of voters are assumed to have utility functions that assign values to
alternatives. These utility functions are then transformed or “reduced” in some fashion,
voters transmit the reduced information to the voting protocol, and a winner is chosen.
While the original work on distortion proposed such mappings or transformations as
a way of descriptively characterizing voting rules—seeing which voting rules cause
more or less distortion of the socially optimal result—this later work adopted an algo-
rithmic approach, introducing the notion of embeddings into voting rules, mappings
from a voter’s utility function into a prescription of how that voter should vote (given
the specific voting rule). This generalizes the straightforward mapping in which the
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alternative with the kth highest utility is ranked in the kth position; but more funda-
mentally, it takes a different perspective on distortion. Instead of using the distortion
of specific voting rules as a criterion for evaluating and comparing them, Caragiannis
and Procaccia attempt to design embeddings that minimize distortion.

More specifically, one can generalize the notion of distortion, by defining it for gen-
eral embeddings. The distortion of a deterministic embedding into a specific voting rule
can be defined, as earlier, as the worst-case ratio of the most popular alternative’s social
welfare, and the least popular winner’s social welfare. In the case of randomized embed-
dings, distortion can be defined using the expected minimum social welfare among the
winners, again looking at the worst-case ratio between the most popular alternative’s
social welfare, and the expected minimum social welfare among the winners.

Consider the distortion of embeddings into the plurality, approval, and veto voting
rules. All of these voting rules have low communication overhead: log(m) bits per
voter for plurality and veto, and m bits per voter for approval, where m is the number
of alternatives. Any deterministic embedding into the plurality voting rule (when n �
m) has distortion �(m2). A simple randomized embedding into plurality—where the
voter selects an alternative with probability proportional to its utility—gives constant
distortion when the number of voters n is equal to �(m log(m)), and even for larger
values of n has extremely low distortion, specifically, 1 + o(1). With approval voting,
where n � m, there is a lower bound of �(m) for deterministic embeddings. Here
the randomized upper bounds for plurality imply the randomized upper bounds for
approval (since an embedding into plurality is also an embedding into approval).
Caragiannis and Procaccia (2011) carry out simulations for the case where n � m,
with results supporting the conclusion that low distortion can be achieved if n is
not too small. They also show that any deterministic embedding into the veto rule
has infinite distortion, as is also the case for randomized embeddings if n < m − 1.
However, when there are many voters, low-distortion embeddings into veto can be
achieved.

The work of Boutilier et al. (2012) is strongly related to the distortion analysis
described previously. Taking a utilitarian perspective on social choice, two separate
distortion models are examined, each with a different assumption about the information
that is available, and each with its own optimality criterion. The first model assumes
that there is no information about voter utility functions, and considers the worst-
case optimal social choice function that minimizes distortion on every preference
profile; upper and lower bounds are proven on the minimal possible distortion, given
randomized social choice functions. There exists a preference profile where every
randomized social choice function has distortion at least �(

√
m), where m is the number

of alternatives, and there is a randomized social choice function whose distortion on
every preference profile is O(

√
m · log∗(m)). The worst-case optimal social choice

function can be computed in polynomial time.
Assume that for each agent i, the sum of the agent’s utilities over all alternatives

a in A is 1. Let R(A) be the set of permutations on [m]. Formally, we have the
following theorem (from Boutilier et al., 2012): Assume that n � √

m. Then there
exists a preference profile R ∈ R(A)n such that for any randomized social choice
function f , dist(f, R) = �(

√
m).
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Proof. For ease of exposition assume that
√

m divides n. Partition the agents into
√

m

equal subsets N1, . . . , N√
m. Consider the preference profile R where σi(ak) = 1, for

all i ∈ Nk , and the remaining alternatives are ranked arbitrarily.
For any randomized f there must be a k∗ ∈ {1, . . . ,

√
m} such that Pr[f (R) =

ak∗] � 1√
m

. Let  u be a utility profile such that for all i ∈ Nk∗ , the value of ak∗ is 1, and
the value of all alternatives other than ak∗ is 0. For all i �∈ Nk∗ and alternatives a ∈ A,
the value for i of a is 1

m
. It holds that

n√
m

� sw(ak∗,  u) � 2n√
m

,

and for all a ∈ A \ {ak∗ }, sw(a,  u) � n
m

. Therefore:

dist(f, R) �
n√
m

1√
m
· 2n√

m
+

√
m−1√
m

· n
m

�
√

m

3
.

In a second, average-case model, there is a (known) distribution D over voter
utility functions. The average-case optimal social choice function is defined as one
that chooses an alternative that maximizes expected social welfare, given a profile
produced by drawing each voter’s utility function independently from D. When D is
symmetric with respect to alternatives, this average-case optimal social choice function
must be a scoring rule (Boutilier et al., 2012).

The focus of Boutilier et al. (2012) on randomized social choice functions differ-
entiates their work from that of Procaccia and Rosenschein (2006), which deals with
deterministic social choice functions. Although Caragiannis and Procaccia (2011) also
consider randomized social choice functions, their motivations and hence the models
and assumptions are different. Caragiannis and Procaccia cite communication limi-
tations as a primary motivation for voting using rankings (rather than transmitting
utility functions). As a consequence, they focus on social choice functions with low
communication requirements, with the primary goal being to optimize the embedding
of cardinal preferences into ordinal votes. Boutilier et al. (2012) assume that voters
translate utility functions into preference orders in the straightforward way (i.e., the
alternative with kth-highest utility mapped to the kth position in the vote), and there-
fore focus on optimization of the social choice function rather than the embedding
function.

10.8.2 Learnability

Consider the scenario where there is a designer who is able, for each input of voter
preferences, to designate a winner. This black box approach assumes that the designer is,
perhaps, applying a set of external properties to determine the winner, so that for every
vote profile a winner that satisfies those properties can be specified by the designer. It is
assumed that the voting rule that (implicitly or explicitly) drives the choice of winners
by the designer comes from a family R of rules. Procaccia et al. (2009) address the
problem of finding, via some probably approximately correct (PAC) learning process, a
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voting rule fromR that is as close as possible to the designer’s (implicit or explicit) rule.
Ideally, the number of sampled profiles given to the designer should be small (perhaps
because of the computational or communication costs associated with the process). An
algorithm is developed whose input is a collection of “vote profile-winning alternative”
pairs drawn according to the fixed distribution D over profiles. The output is a voting
rule that maximizes expected agreement (expectation taken w.r.t. D) between the
output voting rule and the actual rule from which the samples are derived, in the PAC
sense.

One way of conceptualizing this problem is as the “automated design of voting
rules”; if there exists a specification of properties that can be used to determine a winner,
then the process can find a voting rule that in some sense embodies or operationalizes
those properties. The scenario is particularly compelling if there does exist a prior set
of criteria for establishing who the winner is, given voter preferences, but no succinct
voting rule that is known to capture those criteria.

There are several interesting results in this model (Procaccia et al., 2009). Given a
set of examples, it is possible to efficiently compute a scoring rule consistent with the
examples (if one exists). That, together with the proven dimensionality of the class of
scoring rules (given m alternatives, that dimensionality is bounded by m and m − 3),
implies that the class of scoring rules with m alternatives and n voters is learnable in
polynomial time for all m and n.

The situation when R is the family of voting trees is somewhat more complicated;
the number of different pairwise voting rules that can be represented as voting trees is
doubly exponential in the number of alternatives. In general, a large number of examples
would need to be provided to allow learning—this is true even in the seemingly simpler
case of balanced voting trees, to which arbitrary unbalanced trees can be transformed.
In the special case of “small” voting trees (where the number of leaves in the tree
is polynomial in the number of alternatives, rather than exponential in the number
of alternatives), however, voting trees are efficiently learnable. Extensions to general
voting rules can also be considered, but there exist many voting rules that cannot
be approximated by scoring rules nor by small voting trees (assuming a uniform
distribution over voter profiles). This does not preclude the possibility that there exist
important families of general voting rules that can be approximated by scoring rules or
small voting trees (Procaccia et al., 2009).

Boutilier et al. (2012) extend the work on learnability further, by considering a
learning-theoretic model that is consistent with their overall examination of optimal
social choice functions from a utilitarian perspective. They assume one has access only
to sampled utility profiles from some unknown distribution D, and wishes to find a
sample-optimal social choice function, relative to those sampled profiles (in contrast
to the worst-case optimal and average-case optimal social choice functions considered
earlier). The quality of the sample-optimal social choice function is then assessed
relative to the expected social welfare of the (unknown) true optimal social choice
function for D. Necessary and sufficient bounds are derived on the number of samples
needed to ensure the sample-optimal social choice function has expected social welfare
close to that of the optimal function with high probability. These are provided for
both k-approval social choice functions, as well as general scoring functions. Finding
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the sample-optimal scoring function is APX-hard; however, there is a mixed-integer
programming formulation that generally enables reasonably effective computation of
the sample-optimal function.

10.9 Conclusions and Future Directions

We have seen that a number of interesting and challenging issues arise when we consider
the implementation of voting schemes with incomplete information, both conceptu-
ally and computationally. At the same time, resolution of these issues allows one to
design mechanisms for preference aggregation that have less stringent informational
requirements, are more robust with respect to missing information, and minimize the
cognitive and communication burden on voters.

We have focused on a few select topics related to voting and partial information.
Many interesting avenues are uncovered in this chapter, indeed, several important topics
have yet to be addressed in the literature. We list a few here:

� Manipulation, strategic voting, and equilibrium analysis: Manipulation and control of
elections—and more generally the strategic revelation of preferences—is a topic of
great importance (see Chapter 6 and Chapter 7), but much of this work assumes that
manipulators have full knowledge of the vote profile. Equilibrium analysis of various
voting rules (Majumdar and Sen, 2004; Ángel Ballester and Rey-Biel, 2009) usually
assumes (more realistically) that voters have incomplete knowledge in the form of a
common prior. Algorithmic and computational study of the complexity and impact of
manipulation under more realistic incomplete knowledge assumptions has been sparse,
but is clearly of vital importance. See Conitzer et al. (2011a) and Lu et al. (2012) for
some steps in this direction. At the same time, many of the models discussed in this
chapter—those for vote elicitation, dealing with uncertain alternatives, and learning
voting rules in particular—bring with them new opportunities for vote manipulation
and control which require novel forms of analysis. Equilibrium analysis for these new
models is also required (e.g., see the work of Dutta et al. (2001); Lang et al. (2013),
who provide an equilibrium analysis of candidates who choose to enter or abstain from
an election).

� Combinatorial domains: Effective means for voting in combinatorial domains is clearly
vital to the practical deployment of the sophisticated preference aggregation mechanisms
(see Chapter 9). We have left unaddressed issues associated with incomplete information
in such settings. Incremental vote elicitation schemes for combinatorial domains have
been few (though see Chapter 9 for discussion of sequential voting mechanisms using
combinatorial representations). Preference elicitation schemes in nonvoting contexts
have been developed for multiattribute preference representations such as CP-networks
and soft constraint formalisms (Koriche and Zanuttini, 2010; Dimopoulos et al., 2009;
Gelain et al., 2010), and these could be adapted to vote elicitation. However, many of
the other topics touched on in this chapter have not been addressed in combinatorial
settings.

� Other forms of social choice: Our focus in this chapter has been on social choice in
the “voting” sense. Of course, a variety of other social choice problems are amenable
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to the same types of partial information analysis discussed here, including two-sided
matching (Chapter 14), coalitional matching and group formation (Chapter 15), assign-
ment problems, multiwinner (or committee) voting problems (Chapter 9), fair division
(Chapters 11–13) among others. For example, communication complexity, matching
with incomplete information, and incremental preference elicitation have begun to gar-
ner attention in the stable matching domain (Chou and Lu, 2010; Pini et al., 2011b;
Drummond and Boutilier, 2013; Rastegari et al., 2013; Liu et al., 2012).
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CHAPTER 11

Introduction to the Theory of
Fair Allocation

William Thomson

11.1 Introduction

The purpose of this chapter is to briefly introduce the theory of fair allocation in the
context of concretely specified economic environments. There, requirements of fairness
are expressed in terms of resources and opportunities understood in their physical sense.
Thus, it contrasts with abstract social choice theory as this expression is commonly
understood: in the canonical Arrovian model (Part I), the alternatives available to society
are not structured in any particular way, whereas in models of resource allocation, the
space of feasible alternatives is equipped with a variety of mathematical structures,
topological, vectorial, and order structures. This enrichment has implications on several
levels. First, when we specify the model itself, we can include properties of preferences
reflecting these structures that would not be meaningful without them. Second, we can
formulate properties of allocation rules referring to the structures. Finally, we can
define allocation rules that are based on the structures.

Abstract social choice theory and the theory of fair allocation have the same con-
structive objective, however, namely, to identify the “best” way of reconciling the
conflicting interests of the participants. In each case, we can distinguish two branches
of the literature. The normative branch focuses on the distribution of welfare throughout
the population. It starts with the formulation of criteria of fairness, and it studies their
implications. The strategic branch is concerned with the fact that agents have some
control over resources, technologies, and the information about the outside world or
their own preferences, and that they may try to take advantage of this control. Ideally,
the allocation process should be safe from manipulation of resources or technologies,
by individual or by groups, and from misrepresentation of their knowledge of the envi-
ronment or of their preferences. We focus on the normative branch here but there is
not a complete conceptual separation between normative and strategic considerations;
some properties of rules can be interpreted from either viewpoint; also, from a technical
perspective, the two branches are linked in multiple ways.

The primary aim of abstract social choice theory is to define social orderings over the
set of alternatives, whereas most of the theory we review here deals with how to choose,
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for each economy, one (or several) allocation(s) from a set. These allocations can of
course be understood as maximizing an implicit social ordering (the two-indifference-
class ordering in which the higher indifference class consists of the allocations that
are chosen, and the lower one consists of the allocations that are not chosen), but no
attempt is made at elucidating these orderings themselves, and in particular, at deriving
fine orderings from desirable properties of the process of preference aggregation. For
an up-to-date treatment and new perspectives on such derivations, see Fleurbaey and
Maniquet (2011).

Given the space constraints we face, we are unable to give extensive references
to primary sources and instead, we refer to surveys. They concern either a specific
principle or a particular type of allocation problems. General references are Young
(1995b), Brams and Taylor (1996), Moulin (1995), Moulin (2004), Barbanel (2005),
Thomson (2011), and Thomson (2014d). We focus on the axiomatic approach to
fairness. We ignore the experimental literature, how lotteries can be used to achieve
fairness in the ex ante sense, and strategic issues. Among the multiple types of allocation
problems in which fairness have recently been addressed, we chose some that we felt
were representative of the literature as a whole. A large number of papers focus on
the interaction of normative and strategic requirements, in particular the incentive that
allocation rules provide agents to be truthful about their preferences (Barberà, 2011).
We have chosen not to review this literature. Also, several of the chapters in this volume
address such issues (Chapters 1, 6, and 14).

Finally, we do not consider computational issues. These are already the central
focus of many of the other chapters in this volume. It has been very rewarding to
economists who have been involved in the development of the theory of fairness to see
the increasing interest that the computer science community has taken in the subject.
This interest has been uneven, however. The concept of an envy-free allocation, the
classical problem of fair division, the division of a measure space, and various types of
allocation problems with discrete structures, such as object allocation or reallocation
problems and two-sided matching, have indeed received considerable attention in this
community, but there are other facets of the theory, a range of other concepts and
other types of allocation problems on which it has not yet brought to bear its own
perspectives and techniques, and we hope that this survey will help further cross-
fertilization between computer science and economics. Examples are the punctual
notions of egalitarian-equivalence and of equal opportunities, and the many relational
solidarity requirements that have been critical in axiomatic analysis. As for types of
allocation problems that would benefit from being more closely examined from the
computational angle, are problems with satiated preferences, claims problems, cost
allocation problems (they come in a great variety), and public goods problems. Here is
not the place to be formal; these terms are defined in what follows.

We first describe a generic allocation problem, listing its components. We introduce
several standard, and some not so standard, classes of allocation problems. Next, we
introduce the principles that constitute the conceptual core of the literature under review.
We hope to show that in spite of the great diversity in the axioms that have been studied,
they can all be seen as expressions of just a few general principles. However, because
each class of problems has its own mathematical structure, these principles often have
to be adapted. Also, the implications of a particular combination of principles often



1 1 .2 what is a resource allocation problem? 263

differ significantly from one class to the other. It is also the case that for some classes
of problems, additional concepts may be available that are not meaningful in others.

11.2 What Is a Resource Allocation Problem?

We begin with a presentation of the data needed to specify an allocation problem, and
we continue with a sample of problem types. We chose them to illustrate the scope of
the program surveyed here.

11.2.1 The Components of an Allocation Problem

An economy has several of the following components:

1. A set of agents: this term may refer to individual people, to government agencies, to
firms, or to other entities, such as “artificial” agents acting on behalf of “real” agents.

2. Resource data concerns unproduced endowments of goods that can be either consumed
as such or, when production opportunities are specified, used as input in the production
process; in that case, we also specify production sets and we may attach productivity
parameters to agents or to groups. From all of the data we derive feasible sets or oppor-
tunity sets open to agents or to groups. In general equilibrium theory, a production plan
is a point in commodity space interpreted as a feasible input-output combination. Some
of the inputs may be labor inputs, and because people may be differently productive,
productivity parameters may be specified, giving the rate at which each person’s labor
time can be converted into abstract labor.

3. Ownership data may concern unproduced resources or production processes. Ownership
may be individual: a particular agent may own a particular resource, his house, his own
self. It can be semi-collective: a particular group of agents may own a particular resource,
for example a married couple may jointly own the house in which they live. It may be
collective: the entire agent set may own a particular resource; for example, a nation owns
its cultural patrimony. It may be mixed: some resources may be owned privately; other
resources may be owned by a group of agents; yet others may be owned by the entire agent
set; an example here consists of the housing units to which some students are returning
at the beginning of the academic year and that they have the right to keep—in a sense,
these resources are owned by these students—and the units that have been vacated by the
students who graduated and left—these constitute a collective endowment. Ownership
may be contested, disagreement over it resulting in incompatible claims.

4. Priority data indicates the precedence to be given to particular agents over others.
Priority can be absolute, as when a linear order is specified on the agent set, no two agents
being at the same level. Alternatively, it may be relative, with nontrivial indifference
classes. It may be restricted and structured, because of upper bounds on how much
agents are allowed to get. Then, once the highest-priority agent has been given his
assignment—here, it is difficult to describe the data without suggesting how they may
be used—we need to specify who comes next, who comes after this second agent, and
so on. The structure may take the form of a limit on the scope of priorities, as when
a priority is attached to only some of the resources, or when different priorities are
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attached to different resources. In any of these situations, giving priority to an agent
does not mean giving him control over, or access to, every single resource.

5. Preference data concerns natural properties that, for each class of problems under
investigation, we expect preferences to satisfy; these properties depend in an important
way on the mathematical structure of the set of possible consumptions for an agent, that
is, on the nature of the resources to be assigned. To illustrate, when goods are infinitely
divisible, consumption bundles are vectors in a Euclidean space. This space is equipped
with topological, order, and convex structures, and we can require preferences to satisfy
continuity, monotonicity, and convexity properties. Using the notation a � b to mean
that a is at least as desirable as b, and a � b to mean that a is preferred to b, these
properties can be written as follows: (i) if xi �i yi , x ′

i is sufficiently close to xi and y ′
i

is sufficiently close to yi , then x ′
i �i y ′

i ; (ii) if yi � xi , then yi �i xi , and (iii) given any
bundle xi , {yi | yi �i xi} is a convex set.

6. Bounds may be imposed on consumptions. They may be lower bounds or upper bounds.
We may require a minimal consumption of a particular good (education), or we may
require a maximal consumption of a good (only one time slot per person for some
activity).

We will not discuss models that include utility information. We will not attempt to
measure welfare gains and losses on cardinal scales, let alone compare such quantities
across agents. Indeed, an important development of the last decades is that purely
ordinal criteria have gained general acceptance. They save us from having to address
the delicate conceptual and practical issues raised by the use of utilities. Besides, as
we will see, we will have to present a number of negative results and the mild form
of our ordinal criteria will make these results all the more striking. When positive
results emerge, they are often uniqueness results, and in such cases, even if cardinal
information were available, it would have to be ignored. We do not mean to suggest that
an ordinal approach is superior to a utility based approach, but it is its ordinal character
that makes the recent literature on fairness particularly noteworthy as compared to
traditional welfare economics, and it is the literature that we survey.

Once we have specified all of this data, we have a domain of economies. Our
objective is not just to make a recommendation for the particular allocation problem
that we happen to face today, but to make a recommendation for each problem in some
domain of interest. This takes us to the concept of a solution or rule (Section 11.3).

11.2.2 A Range of Resource Allocation Problems

Fairness issues have been studied in the context of a great variety of resource allocation
problems. We have chosen several of them to illustrate the central concepts.

1. Classical fair division problems. A social endowment � ∈ R

+ of 
 infinitely

divisible goods has to be distributed among a group N of agents. Each agent i ∈ N is
equipped with a preference relation�i over 
-dimensional commodity space R


+. These
preferences satisfy “classical” assumptions of continuity, monotonicity, and convexity.

2. Fair division problems with single-peaked preferences (Sprumont, 1991). A social
endowment � ∈ R+ of a single commodity has to be fully (there is no possibility of
disposal) distributed among a group N of agents. Each agent i ∈ N has preferences
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�i with the following features: up to some critical level, his peak amount, denoted
p(�i), an increase in agent i’s consumption increases his welfare, but beyond that
level, the opposite holds: for each pair xi, x

′
i such that either x ′

i < xi � p(�i) or
p(�i) � xi < x ′

i , we have xi � x ′
i . Such preferences are single-peaked. An example is

the parceling out among workers of a task that must be completed, when each worker is
paid a fixed wage and has convex preferences in leisure-income space. Thus, the model
differs from the previous one (essentially) in that there is only one commodity here and
the assumption of monotonicity of preferences is dropped; however, the assumption of
convexity is retained. Violations of monotonicity raise challenging questions even in
the one-commodity case.

3. Claims problems (O’Neill, 1982). A social endowment � ∈ R+ of a single good
has to be distributed among a group N of agents with incompatible claims on it.
Denoting by ci ∈ R+ the claim of agent i ∈ N , incompatibility means that

∑
ci > �.

Agents have monotonic preferences. (Thus there is no need to include preferences
explicitly in the formal description of a problem: there is only one monotone preference
relation defined over the nonnegative reals.) A typical application is to bankruptcy: the
liquidation value of a bankrupt firm does not allow to fully satisfy all of its creditors.
Mathematically, the problem of raising taxes from the users of a public project as a
function of their incomes to cover the cost of the project, or as a function of the benefits
they derive from it, is equivalent. Surveys are Thomson (2003) and Thomson (2014a).
A related class of problems are surplus-sharing problems. They differ from claims
problems in that the endowment exceeds the sum of the claims. It is also meaningful
to jointly study both claims and surplus-sharing problems.

4. Partitioning nonhomogeneous continua. A social endowment consisting of an
infinitely divisible and nonhomogeneous continuum has to be partitioned among a
group N of agents. The dividend is a measure space and each agent i ∈ N has prefer-
ences defined over its measurable subsets. In the base model, agent i’s preferences �i

are monotonic with respect to set inclusion (if I ⊃ I ′, then I �i I ′).
It is also common to take the dividend to be a subset of a finite-dimensional Euclidean

space and the one-dimensional case is of special interest. Think of an interval of
time I ⊂ R+ during which a service is provided, for example, maintenance or repair
work on a machine, or instruction on how to use it. The value of the service to an
agent depends on how long it lasts and when it is provided, and it varies from agent
to agent. In many situations, such as the service example just mentioned, it makes
sense to require that each agent be assigned an interval, but not always, as when
the issue is to schedule when students in a group will be assigned weekly individual
review or practice sessions with tutors. (Chapter 13 discusses algorithmic issues in this
context.)

The one-dimensional continuum may be circular. An example here is a market
around a lake in a mountain resort that has to be partitioned into intervals to be
assigned to ice-cream or souvenir vendors, their potential customers being unevenly
distributed around the lake. A cake on which frosting and decorations are distributed
unevenly and that has to be partitioned into slices is another example.

The dividend may be undesirable in the sense that of two intervals related by
inclusion, the smaller one is preferred to the larger one. Here, and in the context of
the tutoring example mentioned previously, think of the teaching assistants who have
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to staff the office where they will help out students with their homework assignments,
and of police patrolling the road around the lake.

As illustrations of the two-dimensional case, consider the problem of partitioning
farmland bequeathed by a farmer to his children, or assigning tracts of land to mining
companies for gas or oil exploration, or the ocean floor for nations to exploit minerals
lying there.

Much of the literature concerns the case of preferences that can be represented
by atomless measures. This additivity assumption is restrictive, as it precludes the
possibility that a subset be valuable only if some other subset is consumed with it (that
is, it rules out complementarities), or conversely that a subset not be valuable because
some other subset is already included in someone’s assignment (the two subsets are
substitutes then). Additional topological and geometric—we could say “geographic” in
the case of land—criteria are sometimes meaningful. For instance, it may make sense to
require connectedness of each component of the partition, or contiguity of each agent’s
assignment to some prespecified endowment that is not part of the redistribution.

5. Object allocation problems. A social endowment O of indivisible goods, or
objects, has to be assigned to a group N of agents. Each agent i ∈ N can consume only
one and has preferences �i defined over O. The objects are the only resources. This is
the base case of an object allocation problem. Think of offices to assign to the members
of an academic department moving to a new building, or of tasks to be assigned by a
foreman to the workers in his team (see also Chapter 12).

More generally, each agent i ∈ N may consume several objects and have preferences
defined over 2O . Estate or divorce settlements often involve multiple indivisible items
(painting, silverware) and each heir will receive several. Selling these resources and
dividing the proceeds among the intended recipients may come to mind as a solution
but this may be very imperfect. Indeed, these resources may have value to them that
are not recognized on the market (family heirlooms), or legal constraints may prevent
appealing to a market altogether (organs).

The simplest case is when the numbers of objects and agents are equal. When there
are fewer objects than agents, some agents have to go without one. We allow for this
possibility and augment the set of objects by a null object; by definition, there are
always enough copies of it for each agent to receive one (real or null) object. An object
is desirable for an agent if he prefers it to the null object, and undesirable if the opposite
holds. When there are fewer agents than objects, some objects have to be unassigned.
In some applications, it is natural to require that the null object not be assigned until all
real objects are, even if these objects are undesirable, or undesirable for some agents.
An example here is the problem of assigning household tasks to housemates. None
of them may enjoy a particular task; yet, the task has to be performed (cleaning, for
example); alternatively, some of them may find a particular task desirable and others
not (cooking a meal illustrates the possibility).

6. Objects-and-money allocation problems. We enrich the previous model by adding
a social endowment of one infinitely divisible good that, with some abuse of language,
we call “money.” Each agent i ∈ N can consume some amount of money and one
object. Consumptions of money may be unrestricted in sign, or they may be required to
meet a lower bound (for example zero). Thus, each agent has preferences defined over
the cross-product R × O, perhaps [a,∞[×O for some a ∈ R. They are continuous,
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strictly monotonic with respect to money, and such that, starting from any bundle,
replacing the object it contains by any other object can always be compensated by an
appropriate change in the consumption of money. Here too, the base situation is when
the numbers of objects and agents are equal. An example is the problem of assigning
students to rooms in the house they are renting together, and specifying for each of
them his share of the rent.

As in plain object-allocation problems, when there are fewer objects than agents,
some agents have to go without one. As before, we then augment the set of objects by a
null object. In the room-assignment–and–rent-division example, the null object can be
interpreted as “looking for other accommodation.” When the null object is available,
we say that a real object is “desirable” for an agent if, given any bundle that includes it
(that is, no matter how much of the divisible good is consumed with it), replacing it by
the null object leads to a bundle that is at most as desirable. An object is “undesirable”
if the opposite always holds.

7. Priority-augmented object allocation problems (Balinski and Sönmez, 1999;
Abdulkadiroğlu and Sönmez, 2003). Here, we enrich the object allocation problem in
a different way, by imagining that each object a ∈ O is equipped with a priority order
πa over its possible recipients. An example is “school choice”: the objects are seats in
schools; at each school, a priority order over students is given (the order may depend
on several factors: whether a student already has a sibling in the school; whether he
lives in the “walk-zone” of the school; how long he has been on the waiting list; his
academic record; and so on). At each school a ∈ O, a capacity κa is specified. In that
application, indifference has to be allowed: two seats at a given school have to be
considered equivalent by a student, but indifference is very structured in the sense that
any two students are indifferent between all the seats at each school. (For a survey, see
Abdulkadiroglu (2013).)

8. Matching agents to each other. Now, we a priori partition the agent set into two
sets. Each agent has preferences over the agents in the component of the partition to
which he does not belong. The objective is to make pairs containing one agent from
each set. There is a wide variety of matching models, however: (i) the option of not
being matched may be present or not; (ii) in the base model, matching is one-to-one,
an example here is when men and women have to be paired for a dance class, or when
medical students have to be matched to hospital programs for residency; matching
may also be several-to-one, an example being when high-school graduates have to
be assigned to colleges; several-to-several matching are possible in some situations,
an application here being when a worker can work for several firms and a firm can
employ several workers; (iii) preferences may be strict or indifference may be allowed;
(iv) there may also be some amount of an infinitely divisible good, typically money,
to distribute, and here, how much of it there is may be derived from the pairs that are
formed. There, agents may only care about how much of the divisible resource they
are assigned, not about to whom they are paired, or they may care about both. An
application here is the assignment of workers to firms, when each pair of a worker and
a firm is worth so many dollars (or when each pair consisting of a set of workers and
a firm is worth so many dollars), and the amount to divide is the sum of the worths
generated by all the pairs that are created. In the simplest case, illustrated by the men-
women metaphor, N = M ∪ W , each i ∈ M has preferences over W and each i ∈ W
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has preferences over M . For the problem of pairing workers and firms, to each pair
(w, f ) is associated a number a(w, f ), and the amount to divide is

∑
a(w, f ) over all

pairs (w, f ) that are formed. An introduction to the literature is Roth and Sotomayor
(1990) (also see Chapter 14). Related to two-sided pairing problems are roommate
problems, which are one-to-one pairing problems in which each agent can be matched
to any other agent. The theory of coalition formation is a generalization. There, the
agent set has to be partitioned into subsets, taking the preferences of each agent over
all subsets into account.

Listing the components of an allocation problem in the manner we did earlier raises a
number of questions. What does it mean to say that a resource is a “social endowment,”
that an agent “owns” a resource, that a priority order on the possible recipients is
attached to a resource, that a priority order on the possible recipients is attached to
each of several resources? What is the operational meaning of these expressions? How
should they be reflected in properties of allocation mappings?

11.3 Solutions and Rules

A solution associates with each problem in the class under investigation a non-empty
subset of its set of feasible allocations. A rule is a single-valued solution. Thus,
a rule provides a complete answer to the question of how to allocate resources in
each particular problem in the class under investigation. A solution only achieves a
first-round elimination of alternatives, the process through which a final outcome is
determined being left unspecified.

We can arrive at solutions and rules in a variety of ways.
(i) A solution may formally describe what we observe in actual practice. It is impor-

tant to understand what is done in the real world, to know the desirable features as
well as the undesirable features of common practices. Societies have occasionally hit
upon attractive procedures to resolve conflicts over allocation of resources, and we may
be able to draw useful lessons from scrutinizing these procedures. Examples are rules
based on equality, proportionality, priority, lotteries, and prices. Of course, for this exer-
cise to be meaningful, we have to formulate criteria of desirability. We turn to them next.

(ii) The core of the second approach are principles of good behavior of solutions or
rules. An “axiom” is the mathematical expression of some intuition we have about how
a solution or rule should behave in certain situations. An axiomatic study starts with a
list of axioms and its goal is to describe the implications of the axioms when imposed
in various combinations. The ultimate goal of the axiomatic program is to trace out the
boundary that separates those combinations of axioms that are compatible from those
that are not. (Chapter 2 is an example of a chapter that is mainly axiomatic, but axioms
are discussed throughout the book.)

The scope of certain principles is very broad, that is, these principles can be mean-
ingfully expressed in almost any model. An example is the economist’s central notion
of “Pareto-efficiency”: an allocation x is efficient (for short) for some economy if there
is no other allocation x ′ that all agents find at least as desirable and at least one agent
prefers, that is, such that for each i ∈ N , x ′

i �i xi and for some j ∈ N , x ′
j � xj . Other
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principles, although not totally model-free, still have a broad range of applicability.
An example is the no-envy notion (Foley, 1967),1 according to which no agent prefers
someone else’s assignment to his own: there is no pair i, j ∈ N such that xj �i xi .
The permutations on which it is based presume that all agents’ preferences are defined
over the same space, and that if agents differ in some relevant dimension other than
preferences, some adjustments can be made to place them on the same footing. For
instance, when the issue is to reallocate bundles that agents privately own, and calling
ωi and ωj agent i and j ’s endowments, we can adapt it by requiring that there is no
pair i, j ∈ N such that [ωi + (xj − ωj )] �i xi . This is the notion of no-envy in trades
(Kolm, 1972; Schmeidler and Vind, 1972). The no-envy notion makes the most sense
when applied to the distribution or redistribution of private resources. It is silent in
models of “pure” public choice, where by definition, all agents consume the same
thing and a compromise has to be found on what that common assignment should be
because agents differ in how they value it.

Other principles may be applicable in several contexts but in each particular one,
some adaptation is needed, and various expressions of the idea may be meaningful.
Monotonicity requirements come to mind here and we will give several examples to
illustrate the point.

Some of the principles directly define solutions and rules, and others only place
constraints on how the choice of an allocation may vary in response to changes in the
data of a problem. For instance, efficient allocations exist almost always. Thus, we
can speak of the solution that selects for each economy its set of efficient allocations.
By contrast, the self-explanatory requirement of equal treatment of equals does not
suggest the definition of a solution, because there are many economies in which no
two agents have the same characteristics. And even if some agents do have the same
characteristics, what should their common consumption be and what are we supposed
to assign to the others?

(iii) The well-developed theory of cooperative games is also a good source of
inspiration for solution concepts and principles. However, the models that are studied
in that theory are “abstract” in the sense that only sets of achievable utility vectors are
given. The description of the actual physical choices that agents have is typically not
included in their specification. By contrast, we are interested here in settling concretely
specified resource allocation problems. Part of the conceptual work to undertake when
exploiting the theory of cooperative games is to find the most natural expressions in
the context of the model under study of the principles that have been important in
that theory. Alternatively, we can map the allocation problems under investigation into
games and apply solutions introduced in the theory of games to solve these games. A
resource allocation problem can often be mapped into a game in more than one way,
however (the result may be a bargaining problem, a transferable utility game, or a
nontransferable utility game), and proceeding in this way will give us the opportunity
to apply different solution concepts of game theory to solve our allocation problem.

(iv) Rules that are common in one area may serve as a source of inspiration in
defining new rules in other areas. For example, for the standard model of general

1 This notion is also called “envy-freeness.”
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equilibrium, in which agents may have different endowments, the central rule is the
Walrasian rule: given some prices p in the simplex of R


+, we let each agent i maximize
his preferences �i in his budget set (the set of bundles xi whose value pxi does not
exceed the value pωi of his endowment ωi), and adjust prices so as to obtain equality of
demand and supply:

∑
x∗

i = ∑
xi , where x∗

i designates agent i’s maximizing bundle.2

To solve classical fair division problems, we operate this rule from equal division, that
is, we endow each agent with an equal share �

|N | of the social endowment. We thereby
obtain the equal-division Walrasian rule, the rule that comes to the minds of most
economists first. It has the merit of offering to all agents the same opportunities, these
opportunities being defined through prices. For single-peaked allocation problems, the
uniform rule U can also be seen in the light of equal opportunities (Sprumont, 1991).
“Budget sets” here are intervals from the origin to some upper bound if the sum of
the peak amounts exceeds the social endowment, and from some lower bound to the
social endowment otherwise: given e ≡ (�,�) ∈ EN

sp, if
∑

p(�i) � �, then for some
λ ∈ R+ and for each i ∈ N , Ui(e) = min{p(�i), λ}; if

∑
p(�i) � �, then for some

λ ∈ R+ and for each i ∈ N , Ui(e) = max{p(�i), λ};
For priority-augmented object allocation problems, the theory of two-sided matching

has been important in defining solutions. Prominent rules are the immediate acceptance
rule, according to which we identify the various agents’ most preferred objects and
we assign each object to the agents listing it first, in the order of their priority for that
object, until its supply is exhausted; we reject the others; at the next round, each rejected
agent “applies” to his second most preferred object. We repeat the operation with them,
after adjusting the supplies of the objects down by the number of times it has been
assigned at the first round. We proceed until each agent has been assigned an object. For
the tentative acceptance rule3 (Chapter 14), at each round we only tentatively assign
objects and keep as potential assignees of each object those recipients who have the
highest priority among those we kept on as potential assignees at the previous round
and the agents who are newly requesting it. As for the immediate acceptance rule, each
agent whom we reject at some round applies to his next most preferred object at the
next round. The algorithms stop when no one is rejected.

11.3.1 Axioms

Our goal here is not just to try to understand the implications of fairness requirements
for allocation rules; we have to define fairness to begin with. Perhaps we should begin
by requiring that all agents should be treated equally, that they should be put “on
the same level.” The objective of treating all “equal” agents “equally” seems rather
limited if by “equal” agents we mean agents that nothing distinguishes in their formal
descriptions. Indeed, it would not cover many situations. Because in discrete allocation
problems, there are finitely many possible preferences, it is applicable to a positive
fraction of all preference profiles but otherwise, there may be few agents with the same

2 A pair (p, x) as just described is often called an “equal-income competitive equilibrium,” and the allocation
x an “equal-income equilibrium allocation.” The mapping that associates with each economy its equilibrium
allocations is also known as the “equal-income competitive equilibrium correspondence.”

3 Commonly known as the “deferred acceptance rule.”
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characteristics, or none. Besides, it will not be enough: equal assignments may not
be compatible with efficiency. They may not even exist. Again, an example here is,
when the resources to allocate present indivisibilities. In an object allocation problem
in which all agents have the same preferences, it obviously cannot be met.

The real challenge is to recognize differences between agents when they exist, and
to treat these differences appropriately. What should we do when two agents have
different preferences? When they have contributed differently to the production of the
resources available for distribution, either in labor time, or because they are differently
productive, or both? When they differ which respect to claims they have, resources they
control, or characteristics that are not related to economic activities, such as record of
service or medical condition?

Recognizing departures from fairness, measuring them, assessing their significance,
and perhaps redressing them, is also part of the study of fairness. Developing menus of
parameterized rules from which the user of the theory can choose so as to best fit his
need for a differential treatment of different agents is another objective of the theory
of fairness.

11.3.2 Punctual Axioms

We can distinguish between different types of requirements on solutions and rules. We
begin with punctual requirements, that is, requirements that apply to each economy
separately, “point by point.” The question to be addressed then concerns the existence,
for each economy in the domain under consideration, of allocations satisfying the
axiom. When a punctual axiom meaningfully restricts the set of possible allocations of
each economy—we could say that it has full coverage then—it defines a solution or a
rule. Here are the central ideas.4

(i) Bounds on physical assignments or on welfares can be defined agent by agent,
in an “intra-personal” way. They are usually lower bounds, offering each agent a
guarantee that at the allocation chosen by a rule, his welfare will be above a certain
level, defined in terms of the social endowment and his preferences. Others are upper
bounds, specifying for each agent a ceiling on his welfare. Imposing such a ceiling can
be seen as another way of preventing the others from being unduly burdened by his
presence.

To illustrate, for classical fair division problems, an allocation satisfies no-
domination of, or by, equal division, if (i) no agent is assigned at least as much
as an equal share of the social endowment of each good and more than an equal share
of the social endowment of at least one good, or (ii) at most as much as an equal
share of the social endowment of each good and less than an equal share of the social
endowment of at least one good, that is, there is no i ∈ N such that either xi � �

|N | or

xi � �
|N | .

The notion just defined is preference-free, by contrast with the next ones. An allo-
cation x satisfies the equal-division lower bound if each agent finds his assignment at

4 In social choice theory (Part I), the distinction is often made between intra-profile axioms and inter-profile
axioms, but we prefer avoiding this language because a relational axiom may have to do with a change in a
single parameter, not a change in a profile of parameters.
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least as desirable as equal division: for each i ∈ N , xi � �
|N | (among many others,

Kolm, 1972; Pazner, 1977).5

Having all agents share the benefit, or the burden, of their diversity is another impor-
tant idea. If one had the choice of joining an economy in which agents have different
preferences from one’s own or joining one in which they have similar preferences,
which decision should one make? Of course, it depends on how the resources would
be allocated but in an economy of clones, efficiency and the minimal requirement of
equal treatment of equals together usually determine the allocation. It also depends on
the nature of the goods and, when they have to be produced, on the properties of the
technologies under which they are produced. Let us answer the question in the context
of some of our models.

In a classical fair division problem, diversity is a good thing. When agents have
the same convex preferences, equal division is efficient. Introducing diversity allows
distributions that all agents prefer to equal division, and ensuring that all agents benefit
from their diversity is a meaningful objective. One way to implement it is as follows:
for each agent, imagine the hypothetical situation in which everyone else would have
his preferences. Then, if preferences are convex, under efficiency and equal treatment
of equals, the common welfare of these clones would be what they experience at equal
division. Returning to the actual economy, sharing the benefits of diversity would be
translated into the requirement that each agent’s welfare level at his assignment be at
least as high as the common welfare level that he and his clones would experience in
this counterfactual economy. This is simply the equal-division lower bound. In other
models, the reference to economies of clones has led to new lower bounds, however.

In other situations, diversity is a burden. When it comes to the production of private
goods under increasing returns-to-scale, or the production of public goods, similarity
of preferences is preferable.

In yet others, diversity may be a good thing or a bad thing depending upon particular
features of the economy, and we can refer to economies of clones to define a bound
that is a lower bound or an upper bound.

(ii) Requirements based on inter-personal comparisons of assignments, or more
generally, “opportunities” can also be defined. We can base these comparisons on
exchanges of these objects, or perhaps on other operations performed on them.

Recall the definition of an envy-free allocation. The no-envy notion can be adapted to
assess the relative treatment of groups of agents too: an allocation x is group envy-free
if given any two groups of the same size, G and G′, we cannot redistribute among the
members of G what has been assigned in total to the members of G′, namely,

∑
G′ xi ,

so as to make each member of G at least as well off as he was at x, and at least one of
them better off. We can adapt the definition to accommodate groups of different sizes,
by performing calculations on a per capita basis, that is, by making available to G the
bundle |N |

|N ′|
∑

G′ xi .
The next definition is based on evaluating an allocation by comparison to a counter-

factual allocation at which all agents would receive the same bundle: equivalently, the
allocation x is egalitarian-equivalent if there is a “reference” bundle x0 that each agent

5 This requirement is usually called “individual rationality from equal division.”
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finds indifferent to his assignment: for each i ∈ N , xi ∼i x0 (Pazner and Schmeidler,
1978). Then, the “obvious” fairness of a hypothetical allocation composed of multiple
copies of the same bundle x0—hypothetical because this list of identical bundles is
not usually feasible—is transferred to the allocation x that is being evaluated through
Pareto indifference. The definition is not very restrictive; in fact, one can argue that it is
too permissive. For instance in the context of classical fair division problems, it is easy
to construct examples in which some agent is assigned a share of the resources that is
arbitrarily close to one. However, for this model, we can define various selections from
this correspondence that have considerable interest. Fix a direction r in commodity
space. An allocation x is r-egalitarian-equivalent if there is λ ∈ R+ such that for each
i ∈ N , xi ∼i λr . When r = �, the resulting rule is particularly attractive. For example,
it also meets the equal-division lower bound.

More generally, we may require the reference bundle to belong to some path G in
commodity space that emanates from the origin, is monotone and whose projection on
each axis is unbounded. Then, x is G-egalitarian-equivalent if there is x0 ∈ G such that
for each i ∈ N , xi ∼i x0. The considerations underlying the no-envy and egalitarian-
equivalence criteria (and variants) seem to be far removed from each other but in fact,
they can be seen as special cases of a general definition (Thomson, 1994b). We can
construct for each agent i ∈ N , a representation of his preferences by “calibrating
on G” as follows: to each bundle x0 ∈ R


+, declare the agent’s welfare to be equal to
the length of the part of G that extends from the origin to the point of G that he finds
indifferent to x0. Then, a G-egalitarian-equivalent allocation can be described as one
at which all agents experience the same welfare. Note that the definition is entirely
ordinal; it involves no utility considerations.

The success of the no-envy notion comes in part from the fact that it is well-
defined in models in which equal division, and comparisons to equal division, are not
meaningful or possible: they pertain to object allocation, object-and-money allocation,
priority-augmented object-allocation, one-to-one matching, and the partitioning of
nonhomogenous continua. The same comment applies to egalitarian-equivalence and
some of its variants. Now, to say that a concept is meaningful is not to say that
allocations satisfying it necessarily exist. In fact, we will see that discreteness of an
allocation space raises serious existence problems.

The requirements discussed so far are most meaningful when ownership of resources
is collective, but they can sometimes be adapted so as to take account of private
ownership. This is particularly so in the context of classical fair division problems,
because one can measure the vectorial difference between an agent’s assignment and
his endowment, and compare these differences across agents. For instance, the no-envy
notion can be applied to trades, as we have seen. For object allocation problems for
example, such tests are not meaningful.

11.3.3 Relational Requirements

A relational requirement prescribes how a rule should respond to changes in some
parameter(s) of the economy. The most central notion here is that of solidarity: if
the environment in which a group of agents find themselves changes, and if no one
in this group is responsible for the change, that is, if no one deserves any credit or
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blame for it, the welfare of all of these agents should be affected in the same direction:
either they should all be made at least as well off as they were made initially, or they
should all be made at most as well off. The terms “credit” and “blame” suggest that
the change is good and bad respectively, but in what sense? One possibility is that it
causes an expansion of opportunities in the first case and a shrinking of opportunities
in the second case. A narrower meaning is when the change is evaluated in relation to
the choice made by the rule initially. In the first case, the change is good if a Pareto
improvement over that initial choice is possible; in the second case, when it is not, the
initially chosen profile of welfares is not feasible anymore.

In applications, the parameter often belongs to a space equipped with an order
structure. Then, we can speak of the parameter being given a “greater” or “smaller”
value in that order. Then, together with efficiency, and given the assumptions made
on preferences, the solidarity requirement often implies a specific direction in which
welfares be affected. We require then that when a Pareto improvement is possible, all
agents be made at least as well off as they were made initially; otherwise, that they
should all be made at most as well off. In such cases, solidarity takes the form of a
“monotonicity” requirement.

Note, however, that efficiency considerations come into the picture here. Solidarity
in its “pure” form simply says that when a change in the environment of a group of
agents occurs for which none of them bears any particular responsibility, the welfares
of all of its members should move in the same direction. Making all agents worse
off when opportunities expand could only be described as a perverse application of
the idea, but it is important to see that insisting on a weak improvement for everyone
has to implicate more than solidarity considerations. It does not imply the full force of
efficiency because an inefficient choice could of course be followed, after opportunities
have expanded, by a Pareto-dominating choice that is also inefficient.

In some models, the general idea may be given several expressions, expressions
that are based on the data of the problem. For example, when applied to object-and-
money allocation problems, two requirements can be expressed, first a requirement of
monotonicity with respect to expansions of the object set and second, a requirement
of monotonicity with respect to the amount of money available. In the context of
single-peaked allocation problems, the structure of the situation gives us no choice but
to consider the general expression of the solidarity idea, not its “efficiency-inclusive”
monotonicity expression. It simply says that any change in the endowment should
affect the welfares of all agents in the same direction.

The parameter that varies may not belong to a space that is equipped with an order
structure. Then, whether a change in its value is beneficial to society or not depends on
the other parameters of the problem. The requirement of solidarity retains its general
form, namely, that all agents be affected in the same direction, but this direction is not
specified.

Finally, even if the parameter that varies belongs to a space that has an order structure,
the solidarity requirement can be imposed whether or not the variation can be evaluated
in that order.

In a model in which resources are valuable (whether that is the case is not intrinsic
to these resources; it is deduced from monotonicity properties that preferences have),
resource monotonicity says that if the social endowment increases, all agents should end
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up at least as well off as they were made initially (Roemer, 1986; Chun and Thomson,
1988): if �′ � �, then for each i ∈ N , x ′

i �i xi .
Production opportunities may be part of the model and when the technology

improves, technology monotonicity says that as a result of such an improvement, all
agents should be made at least as well off as they were made initially (Roemer, 1986).

When variations in populations are within the scope of the analysis, and resources are
valuable, population monotonicity says that if population enlarges, all agents initially
present should be made at most as well off as they were made initially (Thomson,
1983; Chichilnisky and Thomson, 1987; for a survey, see Thomson, 2014c). For a
formal definition, we imagine an infinite set of potential agents, and we call N the
class of finite subsets of this population. Then, we require that for each pair N, N ′ ∈ N
with N ⊂ N ′, each pair of economies that differ only in their populations, and calling
x and x ′ the choices made when the agent sets are N and N ′, then for each i ∈ N ,
xi �i x ′

i .
The order on the Euclidean space to which a social endowment of infinitely divisible

resource belongs (the usual vectorial order) is incomplete. Thus, the restriction of the
solidarity idea to situations in which two social endowments � and �′ can be compared
in these orders, that is when either � � �′ or the reverse hold suggests that we mostly
feel comfortable imposing it in those situations. However, it is meaningful also when
social endowments cannot be compared in these orders. For instance, �1 may be
greater than �′

1 and �2 smaller than �′
2. A technology is a subset of commodity space

and set inclusion is an incomplete order. Two technologies need not be related by
inclusion, even when restricted to the region of the space in which they will have to
be operated given input availability. Here too, the solidarity requirement with respect
to technologies takes two forms, a weaker one for technologies that are related by
inclusion and a stronger one, when they may not be.

Also, the solidarity idea does not only apply to “social,” as opposed to “individual,”
parameters. When a parameter attached to a particular agent changes, it is meaningful
to require that all others be affected in the same direction. This is the case for instance,
in a classical fair division problem, if some agent’s private endowment of a resource
increases. That agent, with all of his characteristics, is part of the environment of the
others.

Welfare dominance under preference replacement says that if the preferences of
some agents change, each of the others should be made at least as well off as he was
made initially, or that each of these agents should be made at most as well off (Moulin,
1990; for a survey, see Thomson, 1999). Let N ′ ⊂ N . Calling x and x ′ the choices
made when the preferences of the group N \ N ′ are given the values (�i)N\N ′ and
(�i)N\N ′ , then either for each i ∈ N ′, xi �i x ′

i or for each i ∈ N ′, x ′
i �i xi . Indeed, for

these agents, the members of N \ N ′, are part of their environment, so once again, if
none of the agents in N ′ has anything to do with the change, why should some be made
better off and others worse off?

A problem with insisting on any of these solidarity requirements is that the change
in the parameter that is contemplated may have very different impacts on the range of
welfare levels attainable by the different agents. Insisting that all should be affected
in the same direction may prevent realizing large welfare gains for some agents that
would only be at a small cost for the others. Admittedly, the language of this limitation
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seems to rely on cardinal notions of welfare gains and losses as well as on interper-
sonal comparisons of these notions, but the idea can be expressed in a purely ordinal
way.

Another application of the idea of solidarity in the context of a variable population
is to situations in which some agents leave with their assignments, that is, after the
solution is applied. Then, both the population of agents and the resources at their
disposal vary, but they do not vary independently. The requirement that all remaining
agents be affected in the same direction, when imposed together with efficiency, often
means that these agents be indifferent between their new assignments and their initial
assignments, and even, in some cases, that they be assigned the same bundles as
initially. This is essentially what consistency expresses more directly, as follows: given
an allocation chosen by a solution for some economy, let some agents leave with their
assignments. In the resulting “reduced economy,” require that the remaining agents
be assigned the same bundles as initially. Returning to the variable-population model
introduced in connection with population monotonicity, and calling x the choice made
for some economy with agent set N , N ′ a subset of N , and x ′ the choice made for the
economy with agent set N ′ when the endowment is what remains after the members
of N \ N ′ have left with their components of x, then x ′ should be equal to xN ′ . Other
interpretations of the principle are possible and some are discussed later (Thomson,
2012; for a survey, see Thomson, 2014b).

Converse consistency says that the desirability of an allocation for some economy can
be deduced from the desirability of all of its restrictions to two agents for the associated
reduced economy these agents face. If an allocation x that is feasible for some economy
with agent set N is such that for each two-agent subgroup N ′ of N , its restrictions xN ′

is the choice made for the problem of dividing
∑

N ′ xi among them, then x should be
chosen for the initial economy. The property does not have a straightforward fairness
interpretation but we mention it here, as it is a natural complement to consistency. For
some models, the property can also provide the basis for the iterative calculation of the
allocations that a solution would select. The Elevator Lemma has been an important
tool in the literature we review. It says that if a rule is consistent, a second rule is
conversely consistent, and they coincide in the two-agent case, then they coincide in
general.

Fairness also means that irrelevant considerations should not influence the allocation
we choose. In particular, when having to deal with a change in a parameter of a
problem, several equally legitimate perspectives may often be taken. Requiring the
robustness of the choice we make with respect to which perspective is taken is desirable:
these different perspectives should not produce welfare redistributions that favor some
agents and hurt others. Here is a more concrete description of the idea. Consider some
allocation problem and apply the chosen rule to obtain a recommendation for it. Now,
suppose that, as we are about to implement this decision, a parameter of the problem
takes a new value. One possibility is to ignore the initial situation, declare the initial
choice irrelevant, and focus on the new situation. The other consists in taking the
initial choice as point of departure and only be concerned about distributing the new
opportunities or obligations associated with the change. After all, agents may have
made plans on the expectation that a certain allocation will be implemented. Again,
and because these two viewpoints appear equally legitimate, it is natural to impose the
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robustness requirement that all agents be indifferent between the two choices that can
be made. Certain composition properties that have been formulated and extensively
explored in the context of claims problems are applications of the idea, and they are
beginning to be studied in other contexts, such as single-peaked allocation problems
or object allocation problems.

Composition down is a property of rules to solve claims problems that pertains to the
following scenario. After solving some initial problem in which the endowment is �,
we discover it to be only �′ < �. Two options present themselves. One is to ignore
the initial awards vector we have chosen. The other is to take it as claims vector in
dividing �′. The requirement is that both ways of proceeding lead to the same outcome.

Consistency itself can be seen from that robustness perspective. When some agents
have taken their assignments and left, should we look at the situation anew for the
remaining agents, redefine their opportunities and solve the reduced problem they now
face, or should we stick with the initial choices we have made for them? Consistency
says that it should not matter.

In practice, it is rarely the case that specific protocols are specified to handle changes
in our environment. Not all contingencies are covered by the contracts we sign. And
even if we think ahead of time about a particular contingency, there may not be a clear
way of specifying which is the “right” way of dealing with it. A solution or rule that is
robust to choices of perspectives is more likely to elicit a consensus among the agents
whose application it would affect.

The comparisons on which all of the requirements just discussed are based can
involve actual changes in the parameters of a problem; alternatively, they can be
“thought experiments.” Relational requirements are not necessarily meant to deal with
the possibility that some parameter will change, but thinking about the possibility helps
us assess the choice we make in the particular situation we face today, even if we will
face no other similar situation.

11.4 A Sample of Results

How demanding is each of the requirements just introduced? What kinds of rules come
out of the analysis? Are there some general answers? Given the great variety of the
models that we have reviewed, and remember that we chose only a few to illustrate
the scope of the axiomatic program, the reader should not expect sweeping statements
about the state of the arts. Nevertheless, some useful observations can be made that
apply across several domains.

11.4.1 Punctual Requirements

For classical fair division problems, the existence of efficient allocations satisfying the
equal-division lower bound is easily established. That of efficient allocations satisfying
no-envy holds under any set of assumptions guaranteeing the existence and efficiency of
Walrasian allocations, because the Walrasian rule, when operated from equal division,
delivers such allocations. In fact, these allocations are group envy-free. If preferences
are not convex, efficient and envy-free allocations may not exist. On the other hand,
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efficient and egalitarian-equivalent allocations exist under very general assumptions.
In particular, preferences need not be convex.

For single-peaked allocation problems, the issue of existence of efficient and envy-
free allocations is easily settled thanks to the uniform rule. Indeed, recall our definition
of the rule as selecting an allocation such that, for some common choice set, each agent
maximizes his preferences at his component of the allocation. Because the choice
set is the same for all agents, no-envy is automatically satisfied. Because this set is
convex, the uniform rule meets the equal-division lower bound as well. However, for
this model, egalitarian-equivalence is not a useful notion. Efficient and egalitarian-
equivalent allocations almost never exist.

For object-and-money allocation problems, if consumptions of money are unre-
stricted in sign, general existence results for envy-free allocations are available (Alkan
et al., 1991). The main assumption is that no object be infinitely more valuable than any
other; this means that, given any bundle and any object not contained in that bundle,
some change in the consumption of money should be possible to exactly compensate
for the switch to that object. If consumptions of money are required to be nonnegative,
or are bounded below, it is equally clear that efficient and envy-free allocations may
not exist. Suppose for instance that, in the nonnegative case, the amount of money
available is in fact equal to zero. Then, the situation reduces to that described in a
forthcoming paragraph concerned with plain object allocation problems. If people
have the same preferences over the objects in a set, envy is unavoidable. Keeping
everything else fixed, as the amount of money increases from 0, the possibility of com-
pensation progressively increases and an amount is eventually reached beyond which
existence is guaranteed (Maskin, 1987). This critical amount obviously depends on
preferences.

The specification of a priority-augmented object allocation problem includes reasons
not to place agents on the same footing, namely, the priorities over agents attached
to objects. It identifies circumstances under which envy is justified: an agent may
prefer someone else’s assignment to his own but his envy should be ignored if the
priority attached to that second agent’s assignment places him, the first agent, on a
lower level. The existence of allocations at which there is no justified envy can be
proved by applying the tentative acceptance rule developed in the theory of two-sided
matching. Unfortunately, and unless the profile of priorities satisfies a strong correlation
property, it may be that none of the allocations at which there is no justified envy is
efficient.

For claims problems, there is no reason to require no-envy between two agents
whose claims differ: the agent whose claim is higher should be allowed to receive
more. If imposed on two agents with equal claims, no-envy simply means that they
should be awarded equal amounts, the requirement of equal treatment of equals, a
very weak requirement. We can go further, however: a natural strengthening is order
preservation in awards, which says that awards should be ordered as claims are. We
could be concerned about the losses that agents occur and add to order preservation
that losses should be ordered as claims are (Aumann and Maschler, 1985). These ideas
can be applied to groups of agents. Given two groups, aggregate awards should be
ordered as aggregate claims, and so should aggregate losses. Allocations satisfying
these stronger requirements always exist (Chambers and Thomson, 2002).
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As mentioned earlier, for object allocation problems, it is obvious that no-envy
cannot be guaranteed. Consider two objects and two agents, when both agents prefer
the same object. Envy is unavoidable then. Criteria based on differences between the
relative ranks in each agent’s preferences of his assignment and the assignment of each
other agent can be formulated, however.

For one-to-one matching problems, the scope of the envy relation should of course be
restricted to agents of the same type, say between men, or between women, but again,
because of the discrete nature of the resources to be allocated, envy-free matches
will rarely exist. What about an equal treatment of the two groups, men and women?
Discreteness gets in the way as well, but some things can be done. Say that a match is
stable if there is no pair of a man and a woman who prefers each other to their assigned
mates. It turns out that the set of stable matches has a lattice structure, one stable match
being uniformly preferred by all the men to all other stable matches and another stable
match being uniformly preferred by all the women to all other stable matches. Also,
there is sort of middle to that lattice, a set of matches at which men and women, as
groups, are treated “similarly” (Klaus and Klijn, 2006).

11.4.2 Relational Requirements

Turning now to relational requirements, the situation largely depends on the comple-
mentary punctual fairness requirements that are imposed. Indeed, the central notion of
solidarity is often incompatible with no-envy, but broadly compatible with egalitarian-
equivalence.

Resource monotonicity. For classical fair division problems, no selection from the
efficiency–and–no-envy correspondence is resource monotonic (Moulin and Thomson,
1988). However, fix a monotone and unbounded path in commodity space emanating
from the origin. Consider the selections from the egalitarian-equivalence correspon-
dence defined by requiring the reference bundle to belong to this path: given (�,�),
select the efficient allocation x such that for some x0 on the path, and for each i ∈ N ,
xi ∼i x0. Any rule defined in this way is efficient, egalitarian-equivalent, and resource
monotonic.

For single-peaked allocation problems, and because preferences are not monotonic,
it would of course make no sense to impose the same requirement (that if the social
endowment increases, all agents end up at least as well off as they were made initially).
However, remembering the central idea of solidarity that underlies our monotonicity
properties, we could instead require that an increase in the social endowment—in fact,
any change in it—be accompanied by a uniform, in direction, change in the welfares
of all agents. Unfortunately, no selection from the no-envy correspondence, nor from
the equal-division lower bound correspondence, is resource monotonic in this sense
(note that these negative results do not implicate efficiency). However, if the proviso
is added that the change should not cause the direction of the inequality between the
social endowment and the sum of the peak amounts to reverse direction—let us add
the prefix one-sided to resource monotonicity to designate this weaker version—it is
met by many rules. A characterization of the uniform rule can be obtained on a large
subdomain of our primary domain if one-sided resource monotonicity is imposed in
conjunction with efficiency and no-envy.
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On the other hand, for claims problems, the requirement that, as the endowment
increases, all claimants end up with at least as much as they were assigned initially, is
met by virtually all of the rules that have been encountered in the literature.

For all models with a discrete structure, the property is quite demanding.
Population monotonicity. As for population monotonicity, the same patterns of posi-

tive and negative results have been established for the various models under discussion.
For classical fair division problems, no selection from the efficiency–and–no-envy cor-
respondence is population monotonic (Kim, 2004). However, the selections from the
efficiency–and–egalitarian-equivalence correspondence that we identified as resource
monotonic are also population monotonic. If the reference bundle is required to be
proportional to the social endowment, we gain the equal-division lower bound (but
lose resource monotonicity).

For single-peaked allocation problems and again because preferences are not mono-
tonic, it would also not be appropriate to require that if the population increases, all
agents initially present be made at most as well off as they were made initially. If there
is too much of the commodity, having more people around to consume it may be a
good thing for the agents who are initially present. Solidarity in response to popu-
lation changes takes the form that an increase in population—in fact, any change in
population—should be accompanied by a uniform, in direction, change in the welfares
of all agents who are present before and after. It turns out that no selection from the
no-envy correspondence, or from the equal-division lower bound correspondence, is
population monotonic in this sense. However, if the proviso is added that the change
should not cause the direction of the inequality between the endowment and the sum
of the peak amounts to reverse direction, it is met by many rules, in particular by the
uniform rule. Yet, on a large subdomain of our primary domain, the uniform rule is
the only rule to satisfy efficiency, no-envy, replication invariance (which says that,
given an economy and an allocation chosen for it, then for each k ∈ N, the k-replica of
the allocation should be chosen for the k-replica of the economy), and this one-sided
version of population monotonicity.

For claims problems, the property is easily met. All of the rules that have been
discussed in the literature satisfy it.

For object-and-money allocation problems, population monotonicity can be met only
in some limited way by selections from the efficiency–and–no-envy correspondence.

For discrete models, it is very demanding. For object allocation problems, certain
sequential priority rules do satisfy it but obviously, the priority orders used for the
various populations should be related. If two agents belong to two different groups
related by inclusion, their order should be the same in both. This is achieved by
inducing them from a single reference priority order on the entire set of potential
agents. The rules obtained in this way are certainly not very satisfactory from the
viewpoint of punctual fairness.

Welfare-dominance under preference replacement. Welfare-dominance under pref-
erence replacement has not been studied as thoroughly as the various properties just
discussed, but for several models, a number of negative results have been established
for selections from the no-envy solution.

In particular, for classical fair division problems, no selection from the efficiency–
and–no-envy solution satisfies the property in general. However, here too, selections
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from the efficiency–and–egalitarian-equivalence solution can easily be defined that do
satisfy it. The equal-division lower bound can also be met.

For single-peaked allocation problems, the property is also incompatible with effi-
ciency and no-envy, but a one-sided version of it, defined as the one-sided versions of
resource monotonicity and population monotonicity, is satisfied by many rules. When
imposed in conjunction with these two properties and replication invariance, however,
only the uniform rule qualifies.

For object-and-money allocation problems, the property is in general incompatible
with no-envy (in this context, no-envy implies efficiency), even if preferences are quasi-
linear. In the one-object case—say when a single agent has to be given access to the
object—it can be met, but in a unique way. In that case, there is (essentially) a unique
envy-free allocation that is least favorable to the recipient of the object (obtained when
he is indifferent between his assignment and the common assignment of the other
agents), and the rule that selects that allocation is the only selection from the no-envy
solution to satisfy welfare-dominance under preference replacement.

Consistency. Consistency has been the central axiom in a large number of character-
izations in virtually all of the classes of problems that we have discussed: For classical
fair division problems, the equal-division Walrasian rule is consistent and on the domain
of economies with smooth preferences, if a subsolution of the efficiency–and–equal-
division-lower-bound correspondence is consistent and replication invariant, it is in
fact a subsolution of the equal-division Walrasian correspondence.

For single-peaked allocation problems, the uniform rule is the smallest subsolution
of the efficiency–and–no-envy solution to be consistent and to satisfy a mild continuity
requirement (Thomson, 1994a; Dagan, 1996).

For claims problems, several characterizations of important rules have been obtained
in which consistency plays a central role. They are the proportional rule, the con-
strained equal awards rule (which makes awards as equal as possible subject to no
one receiving more than his claim), the constrained equal losses rule (which makes
awards so that all claimants experience losses that are as equal as possible subject to
no award being negative), and the Talmud rule (which is a hybrid of these last two).
It is the central axiom in the characterization of an important family of “parametric
rules,” the other two being the mild requirements of continuity and equal treatment
of equals (Young, 1987). Together with composition properties, it has also led to a
family of rules that can be seen as hybrids of the proportional rules, weighted gen-
eralizations of the constrained equal awards and constrained equal losses rules, these
components being applied after partitioning of the claimant set into priority classes
(Moulin, 2000).

For general object-and-money allocation problems, no proper subsolution of the no-
envy solution is consistent. In the one-object case, the solution that selects the envy-free
allocation(s) at which the agent who is assigned the object is indifferent between his
assignment and the common assignment of the other agents (these agents only receive
money so by no-envy between them, they have to receive the same amount of that
good) is the smallest subsolution of the no-envy solution to be consistent and closed
under Pareto-indifferent reassignments.

For priority-augmented object allocation problems, the stable correspondence is
consistent, but for the tentative acceptance rule to be consistent, the priorities attached
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to the various objects have to satisfy a restrictive correlation condition. Then, the rule
is quite close to being a sequential priority rule.

For one-to-one matching problems, the stable solution as a whole has emerged
from considerations of consistency. It is the only correspondence to be anonymous,
consistent, and conversely consistent (Sasaki and Toda, 1992).

For object allocation problems, the sequential priority rules are consistent provided
the various orders applied in the various populations are “consistent.”

Consistency is preserved under arbitrary intersections and unions. Because the
feasibility correspondence is consistent, and given any solution, there is a smallest
consistent correspondence that contains it, its minimal consistent enlargement.

Model-specific requirements. Turning to model-specific requirements, it is for claims
problems that the greatest number of ideas have been formulated and explored. The
central notion here is that of duality (Aumann and Maschler, 1985) . It too is an
expression of a robustness principle. First, say that two problems are dual if their
claims vectors are equal and their endowments average to the half-sum of the claims.
Two rules are dual if for each claims vector, one divides each endowment in the same
way as the other divides what is missing for the dual endowment. Two properties are
dual if whenever a rule satisfies one of them, the dual rule satisfies the other. Two
theorems are dual if one is obtained from the other by replacing each rule by its dual
and each property by its dual. Composition properties have also been examined in
this context. In spite of the large inventory of rules that have been defined for claims
problems, it is mainly the proportional, constrained equal awards, constrained equal
losses, and Talmud rules, as well as various extensions and generalizations, that have
come out of axiomatic work.

What about proofs? Because most of the punctual fairness notions that we have
discussed are not local, proof techniques that are common in standard economic anal-
ysis, being based on tools of differential calculus, are not available, and for many of
the proofs for models in which consumption spaces are Euclidean spaces, geometric
techniques have had to be developed. The various discrete models that we have dis-
cussed have required tools of discrete mathematics, and algorithmic definitions have
been critical. The set of allocations satisfying punctual notions such as no-envy or
stability have been important in the study of money-and-object allocation problems or
two-sided matchings problems for example.

11.5 Conclusion

Summarizing this short survey, we see that punctual concepts can be grouped in several
main categories; various types of lower and upper bounds on physical assignments
and on welfare, requirements based on inter-personal comparisons of assignments
or opportunities, no-envy, egalitarian-equivalence and related concepts, being central
concepts. As for relational concepts, and in spite of the great diversity in the axioms
that have been studied in various branches of the literature on fair allocation, two
central themes have emerged. One is solidarity. The other is robustness under choice of
perspective when handling a change in the situation; fairness in part means not letting
irrelevant or unimportant issues matter in the decision we make.
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We have seen that for each type of allocation problems, something interesting can
almost always be said about fairness. The appeal of several well-known rules has
been strengthened by axiomatic analysis involving considerations of both punctual and
relational fairness, and new rules have also been identified. The conceptual apparatus
that we have presented is ripe for other applications. We should all look forward to
being better able to formally address questions about distributional issues in other
contexts.
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CHAPTER 12

Fair Allocation of Indivisible
Goods

Sylvain Bouveret, Yann Chevaleyre, and Nicolas Maudet

As introduced in Chapter 11, fair allocation (or fair division) refers to the general
problem of fairly dividing a common resource among agents having different—and
sometimes antagonistic—interests in the resource. But under this general term one can
actually gather a cluster of very different problems, all calling for different solution
concepts: after all, one can easily figure out that we cannot allocate a set of objects like
a bicycle, a car or a house like we allocate pieces of land.

In this chapter, we will focus on fair division of indivisible goods. In other words,
the resource is here a set O = {o1, . . . , op} of objects (that may also be called goods
or items). Every object must be allocated as is, that is, an object loses its value if it is
broken or divided into pieces to be allocated to several individuals. This assumption
makes sense in a lot of real-world situations, where indivisible goods can be for
example physical objects such as houses or cars in divorce settlements, or “virtual”
objects like courses to allocate to students (Othman et al., 2010) or Earth observation
images (Lemaı̂tre et al., 1999). Moreover, we assume in this chapter that the objects
are nonshareable, which means that the same item cannot be allocated to more than
one agent. This assumption seems to be questionable when the objects at stake are
rather nonrival, that is, when the consumption of one unit by an agent will not prevent
another one from having another unit (what we referred to as “virtual” objects). In
most applications, such nonrival objects are available in limited quantity though (e.g.,
number of attendants in a course). This kind of problems can always be modeled with
nonshareable goods by introducing several units of the same good.

What mainly makes fair division of indivisible goods specific, if not more difficult,
is that classical fairness concepts like envy-freeness or proportionality are sometimes
unreachable, unlike in the divisible (aka cake-cutting) case. As an illustration of this
difference, consider a (infinitely divisible) piece of land which has to be split among
two individuals, Alice and Bob. One classical way to proceed (see Chapter 13) is to let
Alice propose a cut, and then let Bob take the share he prefers. If Alice acts rationally,
she will cut the land into two pieces of the same value to her (if she acts differently
she may end up with a worse piece), and hence will not envy Bob’s piece. Such an

284
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envy-free allocation is always reachable with a divisible resource, but computing this
allocation may require an unbounded number of cuts, as we will see in Chapter 13,
Section 13.4. Even in the presence of indivisible items, the use of a special divisible
resource (money) allows to “transfer utility” and suffices to guarantee this existence
(Beviá, 1998). This is not the case when only indivisible goods are available: if, in
the extreme case, there is a single good and two agents, one of the two will obviously
be despoiled. Worse, in the general case, figuring out for a given instance whether such
a fair solution even exists can be very complex (see Section 12.3).

To circumvent this issue, some authors reintroduce some divisibility in the process,
either by relaxing the integrity of some goods and allocating fractions of these goods, as
in the Adjusted Winner procedure proposed by Brams and Taylor (2000) and explained
in Section 12.4, or by using money as an ex-post compensation for despoiled agents.
When these kinds of solutions are not available, some authors (among which Brams
et al., 2014) propose to relax the assumption that all the objects should be allocated.
Another option is to relax our fairness requirement and focus on weaker solution
concepts. These two last options correspond to the two possible solutions to the classical
fairness versus efficiency trade-off (Section 12.2).

We cannot conclude this overview of distinctive features of indivisible goods without
mentioning preferences. Preferences are at the heart of fair division, because fairness
is often related to what the agents prefer to get from the allocation, may it be what
they need, or what they just would like to have. To be able to compare two different
allocations, we should first be able to figure out how the agents at stake evaluate
their shares. This may come down to answering questions like: “does Alice prefer
the bike and the boat together or the car alone?” While the number of shares to
compare is finite, this number is huge, and makes the explicit representation of agents’
preferences unrealistic. Concise preference representation is yet not out of reach, and
can be achieved at the price of restricting assumptions—like additivity—or increased
complexity (see Section 12.1). However, as can be seen in Chapter 13, such preference
representation languages do not really transpose to the divisible case, which makes
the design of centralized one-shot procedures less relevant to this case. This may
explain why many works in fair division of indivisible goods focus on complexity and
algorithmic issues of centralized allocation procedures (see Section 12.3), while the
literature in cake-cutting is more concerned with the design of interactive protocols for
fair division. There are nevertheless prominent protocols for the allocation of indivisible
items, we review some of them in Section 12.4.

Preliminary Definitions

We will now introduce a few formal definitions which will be used all along the chapter.
In this chapter, N = {1, . . . , n} will be a set of n agents, and O = {o1, . . . , op} a set
of p (indivisible, nonshareable) objects. Each subset S of O is called a bundle. In the
following, we will sometimes write o1o2o3 as a shortcut for bundle {o1, o2, o3}. An
allocation is a function π : N → 2O mapping each agent to the bundle she receives,
such that π(i) ∩ π(j ) = ∅ when i �= j because the items cannot be shared. The subset
of objects π(i) will be called agent i’s bundle (or share). When

⋃
i∈N π(i) = O, the
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allocation is said to be complete. Otherwise, it is partial. The set of all allocations is
denoted �.

Following Chevaleyre et al. (2006), a MultiAgent Resource Allocation setting
(MARA setting for short) denotes a triple (N,O, R), where N is a finite set of agents,
O is a finite set of indivisible and nonshareable objects, and R is a sequence of n

preference relations on the bundles of O. The notion of “preference relation” has to
be properly defined, which is not straightforward, and is the topic of the entire next
section.

12.1 Preferences for Resource Allocation Problems

In order to allocate the indivisible goods properly to the agents, the community (or
the benevolent arbitrator acting on behalf of it) needs to take into account the agents’
wishes about the goods they want to receive. In other words, one has to be able to
compare the different allocations based on the preferences the agents have on what
they receive.1 As we have seen in the introduction, the particular structure of the set of
allocations is the main distinctive feature of resource allocation of indivisible goods,
that makes the expression of preferences and the resolution of this kind of problems
particularly difficult from a computational point of view.

12.1.1 Individual Preferences: From Objects to Bundles

The minimal and most natural assumption we can reasonably make on the agents is
that they are at least able to compare each pair of individual items, just like voters are
able to compare each pair of candidates in an election setting (see Chapter 2). In other
words, we can minimally assume that each agent i is equipped with a preorder �i on
O. Two further assumptions that are commonly made are that this relation is:

� either a linear order �i , which basically means that each agent is able to rank each item
from the best to the worst, with no ties allowed (this is the classical preference model in
voting theory)

� or represented by a utility function wi : O → F, mapping each object to a score taken
from a numerical set (that we will assume to be N, Q or R for the sake of simplicity)

Unlike in voting theory, ranking items is generally not enough to provide valuable
information about the agents’ preferences concerning different allocations. Consider
for example a setting where four objects {o1, o2, o3, o4} have to be allocated to two
different agents. Suppose that agent 1 ranks the objects as follows: o1 � o2 � o3 � o4.
Does it mean that she would prefer an allocation that would give her o1 and o4 to an
allocation that would give her o2 and o3? Or an allocation that would give her o1 to an
allocation that would give her o2 and o4?

The technical problem that lies behind this kind of questions is the problem of
lifting the preference relation � (or the utility function w) on individual objects to a

1 We assume that the agents only care about what they receive, and not what the others receive. This assumption
of nonexogenous preferences is commonly made in the context of fair division.
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preference relation � (or a utility function u) on bundles of objects.2 There are two
possible ways of doing it:

1. either by automatically lifting preferences to bundles of objects using some natural
assumptions

2. or by asking the agents to rank not only the individual objects but also the bundles of
objects

12.1.2 Additive Preferences

The first approach has been considered by several authors, either in economics (Brams
and King, 2005; Herreiner and Puppe, 2009) or in computer science (Lipton et al., 2004;
Bansal and Sviridenko, 2006; Bouveret et al., 2010). These works are usually based
on a cardinal property and its ordinal counterpart, which can be reasonably assumed in
many resource allocation contexts:

Definition 12.1 (Modularity). A utility function u : 2O → F is modular if and only
if for each pair of bundles (S,S ′), we have u(S ∪ S ′) = u(S) + u(S ′) − u(S ∩ S ′).

An equivalent definition is that for each bundle S , u(S) = u(∅) +∑
o∈S u({o}).

If we further assume that the utility of an agent for the empty set (u(∅)) is 0, then
we can compute the utility of an agent for each bundle of objects S by just summing
the scores given by this agent to each individual object in S . In this case, the utility
function is said to be additive. This is one of the most classical settings in fair division
of indivisible goods.

Additivity is a very strong property that forbids any kind of synergy between objects.
Going back to our previous example with four objects, additivity implies that because
agent 1 prefers o1 to o2, she will also prefer {o1, o3} to {o2, o3}. This makes sense
if o3 is rather uncorrelated to o1 and o2: for example, if o1 is a voucher for a train
ticket in France, o2 is a voucher for a night in Paris, and o3 is a camera, it seems
reasonable to assume that my preference on taking the train rather than spending a
night in Paris will hold, no matter whether a camera is delivered with the voucher
or not. Another way to state it is to say that if in bundle {o2, o3} o2 is replaced by a
better object (e.g., o1), then it makes a better bundle. This feature corresponds to a
notion called pairwise-dominance, or responsiveness (Barberà et al., 2004), which can
be stated formally in a purely ordinal context: ∀S ⊂ O and all o ∈ S and o′ ∈ O \ S ,
(S � S \ {o} ∪ {o′} ⇔ {o} � {o′}) and (S \ {o} ∪ {o′} � S ⇔ {o′} � {o}).3

Responsiveness is used among others by Brams et al. (2004); Brams and King
(2005) to lift preferences defined as a linear order � over single objects to a preference
relation over bundles of objects of the same cardinality.4 To be able to compare bundles
of different cardinalities, some authors (Bouveret et al., 2010; Brams et al., 2012b)

2 The problem of lifting preferences over items to preferences over bundles has actually been studied in depth in
social choice theory (Barberà et al., 2004).

3 To be precise, in the original definition by Barberà et al. (2004) the comparisons are not strict, but some authors,
for example, Brams et al. (2012b), use this strict version of responsiveness.

4 Such a lifting is called the responsive set extension.
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add a monotonicity assumption stating that if S ⊃ S ′, S � S ′.5 Responsiveness (in
its strict form, or with possible indifferences) plays an important role in fair division
under ordinal preferences, because it has an interesting implication. An agent with
responsive preferences will always be able to pick unambiguously the object that she
prefers among a set, this choice being independent from what she has already received,
and what she will receive later on. This property guarantees that some protocols for
fair division such as the undercut procedure (see Section 12.4.1) or picking sequences
(see Section 12.4.2) work properly. As mentioned earlier, this property, in its strict
form, is also at the basis of a few works (Brams et al., 2004; Brams and King, 2005;
Bouveret et al., 2010), the latter having been extended by Aziz et al. (2014d) to deal
with (responsive) preferences with indifferences.

Note that, interestingly, it can be easily shown that any preference relation� obtained
by lifting a linear order� over single objects using pairwise dominance and monotonic-
ity can be represented by any additive utility function u (i.e., u(S) > u(S ′) ⇔ S � S ′),
as soon as u is compatible with the linear order (i.e., u(o) > u(o′) ⇔ S � S ′). However,
things are not so simple as soon as indifferences between bundles are allowed: as men-
tioned by Barberà et al. (2004), additive representability only entails responsiveness,
but is not equivalent.6

12.1.3 Beyond Additivity

Going back to the previous example, additivity makes sense when the objects at stake
are rather unconnected (a train ticket and a camera in the example). However, things
are different if the objects are of similar nature or are closely coupled. For example, if
o3 is now a plane ticket for the same day as the train ticket, we can reasonably assume
that my preferences will be reversed, because now only the night in Paris is compatible
with the plane ticket (so by getting the night and the plane ticket I can enjoy both,
whereas by getting the train and plane tickets I will have to drop one of the two). This
is a case where additive preferences fail to represent what the agents really have in
mind, because there are some dependencies between objects. These dependencies (or
synergies) can be of two kinds: complementarity or substitutability. Complementarity
occurs when having a group of objects is worth more than the “sum” of their individual
values: the agent benefits from using them jointly. Going back to our previous example,
the plane ticket and the night in Paris can be considered as complementary (if I am not
living in Paris): I can use the plane ticket to fly to Paris, and then spend the night there.
Substitutability occurs when objects are of very similar nature and when their use is
mutually exclusive. In our example, the plane and the train tickets are exclusive, and
thus their joint value is not more than the value of one of the two.

A way to circumvent this problem is to allocate the items by pre-made bundles
instead of proposing them individually (just like most shoe retailers sell shoes by
pairs, not individually). However, in most cases the preferential dependencies are of
subjective nature, and complementary and substitutable items are simply not the same

5 Monotonicity will be formally introduced in Definition 12.9.
6 Another important property is extended independence, which states that for every pair of bundles (S,S ′), and

every bundleS ′′ such that (S ∪ S ′) ∩ S ′′ = ∅, we have:S � S ′ ⇒ S ∪ S ′′ � S ′ ∪ S ′′. Additive representability
entails extended independence which in turn entails responsiveness.
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for everyone.7 In that case, we just cannot do anything else than asking the agents to
rank all the possible bundles of objects. As the reader might guess, however, the number
of possible bundles obviously grows exponentially with the number of objects, which
renders the explicit ranking of all bundles simply impossible as soon as the number of
objects exceeds 4 or 5. To illustrate this combinatorial blow-up, consider a resource
allocation problem with just 16 objects, which seems to be a setting of very reasonable
(if not small) size. In such a problem, each agent will have to compare 216 = 65536
bundles, which comes down to a tremendous (and unrealistic) amount of work for the
agents.

As we can see, the community of agents or the benevolent arbitrator acting on behalf
of it faces a dilemma: either restricting the set of expressible preferences to additive
ones and hence ruling out the expression any kind of preferential dependencies, or
letting the agents compare all pairs of possible bundles and falling in the combinatorial
blow-up trap.

12.1.4 Compact Preference Representation

Compact preference representation languages can be seen as a compromise, often
made at the price of increased computational complexity. The idea here is to use
an intermediate language which can represent the agents’ preferences as closely as
possible, while formulas in that language remain as compact as possible. One formula
in this language simply represents one preference relation on the bundles of objects.
More formally:

Definition 12.2 (Preference representation language). An ordinal (resp. a cardinal)
preference representation language is a pair 〈L, I (L)〉 that associates to each set of
objects:8

� a language L(O) (i.e., a vocabulary and a set of well-formed formulas)—the syntactical
part of the language;

� an interpretation I (L)(O) that maps any well-formed formula ϕ of L(O) to a preorder
�ϕ of 2O (resp. a utility function uϕ : 2O → F)—the semantical part of the language.

A trivial example of preference representation language is the bundle form, which
can be seen as a form of explicit representation. A formula in this language is just made
of a set of pairs 〈S, uS〉, where S is a bundle of objects, and u is a nonzero numerical
weight. The utility of a given bundle S is just uS if 〈S, uS〉 belongs to the set, and 0
otherwise.

One might wonder what in the use of an intermediate language for representing
ordinal or numerical preferences makes the representation “compact.” Actually, recon-
ciling (full) expressivity and succinctness is an unsolvable equation for the following
reason. If for the sake of example we consider numerical preferences, the number

7 For example, a laptop computer and a tablet-PC might be complementary for individuals doing a lot of writing at
home (they would need a good keyboard) and a lot of reading while traveling (they would require a lightweight
device). For others, these devices might be substitutable.

8 Preference representation languages can be used more generally to represent a preference relation on any
combinatorial set of alternatives. For the sake of simplicity, we choose to restrict the definition here to sets of
objects.
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of utility functions from 2O → {0, . . . , K − 1} is K2p

(with p = |O|). Following an
information-theoretic argument recalled by Cramton et al. (2006), it means that if our
language is fully expressive, some utility functions will need at least 2p ln K

ln 2 bits to be
encoded as a formula, because no encoding of t bits is able to discriminate more than
2t words. Hence, compact preference representation is not a matter of representing all
preference relations in reasonable (polynomial) size, but just the interesting ones, that
is the ones that are more likely to correspond to what the agents will naturally express.
For example, the bundle form language described earlier can be considered compact
only if it is reasonable to assume that the agents will value positively only a small
number of bundles.

Additivity Generalized

Let us take another example of what we mean by “interesting preference relations.”
Consider additive utility functions introduced earlier. Their main advantages are their
conciseness (each agent just needs to provide one weight for each object) and their
simplicity. However, their annoying drawback is that they are unable to encode even
the slightest complementarity or substitutability between objects. On the other hand,
allowing any kind of synergy exposes us to the computational blow-up, whereas it
is very likely that an agent would be willing to express only synergies concerning a
limited number of objects (do we really need to give the agents the opportunity of
expressing the added value of owning a bundle of 42 objects compared to the values
of its proper subsets?). This is the idea behind k-additive numerical preferences:

Definition 12.3 (k-additive preference representation language). A formula in the
k-additive representation language is a set B of pairs 〈S, wS〉, where S ⊆ O is a bundle
of size at most k, and wS is a nonzero numerical weight. Given a formula B in this
language, the utility of each bundle S is defined as:

u(S) =
∑

〈S ′,wS′ 〉∈B
S ′⊆S,|S ′|≤k.

wS ′ (12.1)

The weight wS represents the added value of S , beyond the value of its proper
subsets, or in other words, the synergistic potential of S .9 If this number is positive,
it means that the objects in S work in complementarity, if it is negative, these objects
are probably substitutable. A utility function u whose weights of size 2 or more are
positive (resp. negative) has the supermodularity (resp. submodularity) property. In
other words, it holds that u(S ∪ S ′) � u(S) + u(S ′) − u(S ∩ S ′) (resp. u(S ∪ S ′) �
u(S) + u(S ′) − u(S ∩ S ′)).

Example 12.1. Let O = {o1, o2, o3, o4} be a set of objects, and let u be the k-additive
utility function defined from the following set of weights: 〈o1, 2〉, 〈o2, 2〉, 〈o1o2,−2〉,
〈o3o4, 10〉. All other bundles have weight zero. We have for example u(o1) = u(o2) = 2,

9 These weights are also called Möbius masses in the context of fuzzy measures, where this kind of representation
is extensively used (see e.g., Grabisch, 1997).
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and u(o1o2) = 2 + 2 − 2, which is 2 as well. This probably means that objects o1 and
o2 are substitutes (having both does not give more utility than having just one). On the
contrary, o3 and o4 alone are useless (u(o4) = u(o3) = 0), but having them together is
interesting (u(o3o4) = 10), which means that they act as complementary objects. We
can also notice that u is neither modular, nor sub- or supermodular.

The succinctness of the language is ensured by the parameter k, that bounds the size
of formulas representing our utility functions to

∑k
i=0

(
p
i

) = O(pk) This parameter k

can be seen as a value that represents the trade-off between full expressivity (and for-
mulas of potentially exponential size) if k = p and limited expressivity (and formulas
of linear size), that is, additive functions, if k = 1.

Graphical Models

Interestingly, the k-additive preference representation coincides, for the special case
of bundle combinatorial spaces we have to deal with in resource allocation problems,
with a more general preference representation language: GAI-nets (Bacchus and Grove,
1995; Gonzales and Perny, 2004). The language of GAI-nets is a graphical model for
preference representation. Graphical models are a family of knowledge representation
languages, which have been introduced decades ago in the context of uncertainty (e.g.,
influence diagrams, see Howard and Matheson, 1984) probabilistic modeling (e.g.,
Bayesian networks, see Pearl, 1988), constraint satisfaction (Montanari, 1974) or val-
ued constraint optimization (Schiex et al., 1995). In all these contexts, graphical models
are based upon the same components: (i) a graphical component describing directed
or undirected dependencies between variables; (ii) a collection of local statements on
single variables or small subsets of variables, compatible with the dependence struc-
ture. In the particular case of GAI-nets, the preferential (in)dependence notion upon
which this language is built is generalized additive independence (GAI), introduced
by Fishburn (1970), further developed by Keeney and Raiffa (1976) in the context of
multiattribute decision making. The k-additive representation introduced earlier can be
seen as a GAI representation on a bundle space, where the size of the local relations
(synergies) is explicitly bounded by k, and with no associated graphical representation.

GAI-nets are not the only graphical model for compact preference representation.
Boutilier et al. (1999, 2004) have developed a very powerful and popular preference
representation language: CP-nets. Unlike GAI-nets, CP-nets are dedicated to the repre-
sentation of ordinal preferences. Here, the graphical structure describes the (directed)
preferential dependencies between variables. The local statements, for each variable,
describe the agents’ ordinal preferences on the values of the variable’s domain, given
all the possible combinations of values of its parents (hence “CP” standing for “Con-
ditional Preferences”), and all other things being equal (ceteris paribus).

CP-nets have been extended to a family of preference representation languages
with different features (see e.g., Brafman et al., 2006, for TCP-nets, Boutilier et al.,
2001, for UCP-nets and Wilson, 2004, for CP-theories). One of these languages,
CI-nets (Bouveret et al., 2009) is especially dedicated to the representation of ordinal
preferences on sets of objects, hence well-suited to fair division problems. Formally, a
CI-net N is a set of CI statements (where CI stands for Conditional Importance) of the
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form S+,S− : S1 ' S2 (where S+, S−, S1 and S2 are pairwise-disjoint subsets of O).
The informal reading of such a statement is: “if I have all the items in S+ and none
of those in S−, I prefer obtaining all items in S1 to obtaining all those in S2, all other
things being equal (ceteris paribus).” Formally, the interpretation of a CI-net N is the
smallest monotonic strict partial order � that satisfies each CI-statement in N , that
is, for each CI-statement S+,S− : S1 ' S2, we have S ′ ∪ S+ ∪ S1 � S ′ ∪ S+ ∪ S2 as
soon as S ′ ⊆ O \ (S+ ∪ S− ∪ S1 ∪ S2).

Example 12.2. Let O = {o1, o2, o3, o4} be a set of objects, and let N be the CI-net
defined by the two following CI-statements: S1 = (o1, ∅ : o4 ' o2o3); S2 = (∅, o1, :
o2o3 ' o4).

From N , we can deduce for example that o1o4 � o1o2o3 (S1) and o2o3 � o4 (S2).
We can notice that obviously � is not responsive, as having o1 or not in the bundle
reverses the preference between o2o3 and o4.

CI-nets are a quite natural way of expressing preferences on subsets of objects.
However, as we shall see later on, computational complexity is the price to pay for
this cognitive relevance. A strict subset of this language, SCI-nets, that coincides with
responsive monotonic preferences, have been further investigated from the point of
view of fair resource allocation (Bouveret et al., 2010).

Logic-Based Languages

Another family of compact representation languages, which, unlike k-additive repre-
sentation or graphical models, is not based on limited synergies, is the family logical
languages. As we will see, propositional logic is well-suited to represent preferences
on subsets of objects, because any set of subsets of objects can be represented (often
compactly) by a propositional formula.

In the following, given a set of objects O, we will denote by LO the propositional
language built upon the usual propositional operators ∧, ∨ and ¬, and one propositional
variable for each object in O (for the sake of simplicity we use the same symbol for
denoting the object and its associated propositional variable). Each formula ϕ of LO
represents a goal that an agent is willing to achieve. From any bundle S we can build
a logical interpretation I(S) by setting all the propositional variables corresponding to
an object in S to ( and the other to ⊥. A bundle S satisfies a goal ϕ (written S 	 ϕ) if
and only if I(S) 	 ϕ. A goal ϕ thus stands for a compact representation of the set of
all bundles that satisfy ϕ.

Example 12.3. Let O = {o1, o2, o3} be a set of objects. The goal ϕ = o1 ∨ (o2 ∧ o3)
is a compact representation of the set of bundles {o1, o1o2, o1o3, o2o3, o1o2o3}.

The most obvious way of interpreting a goal as a preference relation is to consider
that the agent is only happy if the goal is satisfied, and unhappy otherwise. This leads
to a dichotomous preference relation �ϕ that is defined as follows: for each pair of
bundles 〈S,S ′〉, we have S �ϕ S ′ if and only if S 	 ϕ or S ′ �	 ϕ.

This approach is not very subtle: the agent is not even able to express the tiniest
preference between two different objects she both desires. We can do better:
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� The first idea is to allow an agent to express several goals (a goal base) at the same time.
Counting the number of goals satisfied by a given bundle for example gives a good idea
of how interesting the bundle is for an agent.

� The second idea is to further allow an agent to prioritize the goals of her goal base
(bundles are then evaluated in terms of the higher priority goal they satisfy).

� A third idea is that, beyond prioritizing her goal, an agent gives a weight (or a score)
to each of them. This idea leads to the weighted logic-based preference representation
language that is described in what follows.

Definition 12.4 (Weighted logic-based preference representation language). A for-
mula in the weighted logic-based representation language is a set � of pairs 〈ϕ, wϕ〉,
where ϕ is a well-formed formula of the propositional language LO, and wϕ is a
nonzero numerical weight.

Given a formula � in this language, the utility of each bundle S is defined as

u(S) =
∑

(ϕ,wϕ )∈� | S�ϕ

wϕ. (12.2)

Note that in Equation 12.2 any other aggregation operator can be used, such as for
example the maximum that selects only the highest weight among the satisfied goals
(Bouveret et al., 2005).

Example 12.4. Let O = {o1, o2, o3} be a set of objects. The goal � = {〈o1 ∨
o2, 1〉, 〈o2 ∧ o3, 2〉} is a compact representation of the utility function:

S ∅ o1 o2 o3 o1o2 o1o3 o2o3 o1o2o3

u(S) 0 1 1 0 1 1 3 3

The interested reader can refer to Lang (2004) for an extensive survey on logic-based
preference representation languages. Coste-Marquis et al. (2004) and Uckelman (2009)
provide some detailed results about the expressivity, succinctness, and computational
complexity of these languages.

Bidding Languages

We conclude this introduction about compact preference representation for resource
allocation by discussing a domain closely related to ours: auctions. Auctions are only
distinguished from a general resource allocation problem with indivisible goods by the
fact that money is at the heart of the evaluation scale (utility here actually represents
the amount an agent is ready to pay to obtain some object), and that auctioneers do
not care about end-state fairness issues in general. Beyond these “ethical” differences,
nothing formally distinguishes an auction setting from a general resource allocation
problem.

In the classical auction setting, buyers (or sellers if we deal with reverse auctions)
can only bid on individual objects. As a result, the same expressivity problem as the one
aforementioned for additive preferences occurs: a bidder is simply unable to express
her preference in a proper way if she has preferential dependencies between the objects
to be sold. This issue has led Rassenti et al. (1982) to define a new auction setting,
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where bidders can actually bid on bundles of items, instead of just individual items:
combinatorial auctions (Cramton et al., 2006). To overcome the combinatorial blow-up
caused by the explicit representation of set functions, this community has developed its
own stream of compact preference representation languages: bidding languages. We
will not describe these languages here, but the interested reader can refer to the book
by Cramton et al. (2006) and especially its chapter about bidding languages (Nisan,
2006) for more information.

About Monotonicity

Beyond all these preference representation approaches, a property that is often taken
for granted in most fair division contexts is monotonicity:

Definition 12.5 (Monotonicity). A preference relation � on 2O is monotonic (resp.
strictly monotonic) if and only if S � S ′ ⇒ S 
 S ′ (resp. S ≺ S ′).

Monotonicity formalizes the fact that all the objects have a positive value for each
agent, and that the “more” objects an agent receives, the “happier” she will be. Going
back to our previous example with four objects, monotonicity implies here that our
agent prefers for example o1 and o2 together to o1 alone. This assumption is very natural
as long as we are dealing with “positive” objects or “negative” ones, such as tasks or
chores (reversing the inequality in this case), but not mixing the two. For most typical
compact preference representation languages, the monotonicity assumption has a very
natural translation into a simple property on the formulas. For example, for numerical
modular preferences, monotonicity is equivalent to the positivity of w(oi) for every
object oi . For weighted logic-based formulas, a sufficient condition for monotonicity
is to require that the weight of every formula is positive, together with forbidding the
negation symbol ¬.

Unless explicitly stated, we will consider in this chapter that all the preference
relations we are dealing with are monotonic.

12.1.5 Multiagent Resource Allocation Settings

After this discussion about preferences, we can update the definition of MARA setting
proposed at the end of the introduction and make it more precise. In the following, an
ordinal MultiAgent Resource Allocation setting (ordinal-MARA setting for short) will
be defined as a triple 〈N,O, R〉, where N is a finite set of agents, O is a finite set of
indivisible and nonshareable objects, and R is a set {�1, . . . ,�n} of preorders on 2O,
defined as well-formed formulas in a (compact) ordinal representation language.

A cardinal-MARA setting will be defined accordingly by replacing the set R of
preorders by a set U = {u1, . . . , un} of utility functions on 2O, defined as well-formed
formulas in a (compact) numerical representation language.

12.2 The Fairness versus Efficiency Trade-Off

Now that the setting is properly defined, we will deal with the definition of fair
allocations. In what follows we will mainly focus on two notions of fairness (see
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Chapter 11): maxmin allocations and envy-free allocations. Note that the former is
only defined in the cardinal-MARA setting, because it requires the ability to compare
the well-being of different agents, whereas the latter is well defined in both MARA
settings.

In cardinal-MARA settings, maxmin allocations optimize the so-called egalitarian
social welfare:

Definition 12.6 (Maxmin). An allocation is maxmin when the utility of the poorest
agent is as high as possible, that is,

max
π∈�

{
min
i∈N

ui(π(i))

}
.

Note that it is still possible to conceive ordinal versions of this notion: for instance
we may wish to maximize the worst “rank” of a bundle in the preference orderings of
agents (rank-maxmin).

Envy-freeness only requires an ordinal-MARA setting to operate:

Definition 12.7 (Envy-freeness). An allocation is envy-free when π(i) �i π(j ) for
all agents i, j ∈ N .

Unfortunately, these fairness objectives may not be compatible with the objective
of efficiency. Informally, efficiency can be seen as the fact that resources shall not
be “under-exploited.” At the weakest sense, it means that we should only consider
complete allocations (objects should not be thrown away). However, usually, efficiency
corresponds to the stronger notion of Pareto-efficiency or to the even stronger notion
of utilitarian optimality (for cardinal-MARA settings). This latter notion of efficiency
provides a convenient way to quantify the loss of efficiency due to the requirement to
meet a fairness criterion: this is the idea of the price of fairness, which will also be
discussed in Chapter 13 in the context of divisible goods.

12.2.1 Maxmin Allocations

As a warm-up, let us start with maxmin allocations and Pareto-efficiency. Observe
that a maxmin allocation is not necessarily Pareto-optimal. This is so because this
notion only focuses on the well-being of the agent who is worst-off, and overlooks
the rest of the society. But it may well be the case that for the same utility enjoyed
by the “poorest” agent, a better allocation of resources exists for the rest.10 On the
other hand, among the set of maxmin optimal allocations, one can easily see that
at least one of them must be Pareto-optimal (many of them can be). Assume for
contradiction that it is not the case. Then for each maxmin allocation π there is another
allocation π ′ Pareto-dominating π and not in the set of maxmin allocations. Because
π ′ Pareto-dominates π we have ui(π ′(i)) � ui(π(i)) � mink∈N (π(k)) for all i ∈ N .
Hence either mink∈N (π ′(k)) = mink∈N (π(k)), in which case π ′ is maxmin optimal, or

10 A way to overcome this problem and reconcile maxmin allocations with Pareto-optimality is to use the leximin
preorder (Sen, 1970) which can be seen as a refinement of the maxmin fairness criterion: if two allocations
yield the same maxmin value, then the leximin criterion will discriminate them based on the second poorest
agent if possible, otherwise on the third poorest, and so on.
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mink∈N (π ′(k)) > mink∈N (π(k)), in which case π is not maxmin optimal. In both case,
this is a contradiction.

If we now consider the utilitarian notion of efficiency, then no guarantee can be given
on the loss of efficiency induced by the requirement to have a maxmin allocation. Let
us make this statement more formal using the notion of price of fairness. The price of
fairness is usually defined as the ratio between the total utility of the optimal utilitarian
allocation over the total utility of the best maxmin optimal allocation. The following
holds:

Theorem 12.5 (Caragiannis et al., 2012a). The price of fairness for maxmin alloca-
tions is unbounded.

Proof. Suppose the preferences of n agents regarding n objects are normalized so that
they sum up to 1, and are set as follows: each agent i (from 1 to n − 1) has utility
ε for object oi , 1 − ε for object oi+1, and 0 for the other objects, while agent n has
only utility 1 for object on. The maxmin allocation assigns object oi to each agent i,
and thus yields 1 + (n − 1) · ε overall when we sum utilities. But giving to each agent
i ∈ 1, . . . , n − 1 object oi+1 (and object 1 to anyone) yields an overall (n − 1) · (1 − ε).
Hence, the ratio is unbounded as n grows.

12.2.2 Envy-Freeness

As an obvious first remark, note that a partial allocation where each good is thrown
away is obviously envy-free: all agents own the same empty bundle, so they cannot
envy each other. Thus, in this section we will focus on the nontrivial case of complete
allocations.

First, as with the maxmin criterion, an envy-free allocation is not necessarily Pareto-
efficient, as shown in the following example:

Example 12.6. Let O = {o1, o2, o3, o4} be a set of objects shared by two agents.
Assume u1 (S) = 1{{o1,o2}}(S) and u2 (S) = 1{{o3,o4}}(S), where 1. is the indicator func-
tion. Then, the allocation where agent 1 owns {o1, o3} and agent 2 owns {o2, o4} is
complete and envy-free, but not Pareto efficient: giving {o1, o2} and {o3, o4} respec-
tively to agents 1 and 2 will strictly increase their utility function.

Next, it is easy to show that there does not always exist an envy-free complete
allocation. Consider the case where two agents share a single good, and suppose this
good is preferred by both agents to the empty bundle. Then, the agent owning the
good will be envied by the other agent. More generally, the probability of existence
of complete and envy-free allocation has actually been further investigated in a recent
work by Dickerson et al. (2014). In particular, this work shows analytically that under
several assumptions on the probability distribution of the agents’ (additive) preferences,
an envy-free allocation is unlikely to exist up to a given threshold on the ratio between
the number of goods and the number of agents, and very likely to exist beyond.
Experimental results show an interesting phenomenon of phase-transition.

Finally, consider the utilitarian notion of efficiency. Similarly to the price of fair-
ness, the price of envy-freeness has been defined by Caragiannis et al. (2012a) as
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the ratio between the total utility of the optimal utilitarian allocation over the total
utility of the best envy-free allocation. Caragiannis et al. (2012a) show that the
price of envy-freeness is � (n). So as more and more agents appear in the system,
the gap between envy-free allocations and optimal allocations will grow at a linear
rate.

12.2.3 Other Fairness Criteria

Beyond maxmin fairness and envy-freeness, proportionality is another prominent fair-
ness criterion. This property, coined by Steinhaus (1948) in the context of continuous
fair division (cake-cutting) problems, states that each agent should get from the allo-
cation at least one nth of the total utility she would have received if she were alone.
Obviously, this criterion is related to maxmin fairness when utility are normalized (each
agent gives the same value to the entire set of objects): if there exists an allocation
that satisfies proportionality, then any maxmin-optimal allocation satisfies it. As we
will see in Chapter 13, it is always possible to find an allocation that satisfies propor-
tionality. In the case of two agents, the example procedure given in the introduction
of the chapter (Alice cuts, Bob chooses) obviously guarantees a proportional share to
both agents. Once again, things turn bad when we switch to indivisible objects (just
consider again one object and two agents, no allocation can give her fair share to each
agent).

Even if it is not possible to guarantee one nth of the resource to each agent, Demko
and Hill (1988) have shown that under additive numerical preferences it is always
possible to find an allocation guaranteeing a given amount of utility (only depend-
ing on the maximum weight α given by the agents to the objects) to each agent.
Markakis and Psomas (2011) have significantly extended this result, first by showing
that it is actually possible to guarantee that the minimal amount of utility received by
each agent i depends on the maximum weight αi given by this agent to the objects,
and secondly by exhibiting a deterministic polynomial-time algorithm to compute
it. The same idea has been used by Gourvès et al. (2013), who further refine these
results by constructively exhibiting a stronger lower bound, that also works for fair
division problems with a particular kind of admissibility constraints represented as a
matroid.

Another approach has been proposed by Budish (2011). Instead on focusing on the
maximal fraction of absolute utility it is possible to guarantee to each agent, Budish
(2011) proposes to start from the “I cut you choose” protocol described earlier in
the divisible case, and to adapt it to the indivisible case. According to this definition
of fairness, every agent i should receive from the allocation at least what she would
receive in the worst case if she had to partition the objects into n bundles and let
the other n − 1 agents choose first. In other words, each agent should receive at least
the best (max), among all possible allocations (cuts), of the worst (min) share of this
allocation: Budish (2011) calls it the maximin share. Obviously, in the cake-cutting
case, this notion coincides with proportionality.

Example 12.7. Consider a MARA setting involving two agents with additive prefer-
ences, and four objects {o1, o2, o3, o4}. Let agent 1’s preferences be defined as follows:
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u1(o1) = 7, u1(o2) = 2, u1(o3) = 6 and u1(o4) = 10. Then agent 1’s maximin share is
12, associated to partition {o1o3, o2o4}.

Contrary to proportionality, in the case of additive preferences, maximin share guar-
antee is almost always possible to satisfy (Bouveret and Lemaı̂tre, 2014). Actually,
Procaccia and Wang (2014) have exhibited some MARA-settings where no alloca-
tion guaranteeing maximin shares to everyone can be found, but these instances are
rather rare.11 Moreover, Bouveret and Lemaı̂tre (2014) notice that in the special case of
additive preferences, not only envy-freeness implies proportionality, but also propor-
tionality implies maximin share guarantee. It means that these properties form a scale
of fairness criteria, from the strongest to the weakest.12 This suggests another solution
to the fairness versus efficiency trade-off: try to satisfy envy-freeness if possible; if
not, try to satisfy proportionality if you can; and finally, as a fallback fairness criterion,
maximin share guarantee is almost always possible to satisfy.

12.3 Computing Fair Allocations

We will now see how challenging computing optimal fair allocations is. To achieve this,
we will among other things study the computational complexity of decision problems
associated with the computation of fair allocations. The input of these decision problems
will include the preference profiles encoded in a given representation language. Note
that if a preference profile is represented with a formula whose size is superpolynomial
in p and n, then even if the decision problem is computationally easy, finding a
fair allocation may remain prohibitive in practice—hence the relevance of compact
representation languages discussed in the previous section.

12.3.1 Maxmin Allocations

We start with a bad news: if we make no assumption on the preferences of agents
(beyond monotonicity), then not only is computing an optimal maxmin allocation
computationally hard, but even computing an approximation is (Golovin, 2005). The
argument is simple, and based as usual on a problem known to be hard. In the partition
problem, we are given a collection of (positive) integers C = 〈c1, . . . , cq〉 such that∑q

i=1 ci = 2k, and we are asked whether there exists I ⊆ {1, . . . , n} with
∑

i∈I ci = k.
But now take O = C and set the utility functions of two agents as follows:

u(S) =
{

1 if
∑

x∈S x � k

0 otherwise .

The only situation where an allocation with social welfare 1 can be obtained is when
agents receive a bundle such that

∑
x∈S x = k, otherwise any allocation yields utility

0 (because at least one agent enjoys utility 0). But then any approximation would have
to distinguish between these cases, which requires to solve partition. The careful

11 They also show that it is always possible to guarantee at least 2/3 of the maximin share to everyone.
12 Actually there are two additional criteria in the scale, which we do not discuss here for the sake of clarity and

conciseness.
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reader should be skeptical at this point: shouldn’t the complexity precisely depend on
the size of the representation of u? In fact, Golovin (2005) circumvents this problem
of compact representation by assuming a “value query model” where an oracle can
provide values of bundles of items in unit computation time. But even using the naive
bundle form language, similar conclusions can be obtained, as long as allocations are
required to be complete (Nguyen et al., 2013).

Getting more positive results requires further restrictions on the preferences of
agents. However, even quite severe restrictions turn out to be insufficient. For instance,
the problem remains inapproximable as soon as k � 3-additive functions are considered
(Nguyen et al., 2013, 2014). Note that, as Nguyen et al. (2014) show, inapproximability
results also hold for other “fair” collective utility functions, such as the Nash product
for example.13

In fact, as we shall see now, even the most basic setting remains very challenging.

The Santa Claus Problem

Take a cardinal-MARA setting, where utility functions are modular. This setting has
been popularized as the Santa Claus problem (Bansal and Sviridenko, 2006): Santa
Claus has p gifts to allocate to n children having modular preferences; Santa Claus
allocates the gifts so as to maximize the utility of the unhappiest child (which is exactly
the maxmin allocation). First, note that the problem remains NP-hard even in this
restrictive setting (Bezáková and Dani, 2005; Bouveret et al., 2005). Furthermore, the
problem cannot be approximated within a factor > 1/2 (Bezáková and Dani, 2005).

There is a natural integer linear program (ILP) formulation for this problem, usually
called the “assignment LP.” By taking xi,j to be the binary variable taking value 1 when
agent i receives object oj , and 0 otherwise, we set the objective function to be the
maximization of the right-hand side of Inequality 12.6:

maximize y, (12.3)

∀i ∈ N, ∀j ∈ O : xi,j ∈ {0, 1}, (12.4)

∀j ∈ O :
∑

i∈N xi,j = 1, (12.5)

∀i ∈ N :
∑

oj∈O wi(oj ) · xi,j � y. (12.6)

The bad news is that just solving the relaxation of this ILP (that is, solving the
problem by assuming that goods are divisible) is not a good approach since the inte-
grality gap (the ratio between the fractional and the integral optimum) can be infinite.
Indeed suppose there is a single object to allocate, for which every agent has the same
utility, say x. Then the fractional solution would be x/n, while the ILP would yield 0
(Bezáková and Dani, 2005).

The similarity of the problem with scheduling problems is important to emphasize
(take agents as being the machines, and objects as being the jobs). In particular the
minimum makespan problem, which seeks to minimize the maximal load for an agent,
is well studied. While the objective is opposite, this proved to be a fruitful connection,

13 The Nash product is defined as the product of all utilities.
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and motivated the use of (adapted) sophisticated rounding techniques (Lenstra et al.,
1990). Bezáková and Dani (2005) were among the first to exploit this connection. They
used job truncations techniques to propose an O(n) approximation, later improved to
O( 1√

n log3 n
) by Asadpour and Saberi (2010).

Linear programming is not the only possible approach to this problem: branch and
bound techniques have also been investigated (Dall’Aglio and Mosca, 2007). For this
type of algorithms, the quality of the bound is a crucial component. Dall’Aglio and
Mosca (2007) use the “adjusted winner” procedure (that we discuss later on in this
chapter) to compute this bound.

12.3.2 Computing Envy-Free or Low-Envy Allocations

There is a simple algorithm which always returns an envy-free allocation: throw all
the objects away! However, as discussed already, as soon as a very minimal efficiency
requirement of completeness is introduced, an envy-free allocation may not exist. In
fact, it is computationally hard to decide whether such an allocation exists (Lipton
et al., 2004). If we now ask for an allocation which meets both envy-freeness and
Pareto-optimality, then for most compact representation languages the problem lies
above NP (Bouveret and Lang, 2008). More precisely, this problem is �P

2-complete
for most logic-based languages introduced in Section 12.1, including the very simple
language leading to dichotomous preferences. It also turns out that the combinatorial
nature of the domain plays little role here: even in additive domains, deciding whether
there exists an efficient and envy-free allocation is �P

2-complete (de Keijzer et al.,
2009).

Given this, a perhaps more realistic objective is to seek to minimize the “degree
of envy” of the society. There are several ways to define such a metric. For example,
Cavallo (2012) defines the rate of envy as the average envy of all agents. Here we
follow Lipton et al. (2004) in their definitions:

eij (π) = max{0, ui(π(j )) − ui(π(i))}.

Now the envy of the allocation is taken to be the maximal envy among any pair of
agents, that is,

e(π) = max{eij (π) | i, j ∈ N}. (12.7)

Allocations with Bounded Maximal Envy

One may ask whether allocations with bounded maximal envy can be found. The
question is raised by Dall’Aglio and Hill (2003) and later addressed by Lipton et al.
(2004). We will see that such bounds can be obtained, by taking as a parameter the
maximal marginal utility of a problem, noted α. The marginal utility of a good oj , given
an agent i and a bundle S , is the amount of additional utility that this object yields
when taken together with the bundle. Then the maximal marginal utility is simply the
maximal value among all agents, bundles, and objects. In an additive setting, this is
thus simply the highest utility that an agent assigns to a good.



1 2 .3 computing fair allocations 301

The result by Lipton et al. (2004)—which improves upon a first bound of O(αn3/2)
given by Dall’Aglio and Hill (2003)—is then simply stated:

Theorem 12.8 (Lipton et al., 2004). It is always possible to find an allocation whose
envy is bounded by α, the maximal marginal utility of the problem.

Proof sketch. First, we introduce the notion of the envy graph associated with an
allocation π , where nodes are agents and there is an edge from i to j when i envies j .
Now take a cycle in this envy graph: a key observation is that by rotating the bundles
held by agents in the direction opposite to that of the cycle (so that each agent gets the
bundle of the agent he envies), we necessarily “break the envy cycle” at some point.
This is so because the utility of each agent in this cycle is increased at each step of
this rotation. Furthermore, agents outside the cycle are unaffected by this reallocation.
Now consider the following procedure. Goods are allocated one by one. First allocate
one good arbitrarily. Now consider the end of round k, and suppose {o1, . . . , ok} have
been allocated, and that envy is bounded by α. At round k + 1 we build the envy graph.
Next we rotate the bundles as previously described. As already observed, at some point
there must be an agent i that no one envies. We then allocate object ok+1 to this agent
i. Envy is thus at most α.

Example 12.9. Let O = {o1, o2, o3, o4, o5} be a set of objects, and let {1, 2, 3} be three
agents whose additive preferences are defined as follows:

S o1 o2 o3 o4 o5

u1(S) 1 2 5 3 7
u2(S) 2 6 8 1 5
u3(S) 5 4 4 3 1

The maximal marginal utility is 8. We know that by applying the procedure we are
guaranteed to obtain an allocation with a degree of envy at most 8. Suppose we allocate
the first three items oi to agent i, we thus get π(1) = {o1}, π(2) = {o2}, and π(3) = {o3}.
At this step of the procedure, the envy graph is depicted in (i). For convenience we
indicate the degree of envy on each arrow. There are two cycles. Let us consider for
instance the cycle (1,3), and rotate (this corresponds to simply swapping the resources
of agents 1 and 3 here). It happens to be sufficient to remove the cycle: we obtain the
new envy graph (ii). Now we wish to allocate o4. No one envies 2 nor 3, so we can for
instance allocate o4 to 2, resulting in (iii). The graph is without cycle. We can now give
o5 to agent 3, thus obtaining (iv), with a degree of envy of 3.
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Note that in that case, by performing a final rotation, we could obtain en envy-free
allocation.

Observe that the procedure makes no assumption on the preferences of agents.
The result thus shows that it is always possible to have an allocation bounded by the
highest marginal value. Of course, such a bound is tight, as is easily observed by a
scenario involving a single good and two agents with the same utility for it. In general,
however, for a given instance, allocations with a much lower envy than this bound will
exist.

Low-Envy Allocations

Is it possible to design algorithms returning an allocation with minimal envy, or at least
an approximation of it? A critical problem is that in the case of general preferences, the
amount of information that needs to be transmitted to the algorithm is prohibitive (see
Section 12.4). It is thus natural to consider the same question in restricting the domain
considered.

Another technical issue occurs: the minimum degree of envy as defined by
Equation (12.7) is 0 when the allocation is envy-free. While this an intuitive require-
ment, it has an undesirable consequence: any finite approximation would have to be
able to distinguish an envy-free allocation. Unfortunately, as we have seen, this prob-
lem is hard, even in the case of modular preferences. Thus, unless P = NP, there is no
hope for approximation here (remember the same line of argumentation was used to
show inapproximability for maxmin allocations).

To circumvent this, a different measure of envy is considered. The minimum envy-
ratio is defined as

max

{
1,

ui(πj )

ui(πi)

}
.

When the objective function is to minimize this measure, positive results can be
obtained. Lipton et al. (2004) were the first to address this version of the problem. They
made the additional assumption that agents have the same preferences. In this context,
the greedy procedure proposed by Graham (1969) in the context of scheduling yields a
1.4-approximation. The procedure is fairly simple: rank the goods in decreasing order,
then allocate them one by one, to the agent whose current bundle has least value.
But Lipton et al. (2004) went further: they showed that it is possible to achieve an
approximation arbitrarily close to 1 with an algorithm running in polynomial time in
the input size (in other words, a Polynomial-Time Approximation Scheme). When the
number of agents is bounded, it is even possible to get an FPTAS for this minimization
problem. Recently, Nguyen and Rothe (2015) took up this research agenda. When the
number of agents is bounded, they obtain an FPTAS for this minimization problem
(and other degree measures), even when agents have different preferences. On the other
hand, they showed that when the number of agents is part of the input, it will not be
possible to obtain (in polynomial time) an approximation factor better than 3/2, under
the usual P �= NP assumption.
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Envy-Freeness and Ordinal Preferences

Let us conclude this overview of computational aspects of envy-freeness with a quick
look at ordinal preferences. An interesting feature of envy-freeness is that this notion
does not require any interpersonal comparison of preferences. As a result, envy-freeness
is a purely ordinal notion: this fairness criterion is properly defined as soon as the
agents are able to compare pairs of bundles (which is not the case for maxmin fairness,
requiring cardinal preferences). The ordinal analogous of the problem studied by Lipton
et al. (2004) for numerical preferences, namely, the problem of finding an efficient and
envy-free allocation with ordinal preferences (using pairwise dominance for lifting
preferences from objects to bundles) has been studied by Brams et al. (2004) and
Brams and King (2005) and later by Bouveret et al. (2010) and Aziz et al. (2014d).

The main difficulty here is that, unlike additivity for numerical preferences, only
requiring responsiveness (and monotonicity, for the two latter references) leaves many
pairs of bundles incomparable. For example, if we have o1 ' o2 ' o3 ' o4, responsive-
ness implies that o1o2 � o3o4, but leaves o1o4 and o2o3 incomparable. This calls for
an extended version of envy-freeness that takes into account incomparabilities. Brams
et al. (2004); Bouveret et al. (2010) propose the two notions of possible and necessary
envy:14 basically, agent i possibly (resp. necessarily) envies agent j if π(i) ��i π(j )
(resp. π(j ) �i π(i)). The recent work of Aziz et al. (2014d) further extends and refines
these notions by introducing a new definition of ordinal dominance based on stochastic
dominance.

On the positive side, it turns out that the problem of determining whether a pos-
sible envy-free efficient allocation exists is in P (Bouveret et al., 2010) for strict
preferences, for different notions of efficiency (completeness, possible and necessary
Pareto-efficiency). On the negative side, things seem to be harder (NP-complete) for
necessary envy-freeness, and as soon as ties are allowed (Aziz et al., 2014d). Note also
that in the case of ordinal preferences, defining measures of envy makes less sense than
for numerical preferences. That means that it seems difficult to use approximation to
circumvent the computational complexity of the problem.

12.3.3 Other Fairness Measures

In this section we have looked in details at the computation of maxmin or low-envy
allocations. Of course, there are many other criteria of fairness of interest. In particular,
it is natural to not only focus on the worst-off agent, but to define a more general
measure of the inequality of the society and to rely on a generalized Gini social-
evaluation function. This class of functions is also known as ordered weighted averages
(Yager, 1988). The computation of these functions has been studied by Lesca and Perny
(2010). They investigate in particular how techniques of linear programming (such as
the one mentioned in Section 12.3.1) can be adapted so to handle these problems.
Recently, the problem of computing inequality indices in combinatorial domains has
been considered by Endriss (2013). Also, Vetschera (2010) came up with an approach

14 Actually Brams et al. (2004) use a different terminology, but the idea is the same.
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generalizing the branch and bound approach of Dall’Aglio and Mosca (2007) to a wider
class of objective functions: more precisely, for any setting involving the division of
indivisible goods between two agents, and for which the objective function is maximum
when the utilities of both players are equal (in the hypothetical continuous case). In
that case, the bound based on the “adjusted winner” split, which will be presented in
Section 12.4.1, is not valid any longer.

12.4 Protocols for Fair Allocation

The centralized “one-shot” approaches to fair resource allocation we have considered
so far work in two steps: first the agents fully reveal their preferences (may them
be ordinal or numerical) to the benevolent arbitrator, then this arbitrator computes a
satisfactory allocation (thanks to an algorithm) and gives the objects to the agents. This
approach has two main drawbacks: (i) the elicitation process can be very expensive
or agents may not be willing to fully reveal their preferences; and (ii) agents may be
reluctant to accept a solution computed as a black-box.

Regarding (i), there is not much we can do in the worst case : when preferences are
not modular, the communication load that is required to compute optimal (or indeed
approximated) fair solutions becomes a fundamental barrier. This can be stated more
formally:

Theorem 12.10 (Lipton et al., 2004; Golovin, 2005). Any deterministic algorithm
would require an exponential number of queries to compute any finite approximation
for the minimal envy allocation (Lipton et al., 2004) or the maxmin allocation (Golovin,
2005).

Such lower bounds can be obtained by borrowing techniques from the communica-
tion complexity literature (see also Chapter 10).

The incremental protocols we discuss in this section take a different approach: they
prescribe “simple” actions to be taken by the agents at different stages of the process
(comparing two bundles, choosing an item, etc.), and they (typically) do not require
heavy computation from the central authority. They sometimes do not involve any
central computation at all (beyond verification of the legality of agents’ actions) nor
preference elicitation, and may even work in the absence of a central authority in some
cases, as we shall see.

Before we go on and present original protocols, note that some of the algorithms
presented earlier in this chapter can be readily interpreted as protocols. This is true in
particular of the procedure of Lipton et al. (2004): allocate items sequentially, and each
time a new item is assigned, ask agents to point to agents they envy (note that this does
not require to elicit preferences). When a cycle occurs, rotate the bundles as indicated
in the procedure, and ask again agents who they envy, and so on. Of course, as we have
already seen, the guarantees of such a protocol are not so good. We will see that better
guarantees can be given, at the price of restrictions on the number of agents, or on the
type of preferences.
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12.4.1 Protocols for Two Agents

The Adjusted Winner Procedure

This procedure has been used in various contexts (Brams and Taylor, 2000). It works
for two agents, with additive utility functions. At the end of the procedure, one item
may need to get split, but as we do not know beforehand which one, it has to assume
that all items are divisible. The technique is nevertheless inspiring, and can be used
to compute a bound in the indivisible case (Dall’Aglio and Mosca, 2007), as already
mentioned.

In the first phase of the algorithm (the “winning phase”), goods are allocated effi-
ciently, that is, each good is assigned to the agent who values it the most. At the end
of this stage, either u1 = u2 and we are done, or some agent (say r , the richest) has a
higher utility than the other (say p, the poorest) and the “adjusting phase” can begin.
During this phase, goods are transferred from the richest to the poorest, in increasing
order of the ratio ur (o)

up(o) (note that the ratio is necessarily � 1). The algorithm stops when
either both agents enjoy the same utility, or the richest becomes the poorest. Suppose
this happens under the transfer of good g: then g is split so as to attain equitability, that
is, the utility of both agents is equal. To get this equitable outcome, the richest gets a
fraction of g computed as follows:

up(g) + up(π(p) \ {g}) − ur (π(r) \ {g})
ur (g) + up(g)

The allocation is thus also a maxmin allocation. In fact, it has several desirable
properties:

Theorem 12.11 (Brams and Taylor, 2000). The adjusted winner procedure returns
an equitable, envy-free, and Pareto-optimal allocation.

Recall that here “equitable” means that the two agents enjoy the same utility at the
end of the protocol.

Example 12.12. Let O = {o1, o2, o3, o4, o5} be a set of objects.

S o1 o2 o3 o4 o5

u1(S) 1 2 5 3 7
u2(S) 2 6 8 1 5

After the winning phase, agent 2 gets {o1, o2, o3} and agent 1 gets {o4, o5}. The utility
of agent 2 is 2 + 6 + 8 = 16 while the utility of agent 1 is 10. Agent 2 will transfer
goods to agent 1, starting with o3 (with ratio 8

5 , while o1 has 2
1 , and o2 has 6

2 ). But
once we do that agent 1 becomes the richest: the good o3 has to be split, with agent
2 obtaining (5 + 10 − 8)/13 = 7/13 of the good g (and the rest for agent 1). This
provides each agent a utility * 12.3.
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The Undercut Procedure

Unlike the adjusted winner, this protocol takes as input ordinal information (a ranking
of the items), and assumes that preferences are responsive (in fact, Aziz, 2014 has
recently introduced a modified version of the procedure which works for the more
general class of separable preferences).

As discussed in Section 12.1, the assumption of responsiveness allows to rank
some of the bundles only: for instance if o1 � o2 � o3, we know among others that
o1o2 � o1o3 � o1. The undercut procedures guarantees to find an envy-free allocation
among two agents, whenever one exists. The procedure runs in two phases: in the
generation phase, agents name their preferred item. If the items are different, they are
allocated to agents asking them, otherwise they are placed in the contested pile. This
is iterated until all the items are either allocated or placed in the pile. Observe that at
the end of the generation phase, each agent holds a bundle that she values more than
the bundle held by the other agent. The main role of the protocol is then to implement
a split of the “contested” items that will lead to an envy-free allocation. The key step
is to let agents reveal what is called their minimal bundles (they may have several of
them): a minimal bundle for agent x is a set of items that is worth at least 50% of the
value of the full set of items for x—we say that such a bundle is envy-free (EF) to
agent x—and such that it is not possible to find another bundle ordinally less preferred
to it, which would also be EF to x. So for instance, with o1 � o2 � o3, if o1o3 is EF
to agent 1, then o1o2 cannot be a minimal bundle. Once minimal bundles have been
named, the protocol chooses randomly one of them as a proposal (say S1, that of agent
1). Next agent 2 has the opportunity to either accept the complement of the proposal, or
to undercut the proposal, by modifying the proposed split and take for herself a bundle
strictly less preferred than S1.

Theorem 12.13 (Brams et al., 2012b). If agents differ on at least one minimal bundle,
then an envy-free allocation exists and the undercut protocol returns it.

Example 12.14. We borrow an example from Brams et al. (2012b), where both agents
declare the same ranking of five items o1 � o2 � o3 � o4 � o5. In that case an envy-
free split looks unlikely because agents have exactly the same preference: thus, after
the generation phase, all items go to the contested pile. Now assume agent 1 announces
o1o2 as her only minimal bundle, while agent 2 announces o2o3o4o5. The minimal
bundles differ: there must be an envy-free allocation. Let us see why. Suppose o1o2,
the minimal bundle of agent 1, is chosen for proposal. Then agent 2 will reject this
proposal because o3o4o5 is not EF to her (as she declared o2o3o4o5 as minimal). It
means that o1o2 must be EF to agent 2. But as o1o2 is not minimal to her, she may
propose to take o1o3 which is the next ordinally less preferred bundle, and so must still
be EF to her. So agent 2 may propose this split, letting agent 1 with o2o4o5. As on the
other hand, o1o2 was minimal to agent 1, it must be that o1o3 is worth less than 50%,
and so o2o4o5 is EF to agent 1. This allocation is envy-free.

Compared to the adjusted winner, this protocol has the advantage to only require
ordinal preferential information. But note that it may not be able to produce a complete
envy-free allocation (at least in a deterministic way). Suppose we run the protocol
on Example 12.12. Agent 1 reports o5 � o3 � o4 � o2 � o1, while agent 2 reports
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o3 � o2 � o5 � o1 � o4. Thus, after the generation phase, agent 1 gets o5o4 and agent
2 gets o3o2: item 1 is the only contested item and thus no complete envy-free allocation
of the pile can be proposed (but assigning this last item randomly may still yield an
envy-free allocation).

12.4.2 Protocols for More Than Two Agents

Picking Sequences

Can we take inspiration from the generation phase of the undercut procedure and
allocate goods incrementally? This is soon going to be unpractical as the number
of agents grows, because all goods will be likely to be contested. But an alternative
solution is to fix beforehand a sequence among agents. This is viable even for a large
number of agents, and only requires a partial elicitation of the agents’ preferences (or,
at the extreme, no elicitation at all). From the point of view of agents, the assumption
of responsiveness of preferences suffices to decide simply which item to pick.

More precisely, the benevolent arbitrator defines a sequence of p agents. Every
time an agent is designated, she picks one object out of those that remain. For instance,
if n = 3 and p = 5, the sequence 12332 means that agent 1 picks an object first; then
2 picks an object; then 3 picks two objects; and 2 takes the last object. Such a protocol
has very appealing properties: first, it is very simple to implement and to explain15

and secondly, it frees the central authority from the burden of eliciting the agents’
preferences. Seen from the point of view of communication complexity, implementing
such a protocol just requires the exchange of O(m log(m)) bits of information (at each of
the m steps of the protocol, the chosen agent just needs to send the identifier of the object
she wants to pick, which requires O(log(m)) bits). A classical centralized protocol as
the ones we discussed earlier would require �(nm log(m)) bits of information to send
the agents’ preferences to the arbitrator (if they only provide an ordinal information),
and �(m log(n)) additional bits for the arbitrator to send the result to the agents.

This protocol has been discussed to some extent by Brams and Taylor (2000),
who focus on two particular sequences, namely, strict alternation, where two agents
pick objects in alternation, and balanced alternation (for two agents) consisting of
sequences of the form 1221, 12212112, and so on. One can feel intuitively that these
kinds of sequences are quite fair, in the sense that alternating the agents in the sequence
increases the probability of obtaining a fair allocation in the end (for example, the
sequence 1221 is more likely to make both agents happy than 1122, where agent 2
is very likely to be disappointed). The problem of finding the best (fairest) sequence
has been investigated by Bouveret and Lang (2011), who proposed a formalization of
this problem based on the following hypotheses: (i) the agents have additive utilities;
(ii) a scoring function maps the rank of an object in a preference relation to its utility
value—the agents may have different rankings, but this scoring function is the same
for all agents; (iii) the arbitrator does not know the agents’ preferences but only has a
probability distribution on the possible profiles. In this framework, the best sequence
is just one that maximizes the expected (utilitarian or egalitarian) collective utility.

15 The less understandable an allocation protocol is, the less likely it will accepted by the agents.
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Even if the precise complexity of the problem of finding the optimal sequence is
still unknown, Kalinowski et al. (2013) have shown, among other things, that the strict
alternation policy is optimal with respect to the utilitarian social welfare, if we consider
two agents that can have any preference profile with equal probability, and a Borda
scoring function. This formally proves the intuitive idea that under mild assumptions,
a sequence like 12121212... maximizes the overall utility of the society.

The Descending Demand Procedure

In this protocol proposed by Herreiner and Puppe (2002), agents are assumed to have
a linear ordering over all subsets of resources (satisfying monotonicity). An ordering
of the agents is fixed beforehand: one by one, they name their preferred bundle, then
their next preferred bundle, and so on. The procedure stops as soon as a feasible
complete allocation can be obtained, by combining only bundles mentioned so far in
the procedure. There may be several such allocations, in which case the Pareto-optimal
ones are selected. It does not offer any guarantee of envy-freeness, but produces
“balanced” allocations, that is, allocations which maximize the rank in the preference
ordering16 of the bundle obtained by the worst-off agent. As mentioned already, this
notion is the natural counterpart of the egalitarian social welfare in this specific case
where linear orders are available.

Theorem 12.15 (Herreiner and Puppe, 2002). The descending demand procedure
returns a Pareto-efficient and rank-maxmin-optimal allocation.

This protocol is simple and can be used by more than two agents, for a moderate
number of goods though (since otherwise the requirement to rank all subsets becomes
unrealistic).

Distributed Fair Division

When many agents are involved in an allocation, fully distributed approaches can be
well adapted. The main idea is that agents will start from an initial allocation, and
myopically contract local exchanges (or deals) independently from the rest of the
society.17 In particular, this means that agents can rely on a local rationality criteria
which tells them whether to accept or not a deal. A rationality criteria is local when it
can be checked by inspecting only those agents who modified their bundle during the
deal. Ideally, such deals should be “simple” (for instance, involving only two agents).
For instance, based on the Pigou-Dalton principle (Moulin, 1988a), we may conceive a
system where only bilateral deals which diminish the inequality among agents involved
are allowed.

The question is whether this type of incremental deal-based protocol has any chance
in the end to converge to an optimal (fair) solution. As discussed by Endriss et al.
(2006), the question is related to the separability (Moulin, 1988a, p. 43) of the social
welfare ordering considered (not to be confused with the separability of individual

16 Assuming lower ranks correspond to less preferred bundles.
17 This is similar to the case of housing markets vs. house allocation problems (see Chapter 14).
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preferences). The idea behind separability is the following: suppose that only a subset
of agents are involved in a deal δ. Then, the change in social welfare caused by δ will
always be the same, irrespective of the level of utility of the agents not concerned by
the deal. To grasp the intuition, compare the utilitarian social welfare (separable), with
maxmin (only separable in the weak sense) and the notion of envy (not separable).
Suppose some agents implement a deal (while the rest of the agents do not), and that
you can observe its outcome. If the sum of utility among those agents involved in the
deal has increased, you know that the overall sum of utility must have increased as well.
But you can never be sure that the min utility of the society has increased, even though
you observe that the min utility among the agents involved has (because the agent who
is currently the worst-off may not be involved in the deal). Still, the allocation cannot
become worse (hence separability in the weak sense). This is not even the case with
envy: the implementation of a local deal can have negative consequences, since by
modifying agents’ bundle the envy of agents outside the deal (but observing it) can
certainly increase. In a series of papers by Sandholm (1998), Endriss et al. (2006), and
Chevaleyre et al. (2010), convergence results are proven for different social welfare
measures, domain restrictions, and deal types. These results typically show convergence
of any sequence of deals to some allocation where no further deal is possible, with
guarantees on the quality of such a final allocation.

For instance, convergence to maxmin allocations by means of locally egalitarian
deals (that is, deals where the situation of the worst-off agent involved has improved)
can still be guaranteed by exploiting the separability of the (stronger) leximin social
welfare. Of course the complexity of the problem has not magically disappeared. This
is witnessed by two types of “negative” results, affecting the complexity of a single
step (i.e., a deal), and the complexity of the sequence of deals as a whole:

� Any kind of restriction on deal types ruins the guarantee of convergence in the general
domain (Endriss et al., 2006). This is problematic because, as mentioned, deals are likely
to be simple in practice (for instance, swapping two resources).

� The upper bound on the length of the sequence of deals can be exponential in the worst
case (Sandholm, 1998; Endriss and Maudet, 2005), even when considering only the
simplest type of deals, consisting of moving a single resource from one agent to another
agent (Dunne, 2005).

On the positive side, these approaches can be deployed in the absence of a central
authority, and they enjoy a nice anytime behavior: they return a solution even if stopped
before convergence, and the quality of the obtained allocation usually improves as long
as the agents can perform deals (though this may not be theoretically guaranteed for
all social welfare measures, as briefly discussed earlier).

12.5 Conclusion

In this chapter we have discussed fair division problems involving indivisible items.
We have seen that this setting poses several challenges, starting from the mere repre-
sentation of agents’ preferences, to the computation of optimal fair allocations (with
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maxmin and envy as main illustrations). These difficulties are not necessarily inter-
twined: we have seen for instance that even with additive preferences, the algorithmic
challenge may remain surprisingly high. Of course the usual warning is flashing here:
these are typically worst-case results, and recent work suggests that under specific
assumptions about the domain considered, it may be possible to obtain satisfying allo-
cations with high probability (and even compute them rather easily). For the design
of practical interactive protocols, the preference representation and communication
bottleneck seems more stringent, and indeed most efforts have concentrated so far on
the setting of two agents equipped with additive, or at least responsive preferences. It
is striking though, that very few works have addressed natural preference restrictions
beyond such domains. An important question is how such protocols and algorithms will
be adopted in practice, for instance whether agents may manipulate, and whether sug-
gested solutions can be easily understood and accepted. While the allocation settings
discussed here remain as general as possible, specific features may require dedicated
approaches. For instance, agents may have different priority, they may enter the sys-
tem sequentially, and so on. These aspects (among many others of course) have been
investigated in the matching community, and this leads us to strongly encourage the
reader interested in fair division to jump to Chapter 14. Indeed, in particular when one
resource exactly has to be allocated to each agent, allocation problems can be readily
captured in a matching setting (where stability is the primary focus of interest). But
if agents have priority when selecting their resource, the notion of envy may only be
justified when an agent has higher priority over the agent he envies. Interestingly, this
corresponds to the notion of stability. This illustrates how the concepts discussed in
both chapters can be connected.
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CHAPTER 13

Cake Cutting Algorithms

Ariel D. Procaccia

13.1 Introduction

Imagine a cake that must be divided between a group of gluttonous children. To
complicate matters, the cake is heterogeneous: two pieces of cake may differ in terms
of their toppings, so the children have different preferences over the pieces (one may
prefer a larger proportion of chocolate curls, while another may single-mindedly desire
the piece with the cherry). In this chapter we discuss the surprisingly intricate problem
of fairly dividing the cake—which serves as a metaphor for heterogeneous divisible
resources such as land or time.

The cake cutting problem has a long and storied history described, for example, in the
books by Brams and Taylor (1996) and Robertson and Webb (1998). The early research
on the problem has two main themes: existence results showing that certain fairness
guarantees can be achieved; and algorithmic results showing how such guarantees
can be achieved. The focus of this chapter is on the latter theme, which has a more
computational flavor.

From a computer scientist’s point of view, the cake cutting problem provides a
sandbox in which we can explore the role of computational thinking in the allocation
of divisible goods. Indeed, the elegant cake cutting model (Section 13.2) distills many
of the issues we care about when studying divisible goods more broadly; for example,
how to reason about computational complexity in the face of continuous inputs, and
how to quantify the trade-offs between individual fairness and global welfare.

13.2 The Model

Our setting includes a set of agents denoted N = {1, . . . , n}, and a heterogeneous
divisible good—the cake—represented by the interval [0, 1]. We assume that each
agent i ∈ N is endowed with a valuation function Vi , which maps a given subinterval
I ⊆ [0, 1] to the value assigned to it by agent i, Vi(I ). We also write Vi(x, y) as
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a shorthand for Vi([x, y]). These valuation functions are assumed to satisfy several
conditions, for every i ∈ N :

� Normalization: Vi(0, 1) = 1.
� Divisibility: For every subinterval [x, y] and 0 � λ � 1 there exists a point z ∈ [x, y]

such that Vi(x, z) = λVi(x, y).
� Nonnegativity: For every subinterval I , Vi(I ) � 0.

The divisibility property implies that the valuation functions are nonatomic, that is,
Vi(x, x) = 0 for every x ∈ [0, 1]. This property allows us to ignore the boundaries of
intervals, and in particular we can treat two intervals as disjoint if their intersection is
a singleton. We denote the length of an interval I by 
(I ), that is, 
([x, y]) = y − x.

A piece of cake is a finite union of disjoint intervals. We can alternatively view a
piece of cake X as a set of intervals, which allows us to write I ∈ X. To extend the
valuation functions to pieces of cake, we also assume:

� Additivity: For two disjoint subintervals I, I ′, Vi(I ) + Vi(I ′) = Vi(I ∪ I ′).

The value of i ∈ N for a piece X is then simply Vi(X) = ∑
I∈X Vi(I ), and its length is


(X) = ∑
I∈X 
(I ).

A slightly more specific model for valuation functions assumes that each agent i ∈ N

has a nonnegative integrable value density function vi . Given a piece of cake X, we
let Vi(X) = ∫

x∈X
vi(x)dx. As before we can assume that

∫ 1
x=0 vi(x)dx = Vi(0, 1) = 1.

Importantly, divisibility and additivity follow directly from the basic properties of
integration.

In some cases it will prove useful to restrict the agents’ valuation functions via
the structure of the associated density functions. We say that a valuation function
is piecewise constant if its associated value density function has this property (see
Figure 13.1a). An agent with a piecewise constant valuation function desires a collection
of intervals, and each interval is valued uniformly. In other words, crumbs of equal size
from the same interval are valued equally, but crumbs from different intervals may have
different values. For example, think of the cake as television advertising time; a toy
company would be interested in commercial breaks that are associated with children’s
programs, and its value for a slot would increase with the program’s popularity (i.e.,
the density of different intervals can be different). However, the company may be
indifferent between slots within the same commercial break.

Piecewise uniform valuations are a special case of piecewise constant valuations,
where the density is either a fixed constant c > 0 or 0 (see Figure 13.1b). An agent
with a piecewise uniform valuation function has a desired piece of cake that it values
uniformly. Such valuations can arise, for instance, if one thinks of cake as access time
to a shared backup server. Users are interested in time slots in which their machines
are idle, but would be indifferent between two idle time slots of equal length.

We are interested in allocations A = (A1, . . . , An), where each Ai is the piece of
cake allocated to agent i. These pieces are assumed to form a partition of the cake:
They are disjoint and their union is the entire cake. In general each Ai can consist of
multiple disjoint intervals, but we are sometimes interested in contiguous allocations
where each Ai is a single interval. We consider the following fairness properties:
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(a) Value density function for a
piecewise constant valuation that is
not piecewise uniform.
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(b) Value density function for a
piecewise uniform valuation.

Figure 13.1. An illustration of special value density functions.

� Proportionality: for all i ∈ N , Vi(Ai) � 1/n
� Envy-freeness: For all i, j ∈ N , Vi(Ai) � Vi(Aj )
� Equitability: For all i, j ∈ N , Vi(Ai) = Vj (Aj )

Informally, proportionality means that every agent has value at least 1/n for its piece
of cake; envy-freeness implies that each agent weakly prefers his own piece to any
other piece; and equitability means that every two agents assign the exact same value
to their own pieces.

It is easy to see that envy-freeness implies proportionality. Indeed, by additivity∑
j∈N Vi(Aj ) = 1, so there must exist j ∈ N such that Vi(Aj ) � 1/n. Using envy-

freeness we have that Vi(Ai) � Vi(Aj ), and therefore Vi(Ai) � 1/n. The converse
is true for the case of two agents, because Vi(Ai) � 1/2 and Vi(Ai) + Vi(A3−i) = 1
together imply that Vi(Ai) � Vi(A3−i). However, for three agents there are allocations
that are proportional but not envy-free: An agent can have value 1/3 for its own piece,
satisfying proportionality, but a value of 1/2 for another piece, violating envy-freeness.
It is also worth mentioning that equitability is incomparable to the other two properties:
An allocation where each agent assigns value 0 to its own piece and value 1 to another
piece is equitable but not proportional (and hence not envy-free), while most envy-free
(and hence proportional) allocations would not satisfy the stringent equality constraint
that equitability requires.

13.3 Classic Cake Cutting Algorithms

Although we promised to focus on constructive cake cutting results, we start our formal
discussion of cake cutting algorithms with one nonconstructive existence result that
tells us what we can expect.

Theorem 13.1 (Alon, 1987). Let V1, . . . , Vn be valuation functions induced by con-
tinuous value density functions. Then it is possible to cut the cake in n2 − n places and
partition the n2 − n + 1 intervals into n pieces A1, . . . , An such that for all i, j ∈ N ,
Vi(Aj ) = 1/n.

So, under a mild assumption (continuity of the value density functions), there are
allocations that are equitable (each agent has value exactly 1/n for its piece) and
envy-free (each agent also has value exactly 1/n for any other piece). Moreover, such
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allocations only require a number of cuts that is polynomial in n, regardless of the
valuation functions. Unfortunately, as we shall see constructing allocations satisfying
these properties is difficult. In fact, equitable allocations are impossible to achieve in
the computational model that we adopt,1 which is why we only revisit this property in
Section 13.5.

13.3.1 Proportionality for n = 2: Cut and Choose

When there are two agents, the intuitive cut and choose algorithm computes a propor-
tional (and hence also envy-free) allocation. Agent 1 cuts the cake into two equally
valued pieces, that is, two pieces X1 and X2 such that V1(X1) = V1(X2) = 1/2. Agent
2 then chooses its preferred piece, and agent 1 receives the remaining piece. Formally,
if V2(X1) � V2(X2) then set A2 = X1, A1 = X2; otherwise set A1 = X1, A2 = X2.
This allocation is clearly proportional.

An important property of the cut and choose algorithm—which is shared by other
classic algorithms, described later—is that an agent can obtain its fair share by following
the algorithm, regardless of whether others also follow the algorithm. Indeed, agent 1
would receive a piece worth exactly 1/2 by cutting the cake into two equal pieces, even
if agent 2 deviated from the algorithm by choosing its less preferred piece. Similarly,
agent 2 would receive a piece worth at least 1/2, even if agent 1 cut the cake into two
uneven pieces. Making a distinction between the prescribed algorithm and the agents’
strategies gives rise to intriguing game-theoretic questions, which we do not discuss
here; some relevant references can be found in Section 13.6.

13.3.2 Proportionality for Any n: Dubins-Spanier and Even-Paz

An algorithm devised by Dubins and Spanier (1961) guarantees a proportional alloca-
tion for any number of agents. The algorithm was originally specified using a continu-
ously moving knife, but we describe its discrete version (and slightly modify it for ease
of exposition). In the first round each agent i ∈ N makes a mark at the point xi such
that Vi(0, xi) = 1/n. The agent i∗ that made the leftmost mark—formally an agent in
i∗ ∈ argmini∈Nxi—exits with the piece Ai∗ = [0, xi∗]. The process is repeated with the
remaining agents and remaining cake. When there is only one agent left, it receives the
unclaimed piece of cake.

Each agent i ∈ N that exits during the execution of the algorithm receives a piece
Ai such that Vi(Ai) = 1/n. The proportionality guarantee is also satisfied with respect
to the last agent j , because Vj (Ai) � 1/n for all i ∈ N \ {j}, and hence Vj (Aj ) �
1 − (n − 1)/n = 1/n.

A similar algorithm, proposed more than two decades later by Even and Paz (1984),
achieves the same proportionality guarantee but in a more computationally efficient
way. Presently we describe the algorithm and establish proportionality; we provide a
complexity analysis in Section 13.4. Assume purely for ease of exposition that n is a
power of 2. When the algorithm is given a subset of agents 1, . . . , k and a piece [y, z], it
asks each agent i to mark the point xi such that Vi(y, xi) = Vi(y, z)/2. Let xi1, . . . , xik

1 Methods that achieve equitable allocations, like the one by Brams et al. (2006), require “continuous” operations.
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be the marks sorted from left to right; that is, xij � xij+1 for j = 1, . . . , k − 1. The
algorithm is recursively called with agents i1, . . . , ik/2 and the piece [y, xik/2 ], and
agents ik/2+1, . . . , ik and the piece [xik/2+1, z]. When the algorithm is called with a
singleton set of agents {i} and an interval I it assigns Ai = I . Initially the algorithm is
called with all agents and the entire cake.

At depth k in the recursion tree, n/2k agents share a piece of cake that each values
at least at 1/2k . In particular, at depth lg n the algorithm is called with one agent and
a piece of cake it values at least at 1/2lg n = 1/n. We conclude that the Even-Paz
algorithm is proportional.

However, it is easy to see that the Dubins-Spanier and Even-Paz algorithms are
not envy free. For example, in Dubins-Spanier an agent would never envy agents that
exited earlier, but may certainly envy agents that exited later.

13.3.3 Envy-Freeness for n = 3: Selfridge-Conway

In around 1960, Selfridge and Conway (independently) constructed the following
envy-free algorithm for the case of three agents (see, e.g., Brams and Taylor, 1995):

Initialization:

1. Agent 1 divides the cake into three equally valued pieces X1, X2, X3: V1(X1) =
V1(X2) = V1(X3) = 1/3.

2. Agent 2 trims the most valuable piece according to V2 to create a tie for most valu-
able. For example, if V2(X1) > V2(X2) � V2(X3), agent 2 removes X′ ⊆ X1 such that
V2(X1 \ X′) = V2(X2). We call the three pieces—one of which is trimmed—cake 1
(X1 \ X′, X2, X3 in the example), and we call the trimmings cake 2 (X′ in the example).

Division of cake 1:

3. Agent 3 chooses one of the three pieces of cake 1.
4. If agent 3 chose the trimmed piece (X1 \ X′ in the example), agent 2 chooses between

the two other pieces of cake 1. Otherwise, agent 2 receives the trimmed piece. We denote
the agent i ∈ {2, 3} that received the trimmed piece by T , and the other agent by T .

5. Agent 1 receives the remaining piece of cake 1.

Division of cake 2:

6. Agent T divides cake 2 into three equally valued pieces.
7. Agents T , 1, T select a piece of cake 2 each, in that order.

To establish the envy-freeness of the Selfridge-Conway algorithm, first note that the
division of cake 1 is clearly envy free: Agent 3 chooses first; agent 2 receives one of the
two pieces that it views as tied for largest; and agent 1 definitely receives an untrimmed
piece, which it also views as tied for largest. Now consider the division of cake 2.
Agent T chooses first, and agent T is indifferent between the three pieces, so these
agents do not envy another agent’s piece of cake 2. Combining envy-free divisions of
two disjoint pieces of cake yields an envy-free division of the combined cake, hence
agents T and T are not envious overall. At first glance one may worry that agent 1
prefers T ’s piece of cake 2 to its own. Observe, however, that agent 1 would not envy
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agent T , even if T received all of cake 2; because then T would merely construct one
of the original pieces (X1 in the example), which agent 1 values at 1/3—only as much
as its own untrimmed piece of cake 1!

13.4 Complexity of Cake Cutting

Some of the previous chapters of this book analyzed the computational complexity
of problems in terms of complexity classes such as P and NP. Understanding the
complexity of cake cutting calls for a different approach, though, because in general
there may not be a finite discrete representation of a problem instance. We must
therefore adopt a concrete complexity model that specifies which operations a cake
cutting algorithm is allowed to use; we will measure complexity via bounds on the
number of allowed operations.

The standard concrete complexity model for cake cutting is the Robertson-Webb
model (Robertson and Webb, 1998), which supports two types of queries:

� evali(x, y): Asks agent i to evaluate the interval [x, y]. Formally, evali(x, y) = Vi(x, y).
� cuti(x, α): Asks agent i to cut a piece of cake worth a given value α, starting at a given

point x. Formally, cuti(x, α) = y where y is the leftmost point such that Vi(x, y) = α.

The Robertson-Webb model is deceptively simple, but in fact it is powerful enough to
capture the cake cutting algorithms described in Section 13.3. For example, to simulate
cut and choose the algorithm sends a cut1(0, 1/2) query to agent 1. Agent 1 answers
with a point y; note that V1(0, y) = V1(y, 1) = 1/2. It is now sufficient to ask agent 2 an
eval2(0, y) query. If the answer is at least 1/2, we know that A1 = [y, 1], A2 = [0, y]
is a proportional allocation; otherwise we can obtain a proportional allocation by
switching the two pieces.

Let us also verify that we can simulate the initialization stage of the Selfridge-
Conway algorithm (simulating the other stages is even easier). The algorithm starts
with a cut1(0, 1/3) = y query, followed by a cut1(y, 1/3) = z query. The intervals
[0, y], [y, z], [z, 1] are now known to be worth 1/3 each to agent 1. We next ask
agent 2 to evaluate the three intervals (strictly speaking, evaluating two is sufficient).
Say that V2(0, y) > V2(y, z) � V2(z, 1); to trim the largest piece, the algorithm asks a
cut2(0, V2(0, y) − V2(y, z)) = w query. Cake 2 is the interval [0, w].

Earlier we claimed that the Even-Paz algorithm is more computationally efficient
than the Dubins-Spanier algorithm. We are now in a position to make this statement
formal. The Dubins-Spanier algorithm can be simulated by asking each remaining
agent a cuti(x, 1/n) query, where x is the left boundary of the remaining cake. The
overall number of queries is

∑n−2
k=0(n − k) = �(n2).

The Even-Paz algorithm requires a cuti(y, Vi(y, z)/2) query to each agent in each
recursive call, where [y, z] is the current piece. If we again assume for ease of exposition
that n is a power of 2, there is one recursive call with n agents, two with n/2 agents,
and in general 2k recursive calls with n/2k agents. The overall number of queries is
therefore exactly n lg n. When n is not a power of 2, the algorithm and its analysis can
be slightly adjusted to yield a bound of �(n lg n).
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13.4.1 A Lower Bound for Proportional Cake Cutting

In light of the significant improvement the Even-Paz algorithm achieves over Dubins-
Spanier, one may ask whether it is possible to do even better. The next theorem says
that the answer is no: The Even-Paz algorithm is provably the most computationally
efficient (in the asymptotic sense) proportional cake-cutting algorithm.

Theorem 13.2 (Edmonds and Pruhs, 2006b). Any proportional cake-cutting algo-
rithm requires �(n lg n) queries in the Robertson-Webb model.

To prove the theorem we separate the problem of finding a proportional allocation
into problems that must be solved for each agent individually. To this end, we fix an
agent i ∈ N , and say that a piece X is thin if 
(X) � 2/n, and rich if Vi(X) � 1/n. A
piece is thin-rich if it satisfies both properties (this terminology is inspired by a quote
from Wallis Simpson, the Duchess of Windsor, “A woman can’t be too rich or too
thin”). The thin-rich problem is that of finding a thin-rich piece of cake.

Lemma 13.3. If the complexity (in the Robertson-Webb model) of the thin-rich problem
is T (n), then the complexity of proportional cake cutting (in the Robertson-Webb model)
is �(nT (n)).

Proof. First note that in the Robertson-Webb model each query only acquires infor-
mation about the valuation function of a single agent, hence the interaction with one
agent cannot help us find a thin-rich piece with respect to another agent.

Next, note that in any proportional allocation all the pieces must be rich. Moreover, a
feasible allocation cannot include more than n/2 pieces that are not thin, otherwise we
would have that

∑
i∈N 
(Ai) > (n/2)(2/n) = 1, which is impossible because the length

of the entire cake is 1 and the pieces are disjoint. It follows that the computation of a
proportional allocation requires finding at least n/2 thin-rich pieces, that is, solving the
thin-rich problem with respect to at least n/2 agents. We conclude that the complexity
of proportional cake-cutting is at least (n/2)T (n) = �(nT (n)).

By Lemma 13.3, to prove Theorem 13.2 it is sufficient to establish that the complexity
of the thin-rich problem is �(lg n). In the following, we fix an agent i and hence we
can drop the i subscript (i.e., we use V instead of Vi , cut instead of cuti , and so on).

We represent the valuation function of the fixed agent via a value tree. Assume
without loss of generality that n/2 is a power of 3, and divide the cake into n/2 disjoint
intervals of length 2/n each. The value tree is a rooted complete ternary tree—each
internal node has exactly three children—where the leaves are the disjoint intervals.
Furthermore, for each internal node u, two of the edges to its children are labeled by
1/4 (light edges), and the third is labeled by 1/2 (heavy edge). We think of an internal
node as the union of the intervals at the leaves of the subtree rooted at that node, and the
edge labels tell us how the value of a node is split between its children. In particular,
the value of the interval that corresponds to a node is the product of the weights on the
path from the root to the node. We assume that the value is uniformly distributed on
each interval corresponding to a leaf (i.e., V is piecewise constant). See Figure 13.2
for an illustration.

In general an algorithm can return a piece of cake that does not correspond to a leaf
of the value tree, or even a union of such leaves. However, the next lemma implies that
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Figure 13.2. An example of a value tree for n/2 = 9. In this example, V (2/9, 3/9) = 1/8 and
V (3/9, 4/9) = 1/16.

for the purposes of the proof of Theorem 13.2 we can focus on algorithms that return
a single leaf of the value tree.

Lemma 13.4. When the valuation function is derived from a value tree, if there exists
a T (n)-complexity algorithm for the thin-rich problem in the Robertson-Webb model,
then there exists an O(T (n))-complexity algorithm that returns a thin-rich leaf of the
value tree.

Proof. Suppose that after T (n) queries we were able to find a thin-rich piece of cake
X. There exists an interval I ∗ ∈ X such that V (I ∗) � 
(I ∗)/2, otherwise

V (X) =
∑
I∈X

V (I ) <
∑
I∈X


(I )

2
= 
(X)

2
� 1

n
,

contradicting the assumption that X is rich. It follows that the average value density on
I ∗ is at least 1/2. Note that I ∗ intersects at most two leaves of the value tree because

(I ∗) � 
(X) � 2/n, and the value density function is constant on each of these two
leaves. Therefore, one of these two leaves—call it u—has density at least 1/2, so
V (u) � 
(u)/2 = 1/n.

To pinpoint u using queries in the Robertson-Webb model, note that after T (n)
queries the algorithm knows the values of at most O(T (n)) intervals; we can there-
fore assume without loss of generality that |X| = O(T (n)).2 We conclude that using
O(T (n)) additional eval queries the algorithm can learn the value of each leaf that
intersects an interval I ∈ X.

Lemma 13.4 tells us that it is sufficient to show that any algorithm for the thin-rich
problem that is constrained to return a (rich) leaf of the value tree requires �(lg n)

2 This argument is intuitive and sufficiently formal for the purposes of this chapter, but making it completely
formal requires some more work.
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queries. Intuitively, the path from the root to a rich leaf must have “many” heavy edges.
To find out exactly how many, note that the height of the tree is H = log3(n/2) =
θ(lg(n)). Denoting the number of heavy edges on the path from the root to a leaf u by
q(u), we have

1

n
� V (u) =

(
1

2

)q(u) (1

4

)H−q(u)

=
(

1

4

)H− q(u)
2

.

It follows that 4H−q(u)/2 � n, and hence 2(H − q(u)/2) � lg n. Using the fact that
2H − lg n = �(lg n) we conclude that q(u) = �(lg n). In other words, a constant
fraction of the edges on the path to u must be heavy.

If the algorithm were only allowed to directly query the edges of the value tree, a
lower bound of �(lg n) would follow almost immediately from the preceding argument.
Indeed, unqueried edges could be light, so the algorithm must query a constant fraction
of the edges on the path from the root to a leaf in order to find a constant fraction of
heavy edges. However, we are interested in algorithms that operate in the Robertson-
Webb model, so we must explain how to simulate cut and eval queries by revealing
edges of the value tree.

We say that a node u is revealed if the weights of all edges of every node on the path
from the root to u are known to the algorithm. Intuitively the approach is to generously
answer the algorithm’s queries by revealing nodes in a way that provides at least as
much information as requested. We note the following facts:

� If u is revealed, its value (formally, the value of the interval associated with the node)
V (u) is known to the algorithm.

� If u = [x, y] is revealed then V (0, x) is known to the algorithm: Let u0, . . . , uk = u be
the path from the root to u, then V (0, x) is the sum of the values of the nodes to the left
of each ui , all of which are also revealed. Moreover, V (y, 1) = 1 − V (0, x) − V (x, y)
is also known.

� If z ∈ [x, y] where [x, y] is a revealed leaf then V (0, z) can be computed, using the
preceding observation and the fact that V (x, z) = V (x, y) · 
([x,z])

2/n
.

� If w ∈ u, u is a revealed leaf, and α is a given cake value, then it is possible to compute the
least common ancestor of u and the leaf that contains the point z such that V (w, z) = α.
Indeed, let u0, . . . , uH = u be the path from the root to the leaf u, and let yi be the
rightmost point of ui . We start from i = H and working our way upward iteratively
compute V (w, yi), where V (w, yH ) = 
([w,yH ])

2/n
and V (w, yi) is the sum of V (w, yi+1)

and the values of the children of ui to the right of ui+1. We return the first ui (i.e., the
one with the largest index) such that V (w, yi) � α.

Proof of Theorem 13.2. It is sufficient to prove that any algorithm for the thin-rich
problem that returns a leaf of the value tree requires �(lg n) queries. We will answer
the algorithm’s eval and cut queries by revealing nodes of the value tree in a way that
maintains the following invariant: After k queries, there are at most 2k edges that are
known to be heavy on any path from the root to a leaf. Because we have shown that
�(lg n) edges on the path must be known to be heavy, the theorem will directly follow.
Initially the invariant trivially holds.
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u v

Figure 13.3. Illustration of the proof of Theorem 13.2, with n/2 = 27. In this example the first
query is an eval(x, y) query, x ∈ u, y ∈ v. Solid edges are revealed to be heavy, dashed edges
are revealed to be light. In the process of revealing u, the black nodes are also revealed; note
that all the edges from the root to u are light. Next, in the process of revealing v, the gray
nodes are revealed. Some paths are revealed to contain two heavy edges, but no path contains
more.

Say that the algorithm has already asked k queries, and any root-to-leaf path has
at most 2k edges that were revealed to be heavy. Assume first that query k + 1 is an
eval(x, y) query. Let u be the leaf that contains x, and let u0, . . . , uH = u be the path
from the root to u; ut is the lowest revealed node on this path. The weights of the edges
on the path ut , . . . , uH are revealed to be light. Moreover, each ui on this path has
two additional edges to its children; one is revealed to be light, and the other heavy.
We repeat the same process for y; see Figure 13.3 for an illustration. Since the leaves
containing x and y are revealed, the algorithm has enough information to determine
V (x, y) and therefore to answer the eval query.

Let us verify that the invariant has been maintained. Revealing the nodes on the path
to x adds at most one additional heavy edge on the path to a leaf, because the edges
that are revealed to be heavy do not lie on the same path. The same observation holds
for y, but it may be the case that each of the two procedures contributed a heavy edge
on the path to a leaf. Overall the number of heavy edges on the path to a leaf increased
by at most two, and is now at most 2k + 2 = 2(k + 1).

Dealing with a cut(w, α) query is slightly trickier. First, the leaf that contains w

is revealed as before. Second, we find the least common ancestor u of the leaf that
contains w and the leaf that contains the point z such that V (w, z) = α. Our goal
is to reveal the leaf that contains z in a way that all the currently unrevealed edges
between u and the leaf are light. Starting from the first unrevealed node in this path,
we set the values so that the path always follows a light edge. Specifically, at node
u′, let β be the additional value that is required from u′. If β/V (u′) > 1/2 we set
the edge from v to its left child to be heavy; the path will then follow the middle
or right edge, both of which are light. Otherwise—β/V (u′) � 1/2—we set the right
edge to be heavy, again making the path follow one of the light edges. It can be seen
that the invariant is maintained via the same argument given for the case of an eval
query.

It is worth pointing out that Edmonds and Pruhs (2006b) actually prove a more gen-
eral lower bound that captures approximate proportionality requirements and approxi-
mate queries, and holds even for randomized algorithms.
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13.4.2 The Complexity of Envy-Free Cake Cutting

While the complexity of proportional cake cutting is well understood, envy-freeness
is a completely different matter. The classic Selfridge-Conway algorithm provides an
envy-free solution for the case of three agents, but it took another three decades until
their algorithm was extended to any number of agents. The celebrated algorithm of
Brams and Taylor (1995) is a discrete envy-free cake cutting algorithm. When viewed
through the Robertson-Webb lens, the algorithm can be simulated via eval and cut
queries, and is guaranteed to terminate—it is finite. But it does have a serious flaw: Its
running time is unbounded. Specifically, the analysis of the Dubins-Spanier and Even-
Paz algorithms bounded the required number of queries as a function of the number
of agents: O(n2) and O(n lg n), respectively. In contrast, for any n � 4 and any k ∈ N
there are valuation functions V1, . . . , Vn such that the Brams-Taylor algorithm requires
at least k queries to terminate.3

It is natural to ask whether the envy-free cake cutting problem is inherently diffi-
cult: Is it provably impossible to design a bounded envy-free cake cutting algorithm?
Currently there are two partial answers to this question. The first result restricts the
allocations to be contiguous.

Theorem 13.5 (Stromquist, 2008). For any n � 3, there is no finite envy-free cake-
cutting algorithm that outputs contiguous allocations.4

However, from a technical point of view the restriction to contiguous pieces is
severe. Indeed, the Brams-Taylor algorithm is finite and guarantees an envy-free allo-
cation for any number of agents. Moreover, for the case of n = 3 (which is captured by
Theorem 13.5), the Selfridge-Conway algorithm is actually a bounded envy-free algo-
rithm! Interestingly, the latter algorithm even allocates “almost contiguous” pieces, in
that the piece of each agent is the union of at most two intervals.

The second result does not make any assumptions, but achieves a relatively weak
lower bound.

Theorem 13.6 (Procaccia, 2009). Any envy-free cake-cutting algorithm requires �(n2)
queries in the Robertson-Webb model.

This theorem is somewhat unsatisfying, because the gap between �(n2) and
“unbounded” is still, well, unbounded. Nevertheless, it does establish a separation
between the O(n lg n) complexity of proportional cake cutting and the �(n2) complex-
ity of envy-free cake cutting. In other words, the theorem implies that envy-freeness
is provably harder than proportionality, and provides a partial explanation for why
envy-freeness has been so elusive.

The running time of the Brams-Taylor algorithm depends on the valuation functions;
this fact seems to suggest that the hardness of envy-free cake cutting draws on the
possible richness of the valuation functions. This turns out not to be the case: In the
Robertson-Webb model, envy-free cake cutting is equally hard when the valuation
functions are piecewise uniform.

3 Even when moving knives are allowed, there are no known bounded solutions beyond the case of n = 5 (Brams
et al., 1997b; Saberi and Wang, 2009).

4 This theorem was extended by Deng et al. (2012).
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Theorem 13.7 (Kurokawa et al., 2013). Suppose there is an algorithm that computes
an envy-free allocation for n agents with piecewise uniform valuations using at most
f (n) queries in the Robertson-Webb model. Then the algorithm can compute an envy-
free allocation for n agents with general valuation functions using at most f (n) queries.

Proof. Let V1, . . . , Vn be general valuation functions. We let the algorithm interact
with these functions via cut and eval queries. Suppose first that the algorithm outputs
an allocation A using at most f (n) queries. Our goal is to construct piecewise uniform
valuation functions U1, . . . , Un that lead to an identical interaction with the algorithm,
and identical values for the allocated pieces (i.e., Vi(Ai) = Ui(Ai) for all i ∈ N ). Since
the algorithm is guaranteed to output an envy-free allocation with respect to U1, . . . , Un,
these properties would imply that A is envy-free with respect to the general valuation
functions V1, . . . , Vn.

To construct the valuation functions U1, . . . , Un, we define sets of points Mi as
follows. First, Mi contains all “marks” made during the algorithm’s interaction with
agent i; an evali(x, y) query marks the points x and y, and a cuti(x, α) query marks
the point x and the point y that is returned. Second, for each j ∈ N and each interval
[x, y] ∈ Aj , Mi contains x and y; in other words, the allocation A induces a partition
of [0, 1] into subintervals, and Mi contains the boundaries of these intervals. Third, Mi

contains the boundaries of the cake, 0 and 1.
Let Mi = {0 = xi1, xi2, . . . , xiki

= 1}, where xit < xi,t+1 for all t = 1, . . . , ki − 1.
Let μi = maxt

Vi (xit ,xi,t+1)
xi,t+1−xit

be the maximum average density on any interval defined by
the points in Mi . The valuation function Ui is induced by a piecewise uniform value
density function ui , defined as follows:

ui(x) =
{

μi ∃t s.t. x ∈
[
xi,t+1 − Vi (xit ,xi,t+1)

μi
, xi,t+1

]
0 otherwise.

For all i ∈ N and t = 1, . . . , ki − 1 it holds that

Ui(xit , xi,t+1) = Vi(xit , xi,t+1)

μi

· μi = Vi(xit , xi,t+1).

Since the boundaries of intervals in each Aj are contained in Mi (i.e., they are
among the points xit ), it follows that for every i, j ∈ N , Ui(Aj ) = Vi(Aj ). We also
claim that the algorithm’s interaction with U1, . . . , Un is identical to its interaction
with V1, . . . , Vn. Indeed, the answers to evali queries are identical because the marks
made by the query are contained in the set Mi . To see that the answers to cuti queries
are also identical, consider a cuti(x, α) = y query. Note that Ui(x, y) = Vi(x, y) = α

because x, y ∈ Mi , and crucially for any ε > 0, Ui(x, y − ε) < α because ui is strictly
positive in the left neighborhood of y. This concludes the proof under the assumption
that the algorithm terminates after at most f (n) queries.

If the algorithm does not terminate after f (n) queries, consider the first f (n) queries,
and repeat the process of constructing U1, . . . , Un without including the boundaries
of allocated intervals in M1, . . . , Mn. As before, the algorithm’s interaction with
U1, . . . , Un is identical to its interaction with V1, . . . , Vn, and thus the assumption
that the algorithm proceeds to query f (n) + 1 contradicts the assumption that the
number of queries is bounded by f (n) given piecewise uniform valuations.
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Theorem 13.7 has two complementary interpretations. On one hand, the theorem
tells us that to design an envy-free algorithm we can focus on handling the seemingly
simple case of piecewise uniform valuations. On the other hand, if one seeks to prove a
lower bound for envy-free cake cutting, the theorem implies that constructing elaborate
valuation functions would not be a fruitful approach.

In order to conclude this section on a positive note, we next relax the envy-freeness
requirement, instead asking for ε-envy-freeness: Vi(Ai) � Vi(Aj ) − ε for all i, j ∈ N .
Despite the difficulties we have discussed, it turns out that this natural relaxation can
be solved by a very simple, computationally efficient algorithm. First, the algorithm
asks each agent i ∈ N to cut the cake into %1/ε& disjoint intervals worth ε each (except
for maybe the rightmost interval, which is worth at most ε); this step requires roughly
n/ε cut queries. Next the algorithm sorts the cut points made by all the agents, and asks
each agent to evaluate each interval between two adjacent cut points; this step requires
roughly n2/ε eval queries.

We claim that at this point the algorithm has sufficient information to compute
an ε-envy-free allocation. Indeed, we can treat the intervals between adjacent cut
points as indivisible goods where, crucially, each good is worth at most ε to any
agent. The goods are allocated in a round-robin fashion: each of the agents 1, 2, . . . , n

selects its most preferred good in that order, and we repeat this process until all the
goods have been selected. To see why this allocation is ε-envy-free consider an agent
i ∈ N , and consider the sequence of choices starting from the first time i selected a
good: i, i + 1, . . . , n, 1, . . . , i − 1, i, . . . , i − 1, . . . In each subsequence i, . . . , i − 1,
i prefers its own good to the goods selected by other agents. The only potential source
of envy is the selections made by agents 1, . . . , i − 1 before i first selected a good, but
these agents received one good each in this phase, and Vi(g) � ε for each good g.

13.5 Optimal Cake Cutting

So far we were interested in algorithms that achieve fairness guarantees. But if we
are also interested in economic efficiency, better allocations may be achieved at the
expense of depriving some agents of their fair share.

To quantify the efficiency of an allocation A we employ the notion of social wel-
fare. While this notion has several interpretations, the computer science literature
typically adopts the utilitarian interpretation, as do we: The social welfare of A is
sw(A) = ∑

i∈N Vi(Ai). It is important to note that this notion assumes the agents have
comparable valuation functions. Although earlier we have assumed that Vi(0, 1) = 1,
the assumption was made for ease of exposition; proportionality and envy-freeness
involve inequalities that only constrain the valuation function of a single agent; that
is, two valuation functions never appear in the same inequality. In contrast, when
discussing social welfare our objective is the sum of all valuation functions, so our
assumption that Vi(0, 1) = 1 for all i ∈ N takes a more literal interpretation.

13.5.1 Computation of Optimal Fair Allocations

Our next task is the computation of optimal fair allocations; that is, we wish to maxi-
mize social welfare under fairness constraints. To circumvent the computational issues



324 1 3 cake cutting algorithms

0 0.5 1
0

1

2

Figure 13.4. An illustration of piecewise constant value density functions, where n = 2 and
the area under the density function of agent 1 (resp., agent 2) is filled with horizontal (resp.,
vertical) lines. The boundaries of the segments reported by the agents are marked by white
circles. Note that both value density functions are constant between every pair of consecutive
marks.

discussed in Section 13.4, the algorithmic results assume that agents’ valuation func-
tions are restricted. For ease of exposition we formulate and prove the results for
piecewise constant valuations, even though some of them also hold under less restric-
tive assumptions.

Crucially, we also assume that these valuations are fully known to the algorithm. In
other words, the algorithm’s task is not to elicit information via the kind of interaction
with the agents captured by the Robertson-Webb model; rather, the algorithm’s goal is
to compute an allocation, given an explicit representation of the valuation functions.
Such an explicit representation is possible because piecewise constant valuations are
concisely representable: For each segment on which the density function is constant,
the representation includes the boundaries of the segment and the density.5

For the sake of intuition, let us first see why computing allocations that are both envy-
free and equitable (but not necessarily optimal) is easy given the full representation of
the agents’ piecewise constant valuation functions. Mark the boundaries of the agents’
reported segments, as well as 0 and 1. Let J denote the set of intervals that lie between
consecutive marks. The crucial observation is that for all i ∈ N and all I ∈ J , vi is
constant on I , as can be seen in Figure 13.4. It follows that if I ′ ⊆ I is such that

(I ′) = 
(I )/n then Vi(I ′) = Vi(I )/n. To construct the allocation A1, . . . , An, simply
partition each I ∈ J into n pieces of equal length, and give each piece to a different
agent. It holds that for all i, j ∈ N , Vi(Aj ) = 1/n; that is, each agent values each
piece at exactly 1/n, and in particular the allocation is envy-free and equitable. In
other words, under piecewise constant valuation functions we can compute the kind of
allocations whose existence Theorem 13.1 guarantees.

More generally, suppose that the piece Aj allocated to j consists of a fraction fjI

interval I , for every I ∈ J ; then for every i ∈ N , Vi(Aj ) = ∑
I∈J fjIVi(I ). Because

envy-freeness, proportionality, and equitability are linear constraints on the values of
allocated pieces, this observation directly allows us to compute optimal allocations
among the allocations satisfying any of these fairness properties, or even pairs of
properties.6 For example, to compute optimal proportional allocations we can solve

5 We assume that these parameters are represented as k-bit rationals, that is, numbers of the form a/b where a

and b are k-bit integers.
6 It is pointless to talk about satisfying all three properties together because envy-freeness implies proportionality.
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the following linear program (Cohler et al., 2011):

max
n∑

i=1

∑
I∈J

fiIVi(I ), (13.1)

s.t.
n∑

i=1

fiI � 1 ∀I ∈ J , (13.2)

∑
I∈J

fiIVi(I ) � 1

n
∀i ∈ N, (13.3)

fiI � 0 ∀i ∈ N, I ∈ J . (13.4)

The social welfare objective is formulated as Equation 13.1. Equation 13.2 ensures
that the fractions of interval I that are allocated sum up to at most 1, and Equation 13.4
guarantees that these fractions are nonnegative. The proportionality constraint is for-
mulated as Equation (13.3).

In contrast, as in Section 13.4 (cf. Theorem 13.5), when contiguous allocations are
required the problem becomes much harder.

Theorem 13.8 (Bei et al., 2012). Given explicit piecewise constant valuation functions
and assuming that the allocation must be proportional and contiguous, the optimal
social welfare is NP-hard to approximate to a factor of �(

√
n).

13.5.2 The Price of Fairness

The results of Section 13.5.1 enable the computation of optimal fair allocations; but
how good are these allocations? The fairness constraints cause a degradation in social
welfare, which can be measured using the price of fairness. The price of proportionality
(resp., envy-freeness, equitability) is the worst-case (over agents’ valuation functions)
ratio between the social welfare of the optimal allocation, and the social welfare of the
optimal proportional (resp., envy-free, equitable) allocation.

Theorem 13.9 (Caragiannis et al., 2009). The price of proportionality is �(
√

n).

To establish the upper bound, we must show that for any collection of valuation
functions, the ratio between the social welfare of the optimal allocation and the opti-
mal proportional allocation is O(

√
n). The lower bound only requires producing one

example of valuation functions such that this ratio is �(
√

n).

Proof of Theorem 13.9. To prove the upper bound, let V1, . . . , Vn be the agents’ valua-
tion functions, and let A∗ be the optimal allocation. Let L = {i ∈ N : Vi(A∗

i ) � 1/
√

n}
be the set of “large” agents, and S = N \ L be the set of “small” agents. We consider
two cases.

Case 1: |L| � √
n. It follows from the assumption that |S| � n −√

n. Define an
allocation A as follows. For each i ∈ S, reallocate A∗

i among the agents in S so that
for each j ∈ S, Vj (Aj ∩ A∗

i ) � Vj (A∗
i )/|S|; this can even be done algorithmically

(although only existence is required), for example, using (a slight variation of) the
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Even-Paz protocol. For each i ∈ L, we reallocate A∗
i among the agents in {i} ∪ S so

that

Vi(Ai ∩ A∗
i ) �

√
n · Vi(A∗

i )√
n + |S| ,

and for all j ∈ S,

Vj (Aj ∩ A∗
i ) � Vj (A∗

i )√
n + |S| .

This can be done, for example, by creating
√

n − 1 copies of agent i with identical
valuations and running the Even-Paz algorithm with the

√
n identical agents and the

agents in S.
Note that the allocation A1, . . . , An is proportional, because for all i ∈ L,

Vi(Ai) �
√

n · Vi(A∗
i )√

n + |S| �
1√

n + |S| �
1

n
,

and for all i ∈ S,

Vi(Ai) �
∑
j∈L

Vi(A∗
j )√

n + |S| +
∑
j∈S

Vi(A∗
j )

|S| �
∑

j∈N Vi(A∗
j )

n
= 1

n
.

Moreover, for each i ∈ N , Vi(Ai) � Vi(A∗
i )/

√
n, hence it holds that sw(A) �

sw(A∗)/
√

n; the ratio is at most
√

n.
Case 2: |L| <

√
n. Observe that sw(A∗) � |L| + |S|/√n < 2

√
n, while for any

proportional allocation A, sw(A) �∑
i∈N 1/n = 1; the ratio is O(

√
n).

To establish the lower bound, consider the following valuation functions. The set
of agents L ⊆ N now contains exactly

√
n agents, each uniformly interested only in

a single interval of length 1/
√

n, such that for i, j ∈ L the two desired intervals are
disjoint. The set of agents S = N \ L contains n −√

n agents that desire the entire
cake uniformly.

The optimal allocation A∗ gives each agent in L its desired interval, hence sw(A∗) =√
n. In contrast, any proportional allocation A would have to give an interval of length

1/n to each agent in S, leaving only 1/
√

n by length to the agents in L. With their
density of

√
n, it must hold that

∑
i∈L Vi(Ai) �

√
n/

√
n = 1, while

∑
i∈S Vi(Ai) � 1.

Thus, sw(A) � 2; the ratio is �(
√

n).

Two comments on the theorem and its proof are in order. First, the lower bound of
�(

√
n) also applies to the price of envy-freeness, because every envy-free allocation is

proportional. However, no nontrivial o(n) upper bound on the price of envy-freeness
is known. Second, the valuation functions used in the lower bound construction are
piecewise uniform, so one cannot hope to circumvent this negative result by restricting
the valuation functions. It is not hard to see that a similar construction only admits
severely suboptimal equitable allocations, and indeed the price of equitability is steep.

Theorem 13.10 (Caragiannis et al., 2009). The price of equitability is �(n).

While the price of equitability is significantly higher than the price of proportionality,
the comparison relies on a worst-case notion, and it could be the case that there are
instances where the optimal equitable allocation is superior to the optimal proportional
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allocation in terms of social welfare. The last technical result for this chapter rules
out this situation, even if we replace proportionality by the stronger envy-freeness
requirement; for ease of exposition we formulate and prove the theorem for piecewise
constant valuations.

Theorem 13.11 (Brams et al., 2012a). Given piecewise constant valuation functions
V1, . . . , Vn, let A∗ be the optimal equitable allocation and let A∗∗ be the optimal
envy-free allocation. Then sw(A∗) � sw(A∗∗).

The theorem’s proof draws on a connection between cake cutting and linear Fisher
markets. Instead of a single heterogeneous divisible good, the market includes a set
G = {1, . . . , m} of homogeneous divisible goods. The utility of good j for agent i is
denoted by uij . An allocation gives each agent i ∈ N a fraction fij of good j such that
for all j ∈ G,

∑
i∈N fij � 1. The utility of agent i for an allocation is

∑
j∈G fijuij .

Consider a cake allocation A, and let the set of goods be the pieces in A, that is, good
j corresponds to the piece Aj , and uij = Vi(Aj ). We claim that given an allocation
f = (fij )i∈N,j∈G in the Fisher market, there is an allocation A′ in the corresponding
cake cutting setting such that Vi(A′

j ) = ∑
k∈G fjkuik for all i, j ∈ N ; that is, agents’

utilities in the Fisher market can be replicated in the cake cutting setting. This claim
can be established via similar arguments to the ones we have seen in Section 13.5.1:
Each piece Aj is divides into intervals such that each interval is valued uniformly by
all agents, and then an fij -fraction (by length) of each of these intervals is added to the
piece A′

i .

Lemma 13.12 (see, e.g., Vazirani, 2007). Consider a linear Fisher market where
agent i ∈ N has budget ei ,

∑
i∈N ei = 1, and for every j ∈ G there is i ∈ N such that

uij > 0. Then there exists a price vector p = (p1, . . . , pm) such that pj > 0 for all
j ∈ G and

∑
j∈G pj = 1, and an allocation f such that:

1. Goods are fully allocated: For all j ∈ G,
∑

i∈N fij = 1.
2. Agents only get their most profitable goods under the price vector p: For all i ∈ N, j ∈

G, if fij > 0 then j ∈ argmaxk∈Guik/pk .
3. Agents spend their entire budgets: For all i ∈ N ,

∑
j∈G fijpj = ei .

Proof of Theorem 13.11. Consider the optimal equitable allocation A∗. We construct
a linear Fisher market where good j corresponds to A∗

j , and uij = Vi(A∗
j ). We also

set the agents’ budgets to be identical: ei = 1/n for all i ∈ N . Using Lemma 13.12
we obtain an allocation f in the Fisher market satisfying properties 1–3. Construct an
allocation A that corresponds to the Fisher market allocation, as explained earlier. We
claim that A is an envy-free allocation and sw(A) � sw(A∗).

The envy-freeness of A follows directly from the assumptions that the price of each
agent’s bundle is exactly 1/n and each agent receives only items that maximize the
ratio of utility to price. Formally, for an agent i ∈ N let r∗i = maxj∈G uij /pj ; then

Vi(Ai) =
∑
j∈G

fijuij =
∑
j∈G

fij

uij

pj

pj =
∑
j∈G

fij r
∗
i pj = r∗i

n
, (13.5)
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where the third transition follows from the second property in Lemma 13.12, and the
fourth transition follows from the third property and ei = 1/n. Likewise,

Vi(Ak) =
∑
j∈G

fkjuij =
∑
j∈G

fkj

uij

pj

pj �
∑
j∈G

fkj r
∗
i pj = r∗i

n
.

Next we prove that sw(A) � sw(A∗). Because A∗ is equitable there exists α > 0 such
that Vi(A∗

i ) = α for all i ∈ N ; hence sw(A∗) = nα. We also know from Equation (13.5)
that sw(A) = 1

n

∑
i∈N r∗i . By definition, r∗i � uii/pi ; recall that uii = Vi(A∗

i ) = α. We
conclude that

sw(A) = 1

n

∑
i∈N

r∗i � 1

n

∑
i∈N

uii

pi

= α

n

∑
i∈N

1

pi

� α

n
n2 = nα = sw(A∗),

where the fourth transition holds because
∑

i∈N pi = 1, and therefore the sum∑
i∈N (1/pi) is minimized when pi = 1/n for all i ∈ N .

13.6 Bibliography and Further Reading

Section 13.4 covers complexity results due to Edmonds and Pruhs (2006b), Stromquist
(2008), Procaccia (2009), and Kurokawa et al. (2013). The result of Stromquist (2008)
was generalized by Deng et al. (2012). Other papers on the complexity of cake cutting
include the ones by Woeginger and Sgall (2007), Magdon-Ismail et al. (2003), and
Balkanski et al. (2014). A beautiful paper by Edmonds and Pruhs (2006a) circumvents
Theorem 13.2 by designing a randomized, approximately proportional algorithm that
requires only O(n) queries in the Robertson-Webb model.

Section 13.5 includes results by Caragiannis et al. (2009), Cohler et al. (2011),
Brams et al. (2012a), and Bei et al. (2012); all of these papers contain numerous results
that are not covered here. The complexity of cake cutting with contiguous pieces but
without fairness constraints is explored by Aumann et al. (2013). The price of fairness
was independently proposed by Caragiannis et al. (2009) and Bertsimas et al. (2011);
the concept is inspired by the price of stability (Anshelevich et al., 2004). Aumann
and Dombb (2010) study the price of fairness under the restriction that allocations
are contiguous. Arzi et al. (2011) show that (when pieces are contiguous) the optimal
fair allocation can actually be better if a piece of cake is discarded, and quantify
the potential benefit. It is also worth mentioning that the problem of interpersonal
comparison of utility has been extensively debated by philosophers and economists;
for more information see the survey by Hammond (1991).

This chapter does not attempt to cover game-theoretic issues in cake cutting. A
simple randomized strategyproof, envy-free algorithm was independently discovered
by Chen et al. (2013) and Mossel and Tamuz (2010). Chen et al. (2013) also design a
more intricate deterministic strategyproof envy-free algorithm for piecewise uniform
valuation functions, which is generalized by Aziz and Ye (2014); under the same
assumption, Maya and Nisan (2012) give a characterization of strategyproof, Pareto-
efficient cake cutting algorithms. Nash equilibria of cake cutting algorithms are studied
by Nicolò and Yu (2008) and Brânzei and Miltersen (2013).
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This chapter also avoids nonconstructive existence results, focusing on algorithmic
results instead. The book by Barbanel (2005) is a good source of information about
existence results in fair division.

Additional cake cutting research has recently explored a variety of questions. For
example, Brams et al. (2013) show that Pareto-efficient, envy-free, and equitable allo-
cations may not exist when n � 3; Lindner and Rothe (2009) aim to design algorithms
that provide guarantees with respect to the number of envy relations between pairs
of agents; Zivan (2011) establishes a trade-off between the strength of proportionality
guarantees (which he interprets as the level of trust between agents) and social welfare;
Caragiannis et al. (2011) investigate the approximate fairness guarantees that can be
achieved when agents’ valuation functions are nonadditive; and Brânzei et al. (2013a)
study externalities in cake cutting.

In a recent paper, Ghodsi et al. (2011) suggested that fair division theory can be
applied to the problem of allocating computational resources (e.g., CPU, RAM) in
cluster computing environments. Users are modeled as having Leontief preferences,
meaning that they demand the resources in fixed proportions. While the model is
somewhat different, it has much in common with the cake cutting model. Other papers
that study this research direction include papers by Dolev et al. (2012), Gutman and
Nisan (2012), Parkes et al. (2014), and Kash et al. (2014).
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CHAPTER 14

Matching under Preferences

Bettina Klaus, David F. Manlove, and Francesca Rossi

14.1 Introduction and Discussion of Applications

Matching theory studies how agents and/or objects from different sets can be matched
with each other while taking agents’ preferences into account. The theory originated
in 1962 with a celebrated paper by David Gale and Lloyd Shapley (1962), in which
they proposed the Stable Marriage Algorithm as a solution to the problem of two-sided
matching. Since then, this theory has been successfully applied to many real-world
problems such as matching students to universities, doctors to hospitals, kidney trans-
plant patients to donors, and tenants to houses. This chapter will focus on algorithmic
as well as strategic issues of matching theory.

Many large-scale centralized allocation processes can be modelled by matching
problems where agents have preferences over one another. For example, in China, over
10 million students apply for admission to higher education annually through a cen-
tralized process. The inputs to the matching scheme include the students’ preferences
over universities, and vice versa, and the capacities of each university.1 The task is to
construct a matching that is in some sense optimal with respect to these inputs.

Economists have long understood the problems with decentralized matching mar-
kets, which can suffer from such undesirable properties as unravelling, congestion
and exploding offers (see Roth and Xing, 1994, for details). For centralized markets,
constructing allocations by hand for large problem instances is clearly infeasible. Thus
centralized mechanisms are required for automating the allocation process.

Given the large number of agents typically involved, the computational efficiency
of a mechanism’s underlying algorithm is of paramount importance. Thus we seek
polynomial-time algorithms for the underlying matching problems. Equally important
are considerations of strategy: an agent (or a coalition of agents) may manipulate
their input to the matching scheme (e.g., by misrepresenting their true preferences or
underreporting their capacity) in order to try to improve their outcome. A desirable

1 In fact, students are first assigned to universities and then to their programme of study within the university
(see, e.g., Zhu, 2014).

333
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property of a mechanism is strategyproofness, which ensures that it is in the best
interests of an agent to behave truthfully.

The study of matching problems involving preferences was begun in 1962 with the
seminal paper of Gale and Shapley (1962) who gave an efficient algorithm for the
so-called Stable Marriage problem (which involves matching men to women based on
each person having preferences over members of the opposite sex) and showed how
to extend it to the College Admissions problem, a many-to-one extension of the Stable
Marriage problem which involves allocating students to colleges based on college
capacities, as well as on students’ preferences over colleges, and vice versa. Their
algorithm has come to be known as the Gale–Shapley algorithm.

Since 1962, the study of matching problems involving preferences has grown into
a large and active research area, and numerous contributions have been made by com-
puter scientists, economists, and mathematicians, among others. Several monographs
exclusively dealing with this class of problems have been published (Knuth, 1976;
Gusfield and Irving, 1989; Roth and Sotomayor, 1990; Manlove, 2013).

A particularly appealing aspect of this research area is the range of practical appli-
cations of matching problems, leading to real-life scenarios where efficient algorithms
can be deployed and issues of strategy can be overcome. One of the best-known exam-
ples is the National Resident Matching Program (NRMP) in the United States, which
handles the annual allocation of intending junior doctors (or residents) to hospital posts.
In 2014, 40,394 aspiring junior doctors applied via the NRMP for 29,671 available
residency positions (NRMP, 2014). The problem model is very similar to Gale and
Shapley’s College Admissions problem, and indeed an extension of the Gale–Shapley
algorithm is used to construct the allocation each year (Roth, 1984a; Roth and Peran-
son, 1997). Similar medical matching schemes exist in Canada, Japan, and the United
Kingdom. As Roth argued, the key property for a matching to satisfy in this context is
stability, which ensures that a resident and hospital do not have the incentive to deviate
from their allocation and become matched to one another.

Similar applications arise in the context of School Choice (Abdulkadiroğlu and
Sönmez, 2003). For example in Boston and New York, centralized matching schemes
are employed to assign pupils to schools on the basis of the preferences of pupils (or
more realistically their parents) over schools, and pupils’ priorities for assignment to
a given school (Abdulkadiroğlu et al., 2005a, 2005b). A school’s priority for a pupil
might include issues such as geographical proximity and whether the pupil has a sibling
at the school already, among others.

Kidney exchange (Roth et al., 2004, 2005) is another application of matching that
has grown in importance in recent years. Sometimes, a kidney patient with a willing
but incompatible donor can swap their donor with that of another patient in a similar
position. Efficient algorithms are required to organize kidney “swaps” on the basis of
information about donor and patient compatibilities. Such swaps can involve two or
more patient–donor pairs, but usually the maximum number of pairs involved is three.
Also altruistic donors can trigger “chains” involving swaps between patient–donor
pairs. These allow for a larger number of kidney transplants (compared to those one
could perform based on deceased donors only) and thus more lives saved. Centralized
clearinghouses for kidney exchange are in operation on a nationwide scale in a number



1 4 .1 introduction and discussion of applications 335

of countries including the United States (Roth et al., 2004, 2005; Ashlagi and Roth,
2012), the Netherlands (Keizer et al., 2005), and the United Kingdom (Johnson et al.,
2008). The problem of maximizing the number of kidney transplants performed through
cycles and chains is NP-hard (Abraham et al., 2007a), though algorithms based on
Mixed Integer Programming have been developed and are used to solve this problem
at scale in the countries mentioned (Abraham et al., 2007a; Dickerson et al., 2013;
Manlove and O’Malley, 2012; Glorie et al., 2014).

The importance of the research area in both theoretical and practical senses was
underlined in 2012 by the award of the Sveriges Riksbank Prize in Economic Sciences in
Memory of Alfred Nobel (commonly known as the Nobel Prize in Economic Sciences)
to Alvin Roth and Lloyd Shapley for their work in “the theory of stable allocations and
the practice of market design.” This reflects both Shapley’s contribution to the Stable
Marriage algorithm among other theoretical advances, and Roth’s application of these
results to matching markets involving the assignment of junior doctors to hospitals,
pupils to schools, and kidney patients to donors. The Nobel prize rules state that the
prize cannot be awarded posthumously and hence David Gale (1921–2008) could not
be honoured for his important contributions.

Matching problems involving preferences can be classified as being either bipartite
or nonbipartite. In the former case, the agents are partitioned into two disjoint sets
A and B, and the members of A have preferences over only the members of B (and
possibly vice versa). In the latter case we have one single set of agents, each of whom
ranks some or all of the others in order of preference. For space reasons we will consider
only bipartite matching problems involving preferences in this chapter.

Bipartite problems can be further categorized according to whether the preferences
are two-sided or one-sided. In the former case, members of both of the sets A and B

have preferences over one another, whereas in the latter case only the members of A

have preferences (over the members of B). Bipartite matching problems with two-sided
preferences arise in the context of assigning junior doctors to hospitals, for example,
while one-sided preferences arise in applications including the assignment of students
to campus housing and reviewers to conference papers.

Our treatment covers ordinal preferences (where preferences are expressed in terms
of first choice, second choice, etc.) rather than cardinal utilities (where preferences
are expressed in terms of real-numbered valuations). In their simplest form, models
of kidney exchange problems can involve dichotomous preferences (a special case of
ordinal preferences, where an agent either finds another agent acceptable or not, and
is indifferent among those it does find acceptable), on the basis of whether a patient is
compatible with a potential donor. However, in practice, models of kidney exchange are
more complex, typically involving cardinal utilities rather than ordinal preferences, and
therefore the matching problems defined in this chapter do not encompass theoretical
models of kidney exchange.

The problems considered in this chapter sit strongly within the field of computational
social choice. This field lies at the interface of economics and computer science, and
our approach will involve interleaving key aspects that have hitherto been considered
by the two communities in bodies of literature that have largely pertained to the
two disciplines separately. Such key considerations involve the existence of structural
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results and efficient algorithms, and the derivation of strategyproof mechanisms. These
topics will be reviewed in each of the cases of bipartite matching problems with two-
sided and one-sided preferences. Although space restrictions have necessarily limited
our coverage, we have tried to include the results that we feel will be of most importance
to the readership of this handbook.

The structure of this chapter is as follows. In Section 14.2, we focus on bipartite
matching problems where both sides have preferences. Here the most important prop-
erty for a matching to satisfy is stability. In Section 14.2.1 we define the key matching
problems in this class, most notably the Hospitals / Residents problem, and we also
define stability in this context. We then state fundamental structural and algorithmic
results concerning the existence, computation, and structural properties of stable match-
ings, in Section 14.2.2. Issues of strategy, and in particular the existence (or otherwise)
of strategyproof mechanisms, are dealt with in Section 14.2.3. Next, in Section 14.2.4,
we outline some further algorithmic results, including decentralized algorithms for
computing stable matchings, variants of the Hospitals/Residents problem involving
ties and couples, and many-to-many extensions.

Bipartite matching problems where only one side of the market has preferences
are considered in Section 14.3. The fundamental problems in this class are the House
Allocation problem and its extension to Housing Markets. We define these problems
together with key properties of matchings, including Pareto optimality and membership
of the core, in Section 14.3.1. Section 14.3.2 describes some important mechanisms
that can be used to produce Pareto optimal matchings and matchings in the core.
Strategyproofness is considered in Section 14.3.3, and then further algorithmic results
are described in Section 14.3.4, including the computation of maximum Pareto optimal,
popular, and profile-based optimal matchings.

Finally, in Section 14.4 we give some concluding remarks and list some further
sources of reading.

14.2 Two-Sided Preferences

14.2.1 Introduction and Preliminary Definitions

The Hospitals/Residents problem2 (hr) (Gale and Shapley, 1962; Gusfield and Irving,
1989; Roth and Sotomayor, 1990; Manlove, 2008) was first defined by Gale and
Shapley in their seminal paper “College Admissions and the Stability of Marriage”
(Gale and Shapley, 1962).

An instance I of hr involves a set R = {r1, . . . , rn1} of residents and a set
H = {h1, . . . , hn2} of hospitals. Each hospital hj ∈ H has a positive integer capac-
ity, denoted by cj , indicating the number of posts that hj has. Also there is a
set E ⊆ R × H of acceptable resident–hospital pairs. Let m = |E|. Each resident
ri ∈ R has an acceptable set of hospitals A(ri), where A(ri) = {hj ∈ H : (ri, hj ) ∈ E}.
Similarly each hospital hj ∈ H has an acceptable set of residents A(hj ), where
A(hj ) = {ri ∈ R : (ri, hj ) ∈ E}.

2 The Hospitals/Residents problem is sometimes referred to as the College (or University or Stable) Admissions
problem, or the Stable Assignment problem.
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The agents in I are the residents and hospitals in R ∪ H . Each agent ak ∈ R ∪ H has
a preference list in which she/it ranks A(ak) in strict order. Given any resident ri ∈ R,
and given any hospitals hj , hk ∈ H , ri is said to prefer hj to hk if {hj , hk} ⊆ A(ri)
and hj precedes hk on ri’s preference list; the prefers relation is defined similarly for
a hospital.

An assignment M in I is a subset of E. If (ri, hj ) ∈ M , ri is said to be assigned
to hj , and hj is assigned ri . For each ak ∈ R ∪ H , the set of assignees of ak in M is
denoted by M(ak). If ri ∈ R and M(ri) = ∅, ri is said to be unassigned, otherwise ri is
assigned. Similarly, a hospital hj ∈ H is undersubscribed or full according as |M(hj )|
is less than or equal to cj , respectively. A matching M in I is an assignment such
that |M(ri)| � 1 for each ri ∈ R and |M(hj )| � cj for each hj ∈ H . For notational
convenience, given a matching M and a resident ri ∈ R such that M(ri) �= ∅, where
there is no ambiguity the notation M(ri) is also used to refer to the single member of
the set M(ri).

Given an instance I of hr and a matching M , a pair (ri, hj ) ∈ E\M blocks M (or
is a blocking pair for M) if (i) ri is unassigned or prefers hj to M(ri) and (ii) hj is
undersubscribed or prefers ri to at least one member of M(hj ). M is said to be stable
if it admits no blocking pair. If a resident–hospital pair (ri, hj ) belongs to some stable
matching in I , ri is called a stable partner of hj , and vice versa.

Example 14.1 (hr instance). Consider the following hr instance:

r1 : h1 h2 h1 : 1 : r3 r2 r1 r4

r2 : h1 h2 h3 h2 : 2 : r2 r3 r1 r4

r3 : h2 h1 h3 h3 : 1 : r2 r3

r4 : h2 h1

Here, r1 prefers h1 to h2 and does not find h3 acceptable. Also, h1 has capacity
1 and prefers r3 to r2, and so on. M = {(r2, h1), (r3, h2), (r4, h2)} is a matching in
which each resident is assigned except for r1, and both h1 and h2 are full while h3 is
undersubscribed. M is not stable because (r1, h2) is a blocking pair.

The Stable Marriage problem with Incomplete lists (smi) (Gale and Shapley, 1962;
Knuth, 1976; Gusfield and Irving, 1989; Roth and Sotomayor, 1990; Irving, 2008) is an
important special case of hr in which cj = 1 for all hj ∈ H , and residents and hospitals
are more commonly referred to as men and women respectively. The classical Stable
Marriage problem (sm) is the restriction of smi in which n1 = n2 and E = R × H .

Finally, the School Choice problem (sc) (Balinski and Sönmez, 1999; Abdulka-
diroğlu and Sönmez, 2003) is a one-sided preference version of hr where students and
schools replace residents and hospitals respectively, and schools are endowed with pri-
orities over students instead of preferences. A school’s priority ranking over students
may reflect a school district’s policy choice (e.g., by giving students who are within
walking distance or have a sibling in the same school a higher priority) or they may be
based on other factors (e.g., grades in an entrance exam, time spent on a waiting list).
For sc, schools are not considered to be economic agents: they neither strategize nor
is their welfare measured and taken into account. Many results can easily be translated
from hr to sc, but often the interpretation changes. For instance, the notion of stability
can be interpreted as the elimination of justified envy (Balinski and Sönmez, 1999): a
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student can justifiably envy the assignment of another student to a school if he likes
that school better than his own assignment and he has a higher priority (with a lower
priority, envy might be present as well but is not justifiable). Two recent and exhaustive
surveys on school choice have been written by Abdulkadiroglu (2013) and Pathak
(2011).

14.2.2 Classical Results: Stability and Gale-Shapley Algorithms

Gale and Shapley (1962) showed that every instance I of hr admits at least one
stable matching. Their proof of this result was constructive, that is, they described a
linear-time algorithm for finding a stable matching in I . Their algorithm is known as
the resident-oriented Gale-Shapley algorithm (or RGS algorithm for short), because it
involves residents applying to hospitals. Given an instance of hr,

(1) at the first step of the RGS algorithm, every resident applies to her favourite acceptable
hospital. For each hospital hj , the cj acceptable applicants who have the highest ranks
according to hj ’s preference list (or all acceptable applicants if there are fewer than cj )
are placed on the waiting list of hj , and all others are rejected;

(l) at the lth step of the RGS algorithm, those applicants who were rejected at step l − 1
apply to their next best acceptable hospital. For each hospital hj , the cj acceptable
applicants among the new applicants and those on the waiting list who have the highest
ranks according to hj ’s preference list (or all acceptable applicants if there are fewer
than cj ) are placed on the waiting list of hj , and all others are rejected.

Example 14.2 (RGS algorithm). We now illustrate an execution of the RGS algorithm
for the hr instance shown in Example 14.1. In the first step, each of r1 and r2 applies
to h1, and each of r3 and r4 applies to h2. Whilst h2 accepts each of r3 and r4, h1 can
only accept r2 (from among r1 and r2). Thus r1 is rejected by h1 and applies to the next
hospital in his preference list, namely, h2, at the second step. At this point, h2 accepts
r1, keeps r3, and rejects r4. In the third step, r4 applies to h1 and is rejected again.
Now the algorithm terminates because each resident is either assigned to a hospital
or has applied to every hospital on his preference list. The resulting matching is thus
M ′ = {(r1, h2), (r2, h1), (r3, h2)}, and the reader may verify that M ′ is stable.

The RGS algorithm is well-defined and terminates with the unique resident-optimal
stable matching Ma that assigns to each resident the best hospital that she could achieve
in any stable matching, while each unassigned resident is unassigned in every stable
matching (Gale and Shapley, 1962; Gusfield and Irving, 1989, Section 1.6.3).

It is instructive to give a short sketch of the proof illustrating why Ma is stable. For,
consider any resident ri and suppose that hj is any hospital that ri prefers to Ma(ri) (if
ri is assigned in Ma) or hj is any hospital that ri finds acceptable (if ri is unassigned
in Ma). Then ri applied to hj during the execution of the RGS algorithm, and was
rejected by hj . This could only happen if hj was full and preferred its worst assignee
to hj at that point. But hj cannot subsequently lose any residents and indeed can only
potentially gain better assignees. Hence in Ma , hj is full and prefers its worst assigned
resident to ri . Thus (ri, hj ) cannot block Ma , and because ri and hj were arbitrary, Ma

is stable.
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Furthermore, Ma is worst-possible for the hospitals in a precise sense: if M is any
other stable matching then every hospital hj ∈ H prefers each resident in M(hj ) to
each resident in Ma(hj )\M(hj ) (Gusfield and Irving, 1989, Section 1.6.5).

Theorem 14.3 (Gale and Shapley, 1962; Gusfield and Irving, 1989). Given an hr
instance, the RGS algorithm constructs, in O(m) time, the unique resident-optimal
stable matching, where m is the number of acceptable resident–hospital pairs.

A counterpart of the RGS algorithm, known as the hospital-oriented Gale–Shapley
algorithm, or HGS algorithm for short, involves hospitals offering posts to residents.
The HGS algorithm terminates with the unique hospital-optimal stable matching Mz.
In this matching, every full hospital hj ∈ H is assigned its cj best stable partners,
while every undersubscribed hospital is assigned the same set of residents in every
stable matching (Gusfield and Irving, 1989, Section 1.6.2). Furthermore, Mz assigns
to each resident the worst hospital that she could achieve in any stable matching, while
each unassigned resident is unassigned in every stable matching (Gusfield and Irving,
1989, Theorem 1.6.1).

Theorem 14.4 (Gusfield and Irving, 1989). Given an instance of hr, the HGS algo-
rithm constructs, in O(m) time, the unique hospital-optimal stable matching, where m

is the number of acceptable resident–hospital pairs.

Note that the RGS / HGS algorithms are often referred to as deferred acceptance
algorithms by economists (Roth, 2008).

It is easy to check that for Example 14.2, Ma = M ′ = Mz. In general there may
be other stable matchings—possibly exponentially many (Irving and Leather, 1986)—
between the two extremes given by Ma and Mz. However some key structural properties
hold regarding unassigned residents and undersubscribed hospitals with respect to all
stable matchings in I , as follows.

Theorem 14.5 (Rural Hospitals Theorem: Roth, 1984a; Gale and Sotomayor, 1985;
Roth, 1986). For a given instance of hr, the following properties hold:

1. the same residents are assigned in all stable matchings;
2. each hospital is assigned the same number of residents in all stable matchings;
3. any hospital that is undersubscribed in one stable matching is assigned exactly the same

set of residents in all stable matchings.

The term “Rural Hospitals Theorem” stems from the tendency of rural hospitals to
have problems in recruiting residents to fill all available slots. The theorem’s name
then indicates the importance of the result to the rural hospitals’ recruitment problem:
under stability one can never choose matchings to help undersubscribed rural hospitals
to recruit more or better residents. Additional background to the Rural Hospitals
Theorem for hr is given by Gusfield and Irving (1989, Section 1.6.4).

A classical result in stable matching theory states that, for a given instance of sm,
the set of stable matchings forms a distributive lattice; Knuth (1976) attributed this
result to John Conway (see also Gusfield and Irving, 1989, Section 1.3.1). In fact such
a structure is also present for the set of stable matchings in a given instance I of hr
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(Gusfield and Irving, 1989, Section 1.6.5). To describe this structure, we will define
some preliminary notation and terminology.

Let S denote the set of stable matchings in I and let M, M ′ ∈ S . We say that ri ∈ R

prefers M to M ′ if ri is assigned in both M and M ′, and ri prefers M(ri) to M ′(ri).
Also, we say that ri is indifferent between M and M ′ if either (i) ri is unassigned in
both M and M ′, or (ii) ri is assigned in both M and M ′, and M(ri) = M ′(ri). Then,
M dominates M ′, denoted M - M ′, if each resident either prefers M to M ′, or is
indifferent between them.

For M, M ′ ∈ S we denote by M ∧ M ′ (respectively M ∨ M ′) the set of resident-
hospital pairs in which either (i) ri is unassigned if she is unassigned in both M and
M ′, or (ii) ri is given the better (respectively poorer) of her partners in M and M ′

if she is assigned in both stable matchings. It turns out that each of M ∧ M ′ and
M ∨ M ′ is a stable matching in I , representing the join and the meet of M and M ′

respectively (Gusfield and Irving, 1989, Section 1.6.5). These operations give rise to a
lattice structure for S , as the following result indicates.

Theorem 14.6 (Gusfield and Irving, 1989). Let I be an instance of hr, and let S be
the set of stable matchings in I . Then (S,-) forms a distributive lattice, with M ∧ M ′

representing the meet, and M ∨ M ′ the join, for two stable matchings M, M ′ ∈ S ,
where - is the dominance partial order on S .

14.2.3 Strategic Results: Strategyproofness

Note that both the RGS and HGS algorithms are described in terms of agents taking
actions based on their preference lists (one side proposes and the other side tenta-
tively accepts or rejects these proposals). However, unless agents have an incentive to
truthfully report their preferences, any preference-based requirement (such as stability)
might lose some of its meaning. The following theorem demonstrates that in general,
stability is not compatible with the requirement that for all agents truth telling is a
weakly dominant strategy (strategyproofness).

To be more precise, we call a function that assigns a matching to each instance of
hr (or smi/sm) a mechanism. A mechanism that assigns only stable matchings is called
stable. The mechanism that always assigns the resident-optimal (hospital-optimal)
stable matching is called the RGS (HGS) mechanism.

A mechanism for which no single agent can ever benefit from misrepresenting
her/its preferences is called strategyproof , that is, in game-theoretic terms, it is a
weakly dominant strategy for each agent to report her/its true preference list. If we
restrict preference misrepresentations to one type of agents only, we obtain the one-
sided versions of strategyproofness: a mechanism for which no single resident can
ever benefit from misrepresenting her preferences is called strategyproof for residents.
Strategyproofness for hospitals is similarly defined.

Theorem 14.7 (Impossibility Theorem: Roth, 1982b). There exists no mechanism
for smi that is stable and strategyproof.

As smi is a special case of hr, Theorem 14.7 clearly extends to the hr case. The
proof of Theorem 14.7 can be shown with the following example.
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Example 14.8 (Impossibility). Consider the following instance:

r1 : h1 h2 h1 : r2 r1

r2 : h2 h1 h2 : r1 r2

The two stable matchings for this instance are Ma = {(r1, h1), (r2, h2)} and Mz =
{(r1, h2), (r2, h1)}. Assume that the mechanism picks stable matching Ma . Then, if h1

pretended that only r2 is acceptable, Ma is not stable anymore and the stable mechanism
would have to pick the only remaining stable matching Mz, which h1 would prefer; a
contradiction to strategyproofness. Similarly, if the mechanism picks stable matching
Mz, r1 could manipulate by declaring h1 uniquely acceptable.

The intuition behind this impossibility result is that an agent who is assigned to
a stable partner that is not her/its best stable partner can improve her/its outcome
by truncating the preference list just below the best stable partner: this unilateral
manipulation will result in the assignment of the best stable partner to the agent
who misrepresented her/its preference list. Alcalde and Barberà (1994) and Takagi
and Serizawa (2010) further strengthened the impossibility result by considerably
weakening the stability requirement.

On the positive side, stable mechanisms that respect strategyproofness for all resi-
dents exist.

Theorem 14.9 (Roth, 1985). The RGS mechanism for hr is strategyproof for residents.

As hr is a generalization of each of sm and smi, clearly Theorem 14.9 also holds
in these latter contexts. This theorem for hr is an extension of an earlier correspond-
ing theorem for sm (Dubins and Freedman, 1981; Roth, 1982a). Strategyproofness for
all residents also turns out to be a key property in characterizing the RGS mechanism
(Ehlers and Klaus, 2014): almost all real-life mechanisms used in variants of hr (includ-
ing sc)—including the large classes of priority mechanisms and linear programming
mechanisms—satisfy a set of simple and intuitive properties, but once strategyproof-
ness is added to these properties, the RGS mechanism is the only one surviving (and
characterized by the respective properties including strategyproofness). For sc, since
residents (aka students) are the only economic agents, Theorem 14.9 in fact estab-
lishes a possibility result. For hr, the negative result of Theorem 14.7 persists even if
restricting attention only to hospitals.

Theorem 14.10 (Roth, 1986). There exists no mechanism for hr that is stable and
strategyproof for hospitals.

This result implies that even when the HGS mechanism is used, hospitals might
have an incentive to misrepresent their preferences.

Once the incompatibility of stability and strategyproofness is established
(Theorems 14.7 and 14.10), the question arises as to whether we can at least find
stable mechanisms that are resistant to strategic behavior, meaning that it is compu-
tationally difficult (i.e., NP-hard) for agents to behave strategically. This approach is
typical in voting theory, which is the subject of Chapter 6 on barriers to manipulation,
because no voting rule is strategyproof (Arrow et al., 2002; Bartholdi et al., 1989a).
It is possible to exploit such results to define stable mechanisms that are resistant to
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strategic behaviour. Pini et al. (2011a) showed how to take voting rules that are resis-
tant to strategic behaviour and use them to define stable mechanisms with the same
property.

Besides worst-case analysis, we may also consider the occurrence and impact of
strategic behavior when stable matching mechanisms are used in real-world instances
of hr. Roth and Peranson (1999) showed that, for data from the NRMP, only a few
participants could improve their outcomes by changing their preference list. They also
showed via simulations that the opportunities for manipulation diminish when the
instances of hr grow larger in population. Since then, various articles have provided
theoretical explanations for this phenomenon for large population instances of smi or
hr (Immorlica and Mahdian, 2005; Kojima and Pathak, 2009; Lee, 2014).

14.2.4 Further Algorithmic Results

Decentralized Algorithms for smi

In Section 14.2.2 we described the Gale-Shapley algorithm, which can be regarded
as a centralized algorithm for hr. There has also been much interest in the study of
decentralized algorithms for finding stable matchings. In particular, Roth and Vande
Vate (1990) studied a mechanism for smi that involves starting from some initial match-
ing M0 (which need not be stable) and constructing a random sequence of matchings
M0, M1, M2 . . . , where for each i � 1, Mi is obtained from Mi−1 by satisfying a block-
ing pair (m, w) of Mi−1 (that is, the partners of m and w in Mi−1, if they exist, are both
single in Mi , and (m, w) is added to Mi). The blocking pair that is satisfied at each step
is chosen at random, subject to the constraint that there is a positive probability that
any particular blocking pair (from among those that exist at a given step) is chosen.
Roth and Vande Vate (1990) showed that this random sequence converges to a stable
matching with probability 1. The algorithm underlying their result became known as
the Roth-Vande Vate Mechanism. The special case of this mechanism in which M0 = ∅
(and some other subtle modifications are made) has been referred to as the Random
Order Mechanism (Ma, 1996).

When satisfying a blocking pair (m, w), if the “divorcees” (M(w) and M(m)) are
required to marry one another then the situation is very different. In this case there are
sm instances and initial matchings M0 such that it is not possible to transform M0 to
a stable matching by satisfying a sequence of blocking pairs (Tamura, 1993; Tan and
Su, 1995).

Ackermann et al. (2011) categorized decentralized algorithms for smi into better
response dynamics and best response dynamics. The former description applies to
mechanisms that are based on satisfying blocking pairs, while the latter refers to a
more specific mechanism where, should a blocking pair be satisfied, it is the best
blocking pair for the active agent (i.e., the agent who makes the proposal). The authors
also considered random better response dynamics and random best response dynamics.
In the former case, a blocking pair is chosen uniformly at random, while in the latter
case, a blocking pair that corresponds to the best blocking pair for a given proposer
is selected uniformly at random. The authors gave exponential lower bounds for the
convergence time of both approaches in uncoordinated markets.
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Both sequential and parallel local search algorithms, based on the approach of
Roth and Vande Vate (1990), have been implemented and tested on large smi problem
instances, showing a very efficient behavior (Gelain et al., 2013; Munera et al., 2015).

Hospitals/Residents Problem with Ties

In the context of centralised clearinghouses for junior doctor allocation, often large
hospitals have many applicants and may find it difficult to produce a strict ranking over
all these residents. In practice a hospital may be indifferent between batches of residents,
represented by ties in its preference list. This naturally leads to the Hospitals/Residents
problem with Ties (hrt), the generalization of hr in which the preference lists of both
residents and hospitals can contain ties.

In the hrt context, several stability definitions have been formulated in the literature,
with varying degrees of strength. A matching M is weakly stable if there is no resident–
hospital pair (r, h), such that by coming together, each would be strictly better off than
their current situation in M . In the case of strong stability, in a blocking pair (r, h) it is
enough for one of (r, h) to be strictly better off, while the other must be no worse off,
by forming a partnership. Finally, in the case of super-stability, all we require is that
each of (r, h) must be no worse off.

Example 14.11 (hrt instance). To illustrate these stability concepts, we insert some
ties into the preference lists in the hr instance shown in Example 14.1. The resulting
instance of hrt is

r1 : h1 h2 h1 : 1 : r3 (r2 r1) r4

r2 : h1 h2 h3 h2 : 2 : r2 (r3 r1 r4)
r3 : h2 (h1 h3) h3 : 1 : r2 r3

r4 : h2 h1

Here, parentheses indicate ties in the preference lists, so for example, r3 prefers h2 to
each of h1 and h3, and is indifferent between the latter two hospitals. The matchings
{(r1, h2), (r2, h1), (r3, h2)} and {(r1, h1), (r2, h2), (r3, h3), (r4, h2)} are both weakly sta-
ble, but the instance admits no strongly stable matching, and hence no super-stable
matching either.

We continue by considering algorithmic results for hrt under weak stability. Firstly,
an hrt instance is bound to admit a weakly stable matching, and such a matching can
be found in linear time (Irving et al., 2000). Recall from Theorem 14.5 that all stable
matchings in an hr instance have the same size. However in the case of hrt, weakly
stable matchings may have different sizes, as illustrated by Example 14.11. Often in
the case of centralized clearinghouses, an important consideration is to match as many
participants as possible. This motivates max hrt, the problem of finding a maximum
weakly stable matching, given an hrt instance. This problem is NP-hard (Iwama et al.,
1999; Manlove et al., 2002) even if each hospital has capacity 1, and also even under
severe restrictions on the number, length and positions of the ties (Manlove et al.,
2002). A succession of approximation algorithms has been proposed in the literature
for various restrictions of max hrt, culminating in the best current bound of 3/2 for
the general problem (McDermid, 2009; Király, 2013; Paluch, 2014).
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Although an hrt instance I is bound to admit a weakly stable matching as mentioned
above, by contrast a strongly stable matching or a super-stable matching in I may not
exist (Irving et al., 2000, 2003). However there is an efficient algorithm to find a
strongly stable matching or report that none exists (Kavitha et al., 2007). A faster and
simpler algorithm exists in the case of super-stability (Irving et al., 2000). Moreover
an analogue of Theorem 14.5 holds in hrt under each of the strong stability and
super-stability criteria (Scott, 2005; Irving et al., 2000).

Hospitals/Residents Problem with Couples

Another variant of hr that is motivated by practical applications arises in the presence
of couples. These are pairs of residents who wish to be jointly assigned to hospitals via a
common preferences list over pairs of hospitals, typically in order to be geographically
close to one another. Each couple (ri, rj ) has a preference list over a subset of H × H ,
where each pair (hp, hq) on this list represents the joint assignment of ri to hp and
rj to hq . (There may be single residents in addition, as before.) We thus obtain the
Hospitals/Residents problem with Couples (hrc).

Relative to a suitable stability definition, Roth (1984a) showed that an hrc instance
need not admit a stable matching. Ng and Hirschberg (1988) and Ronn (1990) indepen-
dently showed that the problem of deciding whether an hrc instance admits a stable
matching is NP-complete, even if each hospital has capacity 1 and there are no single
residents.

McDermid and Manlove (2010) considered a variant of hrc in which each resident
(whether single or in a couple) has a preference list over individual hospitals, and the
joint preference list of each couple (ri, rj ) is consistent with the individual lists of ri and
rj in a precise sense. Relative to Roth’s stability definition (Roth, 1984a), they showed
that the problem of deciding whether a stable matching exists is NP-complete. However
if instead we enforce classical (Gale–Shapley) stability on a given matching relative to
the individual lists of residents, then the problem of finding a stable matching or report-
ing that none exists is solvable in polynomial time (McDermid and Manlove, 2010).

Biró et al. (2011) developed a range of heuristics for the problem of finding a stable
matching or reporting that none exists in a given hrc instance, and subjected them to
a detailed empirical evaluation based on randomly generated data. They found that a
stable matching is very likely to exist for instances where the ratio of couples to single
residents is small and of the magnitude typically found in practical applications.

Ashlagi et al. (2014) studied large random matching markets with couples. They
introduced a new matching algorithm and showed that if the number of couples grows
slower than the size of the market, a stable matching will be found with high probability.
If, however, the number of couples grows at a linear rate, with constant probability (not
depending on the market size), no stable matching exists.

Further results for hrc are described in the survey paper of Biró and Klijn (2013).

Many-to-Many Stable Matching

Many-to-many extensions of sm (and by implication hr) have been considered in
the literature (Roth, 1984b; Roth and Sotomayor, 1990; Sotomayor, 1999; Baı̈ou and
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Balinski, 2000; Fleiner, 2003; Martı́nez et al., 2004; Echenique and Oviedo, 2006;
Bansal et al., 2007; Kojima and Ünver, 2008; Eirinakis et al., 2012, 2013; Klijn and
Yazıcı, 2014). These matching problems tend to be described in the context of assigning
workers to firms, where each agent can be multiply assigned (up to a given capacity).
We will discuss the two main models of many-to-many matching in the literature.

The first version we consider, which we refer to as the Workers/Firms problem,
Version 1, denoted by wf-1, involves each worker ranking in strict order of preference
a set of individual acceptable firms, and vice versa for each firm. Baı̈ou and Balinski
(2000) generalized the stability definition for sm to the wf-1 case. They showed that
every instance I of wf-1 has a stable matching and such a matching can be found in
O(n2) time, where n = max{n1, n2}, n1 is the number of workers and n2 is the number
of firms in I . They also generalized Theorems 14.5 and 14.6 to the wf-1 context.
Additional algorithms have been given for computing stable matchings with various
optimality properties in wf-1 (Bansal et al., 2007; Eirinakis et al., 2012, 2013).

In the second version, which we refer to as the Workers/Firms problem, Version 2,
denoted by wf-2, each worker ranks in strict order of preference acceptable subsets of
firms, and vice versa for each firm. Two main forms of stability have been studied in
the context of wf-2, namely, pairwise stability and setwise stability.

A matching M in a wf-2 instance is pairwise stable (Roth, 1984b) if it cannot be
undermined by a single worker–firm pair acting together. A wf-2 instance need not
admit a pairwise stable matching (Roth and Sotomayor, 1990, Example 2.7). However
Roth (1984b) proved that, given an instance of wf-2 where every agent’s preference
list satisfies so-called substitutability (Kelso and Crawford, 1982), a pairwise stable
matching always exists, and he gave an algorithm for finding one. Martı́nez et al. (2004)
gave an algorithm for finding all pairwise stable matchings.

A more powerful definition of stability is setwise stability. Informally, a matching M

is setwise stable (Sotomayor, 1999) if it cannot be undermined by a coalition of workers
and firms acting together. More precisely, several definitions of setwise stability have
been given in the literature (Sotomayor, 1999; Echenique and Oviedo, 2006; Konishi
and Ünver, 2006); the various alternatives were formally defined and analyzed by Klaus
and Walzl (2009).

Bansal et al. (2007) noted that, generally speaking, wf-1 has been studied mainly by
the computer science community, while the economics community has mainly focused
on wf-2. One reason for this is that wf-2 suffers from the drawback that the length of
an agent’s preference list is in the worst case exponential in the number of agents. A
consequence of this is that the practical applicability of any algorithm for wf-2 would
be severely limited in general, however, this problem does not arise with wf-1.

14.3 One-Sided Preferences

14.3.1 Introduction and Preliminary Definitions

Many economists and game theorists, and increasingly computer scientists in recent
years, have studied the problem of allocating a set H of indivisible goods among a
set A of applicants (Shapley and Scarf, 1974; Hylland and Zeckhauser, 1979; Deng



346 1 4 matching under preferences

et al., 2003; Fekete et al., 2003). Each applicant ai may have ordinal preferences over a
subset of H (the acceptable goods for ai). Many models have considered the case where
there is no monetary transfer. In the literature the situation in which each applicant
initially owns one good is known as a Housing Market (hm)3 (Shapley and Scarf,
1974; Roth and Postlewaite, 1977; Roth, 1982b). When there are no initial property
rights, we obtain the House Allocation problem (ha) (Hylland and Zeckhauser, 1979;
Zhou, 1990; Abdulkadiroğlu and Sönmez, 1998). A mixed model, in which a subset of
applicants initially owns a good has also been studied (Abdulkadiroğlu and Sönmez,
1999).

House Allocation Problems

Formally, an instance I of the House Allocation problem (ha) comprises a set A =
{a1, a2, . . . , an1} of applicants and a set H = {h1, h2, . . . , hn2} of houses. The agents
in I are the applicants and houses in A ∪ H . There is a set E ⊆ A × H of acceptable
applicant–house pairs. Let m = |E|. Each applicant ai ∈ A has an acceptable set of
houses A(ai), where A(ai) = {hj ∈ H : (ai, hj ) ∈ E}. Similarly each house hj ∈ H

has an acceptable set of applicants A(hj ), where A(hj ) = {ai ∈ A : (ai, hj ) ∈ E}.
Each applicant ai ∈ A has a preference list in which she ranks A(ai) in strict order.

Given any applicant ai ∈ A, and given any houses hj , hk ∈ H , ai is said to prefer hj to
hk if {hj , hk} ⊆ A(ai), and hj precedes hk on ai’s preference list. Houses do not have
preference lists over applicants, and it is essentially this feature that distinguishes ha
from smi.

ha is a very general problem model and any application domain having an underlying
matching problem that is bipartite, where agents in only one of the sets have preferences
over the other, can be viewed as an instance of ha. These include the problems of
allocating graduates to trainee positions, students to projects, professors to offices,
clients to servers, and so on. The literature concerning ha has largely described this
problem model in terms of assigning applicants to houses, so for consistency we also
adopt this terminology.

An assignment M in I is a subset of E. The definitions of the terms assigned to,
assigned, unassigned and assignees relative to M are analogous to the same definitions
in the hr case (see Section 14.2.1). A matching M in I is an assignment such that,
for each pk ∈ A ∪ H , the set of assignees of pk in M , denoted by M(pk), satisfies
|M(pk)| � 1. For notational convenience, as in the hr case, if pk is assigned in M

then where there is no ambiguity the notation M(pk) is also used to refer to the single
member of the set M(pk). Let M denote the set of matchings in I .

Given two matchings M and M ′ in M, we say that an applicant ai ∈ A prefers M ′

to M if either (i) ai is assigned in M ′ and unassigned in M , or (ii) ai is assigned in
both M and M ′, and ai prefers M ′(ai) to M(ai). We say that M ′ Pareto dominates M if
(i) some applicant prefers M ′ to M and (ii) no applicant prefers M to M ′. A matching
M ∈ M is Pareto optimal if there is no matching M ′ ∈ M that Pareto dominates M .
Intuitively M is Pareto optimal if no applicant ai can be better off without requiring

3 This problem is also referred to as the House-swapping Game in the literature.
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another applicant aj to be worse off. For example, M is not Pareto optimal if two
applicants could improve by swapping the houses that they are assigned to in M .

Housing Markets

An instance I of a Housing Market (hm) comprises an ha instance I where n1 = n2,
together with a matching M0 in I (the initial endowment) such that |M0| = n1. A
matching M in I is individually rational if, for each applicant ai ∈ A, either ai prefers
M(ai) to M0(ai), or M(ai) = M0(ai). Since we are only interested in individually
rational matchings, we assume that M0(ai) is the last house on ai’s preference list,
for each ai ∈ A. Clearly then, any individually rational matching M in I satisfies
|M| = n1.

The notion of Pareto optimality in ha is closely related to the concept of core
matchings in the hm context (Roth and Postlewaite, 1977): let I be an instance of hm
where M0 is the initial endowment, and let M be an individually rational matching in
I . Let M ′ be a matching in I , and let S be the set of applicants who are assigned in M ′.
Then M ′ weakly blocks M with respect to the coalition S if:

(i) the members of the coalition are only allowed to improve by exchanging their own
resources (via their initial endowment M0): {M ′(ai) : ai ∈ S} = {M0(ai) : ai ∈ S};

(ii) some member of the coalition ai ∈ S is better off in M ′: some ai ∈ S prefers M ′(ai)
to M(ai);

(iii) no member of the coalition ai ∈ S is worse off in M ′ than in M: no ai ∈ S prefers
M(ai) to M ′(ai).

M is a strict core matching, or M is in the strict core, if there is no other matching in
I that weakly blocks M . Also M ′ strongly blocks M with respect to S if Condition (i)
is satisfied, and in addition, every ai ∈ S prefers M ′(ai) to M(ai). M is a weak core
matching, or M is in the weak core, if there is no other matching in I that strongly
blocks M .

Note that M is Pareto optimal if and only if M is not weakly blocked by any matching
M ′ such that |M ′| = n1 (here the coalition comprises all applicants and is referred to
as the grand coalition). Hence a strict core matching is Pareto optimal.

Example 14.12 (hm instance). Consider the following hm instance in which the initial
endowment is M0 = {(a1, h4), (a2, h3), (a3, h2), (a4, h1)}.

a1 : h1 h2 h3 h4

a2 : h1 h2 h4 h3

a3 : h4 h1 h3 h2

a4 : h4 h3 h2 h1

Now define the matchings M = {(a1, h4), (a2, h3), (a3, h1), (a4, h2)}, M ′ =
{(a1, h3), (a2, h2), (a3, h4), (a4, h1)} and M ′′ = {(a1, h1), (a2, h2), (a3, h3), (a4, h4)}.
Then M ′ strongly blocks M with respect to the coalition S = {a1, a2, a3}, while M ′′ is
a strict core matching and hence Pareto optimal.

We call a function that assigns a matching to each instance of ha (or hm) a mecha-
nism. A mechanism that assigns only Pareto optimal matchings is called Pareto optimal.
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14.3.2 Classical Structural and Algorithmic Results

House Allocation Problems

All Pareto optimal matchings can be constructed using a classical algorithm called
the Serial (SD) Dictatorship Algorithm (see Theorem 14.14). For any fixed order of
applicants f = (i1, i2, . . . , in1 ), the SD algorithm is a straightforward greedy algorithm
that takes each applicant in turn and assigns her to the most-preferred available house
on her preference list. The associated mechanism is called the Serial Dictatorship (SD)
mechanism. The order in which the applicants are processed will, in general, affect the
outcome. If a uniform lottery is used in order to determine the applicant ordering, then
we obtain a random mechanism called the Random Serial Dictatorship Mechanism or
RSD mechanism (Abdulkadiroğlu and Sönmez, 1998).

Often, the fixed order of applicants used for the SD mechanism is determined in
some objective way. Roth and Sotomayor (1990, Example 4.3) remark that when the
U.S. Naval Academy matches graduating students to their first posts as naval officers
using an approach based on the SD algorithm, students are considered in nondecreasing
order of graduation results. Clearly the SD algorithm may be implemented to execute
in O(m) time (m being the number of acceptable applicant–house pairs).

Strictly speaking RSD produces a probability distribution over matchings, and its
output can be regarded as a bi-stochastic n1 × n2 matrix M in which entry (i, j ) gives
the probability of applicant ai receiving house hj . Independently, Aziz et al. (2013a)
and Saban and Sethuraman (2013) proved that computing M is #P-complete. Saban
and Sethuraman (2013) also proved the surprising result that determining whether a
given entry (i, j ) in M has positive probability is NP-complete. This implies NP-
completeness for the problem of determining whether, given an applicant ai and house
hj , there exists a Pareto optimal matching containing (ai, hj ).

Krysta et al. (2014) gave an O(n2
1γ ) strategyproof adaptation of RSD to the more

general extension of ha in which preference lists may include ties, where γ is the
maximum length of a tie in any applicant’ s preference list.

Housing Markets

For a somewhat more general housing market model that allows for indifferences
in preference lists, Shapley and Scarf (1974) showed that the weak core is always
nonempty by constructing a weak core matching using Gale’s Top Trading Cycles
or TTC algorithm (the authors attributed the now famous TTC algorithm to David
Gale). They also showed that the weak core matching constructed is a competitive
allocation,4 the strict core may be empty and the nonempty weak core may exceed the
(not necessarily singleton) set of competitive allocations. Note that for our housing
market model with strict preferences, the weak and the strict core coincide. Given an
instance of hm with initial endowment M0,

4 While housing markets are modelled as pure exchange economies, a competitive allocation of a housing market
can be defined using fiat money. Then, an allocation is competitive if there exists a price for each house such
that, by selling his house at the given price, each agent can afford to buy his most-preferred house (i.e., market
clearance ensues).
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(1) at the first step of the TTC algorithm, every applicant points to the owner of her favourite
house (possibly to herself). Because there are finitely many applicants, there is at least
one cycle (where a cycle is an ordered list (i1, i2, . . . , ik), 1 � k � n1, of applicants
with each applicant pointing to the next applicant in the list and applicant aik pointing
to applicant ai1 ; k = 1 is the special case of a self-loop where an applicant points to
herself). In each cycle the implied cyclical exchange of houses is implemented and the
algorithm continues with the remaining applicants and houses;

(l) at the lth step of the TTC algorithm, every remaining applicant points to the owner of
her favourite remaining house (possibly to herself). Again, there is at least one cycle and
in each cycle the implied cyclical exchange of houses is implemented and the algorithm
continues with the remaining applicants and houses, and terminates when no applicants
remain.

Note that there is an equivalent two-sided formulation of the TTC algorithm in which
agents point to houses, as specified previously, and houses will always point to their
owners. The TTC algorithm can be implemented to run in O(m) time (m being the
number of acceptable applicant–house pairs) (Abraham et al., 2004). Roth and Postle-
waite (1977) demonstrated that the matching found by the TTC algorithm is the unique
strict core allocation as well as the unique competitive allocation. The mechanism that
assigns to each instance of hm the strict core matching obtained by the TTC algorithm
is called the Core Mechanism or sometimes simply the Core.

Example 14.13. We apply the TTC algorithm to the hm instance shown in
Example 14.12. The initial directed graph has four nodes (representing all applicants)
where each applicants points to the owner (in M0) of its most preferred house. Hence
there is a directed arc from a1 to a4, from a2 to a4, from a3 to a1, and from a4 to a1.
Because there is a cycle involving a1 and a4, we swap their houses, and thus a1 receives
h1 and a4 receives h4. Now we delete a1 and a4 from the graph, as well as their houses
from the hm instance. We are thus left with a2 and a3, with an arc from a2 to a3 (because
after having deleted h1, the most preferred house of a2 is h2, owned by a3) and similarly
an arc from a3 to a2. Thus we swap their houses and the algorithm stops, returning the
matching M ′′ = {(a1, h1), (a2, h2), (a3, h3), (a4, h4)} as in Example 14.12.

Recall that the only difference between an instance of ha and an instance of hm
is that in the latter case an initial endowment matching M0 is given as well. Hence,
we could define a mechanism for ha that fixes an initial endowment matching Mf

and then uses the Core mechanism for the obtained instance of hm. We call such a
mechanism a Core from Fixed Endowments or CFE mechanism. If now a uniform
lottery is used in order to determine the initial endowment matching, then we obtain
a random mechanism called the Core from Random Endowments or CRE mechanism
(Abdulkadiroğlu and Sönmez, 1998). Abdulkadiroğlu and Sönmez (1998) proved that
the two random mechanisms we have introduced are equivalent.

Theorem 14.14 (Abdulkadiroğlu and Sönmez, 1998).

1. All SD mechanisms for ha are Pareto optimal. For each Pareto optimal matching M of
an instance of ha, there exists an order of applicants such that the corresponding SD
mechanism assigns M .
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2. All Core mechanisms for hm are Pareto optimal. For each Pareto optimal matching M

of an instance of ha, there exists an initial endowment matching Mf such that the CFE
mechanism assigns M .

3. The CRE and the RSD mechanisms for ha are equivalent.

Hylland and Zeckhauser (1979) had already shown that the RSD mechanism is
ex-post Pareto optimal, that is, the final matching that is chosen by the RSD lottery
is Pareto optimal. Bogomolnaia and Moulin (2001) showed that the RSD mechanism,
however, is not ex ante or ordinally efficient (Pareto optimal), that is, for some lotteries
chosen by the RSD mechanism there exist Pareto dominating lotteries (with stochastic
dominance being used to formulate the dominance relation). They also suggested a
new random mechanism, the Probabilistic Serial mechanism, that satisfies ex ante
efficiency.

14.3.3 Strategic Results: Strategyproofness

As in Section 14.2.1, a mechanism for which no single applicant can ever benefit from
misrepresenting her preferences is called strategyproof (i.e., in game-theoretic terms,
it is a weakly dominant strategy for each applicant to report her true preference list).
All mechanisms introduced so far in this section are strategyproof, as the following
results indicate.

Theorem 14.15 (Hylland and Zeckhauser, 1979). The SD mechanisms for ha are
strategyproof.

Theorem 14.16 (Roth, 1982b). The Core mechanism for hm is strategyproof. Hence,
all CFE mechanisms for ha are strategyproof.

In addition, the Core and CFE mechanisms are group strategyproof (i.e., no coalition
of applicants can jointly misrepresent their true preferences in order for at least one
member of the coalition to improve, while no other coalition member is worse off; see,
e.g., Svensson, 1999). Strategyproofness is also one of the properties that characterize
the Core mechanism.

Theorem 14.17 (Ma, 1994). The Core mechanism for hm is the only mechanism that
is Pareto optimal, individually rational, and strategyproof.

Abdulkadiroğlu and Sönmez (1999) extended Ma’s characterization result to a mixed
model that combines ha and hm: in the House Allocation problem with Existing
Tenants, a subset of applicants initially owns a house. They defined mechanisms
that combine elements of SD as well as Core mechanisms based on the so-called
YRMH-IGYT (You Request My House—I Get Your Turn) algorithm. All YRMH-
IGYT mechanisms are strategyproof, Pareto optimal, and individually rational (in the
sense that no existing tenant receives a house inferior to his own).

In Section 14.2.1 we introduced sc as a one-sided preference variant of hr, but
we could also introduce this class of problems as a variant of ha with the additional
properties that objects (i.e., houses/schools) have priorities over students, and objects
can be multiply assigned up to some capacity. Either way, the RGS mechanism can be
used to find a matching for each instance of sc. This mechanism is then strategyproof
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a1 : h1 h2 a1 : h1 h2 h3 a1 : h1 h3

a2 : h1 a2 : h1 h2 h3 a2 : h2 h1

a3 : h1 h2 h3 a3 : h2

(a) (b) (c)

Figure 14.1. (a) ha instance I1; (b) ha instance I2; (c) ha instance I3.

(by Theorem 14.9) and stable (Gale and Shapley, 1962), but it is not Pareto optimal.
In fact, no mechanism is both stable and Pareto optimal (Balinski and Sönmez, 1999).
However it turns out that no other stable mechanism would do better in the following
sense.

Theorem 14.18 (Balinski and Sönmez, 1999). The RGS mechanism for sc Pareto
dominates any other stable mechanism.

Finally, when focusing on strategyproofness and Pareto optimality only, no better
mechanism than the RGS mechanism emerges.

Theorem 14.19 (Kesten, 2010). The RGS mechanism for sc is not Pareto-dominated
by any other Pareto optimal mechanism that is strategyproof.

14.3.4 Further Algorithmic Results

Pareto Optimal Matchings

For a given instance of ha, Pareto optimal matchings may have different sizes, as illus-
trated by Figure 14.1a: for the instance I1 shown, matchings M1 = {(a1, h1)} and M2 =
{(a1, h2), (a2, h1)} are both Pareto optimal. In many applications we seek to match as
many applicants as possible. This motivates the problem of finding a Pareto optimal
matching of maximum size, which we refer to as a maximum Pareto optimal matching.

Toward an algorithm for this problem, Abraham et al. (2004) gave a characterization
of Pareto optimal matchings in a given ha instance I . A matching M in I is maximal
if there is no pair (ai, hj ) ∈ E, both of which are unassigned in M . Also M is trade-in-
free if there is no pair (ai, hj ) ∈ E such that hj is unassigned in M , and ai is assigned
in M and prefers hj to M(ai). Finally M is cyclic coalition-free if M admits no cyclic
coalition, which is a sequence of applicants C = 〈ai0, ai1, . . . , air−1〉, for some r � 2,
all assigned in M , such that aij prefers M(aij+1 ) to M(aij ) (0 � j � r − 1) (with
subscripts taken modulo r). Abraham et al. gave the following necessary and sufficient
conditions for a matching to be Pareto optimal in terms of these concepts:

Proposition 14.20 (Abraham et al., 2004). Let I be an instance of ha and let M be
a matching in I . Then M is Pareto optimal if and only if M is maximal, trade-in-free
and coalition-free. Moreover there is an O(m) algorithm for testing M for Pareto
optimality, where m is the number of acceptable applicant–house pairs in I .

Abraham et al. also gave a three-phase algorithm for finding a maximum Pareto
optimal matching in I , with each phase enforcing one of the conditions for Pareto
optimality given in Proposition 14.20. In Phase 1 they construct a maximum matching
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M in the underlying graph of I , which is the bipartite graph with vertex set A ∪ H

and edge set E. This step can be accomplished in O(
√

n1m) time and ensures that
M is maximal. Phase 2 is based on an O(m) algorithm in which assigned applicants
repeatedly trade in their own house in M for any preferred vacant house. Once this step
terminates, M is trade-in-free. Finally, cyclic coalitions are eliminated during Phase 3,
which is based on an O(m) implementation of the TTC algorithm. Putting these three
phases together, they obtained the following result.

Theorem 14.21 (Abraham et al., 2004). Let I be an instance of ha. A maximum
Pareto optimal matching in I can be found in O(

√
n1m) time, where n1 is the number

of applicants and m is the number of acceptable applicant–house pairs in I .

Popular Matchings

Pareto optimality is a fundamental solution concept, but on its own it is a relatively
weak property. A stronger notion is that of a popular matching. Intuitively a matching
M in an ha instance I is popular if there is no other matching that is preferred to M by
a majority of the applicants who are not indifferent between the two matchings. This
concept was first defined by Gärdenfors (1975) (using the term majority assignment)
in the context of smi.

To define the popular matching concept more formally, let M, M ′ ∈ M, and let
P (M, M ′) denote the set of applicants who prefer M to M ′. We say that M ′ is more
popular than M , denoted M ′ � M , if |P (M ′, M)| > |P (M, M ′)|. Define a matching
M ∈ M to be popular (Abraham et al., 2007b) if M is �-maximal (i.e., there is no
other matching M ′ ∈ M such that M ′ � M).

Clearly a matching M is Pareto optimal if there is no other matching M ′ such
that |P (M, M ′)| = 0 and |P (M ′, M)| � 1. Hence a popular matching is Pareto opti-
mal. However in contrast to the case for Pareto optimal matchings, an ha instance
need not admit a popular matching. To see this, consider the ha instance I2 shown
in Figure 14.1b. It is clear that a matching in I2 cannot be popular unless all appli-
cants are assigned. The unique matching up to symmetry in which all applicants are
assigned is M = {(ai, hi) : 1 � i � 3}, however, M ′ = {(a2, h1), (a3, h2)} is preferred
by two applicants, which is a majority. The relation � in this case cycles, hence
the absence of a �-maximal solution (therefore, in general, � is not a partial order
on M).

The potential absence of a popular matching in a given ha instance can be
related all the way back to the observation of Condorcet (1785) that, given k vot-
ers who each rank n candidates in strict order of preference, there may not exist a
“winner,” namely, a candidate who beats all others in a pairwise majority vote. See also
Chapter 2.

Abraham et al. (2007b) derived a neat characterization of popular matchings, leading
to an O(m) algorithm to check whether a given matching M in I is popular. The same
characterization also led naturally to an O(n + m) algorithm for finding a popular
matching or reporting that none exists, where n = n1 + n2. We remark that popular
matchings in I can have different sizes, and the authors showed how to extend their
algorithm in order to find a maximum popular matching without altering the time
complexity. This discussion can be summarized as follows.
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Theorem 14.22 (Abraham et al., 2007b). Let I be an instance of ha. There is an
O(n + m) algorithm to find a maximum popular matching in I or report that no popular
matching exists, where n is the number of applicants and houses, and m is the number
of acceptable applicant–house pairs.

A more complex algorithm, with O(
√

nm) complexity, can be used to find a maxi-
mum popular matching in I or report that no popular matching exists, in the case that
preference lists include ties (Abraham et al., 2007b).

McDermid and Irving (2011) showed that the set of popular matchings in an ha
instance can be characterized succinctly via a structure known as the switching graph.
Using this representation they showed that a number of problems can be solved effi-
ciently, including counting popular matchings, sampling a popular matching uniformly
at random, listing all popular matchings and finding various types of “optimal” popular
matchings.

As a given ha instance need not admit a popular matching, it is natural to weaken
the notion of popularity, and seek matchings that are “as popular as possible” in cases
where a popular matching does not exist. To this end, McCutchen (2008) defined two
versions of “near-popular” matchings, namely, a least unpopularity factor matching and
a least unpopularity margin matching. Also Kavitha et al. (2011) studied the concept
of a popular mixed matching, which is a probability distribution over matchings that is
popular in a precise sense.

Profile-Based Optimal Matchings

Further notions of optimality are based on the profile p(M) of a matching M in an
ha instance I . Informally, p(M) is an r-tuple whose ith component is the number
of applicants who have their ith-choice house, where r is the maximum length of an
applicant’s preference list.

A matching M is rank-maximal (Irving et al., 2006) if p(M) is lexicographically
maximum, taken over all matchings in M. Intuitively, in such a matching, the max-
imum number of applicants are assigned to their first-choice house, and subject to
this condition, the maximum number of applicants are assigned to their second-choice
house, and so on. A rank-maximal matching need not be of maximum cardinality.
To see this, consider the ha instance I3 in Figure 14.1c and the following matchings
in I3: M1 = {(a1, h1), (a2, h2)} and M2 = {(a1, h3), (a2, h1), (a3, h2)}. Clearly M1 is
rank-maximal and |M1| = 2, whereas |M2| = 3.

In many applications we seek to assign as many applicants as possible. With this
in mind, consider M+, the set of maximum matchings in a given ha instance I . A
greedy maximum matching is a matching M ∈ M+ such that p(M) is lexicographically
maximum, taken over all matchings in M+. Both rank-maximal and greedy maximum
matchings maximize the number of applicants with their sth-choice house as a higher
priority than maximizing the number of those with their t th-choice house, for any
1 � s < t � r . As a consequence, both of these types of matchings could end up
assigning applicants to houses relatively low down on their preference lists.

Consequently, define a generous maximum matching to be a matching M ∈ M+

such that pR(M) is lexicographically minimum, taken over all matchings in M+,



354 1 4 matching under preferences

where pR(M) is the reverse of p(M). That is, M is a maximum cardinality matching
that assigns the minimum number of applicants to their rth-choice house, and subject
to this, the minimum number to their (r − 1)th-choice house, and so on.

We collectively refer to rank-maximal, greedy maximum and generous maximum
matchings as profile-based optimal matchings. Returning to instance I3 shown in
Figure 14.1c, the matching M2 defined previously is the unique maximum matching
and is therefore both a greedy maximum matching and a generous maximum matching.

The following results indicate the complexity of the fastest current algorithms for
constructing rank-maximal, greedy maximum and generous maximum matchings in a
given ha instance.

Theorem 14.23 (Irving et al., 2006). Let I be an instance of ha. A rank-maximal
matching M in I can be constructed in O(min(n1 + r∗, r∗

√
n1)m) time, where n1 is

the number of applicants, m is the number of acceptable applicant–house pairs, and
r∗ is the maximum rank of an applicant’s house in M .

Theorem 14.24 (Huang and Kavitha, 2012). Let I be an instance of ha. A greedy
maximum matching M in I can be constructed in O(r∗

√
nm log n) time, where n is the

number of applicants and houses, m is the number of acceptable applicant–house pairs,
and r∗ is the maximum rank of an applicant’s house in M . The same time complexity
holds for computing a generous maximum matching.

The algorithms referred to in Theorems 14.23 and 14.24 are also applicable in the
more general case that preference list contain ties.

14.4 Concluding Remarks and Further Reading

In this chapter we have tried to cover some of the most important results on match-
ing problems with preferences. However the literature in this area is vast, and due
to space limitations, we could only cover a subset of the main results in a single
survey chapter. Chapter 11 introduces some of our matching problems within the
context of fair resource allocation, namely, object allocation problems (ha), priority-
augmented object allocation problems (sc), and matching agents to each other (smi
and hr). The following nonexhaustive list of articles contains normative results for
these problems and basic axioms of fair allocation as introduced in Chapter 11 (e.g.,
resource-monotonicity, population-monotonicity, consistency, converse consistency):
Ehlers and Klaus (2004, 2007, 2011), Ehlers et al. (2002), Ergin (2000), Kesten (2009),
Sasaki and Toda (1992), and Toda (2006).

One obvious omission has been the Stable Roommates problem (sr), a non-bipartite
generalization of sm. However a wider class of matching problems, known as hedonic
games, which include sr as a special case, are explored in Chapter 15.

Looking ahead, it seems likely that the level of interest in matching under preferences
will show no sign of diminishing, and if anything we predict that this field will continue
to grow. This is due in no small part to the exposure that the research area has had on a
global stage following the award of the Nobel Prize in Economic Sciences to Alvin Roth
and Lloyd Shapley in 2012. Another contributing factor is the increasing engagement
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by more and more elements of society in forms of electronic communication, thereby
easing preference elicitation and centralization of allocation processes.

To conclude, we give some sources for further reading. For more details on structural
and algorithmic aspects of sm, hr and sr, we recommend Gusfield and Irving (1989).
The second author’s monograph (Manlove, 2013) provides an update to Gusfield and
Irving (1989) and also expands the coverage to include ha. It expands on the algorith-
mic results presented in this chapter in particular. For more depth from an economic
and game-theoretic viewpoint, the reader is referred to Roth and Sotomayor (1990),
which considers issues of strategy in sm and hr in much more detail, and also covers
monetary transfer and the Assignment Game. Finally, more recent results that also
include economic applications (e.g., school choice and kidney exchange) are reviewed
by Sönmez and Ünver (2011) and Vulkan et al. (2013).

Acknowledgments

Bettina Klaus acknowledges financial support from the Swiss National Science Founda-
tion (SNFS). David Manlove is supported by grant EP/K010042/1 from the Engineering
and Physical Sciences Research Council. Francesca Rossi is partially supported by the
project “KIDNEY—Incorporating patients’ preferences in kidney transplant decision
protocols,” funded by the University of Padova. The authors would like to thank Peter
Biró, Felix Brandt, Vincent Conitzer, and Ulle Endriss for detailed comments, which
have helped us to improve the presentation of this chapter.



CHAPTER 15

Hedonic Games

Haris Aziz and Rahul Savani

15.1 Introduction

Coalitions are a central part of economic, political, and social life, and coalition forma-
tion has been studied extensively within the mathematical social sciences. Agents (be
they humans, robots, or software agents) have preferences over coalitions and, based on
these preferences, it is natural to ask which coalitions are expected to form, and which
coalition structures are better social outcomes. In this chapter, we consider coalition
formation games with hedonic preferences, or simply hedonic games. The outcome of
a coalition formation game is a partitioning of the agents into disjoint coalitions, which
we will refer to synonymously as a partition or coalition structure.

The defining feature of hedonic preferences is that every agent only cares about
which agents are in its coalition, but does not care how agents in other coalitions are
grouped together (Drèze and Greenberg, 1980). Thus, hedonic preferences completely
ignore inter-coalitional dependencies. Despite their relative simplicity, hedonic games
have been used to model many interesting settings, such as research team forma-
tion (Alcalde and Revilla, 2004), scheduling group activities (Darmann et al., 2012),
formation of coalition governments (Le Breton et al., 2008), clusterings in social
networks (see, e.g., Aziz et al., 2014b; McSweeney et al., 2014; Olsen, 2009), and
distributed task allocation for wireless agents (Saad et al., 2011).

Before we give a formal definition of a hedonic game, we give a standard hedonic
game from the literature that we will use as a running example (see, e.g., Banerjee
et al., 2001).

Example 15.1. The hedonic game has three agents, 1, 2, and 3, and their preferences
over coalitions are as follows.

� All agents prefer coalitions of size two to coalitions of size one or three.
� All agents prefer coalitions of size one to coalitions of size three.
� Agent 1 prefers to be with agent 2 than to be with agent 3.
� Agent 2 prefers to be with agent 3 than to be with agent 1.
� Agent 3 prefers to be with agent 1 than to be with agent 2.

356
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A coalition is as nonempty subset of {1, 2, 3}. The outcomes of the game are the
partitions of the set of all agents into coalitions: {{1, 2, 3}}, {{1, 2}, {3}}, {{1, 3}, {2}},
{{2, 3}, {1}} and {{1}, {2}, {3}}. Agent 1 is indifferent between the last two outcomes,
because its own coalition is the same in both.

We now formally define a hedonic game. The description of a hedonic game can be
exponentially large in the number of agents, because for every agent it must describe
the preferences of this agent over all possible coalitions to which the agent may belong.

Definition 15.1. Let N be a finite set of agents. A coalition is a nonempty subset
of N . Let Ni = {S ⊆ N : i ∈ S} be the set of all coalitions (subsets of N) that include
agent i ∈ N . A coalition structure is a partition π of agents N into disjoint coalitions.
A hedonic coalition formation game is a pair (N,�), where � is a preference profile
that specifies for every agent i ∈ N a reflexive, complete, and transitive binary relation
�i on Ni . We call �i a preference relation.

Given a coalition structure, a deviation by a single agent is a move by this agent
to leave its current coalition and join a different (possibly empty) coalition. If this
different coalition is empty, by deviating, the agent has broken away from a non-
singleton coalition to go alone. We say that an agent has an incentive to deviate if there
exists a deviation of this agent to a new coalition that it prefers to its old coalition; we
call such a deviation a profitable deviation. Sometimes, we restrict which deviations
are allowed, for example, based on what effect the deviation has on coalitions that lose
members via the deviation.

A coalition structure is stable with respect to a class of allowable single-agent
deviations if no agent has a profitable allowable deviation (Bogomolnaia and Jackson,
2002). Stability is the main criterion that has been used to analyze which coalition
structures will form. Later in this chapter, in addition to single-agent deviations, we
will also consider deviations by groups of agents.

Before we formally define notions of stability in Section 15.2, we discuss stability
under deviations by single agents in the context of Example 15.1. In this example, no
coalition structure is stable under single-agent deviations, abbreviated in the subsequent
argument to simply “not stable.” Suppose that all three agents are together in a single
coalition. All three agents have an incentive to deviate and “go alone,” so this coalition
structure is not stable. Now consider the coalition structure {{1, 2}, {3}}. This coalition
structure is not stable, because agent 2 would prefer to deviate and join agent 3.
Likewise, the other two coalition structures that consist of one coalition of size two
and one coalition of size one, are also not stable, because exactly one of the players
in the coalition of size two wants to join the agent in the singleton coalition. Finally,
the coalition structure where all three agents are alone is not stable, because all three
agents prefer being with another agent than to being alone. Technically, this shows that
the example does not admit a Nash stable partition, which is a solution concept that
we will define formally in Section 15.2.

In order to achieve some weaker notion of stability, one can consider situations
where the types of allowable deviations are more restricted. For example, for every
coalition S in a coalition structure, we give every member of S the power to veto the
deviation of a member of S who would like to leave S, and to veto a deviation by an
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agent from another coalition that would like to join S. In our example, every partition
of the three agents into two nonempty coalitions is stable under the allowed deviations.
For example, the partition {{1}, {2, 3}} is stable because the only agent that has an
incentive to deviate is agent 3, and although agent 1 would be happy for agent 3 to join
it, agent 2 would not want 3 to leave and would veto this move. Technically, we have
shown that the example admits a contractually individually stable partition, which is
another solution concept that we will define formally in Section 15.2.

A significant amount of research has been undertaken to understand what stabil-
ity requirements and what restrictions on preferences guarantee that stable partition
exists (see, e.g., Alcalde and Revilla, 2004; Aziz and Brandl, 2012; Banerjee et al.,
2001; Bogomolnaia and Jackson, 2002; Dimitrov et al., 2006; Dimitrov and Sung,
2007; Karakaya, 2011). In this chapter we consider a number of standard stability
requirements and restrictions on preferences from a computational viewpoint. We con-
sider questions such as the following ones. What is the most expressive or compact
way to represent hedonic games? What is the computational complexity of deciding if
a stable partition exists, or finding a stable partition if one is known to exist? Two other
surveys on the computational aspects of hedonic games are presented by Hajduková
(2006) and Cechlárová (2008).

15.1.1 Relationship with Cooperative Game Theory

Coalitions have always played a central role in cooperative game theory. Initially,
coalition formation was understood in the context of transferable utility cooperative
games, which are defined by a valuation function that assigns a value to every coalition,
and it is assumed that the value of a coalition can be split between its members in every
possible way. A common assumption in transferable utility cooperative games is that
the valuation function is super-additive, which means that the union of two disjoint
coalitions has a value greater than or equal to sum of the values of the separate coalitions.
Under this assumption, the formation of the coalition structure consisting of the grand
coalition with all agents together maximizes the total value achieved. In these settings,
the question of which coalition structures form is not relevant, and the focus has been
on the question of how the values of smaller coalitions should determine the division of
the value of the grand coalition among its members (Curiel, 1997; Chalkiadakis et al.,
2011; Deng and Fang, 2008; Elkind et al., 2013; Peleg and Sudhölter, 2007). In case
a transferable utility cooperative game is not super-additive, then a natural approach
that has been considered in the literature is to first compute a coalition structure that
maximizes social welfare, that is, the sum of values of coalitions (Aziz and de Keijzer,
2011; Michalak et al., 2010; Rahwan et al., 2009a, 2009b; Sandholm et al., 1999).

Hedonic games are a sub-class of nontransferable utility cooperative games. A
nontransferable utility game describes the possibilities open to a coalition as a set
of outcomes, where each outcome specified the payoff to each agent in the coalition.
These possible outcomes can be thought of as different ways for the coalition to organize
itself, which in turn can result in different utilities for the members of the coalition.
An outcome is represented as a payoff vector that assigns a payoff to every member of
the coalition. In a hedonic game, the set of payoff vectors for every possible coalition
that may form can be viewed as being a singleton. For more details on cooperative
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games and in particular nontransferable utility cooperative games and the eventual
formalization of hedonic games, we refer to the introductory section of the survey of
Hajduková (2006).

Hedonic games are a strict generalization of various well-studied matching models
such as the marriage market (Gale and Shapley, 1962), roommate market, and many-to-
one market (see, e.g., Roth and Sotomayor, 1990). These are all models with hedonic
preferences but where not all partitions are permitted. We refer the reader to Chapter 14,
which is on Matching under Preferences.

15.1.2 Roadmap

The rest of the chapter is organized as follows. In Section 15.2, we present the standard
solution concepts used for hedonic games. In Section 15.3, we consider the most com-
mon representations of hedonic games as well as standard restrictions on preferences.
In Section 15.4, we give an overview of computational aspects of hedonic games.
Finally, we conclude the chapter with suggestions for further reading in Section 15.5.

15.2 Solution Concepts

In this section, we describe the most prominent solution concepts for hedonic games.
We use the following notation throughout the chapter. For two coalitions S, T ∈ Ni

that contain agent i, we use S �i T to denote that i strictly prefers S over T , S ∼i T to
denote that i is indifferent between S and T , and S �i T to denote that either S �i T

or S ∼i T holds. Given a coalition structure π we use π(i) to denote the (unique)
coalition of π that includes agent i.

The first solution concept that we consider is individual rationality. A partition π

is individually rational (IR) if every agent is at least as happy in its coalition π(i) as it
would be alone, that is, for all i ∈ N , π(i) �i {i}. This is really a minimal requirement
for a solution to be considered stable, and many solution concepts that we consider
will satisfy individual rationality.

Next, we introduce the concept of a perfect partition. This solution concept is
stronger than all other solution concepts that we will consider in this chapter. A
partition is perfect if each agent belongs to one of its most preferred coalitions (Aziz
et al., 2013e). Thus, no matter what deviations we allow, a perfect partition is always
stable. However, in general a perfect partition does not exist. In our running example
(Example 15.1, each agent has a unique most preferred coalition ({1,2}, {2,3}, and
{3,1} for agents 1, 2, and 3, respectively), but these are not consistent with any partition,
and so there is no perfect partition.

We next discuss Pareto optimality, which is a concept that has been used throughout
the economics literature. A partition π is Pareto optimal (PO) if there is no partition π ′

with π ′(j )�j π(j ) for all agents j and π ′(i)�i π(i) for at least one agent i. Pareto
optimality can also be considered a group-based stability concept in the sense that if
a partition is not Pareto optimal, then there exists another partition that each agent
weakly prefers and at least one agent strictly prefers.

The remaining solution concepts that we consider are all based on stability with
respect to deviations by agents or groups of agents, which we deal with separately.
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15.2.1 Solution Concepts Based on Group Deviations

The core is one of the most fundamental solution concepts in cooperative game theory.
In the context of coalition formation games, we say that a coalition S ⊆ N strongly
blocks a partition π , if every agent i ∈ S strictly prefers S to its current coalition π(i)
in the partition π . A partition which admits no strongly blocking coalition is said to be
in the core (C), or core stable.

Returning to Example 15.1, it is easy to check that no core stable partition exists. If
all agents are together in a single coalition, then every coalition of size two is a strongly
blocking coalition. If all agents are alone, then again every coalition of size two is a
strongly blocking coalition. Thus, if there is a core stable partition, exactly one agent
is alone. Suppose agent 1 is alone. Then agent 1 and agent 3 together form a strongly
blocking coalition. Due to the cyclic nature of the preference of agents over coalitions
of size two, we can similarly rule out a core stable partition in which either agent 2 or
3 is alone.

A weaker definition of blocking (that gives rise to a more stringent solution concept)
has also been considered. We say that a coalition S ⊆ N weakly blocks a partition π ,
if each agent i ∈ S weakly prefers S to π(i) and there exists at least one agent j ∈ S

who strictly prefers S to its current coalition π(j ). A partition which admits no weakly
blocking coalition is said to be in the strict core (SC), which is sometimes referred to
as the strong core (Bogomolnaia and Jackson, 2002).

One can also define other stability concepts based on more complex deviations by
coalitions of agents. For partition π , π ′ �= π is called reachable from π by move-

ments of players S ⊆ N , denoted by π
S→π ′, if ∀i, j ∈ N \ S, i �= j : π(i) = π(j ) ⇔

π ′(i) = π ′(j ). A subset of players S ⊆ N, S �= ∅ strong Nash blocks π if a partition

π ′ �= π exists with π
S→ π ′ and ∀i ∈ S : π ′(i) �i π(i). If a partition π is not strong

Nash blocked by any set S ⊆ N , π is called strong Nash stable (SNS) (Karakaya, 2011).
The stability concept strong Nash stability can be suitably weakened or strengthened
to obtain other stability concepts such as strict strong Nash stability (SSNS) and strong
individual stability (SIS). We refer to Aziz and Brandl (2012) for the definitions.

15.2.2 Solution Concepts Based on Single-Agent Deviations

In this subsection, we define a number of solution concepts based on single-agent
deviations. The most basic is Nash stability which is named after Nash equilibrium.
A partition is Nash stable if no agent would gain by unilaterally moving to a different
(possibly empty) coalition. The other solution concepts restrict which deviations are
allowed based on the preferences of other agents in the coalitions that may lose or gain
an agent through the deviation. We say that a partition π is:

• Nash stable (NS) if no agent can benefit by moving from its coalition to another (possibly
empty) coalition, that is, for all i ∈ N , π (i) �i S ∪ {i} for all S ∈ π ∪ {∅}.

• Individually stable (IS) if no agent can benefit by moving from its coalition to another
(possibly empty) coalition while not making the members of that coalition worse off, that
is, for all i ∈ N , if there exists a coalition S ∈ π ∪ {∅} with S �= π (i) s.t. S ∪ {i} �i π (i)
then there exists a j ∈ S with S �j S ∪ {i}.
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Figure 15.1. Logical relationships between stability concepts for hedonic games. For example,
every NS partition is also IS. NS, SC, PO, C, and IR are classic stability concepts. IS was
formulated by Bogomolnaia and Jackson (2002); CNS by Sung and Dimitrov (2007b); SNS
(strong Nash stability) by Karakaya (2011); and perfect partitions by Aziz et al. (2013e). SSNS
(strict strong Nash stability) and SIS (strong individual stability) were introduced by Aziz and
Brandl (2012). Partitions satisfying CIS, PO, and IR, respectively, are guaranteed to exist for all
hedonic games.

• Contractual Nash stable (CNS) if no agent i can benefit by moving from its coalition
π (i) to another (possibly empty) coalition S ∈ π ∪ {∅} with S �= π (i) while not making
the members of π (i) worse off (Sung and Dimitrov, 2007b). Formally, for all i ∈ N , if
there exists a coalition S ∈ π ∪ {∅} with S �= π (i) s.t. S ∪ {i} �i π (i) then there exists
a j ′ ∈ π (i) with π (i) �j ′ π (i) \ {i}.

• Contractually individually stable (CIS) if no agent can benefit by moving from its
coalition to another existing (possibly empty) coalition while making no member of
either coalition worse off. Formally, for all i ∈ N , if there exists a coalition S ∈ π ∪ {∅}
with S �= π (i) s.t. S ∪ {i} �i π (i) then there exists a j ∈ S with S �j S ∪ {i} or there
exists a j ′ ∈ π (i) with π (i) �j ′ π (i) \ {i}.

All of the preceding concepts (except contractual Nash stability) have been defined
by Bogomolnaia and Jackson (2002). In Figure 15.1, we show relationships between
these and other solution concepts. For example, the figure shows that if a partition is
perfect, then it satisfies all the stability concepts defined earlier. The hedonic game
in Example 15.1 admits no IS partition (and therefore no NS) but has multiple CIS
partitions. For example, the partition {{1}, {2, 3}} is CIS, but not IS, because agent 3
has incentive to deviate to agent 1 and form coalition {1, 2}.

15.3 Preference Restrictions and Game Representations

When hedonic games are represented, we would ideally prefer a representation that
not only allows agents to be as flexible as possible in describing their preferences but
which also requires less space to succinctly store the preferences of the agents. In
this section, we discuss different representations of hedonic games and, in particular
the trade-off that occurs between the expressiveness of a representation and its size;
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typically a fully expressive representation needs space that is exponentially large in the
number of agents.

15.3.1 Fully Expressive Representations

A representation is fully expressive if it can represent any hedonic game. We describe
two types of fully expressive representations of hedonic games. The first, representation
by Individually Rational Lists of Coalitions, is nonsuccinct and involves a complete
enumeration of relevant preferences. The second, Hedonic Coalition Nets, allows for
succinct representation in many cases. Without any restrictions, a representation of an
agent’s preferences involves comparisons over 2|N |−1 different coalitions.

Individually Rational Lists of Coalitions

Most reasonable solution concepts require that an agent will be in a coalition that is indi-
vidually rational (IR), that is, the agent prefers to be in that coalition over being alone.
Therefore, instead of expressing preferences over all coalitions that include an agent,
the agent may express preferences only over individually rational coalitions. Such a
representation is called an Individually Rational Lists of Coalitions (IRLC) (Ballester,
2004). Of course such representations are essentially still complete enumerations and
can be exponentially large in the number of agents.

Example 15.2 (An example of an IRLC). Let us examine a preference relation of
agent 1 in the hedonic game defined in Example 15.1. Agent 1’s preference list contains
all coalitions that are at least as preferred as the singleton coalition:

�1: {1, 2} �1 {1, 3} ∼1 {1}.

Hedonic Coalition Nets

Hedonic coalition nets are a representation of hedonic games that are both expressive,
that is, able to capture potentially nonsuccinct IRLC, and also capable of allowing com-
pact representations of games that have structured preferences. They were introduced
by Elkind and Wooldridge (2009). In such a representation, each agent’s preference
relation is represented by a collection of rules of the form φ �→i b where φ is a pred-
icate over coalitions and b is a real number. The value of an agent for a coalition is
obtained by adding the values on the right hand side of those rules that are satisfied by
the coalition. Hedonic coalition nets are inspired by marginal contribution nets, which
were introduced in the context of transferable utility cooperative games by Ieong and
Shoham (2005).

Hedonic coalition nets use the framework of propositional logic. Let � be a vocab-
ulary of Boolean variables, and let L� be the set of propositional logic formulae over
�. Given a truth assignment to the variables ϕ ⊆ �, a valuation ξ is the subset of
the variables such that we have x ∈ ξ iff x is true. Given a valuation ξ and a formula
φ ∈ Lϕ , we say that ξ |= φ if and only if φ is true under valuation ξ .

In a hedonic coalition net, � = N , each agent corresponds to a propositional variable
and every coalition S defines a valuation over LN where the variable i ∈ N is set to



1 5 .3 preference restrictions and game representations 363

true if i ∈ S and set to false if i /∈ S. A rule for agent i ∈ N is φ �→i β where φ ∈ LN

is a formula and β ∈ R is the value associated with the rule. A hedonic coalition net is
a structure (N, R1, . . . , Rn) where Ri specifies a set of rules for each i ∈ N . It specifies
the utility of a coalition S ∈ Ni for an agent i in the following way:

ui(S) =
∑

φ �→iβ ∈ Ri

S|=φ

β.

In other words, for every coalition S ∈ Ni , the utility of agent i for being in S is the
sum of the values corresponding to those rules φ in Ri that the coalition S satisfies.
Given a hedonic coalition net, the corresponding hedonic game is (N,�) such that for
all i ∈ N and for all S, S ′ ∈ Ni , we have that S �i S ′ if and only if ui(S) � ui(S ′).

Hedonic coalition nets are fully expressive because they can represent an IRLC. In
an IRLC with n agents, the preference list of agent i is represented as

S1 ∗1 S2 ∗2 · · · ∗r−1 Sr

where r ≤ 2n−1, ∗j ∈ {�j ,∼j }, Sj ∈ Ni , and Sr = {i}. Based on an IRLC, we can
construct a hedonic coalition net where there are r rules and the value of the r’th rule is
xr = 0, and for j = r − 1, . . . , 1, we set xj = xj+1 if Sj ∼i Sj+1 and xj = xj+1 + 1
if Sj �i Sj+1. Now, for j ∈ {1, . . . , r}, the j ’th rule in Ri is⎛⎝∧

k∈Sj

k

⎞⎠ ∧
⎛⎝ ∧

l∈N\Sj

¬l

⎞⎠ �→i xj .

In other words, if agents in Sj are in the coalition and agents not in Sj are not in the
coalition, then agent i gets utility xj (exactly one rule is satisfied by a given coalition).

Example 15.3 (An example of hedonic coalition nets). Let us consider how a hedonic
coalition net can represent the preferences of agent 1 in Example 15.2.

¬i1 �→ −∞ i2 �→ 3

i2 �→ −ε i3 ∧ ¬i2 �→ 2

i3 �→ −ε i4 ∧ ¬i3 ∧ ¬i2 �→ 1

i4 �→ −ε

The symbol ε represents an arbitrarily small positive real number. The symbol ∞
represents a sufficiently large number. Let us see how agent 1 compares coalition {1, 2}
with {1, 3, 4}. For coalition {1, 2}, the rules i2 �→ −ε and i2 �→ 3 are satisfied and
the total utility of agent 1 for coalition {1, 2} is 3 − ε. In fact, the rules i2 �→ −ε and
i2 �→ 3 can simply be combined into a single rule i2 �→ 3 − ε. For coalition {1, 3, 4},
the rules i3 ∧ ¬i2 �→ 2, i3 �→ −ε and i4 �→ −ε are satisfied, so the total utility of agent
1 for coalition {1, 3, 4} is 2 − 2ε.

In contrast to IRLC, hedonic coalition nets can be used to succinctly represent various
classes of hedonic games such as additively separable hedonic games and games with
B-preferences, which we will introduce in Section 15.3.4.
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Figure 15.2. Example of an additively separable symmetric hedonic game.

The use of weighted logics for succinct representations is prevalent in computational
social choice (see Chapter 12). More generally, succinct representations are discussed
in several chapters (e.g., Chapters 9, 12, and 14).

15.3.2 Additively Separable Hedonic Games

Separability of preferences is a property of certain preferences that allows for a succinct
representations. The main idea of separability is that adding a liked (unliked) agent to
a coalition makes the coalition more (less) preferred.

Definition 15.2 (Separability). A game (N,�) is called separable if for every agent
i ∈ N , coalition S ∈ Ni , and agent j not in S, we have the following:

• S ∪ {j} �i S if and only if {i, j} �i {i}
• S ∪ {j} ≺i S if and only if {i, j} ≺i {i}
• S ∪ {j} ∼i S if and only if {i, j} ∼i {i}

Additive separable preferences are a particularly appealing (strict) subclass of sepa-
rable preferences. In an additively separable hedonic game (ASHG) (N,�), each agent
i ∈ N has value vi(j ) for agent j being in the same coalition as i and for any coalition
S ∈ Ni , i gets utility

∑
j∈S\{i} vi(j ) for being in S. The utility that an agent gets for

being alone in a singleton coalition is assumed to be 0. For coalitions S, T ∈ Ni , we
have S �i T if and only if

∑
j∈S\{i} vi(j ) �∑

j∈T \{i} vi(j ). Therefore an ASHG can
be represented by a weighted directed graph in which every vertex corresponds to an
agent and weight of an arc (i, j ) represents vi(j ). Additively separable preferences are
symmetric if vi(j ) = vj (i) for every two agents i, j ∈ N .

A nonsymmetric ASHG need not have a Nash stable partition (Bogomolnaia and
Jackson, 2002), and deciding whether there is one is NP-complete (Sung and Dimitrov,
2010). A symmetric ASHG is represented by an undirected weighted graph, and always
has a Nash stable partition as we will explain after an example.

Example 15.4. Figure 15.2 gives an example of a symmetric additively separable
hedonic game. Consider the partition {{a, b, d}, {c, e, f }}. The utilities of the agents
a, b, c, d, e, f are 10, 5,−1, 5, 1, 4, respectively. Agents a, b, d, f have no profitable
single-agent deviations, c has a profitable deviation to go alone and start a singleton
coalition, and e has a profitable deviation to join the other coalition. This is a contrac-
tually individually stable partition. The partition {{a, b, d}, {c}, {e, f }} is an individual
stable partition, and {{a, b, d, e, f }, {c}} is Nash stable.
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For an additively separable symmetric hedonic game, the existence of a Nash stable
(NS) partition (and therefore also a CNS, CIS, and IS partition) is guaranteed by
an argument based on a “potential function,” which was noted by Bogomolnaia and
Jackson (2002). We will construct an exact potential function. For every partition the
exact potential function assigns a potential value equal to half the sum of agents’
utilities under this partition. A deviation by a single agent from its coalition to another
will change the value of this potential function by exactly the change in the utility of
this deviating agent (every edge gained or lost in the sum of agents’ utilities counts
twice). Because the potential function is bounded, and there are finitely many partitions,
and every profitable deviation by a single agent improves the value of the potential
function, we have the following: starting from any partition, every maximally long
sequence of profitable deviations by agents terminates with a Nash stable partition.
Note that symmetry is key for this potential function argument to work.

15.3.3 Games Based on the Best or Worst Agents

We now describe classes of hedonic games in which the agents’ preferences over
coalitions are induced by their ordinal preferences over the other individual agents
via set extensions (Hajduková, 2006; Barberà et al., 2004). Two of the most natural
ways to extend preferences is based on the most preferred or least preferred agent in
the coalition. For a subset J of agents, we denote by max�i

(J ) and min�i
(J ) the sets

of the most and least preferred agents in J by i, respectively. In B (where B stands
for best) and W (where W stands for worst) games each agent’s appreciation of a
coalition depends on the most preferred (best) or least preferred (worst) agent in the
coalition. Note that roommate markets can also be considered in the framework with
the additional constraint that coalitions of size three or more are not feasible.

In hedonic games with B-preferences (which we will refer to as B-hedonic games),
S �i T if and only if, we have either:

(i) for each s ∈ max�i
(S \ {i}) and t ∈ max�i

(T \ {i}), s �i t , or
(ii) for each s ∈ max�i

(S \ {i}) and t ∈ max�i
(T \ {i}), s ∼i t and |S| < |T |.

So an agent’s appreciation of a coalition depends on its most favoured agents in the
coalition. If two coalitions have equally preferred agents, then a smaller coalition is
strictly preferred (Cechlárová and Hajduková, 2002; Cechlárová and Romero-Medina,
2001).

Example 15.5 (A B-hedonic game). Let (N,�) be a game with N = {1, 2, 3, 4} and
let the agents have preferences over other agents as follows:

2 �1 3 �1 4 �1 1,

3 �2 4 �2 1 �2 2,

1 �3 2 �3 4 �3 3,

3 �4 2 �4 1 �4 4.

For theB-hedonic game, the preferences of each agent over other agents are extended
over the preferences over sets of agents. The preferences of the agents are as follows
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(the preference of agent 1 is the same as in Example 15.2). For brevity, we omit the
commas separating agents in each coalition.

{12} �1 {123} ∼1 {124} �1 {1234} �1 {13} �1 {134} �1 {14} �1 {1},
{23} �2 {234} ∼2 {123} �2 {1234} �2 {24} �2 {124} �2 {12} �2 {2},
{13} �3 {123} ∼3 {134} �3 {1234} �3 {23} �3 {234} �3 {34} �3 {3},
{34} �4 {134} ∼4 {234} �4 {1234} �4 {24} �4 {124} �4 {14} �4 {4}.

In hedonic games withW-preferences (which we will refer to asW-hedonic games),
S �i T if and only if for each s ∈ min�i

(S \ {i}) and t ∈ min�i
(T \ {i}), we have

s �i t . So an agent’s appreciation of a coalition depends on its least preferred favoured
agents in the coalition (Cechlárová and Hajduková, 2004b; Cechlárová and Romero-
Medina, 2001).

Other games can be defined based on preferences that depend on both the best
and worst agents in the coalition (Hajduková, 2006) or in which the presence of an
unacceptable agent in the coalition makes the coalition unacceptable (Aziz et al., 2012a,
2013e). B-hedonic games, in which agents express strict preferences over other agents,
are known to admit a core stable partition (Cechlárová and Romero-Medina, 2001).
For further details on games based on the best or worst agents, we refer the reader to
Aziz et al. (2012a, 2013e); Cechlárová and Romero-Medina (2001); Cechlárová and
Hajduková (2004b); Hajduková (2006). B-hedonic games with strict preferences form
a subclass of a larger class of hedonic games that satisfy top responsiveness.

15.3.4 Top Responsiveness

Identifying sufficient and necessary conditions for the existence of stability in coalition
formation has been a very active area of research. Perhaps the most celebrated result in
this field is the existence of a (core) stable matching for the stable marriage problem,
which is shown constructively via the deferred-acceptance algorithm (Gale and Shap-
ley, 1962). For hedonic games, more generally, a number of preference restrictions have
been identified for which a stable partition is guaranteed to exist for some notion of
stability (see, e.g., Alcalde and Revilla, 2004; Aziz and Brandl, 2012; Banerjee et al.,
2001; Bogomolnaia and Jackson, 2002; Dimitrov et al., 2006; Dimitrov and Sung,
2007; Karakaya, 2011). In this subsection, we present an example of hedonic games
that satisfy top responsiveness (Alcalde and Revilla, 2004) that always admit a core
stable partition.

Every coalition contains subset subcoalitions over which the agents also have prefer-
ences. Top responsiveness captures the situation in which each agent’s appreciation of
a coalition depends on the most preferred subset within the coalition. If two coalitions
have the same most preferred subcoalition, then the coalition with the smaller size is
preferred. Top responsiveness is based on choice sets, which are sets of agents that an
agent wants to be with. We use Ch(i, S) to denote the choice sets of agent i in coalition
S. It is formally defined as follows:

Ch(i, S) := {S ′ ⊆ S : (i ∈ S ′) ∧ (S ′ �i S ′′ ∀S ′′ ⊆ S)}.
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If |Ch(i, S)| = 1, we denote by ch(i, S) the unique subset of S that is maximally
preferred by agent i on under �i : A game satisfies top responsiveness if |Ch(i, S)| = 1
for each i ∈ N and S ∈ Ni and the following conditions hold for each i ∈ N and all
S, T ∈ Ni ,

(i) S �i T if ch(i, S) �i ch(i, T );
(ii) S �i T if ch(i, S) = ch(i, T ) and S ⊂ T .

Example 15.6 (An example of top responsive preferences). The hedonic game
specified in Example 15.5 satisfies top responsiveness. For example, for agent 1, its
choice set of the grand coalition is {1, 2}. It likes each coalition that is a superset of
{1, 2} more than any coalition that is not a superset of {1, 2}. Moreover, it prefers a
smaller coalition that is a superset of {1, 2} more than a bigger coalition.

In Section 15.4.3, we show how to exploit the top responsiveness property
algorithmically.

15.4 Algorithms and Computational Complexity

In this section we give an overview of computational results concerning hedonic
games. For a given solution concept α, such as core stability, we consider the following
natural computational problems:

Verification: Given (N,�) and a partition π of N , does π satisfy α?
Existence: Given (N,�), does there exist a partition satisfying α?
Construction: Given (N,�), if a partition satisfying α exists, find one.

15.4.1 Hardness to Check Non-emptiness of Core

We next consider the problem Existence for core stability for a hedonic game given
as an IRLC, which was shown by Ballester (2004) to be NP-complete.

Theorem 15.7 (Ballester, 2004). For hedonic games in IRLC, the problem of checking
whether there exists a core stable partition is NP-complete.

Proof. Given an IRLC, Verification for core stability can be solved in polynomial
time because each agent explicitly lists all the individually rational coalitions, and these
are also all the potentially blocking coalitions. Thus the problem of deciding whether
a core stable partition exists is in NP.

We now show that it is NP-hard and thus NP-complete, via a reduction from
ExactCoverBy3Sets.

ExactCoverBy3Sets (X3C).
Instance: Set X and set T that consists of 3-element subsets of X.
Question: Does there exist a subset of T that partitions X?

We construct a hedonic game where N = {x, x ′, x ′′ : x ∈ X} and � is defined as
follows. For each i ∈ {x, x ′, x ′′}, let Xi

1, . . . , X
i
m be the elements in T such that they

include i.
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• For each x, Xx
1 ∼x · · · ∼x Xx

m �x {x, x ′′} �x {x, x ′} �x {x}
• For each x ′, {x, x ′} �x ′ {x ′, x ′′} �x ′ {x ′}
• For each x ′′, {x ′, x ′′} �x ′′ {x, x ′′} �x ′′ {x ′′}

It can be shown that (N,�) admits a core stable partition if and only if the X3C
instance is a yes instance. If the X3C instance is a yes instance, then there exists a
partition π of N that puts each x ∈ X in one of its most preferred coalitions. As for
each x ′ and x ′′, they can be paired up in a coalition so that x ′′ is in its most preferred
coalition, and x ′ is in its second most preferred coalition. Hence the partition is core
stable.

If X3C is a no instance, then there exists no partition in which each x gets a
most preferred coalition. Hence, in each partition, at least one x ∈ X is in one of
the following coalitions: {x, x ′′}, {x, x ′}, {x}. For any partition containing coalition
{x, x ′′}, the coalition {x ′, x ′′} is blocking. For any partition containing coalition {x, x ′},
the coalition {x, x ′′} is blocking. For any partition containing coalition {x}, the coalition
{x, x ′} is blocking. Hence each partition admits a blocking coalition and is not core
stable.

NP-hardness of checking existence of core is not restricted to IRLC but also holds
for various other representations and classes of games. For a survey on this topic, see
Woeginger (2013).

15.4.2 Symmetric Additively Separable Hedonic Games

In this section, we focus on the class of symmetric additively separable games. As
described in Section 15.3.2, an argument that uses a potential function shows that every
instance from this class possesses a Nash stable outcome. This places the computational
problem of finding a Nash stable outcome for a game of this type, as well as the problem
of finding any stable outcome based on more restrictive (polynomial-time checkable)
notions of deviation, in the complexity class PLS, which stands for polynomial local
search. In this section, we first give a brief overview of the complexity class PLS and
PLS-reductions (Johnson et al., 1988). Then, we give an overview of some negative
results (PLS-completeness) and positive results (polynomial-time algorithms) for the
problem of finding stable outcomes for hedonic games in this class.

A problem in PLS comprises a finite set of candidate solutions. Every candidate
solution has an associated nonnegative integer cost, and a neighbourhood of candidate
solutions. In addition, a PLS problem is specified by the following three polynomial-
time algorithms that

(i) construct an initial candidate solution
(ii) compute the cost of any candidate solution in polynomial time

(iii) given a candidate solution, provide a neighbouring solution with lower cost if one
exists

The goal in a PLS problem is to find a local optimum, that is, a candidate solution
whose cost is smaller than all of its neighbors.

Suppose A and B are problems in PLS. Then A is PLS-reducible to B if there exist
polynomial-time computable functions f and g such that f maps instances I of A
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to instances f (I ) of B, and g maps the local optima of instances f (I ) of B to local
optima of instance I . A problem in PLS is PLS-complete if all problems in PLS are
PLS-reducible to it. PLS captures the problem of finding pure Nash equilibria for many
classes of games where pure equilibria are guaranteed to exist, such as congestion
games Fabrikant et al. (2004).

On one hand, it is very unlikely that a PLS problem is NP-hard because this would
imply NP = coNP (Johnson et al., 1988). On the other hand, a polynomial-time
algorithm for a PLS-complete problem would resolve a number of long open problems,
for example, because it would show that simple stochastic games can be solved in
polynomial time (Yannakakis, 2008). Thus, PLS-complete problems are believed not
to admit polynomial-time algorithms.

Observation 15.8 (Gairing and Savani, 2010). For symmetric additively separable
hedonic games, Construction for Nash Stability is PLS-complete.

Proof. We reduce from the PLS-complete problem PartyAffiliation, which is to
compute an equilibrium of a party affiliation game. The input of PartyAffiliation
is an undirected edge-weighted graph. A solution is a partition of the nodes into two
parties such that for every node v the sum of edge weights of edges from v to other
nodes in v’s part is greater that the sum of edge weights to nodes in the other party.
A party affiliation game is essentially a symmetric additively separable hedonic game
where at most two coalitions are permitted.

Consider an instance G = (V, E, w) of PartyAffiliation. We augment G by
introducing two new agents, called super nodes. Every agent i ∈ V has an edge, of
weight W >

∑
e∈E |we|, to each of the super nodes. The two super nodes are connected

by an edge of weight −M , where M > |V | · W . Use the resulting graph to define a
corresponding hedonic additively separable game and consider Nash stable outcomes.
By the choice of M the two super nodes will be in different coalitions in any Nash stable
outcome of the resulting hedonic game. Moreover, by the choice of W , each agent will
be in a coalition with one of the super nodes. So, in each Nash stable outcome we have
exactly two coalitions. The fact that edges to super nodes have all the same weight
directly implies a one-to-one correspondence between the Nash stable outcomes in the
hedonic game and in the party affiliation game.

Every Nash stable outcome is also an individually stable outcome and thus
Construction is no harder for individual stability than for Nash stability. It turns
out that Construction for individual stability is still PLS-hard, though the simplest
reduction we know that shows this result is much more involved than the proof of Obser-
vation 15.8 for Nash stability (Gairing and Savani, 2010, 2011). When deviations of
players are restricted even further, and we move from individual stability to contractual
individual stability, the problem Construction becomes efficiently solvable:

Observation 15.9 (Gairing and Savani, 2010). For symmetric additively separable
hedonic games, Construction for CIS can be solved in O(|E|) time. Moreover, local
improvements converge in at most 2|V | steps.

Proof. Consider the following algorithm to solve the game G = (V, E, w):

Delete all negative edges from G and put every connected component in a separate coalition.
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Consider any coalition formed by this algorithm. If the coalition consists of only one
agent, then this agent has no positive edges to any agent and staying alone is a (weakly)
dominant strategy. Agents in larger coalitions are connected by a positive edge to some
agent within the same coalition. Therefore, they are not allowed to leave the coalition.
Thus, we have computed a CIS stable state. Finding the connected components of an
undirected graph can be done by depth-first search in O(|E|) time.

Now consider local improvements. Observe that whenever an agent joins a non-
empty coalition then this agent (and all agents to which it is connected by a positive
edge in the coalition) will never move again. Moreover, an agent can only start a new
coalition once. It follows that each agent can make at most two strategy changes. In
total we have at most 2|V | local improvements.

For further results on additively separable hedonic games, we refer the reader to
Aziz et al. (2013b), Sung and Dimitrov (2010), Olsen (2009), and Sung and Dimitrov
(2007a).

15.4.3 Top Covering Algorithm

In Section 15.3.4, we discussed games that satisfy top responsiveness that are guaran-
teed to admit a core stable partition. Next, we define the Top Covering Algorithm to com-
pute a core stable partition for hedonic games satisfying top responsiveness (Alcalde
and Revilla, 2004; Dimitrov and Sung, 2006). For this we need the following defi-
nitions. For each X ⊆ N , we denote by �X the relation on X × X where i �X j if
and only if j ∈ ch(i, X). In this case j is called a neighbour of i in X. The connected
component CC(i, X) of i with respect to X is defined as follows:

CC(i, X) = {k ∈ X : ∃j1, . . . , jl ∈ X : i = j1 �X · · · �X jl = k}.
Based on the concept of connected components, we can specify the Top Covering Algo-
rithm. The algorithm is formally specified as Algorithm 1 and is based on similar ideas
as that of the Top Trading Cycle Algorithm for exchange of indivisible objects (Shapley
and Scarf, 1974). We maintain a partition π and a set Rk as the set of remaining agents
in round k. In each round, an agent i is selected from Rk for which the size of the
connected component of i with respect to Rk is at most the size of the connected com-
ponent of some other agent j ∈ Rk with respect to Rk . Such a connected component is
a new coalition in partition π . The process is iterated until no more agents remain. For
hedonic games that satisfy top responsiveness, the Top Covering Algorithm returns a
core stable partition. Alcalde and Revilla (2004) also proved that, for top responsive
preferences, the Top Covering Algorithm is strategyproof. If the preference profile
satisfies some natural constraints in addition to top responsiveness, the Top Covering
Algorithm returns a partition which satisfies even stronger notions of stability than core
stability (Aziz and Brandl, 2012).

Example 15.10 (An example illustrating the Top Covering Algorithm). We
run the Top Covering Algorithm on the hedonic game specified in Example 15.5.
Example 15.6 pointed out that the hedonic game satisfies top responsiveness. First, we
examine the connected components. Initially, R1 = {1, 2, 3, 4}, CC(1, {1, 2, 3, 4}) =
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Algorithm 1 Top Covering Algorithm
Input: A hedonic game (N,�) satisfying top responsiveness.
Output: A core stable partition π .

1: R1 ← N ; π ← ∅.
2: for k = 1 to |N | do
3: Select i ∈ Rk such that |CC(i, Rk)| � |CC(j, Rk)| for each j ∈ Rk .
4: Sk ← CC(i, Rk)
5: π ← π ∪ {Sk}
6: Rk+1 ← Rk \ Sk

7: if Rk+1 = ∅ then
8: return π

9: end if
10: end for
11: return π

CC(2, {1, 2, 3, 4}) = CC(3, {1, 2, 3, 4}) = {1, 2, 3} and CC(4, {1, 2, 3, 4}) = {1, 2,

3, 4}.
Because |CC(1, {1, 2, 3, 4})| < |CC(4, {1, 2, 3, 4})|, hence S1 = {1, 2, 3} and R2 =

{1, 2, 3, 4} \ {1, 2, 3} = {4}. Thus the coalition S1 = {1, 2, 3} is fixed and the next fixed
coalition is S2 = {4}. Hence the final partition π = {{1, 2, 3}, {4}}.

Recall from Section 15.3.4 thatB-hedonic games are one well-studied class of games
that satisfy top responsiveness. For more details on computational aspects of games
based on the best or worst agents, we refer the reader to Aziz et al. (2012a); Cechlárová
and Romero-Medina (2001); Cechlárová and Hajduková (2004b); Hajduková (2006).

15.4.4 Preference Refinement Algorithm

We outline the Preference Refinement Algorithm (PRA) to compute individually ratio-
nal and Pareto optimal partitions (Aziz et al., 2013e). The idea of PRA is to relate the
problem of computing a Pareto optimal partition to PerfectPartition — the problem of
checking whether a perfect partition exists. First note that if there exists a polynomial-
time algorithm to compute a Pareto optimal partition, then it returns a perfect partition
if a perfect partition exists. For the opposite direction, we show that an oracle to solve
PerfectPartition can be used by PRA to compute a Pareto optimal partition.

In PRA, the bottom preference�⊥
i of each agent i is initially completely ‘coarsened’

so that each agent is indifferent among all acceptable coalitions. The top preference
�(

i of each agent is set to �i . The preference profiles �⊥ and �( are updated during
the running of PRA while ensuring that a perfect partition exists for �⊥. Because the
partition of singletons is a perfect partition for the coarsest profile (�⊥

1 , . . . ,�⊥
n ), we

know that a perfect partition exists. Before we formally specify PRA, we must define
coarsening, refinement, and cover in preference relations.

Let �= (�1, . . . ,�n) and �′= (�′
1, . . . ,�′

n). We say that �′
i refines �i if �i is

exactly like �′
i , except that in �′

i agent i may have strict preferences among some of
his most preferred coalitions according to �i . Equivalently �i is coarser than �′

i . We
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Algorithm 2 Preference Refinement Algorithm (PRA).
Input: Hedonic game (N,�)
Output: Pareto optimal and individually rational partition

1 �(
i ←�i , for each i ∈ N

2 �⊥
i ←�i ∪{(X, Y ) : X�i {i} and Y �i {i}}, for each i ∈ N

3 while �⊥
i �=�(

i for some i ∈ N do
4 i ← Choose({j ∈ N : �⊥

j �=�(
j })

{Choose specifies some way to choose an agent from a set of agents.}
5 �′

i← Refine(�⊥
i ,�(

i )
6 if PerfectPartition(N, (�⊥

1 , . . . ,�⊥
i−1,�′

i ,�⊥
i+1, . . . ,�⊥

n )) = ∅ then
7 �(

i ←�′′
i where �′

i covers �′′
i

8 else
9 �⊥

i ←�′
i

10 end if
11 end while
12 return PerfectPartition(N,�⊥)

say that �′
i is strictly refines �i if �′

i refines �i but �′
i does not refine �i . If a partition

is perfect for some preference profile �, then it is also perfect for any profile in which
the preferences are coarsened. The same holds for Pareto optimal partitions. We say
that �i covers �′

i if �i is a minimal refinement of �′
i with �′

i �=�i , that is, if �i strictly
refines �′

i and there is no �′′
i such that �i strictly refined �′′

i and �′′
i strictly refined

�′
i .
PRA can be viewed as gradually improving the minimum guaranteed welfare of

agents while using binary search. When an agent i is chosen for whom �⊥
i and �(

i

do not coincide, �⊥
i is temporarily set to some preference relation �′

i which is finer
than �⊥

i but coarser than �(
i . If a perfect partition still exists for the given preference

preference profile, then �⊥
i is set to the updated preference. If no perfect partition

exists, then we can restrict our attention to preferences of agent i that are not as fine
as �′

i . The main idea is that if no refinement of some preference profile with perfect
partition π allow for a perfect partition, then π is Pareto optimal. PRA is specified
more formally as Algorithm 2 where Choose({j ∈ N : �⊥

j �=�(
j }) returns a player in

the set {j ∈ N : �⊥
j �=�(

j } and Refine(�⊥
i ,�(

i ) returns a preference �′
i that strictly

refines �⊥
i and is a coarsening of �(

i .

Example 15.11 (An example illustrating PRA). We run PRA on the hedonic game
specified in Example 15.6. In the beginning, �(

i =�i and �⊥
i specifies indifference

between all coalitions.
Let us say that agent 4 is chosen in Step 4 of the algorithm and we consider its

preferences �′
4.

{34} �′
4 {134} ∼′

4 {234} �′
4 {1234} �′

4 {24} �′
4 {124} �′

4 {34} �′
4 {4}

We check whether a perfect partition still exists or not for (�⊥
1 ,�⊥

2 ,�⊥
3 ,�′

4). A
perfect partition indeed exists: {{3, 4}, {1}, {2}}. Thus �⊥

4 is set to �′
4. Let us now take



1 5 .5 further reading 373

agent 2 and consider its preference �′
2.

{23} ∼′
2 {234} ∼′

2 {213} ∼′
2 {1234} ∼′

2 {24} ∼′
2 {214} �′

2 {12} �′
2 {2}

However, no perfect partition exists for (�⊥
1 ,�′

2,�⊥
3 ,�⊥

4 ). Hence �(
2 is changed

as follows:

{23} ∼(
2 {234} ∼(

2 {213} ∼(
2 {1234} ∼(

2 {24} ∼(
2 {214} ∼(

2 {12} �(
2 {2}

The process goes on until top and bottom preferences of the agents are as follows
in the end:

{12} �⊥
1 {123} ∼⊥

1 {124} �⊥
1 {1234} �⊥

1 {13} �⊥
1 {134} �⊥

1 {14} �⊥
1 {1},

{23} ∼⊥
2 {234} ∼⊥

2 {213} ∼⊥
2 {1234} ∼⊥

2 {24} ∼⊥
2 {214} ∼⊥

2 {12},
{13} ∼⊥

3 {123} ∼⊥
3 {134} ∼⊥

3 {1234} ∼⊥
3 {23} ∼⊥

3 {234} ∼⊥
3 {34} �⊥

3 {3},
{34} �⊥

4 {134} ∼⊥
4 {234} �⊥

4 {1234} �⊥
4 {24} �⊥

4 {124} �⊥
4 {14} �⊥

4 {4}.
The perfect partition for (�⊥

1 ,�⊥
2 ,�⊥

3 ,�⊥
4 ) = (�(

1 ,�(
2 ,�(

3 ,�(
4 ) is {{3, 4}, {1, 2}}.

which is Pareto optimal for �.

Any Pareto optimal and individually rational partition can be returned by PRA
depending on how the refinements of preferences are carried out. The behaviour of
PRA may depend on the specific settings of Choose and Refine. In particular the
following are two interesting versions of PRA. In PRASD, Choose selects players
according to a fixed order of the players and Refine returns a player’s finest preference
relation, that is, generally Refine(�⊥

i ,�(
i )= �(

i . In PRAEgal, Choose selects a
player that has been selected the fewest number of times during the execution of PRA.
Refine is defined such that Refine(�⊥

i ,�(
i ) = Cover(Q⊥

i ). Both versions have their
merits. If all coalitions are acceptable then PRASD is strategyproof. On the other hand,
PRAEgal satisfies the following property: for any k ∈ N for which there exists a Pareto
optimal partition in which none of the players get one of their kth lowest-ranked or
worse coalitions, PRAEgal will return such a partition.

PRA can be adapted for various specific classes of hedonic games by formulating
specific algorithms to solve PerfectPartition for those classes. For example, applying
this idea yields a polynomial-time algorithm to compute a Pareto optimal partition for
W-hedonic games (Aziz et al., 2013e).

15.5 Further Reading

There are a number of topics that we have not touched on in this chapter. We have
not discussed strategic issues in detail (see, e.g., Demange, 2009). One reason is that
impossibility results hold even for restricted classes of hedonic games (Barberà and
Gerber, 2007; Rodrı́guez-Álvarez, 2009).

Various classes of hedonic games can be represented by graphs. Some of them are
special subclasses of additively separable hedonic games, which we have discussed.
An additively separable hedonic game (N, v) is an appreciation of friends game if for
all i, j ∈ N such that i �= j , vi(j ) ∈ {−1,+n}. It is an aversion to enemies game if
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for all i, j ∈ N such that i �= j , vi(j ) ∈ {−n,+1}. These games were introduced in
Dimitrov et al. (2006).

There are other interesting graph based hedonic games that we did not discuss.
Social distance games were introduced by Branzei and Larson (2011). Each social
distance game is represented by an unweighted undirected graph. Agent i in coalition
C ⊆ N has utility for this coalition equal to vi(C) = 1

|C|
∑

j∈N\{i}
1

dC (i,j ) where dC(i, j )
is the shortest path distance between i and j in the subgraph induced by coalition C

on the graph G. If i and j are disconnected in C, then dC(i, j ) = ∞. Another class
of graph based game that has been recently proposed is that of fractional hedonic
games (Aziz et al., 2014b). As in additively separable hedonic games, each agent i has
a value function vi : N → R, assigning a value to each agent i ∈ N with vi(i) = 0. A
value function vi can be extended to a value function over coalitions S ⊆ N in such a

way so that vi(S) =
∑

j∈S vi (j )
|S| . A hedonic game (N,�) is said to be a fractional hedonic

game if for each agent i in N there is a value function vi such that for all coalitions
S, T ⊆ N , S �i T if and only if vi(S) ≥ vi(T ). Unlike additively separable hedonic
games, even if the weights are all positive, the grand coalition need not be core stable
for fractional hedonic games.

The class of roommate games, which are well-known from the literature on matching
theory, can be defined as those hedonic games in which only coalitions of size one
or two are feasible (see, e.g., Aziz, 2013). A marriage game is a roommate game in
which the set N of agents can be partitioned into two sets male and female and an agent
finds a member of the same sex unacceptable. For further reading on computational
aspects of marriage, roommate and related games, we refer the reader to Ronn (1990);
Irving (1985); Scott (2005); Irving (1994); Manlove (1999); Aziz (2013); Deineko
and Woeginger (2013). Cechlárová and Hajduková (2004a) examined more complex
preferences in which agents’ appreciation of coalition depends on both the worst and
best agents in the coalition.

There are also various classes of hedonic games in which agent’s appreciation of
a coalition depends on the size of the coalition. Anonymous games are a subclass
of hedonic games in which an agent’s preferences over coalitions only depends on
the coalition sizes (see, e.g., Ballester, 2004). Anonymous games are closely related to
congestion games (see, e.g., Milchtaich, 1996) in noncooperative game theory. A setting
that is related to anonymous games is that of group activity selection game in which
each agent has preference over pairs of activity and number of agents participating
in the activity. A number of variants of the games are defined by Darmann et al.
(2012). Another class of hedonic games that is based on the number of agents is
Gamson’s hedonic game. This class of hedonic games is of considerable importance in
modeling coalition formation in the parliament in which each political party wants to
be in a majority coalition in which it has a maximum proportion of seats. Each agent
i ∈ N representing a party has weight w(i). For each coalition S ⊂ N such that i ∈ S,
vi(S) = w(i)∑

j∈S w(j ) if
∑

j∈S w(j ) >
∑

j∈N w(j )/2 and zero otherwise (Le Breton et al.,

2008; Deineko and Woeginger, 2014; Gamson, 1961).

Research issues and future directions

An important area of future research is to model and capture realistic scenarios via
hedonic games. There is a need to bring together the work on behavioral game theory
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and mathematical game theory. This may help identify other interesting classes of
hedonic games and preference restrictions. Identifying other natural set extensions for
compact representations of hedonic games will be fruitful.

Another issue is that in many realistic scenarios, most agents are part of overlapping
coalitions. Although there is interesting work on overlapping coalitions in transferable
utility cooperative game theory (see, e.g., Chalkiadakis et al., 2010), there is scope for
more work on overlapping coalitions in hedonic games. We have focussed on outcomes
in which each agent is in one of the coalitions of the partition. The setting can be gen-
eralized to allow agents to be partial members of various coalitions. This could, for
example, represent the proportion of time different coalitions are formed. Formally,
a fractional hypergraph matching is a function w assigning nonnegative weights to
coalitions such that

∑
S∈Ni

w(S) � 1 for all i ∈ N . A fractional hypergraph match-
ing is stable if for every S ∈ 2N , there exists an i ∈ S such that

∑
i∈T ∈Ni

T�iS

w(T ) = 1.

Aharoni and Fleiner (2003) used a connection with Scarf’s Lemma to show that a stable
fractional hypergraph matching is guaranteed to exist. In general, the complexity of
computing a fractional stable matching is PPAD-complete (Kintali et al., 2009). There
are other ways to define stability for fractional hypergraph matchings (Manjunath,
2013) and each of the concepts leads to corresponding computational problems.

Although hedonic games have been examined computationally, their algorithmic
treatment has been somewhat piecemeal. The hope is to come up with general algo-
rithms that are not tailor-made for a specific representation of hedonic games and can
compute solutions of different classes of games. A plethora of intractability results
indicates that a fixed parameter tractability approach (Niedermeier, 2006) may also be
fruitful. Finding faster exact exponential algorithms is also a natural avenue (Fomin
and Kratsch, 2010). Another research direction is to have logical representations of
hedonic games and propose logical characterizations of solution concepts which would
enable SAT solvers to compute stable partitions (see, e.g., Aziz et al., 2014a). Finally,
given that it is computationally hard to find many types of (exactly) stable outcomes, it
is natural to study the computational complexity of finding approximately stable parti-
tions. A first step in this direction for cut and party affiliation games, which are closely
related to additively separable hedonic games, was taken by Bhalgat et al. (2010).

Characterizing conditions under which stable partitions are guaranteed to exist
is one of the main research questions concerning hedonic games. Although various
sufficient conditions have been identified in the literature, there is scope for a better
understanding of sufficient and necessary conditions. Another interesting question is
studying the conditions under which a game has a unique stable partition. Pápai (2004)
characterized conditions under which a hedonic game has a unique core stable partition.
There are various interesting questions regarding the complexity of checking whether
the game has a unique core stable partition. It is not clear whether this question is easier
or harder than checking the existence of a core stable partition.

Deviation dynamics in uncoordinated matching markets have been examined within
computer science (see, e.g., Ackermann et al., 2011). The rich landscape of hedonic
games provides fertile ground for interesting research on dynamics of deviations.

Finally, the solutions of hedonic games based on graphs can be used as desirable
ways to perform network clustering and community detection (Aziz et al., 2014b; Olsen,
2013). Aziz et al. (2014b) suggested core stable and welfare-maximizing partitions
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of the fractional hedonic game corresponding to the graph as an interesting way of
clustering the vertices of the network. Further work (see, e.g., Bilò et al., 2014) in this
area may be of interest to other communities working in network analysis (McSweeney
et al., 2014).
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CHAPTER 16

Weighted Voting Games

Georgios Chalkiadakis and Michael Wooldridge

16.1 Introduction

In this chapter, we consider weighted voting games: a form of social choice system
that seems much simpler than most schemes considered in this handbook, but which
is, nevertheless, widely used for many important real-world social choice problems.
There are at least two very good reasons for studying weighted voting systems: first,
as we have already mentioned, they are widely used in practice; and second, for all
their apparent simplicity, they possess interesting mathematical and computational
properties, making them interesting objects from the point of view of scientific study.

Weighted voting games originated in the domain of cooperative game the-
ory (Chalkiadakis et al., 2011). They model decision-making situations in which a
set of voters must make a binary (yes/no) decision on some particular issue; each
voter is allocated a numeric weight, and the decision is carried if the sum of weights
of voters in favour of it meets or exceeds some specific given threshold, called the
quota. Weighted voting games have many applications beyond social choice theory.
For example, they can be used to model settings where each player has a certain amount
of a given resource (say, time, money, or manpower), and there is a goal that can be
reached by any coalition that possesses a sufficient amount of this resource.

The remainder of this chapter is structured as follows.

� In Section 16.2, we present the basic models and solution concepts that will be used
throughout the remainder of the chapter. We start by defining cooperative games in
characteristic function form, and then introduce weighted voting games. We go on to
describe some key solution concepts for cooperative games: the core, the Shapley value,
and the Banzhaf index.

� In Section 16.3, we consider computational properties of weighted voting games: in
particular, the complexity of computing the core, the Shapley value, and the Banzhaf
index.

� In Section 16.4, we consider the (sometimes unintuitive) relationship between the weight
that a voter is assigned in a weighted voting game and the power that this voter then
wields.
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� In Section 16.5, we consider the extent to which weighted voting games can be considered
as a representation scheme for yes/no voting systems (i.e., simple cooperative games).
We give a condition on yes/no voting systems that is both necessary and sufficient for
such a system to be representable as a weighted voting game.

Throughout the chapter, we assume familiarity with the basic notation and terminology
of computational complexity theory (big-O notation, the classes P, NP, coNP, and
#P) (Garey and Johnson, 1979; Papadimitriou, 1994).

16.2 Basic Definitions

Weighted voting games are a special case of a class of cooperative games, and the solu-
tion concepts that we consider for weighted voting games are in fact those developed
within cooperative game theory. In this section, we begin by presenting the key game
model from cooperative game theory, and then introduce weighted voting games as a
special case of such game. We then define the key solution concepts for such games.

16.2.1 Cooperative Games

We start by defining the game model that underpins weighted voting games: formally,
these are cooperative games with transferable utility in characteristic function form,
but we will refer to them as cooperative games.

Definition 16.1. A cooperative game, G, is given by a pair G = (N, v), where N =
{1, . . . , n} is the set of players of the game, and v : 2N → R is the characteristic
function of the game. Unless otherwise stated, we assume that v(∅) = 0, and moreover
that v({i}) = 0 for all i ∈ N . We will say a cooperative game G = (N, v) is simple if
v(C) ∈ {0, 1} for all C ⊆ N , in which case we say C ⊆ N are winning if v(C) = 1,
and losing otherwise. A simple game is nontrivial if v(N) = 1. We will usually assume
games are nontrivial.

The basic idea behind this model is that any subset C ⊆ N of the players can cooperate
with each other, and, by joining forces, they can obtain the value v(C). The model
does not specify how the players cooperate; it only specifies what value they could
obtain through cooperation. It is conventional to refer to (sub)sets of players C ⊆ N

as coalitions: in everyday use the term “coalition” implies a collection of people with
some common cause or commitment to joint action, but we will mean it simply in the
sense of a set of players, who may or may not choose to cooperate. We will refer to the
set of all players N as the grand coalition.

16.2.2 Weighted Voting Games

We are now ready to define weighted voting games. A weighted voting game is a simple
cooperative game (i.e., a game in which every coalition has a value of either 0 or 1),
which is defined by each player in the game having a weight, and where a coalition
obtains the value 1 if the sum of their values meets or exceeds a given quota. Formally:
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Definition 16.2. A weighted voting game G with a set of players N = {1, . . . , n} is
given by a list of weights w = (w1, . . . , wn) ∈ Rn and a quota q ∈ R; we will write
G = [N ; w; q]. The characteristic function v : 2N → {0, 1} of the game is defined as
follows:

v(C) =
{

1 if
∑

i∈C wi � q

0 otherwise.

We write w(C) to denote the total weight of a coalition C, that is, we set w(C) =∑
i∈C wi . It is usually assumed that all weights and the quota are nonnegative; in what

follows, we will make this assumption as well. Under this assumption, weighted voting
games are monotone: if a coalition wins, then adding players to the coalition cannot turn
it into a losing coalition. It is common to assume that 0 < q ≤ w(N); this condition
ensures that the empty coalition is losing and the grand coalition is winning (and hence
the game is nontrivial).

Our definition of weighted voting games allows for arbitrary real number weights.
However, it is not clear how to efficiently store and manipulate such weights, which
presents a difficulty from the algorithmic point of view. Fortunately, it turns out that
any weighted voting game is equivalent to a game with fairly small integer weights.
More precisely, we have the following theorem, which follows from results on linear
threshold functions (Muroga, 1971).

Theorem 16.1. Let us say two weighted voting games G = [N ; w; q] and G′ =
[N ; w′; q ′] are equivalent iff for all coalitions C ⊆ N we have w(C) � q iff w′(C) � q ′.
Then, for any weighted voting game G = [N ; w; q] with |N | = n, there exists an equiv-
alent weighted voting game G′ = [N ; w′; q ′] with w′ = (w′

1, . . . , w
′
n) such that all w′

i ,
i = 1, . . . , n, and q ′ are nonnegative integers, and w′

i = O(2n log n) for all i = 1, . . . , n.

We can therefore assume without loss of generality that all weights and the quota
are integers given in binary. We remark that, even though the entries of the weight
vector w′ are exponential in n, they can be represented using O(n log n) bits—that is,
a weighted voting game with n players can be described using poly(n) bits. Thus, any
weighted voting game has an equivalent “compact” representation: this fact is useful
when considering questions relating to computational complexity.

Before proceeding, let us say a few words about the applications of weighted voting
games. These games can be used to describe many real-world situations. In particular,
they are very well suited to model coalition formation in legislative bodies. In more
detail, each party in a parliament can be associated with a player in a weighted voting
game; the weight of the player is given by the total number of the representatives of this
party. The quota corresponds to the number of votes needed to pass a bill; while in most
cases a simple majority q = !w(N)/2" + 1 suffices, in some circumstances a bill can
only be passed if it is supported by two thirds of the legislators (i.e., q = 2w(N)/3),
or even the entire legislative body (q = w(N)). Another example of a weighted voting
game is shareholder voting: the weight of each voter is proportional to the number of
shares she holds. A weighted voting game also arises in a setting where there is a task
that requires q hours of work, and there is a group of agents N = {1, . . . , n} such that
each agent i can dedicate wi of his time to this task.
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16.2.3 Solution Concepts

The basic assumption in cooperative game theory is that players will make strategic
decisions about who they will cooperate with. The best-known solution concept in
cooperative game theory, the core, formalizes an answer to the question of which
players will cooperate. The idea of the core is that a stability is a necessary condition
for coalition formation: a coalition will not form if some sub-coalition can do better by
defecting and working together as a team. To formulate the core, we need some further
definitions.

Definition 16.3. An imputation for a cooperative game G = (N, v) is a tuple of real
numbers x = (x1, . . . , xn) ∈ Rn satisfying the following conditions:

�

∑n
i=1 xi = v(N )

� xi � v({i}) for all i ∈ N

Where x = (x1, . . . , xn) is an imputation and C ⊆ N is a set of players, we denote by
x(C) the value

∑
i∈C xi .

We think of an imputation as an indication of how the value of the grand coalition should
be divided among players in the game. The first requirement relates to efficiency: it
simply says that the total value available should be distributed. The second requirement
relates to individual rationality: it says that no player should receive a payoff that is
lower than it could obtain alone.

The core then attempts to characterize a set of “acceptable” imputations: imputations
to which no coalition could realistically object. We will see the formal definition first,
and then discuss it.

Definition 16.4. The core, C(G), of a cooperative game G = (N, v) is the set:

C(G) = {x | ∀C ⊆ N : x(C) � v(C)}.
Thus, if an imputation x is not in the core, then there exists some coalition C ⊆ N

such that v(C) > x(C). Such a coalition would object to the imputation x, because they
could do better by working together as a team: the value they would obtain in this way
could be distributed among the members of C in such a way that all the players in C

receive a higher payoff than they do under the imputation x. Note that the core of a
game may be empty, as the following example illustrates.

Example 16.2. Consider a game G with N = {1, 2, 3} and the characteristic function
v defined as follows:

v(C) =
{

1 if |C| � 2
0 otherwise.

Thus, a coalition obtains a value of 1 iff the coalition contains at least 2 members.
Now consider any imputation for the game. The imputation (1/3, 1/3, 1/3) is not in
the core, because any pair of agents could defect, obtaining the value 1 which can
be shared among themselves. No other imputation x = (x1, x2, x3) can be in the core
because two players will always be able to defect and share the value assigned to the
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third player among themselves. For example, if x = (0, 0.5, 0.5) then players 1 and 2
could benefit by defecting.

The core formalizes the idea of the grand coalition being stable, in the sense that no
coalition can profitably defect from it. However, it is easy to construct examples where
the core contains imputations that seem unreasonable:

Example 16.3. Suppose G = ({1, 2}, v) is such that:

v({1}) = v({2}) = 5
v({1, 2}) = 20.

The reader may easily verify that the imputation (5, 15) is in the core, but from the
point of view of player 1, this seems unreasonable: it gives all the surplus obtained by
cooperation to player 2, while there seems to be nothing in the game to distinguish the
contribution that player 1 makes from the contribution that player 2 makes.

Thus, the core is not appropriate as a framework for deciding how to divide coali-
tional value. The Shapley value is the best known solution concept for this purpose.
Formulated by Nobel Laureate Lloyd Shapley in the early 1950s (Shapley, 1953), the
Shapley value is defined in terms of the marginal contribution that players make in
games. Formally, where C ⊆ N \ {i}, the marginal contribution that player i makes to
C is denoted by δi(C), and is simply the value that i would add to the coalition C by
joining it:

δi(C) = v(C ∪ {i}) − v(C).

We will say a player is a dummy if δi(C) = 0 for all C ⊆ N \ {i}. Thus, a dummy player
is a player that never adds any value to a coalition. We will say players i �= j ∈ N are
symmetric if δi(C) = δj (C) for all C ⊆ N \ {i, j}. Thus, symmetric players are players
who always make identical contributions to coalitions. We let � denote all possible
orderings of the players N , and denote members of � by π, π ′, . . . and so on. Where
π ∈ � and i ∈ N , we denote by πi the set of players that precede i in the ordering π .
Then:

Definition 16.5. The Shapley value for a game G is the imputation ϕ(G) =
(ϕ1(G), . . . , ϕn(G)) defined as follows:

ϕi(G) = 1

n!

∑
π∈�

δi(πi). (16.1)

Thus, player i’s Shapley value is the average marginal contribution that player i

makes, over all possible orderings of the players, to the set of players preceding i in
the ordering.1 Before proceeding, we note that the Shapley value can be presented in
several different ways; one important equivalent formulation is as follows:

ϕi(G) =
∑

S⊆N\{i}

(n − |S| − 1)!|S|!
n!

δi(S). (16.2)

1 Put otherwise, pick a value k = 0 . . . n − 1 uniformly at random, and then select a set S of size k uniformly at
random from the possible subsets of N \ i. The expected marginal contribution of i to S is the Shapley value.
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This latter formulation is less common than the former, but we will make use of it in
one of our proofs.

Now, much of the interest in the Shapley value derives from the fact that it can be
shown to be the unique solution to a set of axioms characterizing fair imputations—that
is, fair ways to divide the value v(N) among the players N . To define these axioms,
we need a little more notation. Where G = (N, v) and G′ = (N, v′) are games with
the same set of players, the game G + G′ is the game with the same player set, and
characteristic function v′′ : 2N → R defined by v′′(C) = v(C) + v′(C). We can now
state Shapley’s characterization of the value.

Theorem 16.4 (Shapley). For all games G, the ϕ(G) payoff division scheme satisfies
the following properties:

� Efficiency:
∑n

i=1 ϕi(G) = v(N )
� Dummy Player: If i is a dummy player in G then ϕi(G) = 0
� Symmetry: If i and j are symmetric in G then ϕi(G) = ϕj (G)
� Additivity: The value is additive over games: For all games G = (N, v) and G′ =

(N, v′), and for all players i ∈ N , we have ϕi(G + G′) = ϕi(G) + ϕi(G′)

Moreover, ϕ(G) is the only payoff division scheme that simultaneously satisfies all
these properties.

In weighted voting game settings, the Shapley value has an important interpretation: it
essentially measures the probability that a player will be able to turn a losing coalition
into a winning one—that is, the probability that a player is pivotal for a coalition. As
such, the Shapley value can be interpreted as a measure of the power wielded by a
voter: the greater the Shapley value of a player, the more power that player wields.
When used to analyze the power of voters in social choice settings, the Shapley value
is called the Shapley-Shubik voting index.

A closely related, but simpler measure of voting power is the Banzhaf index (Banzhaf,
1965; Dubey and Shapley, 1979). The Banzhaf index for a player i in game G is denoted
βi(G), and is defined as follows:

βi(G) = 1

2n−1

∑
C⊆N\{i}

δi(C).

Thus, βi(G) measures the probability that i will be able to turn a losing coalition into
a winning one, assuming that all members of that coalition have already assembled
(the more “refined” Shapley value considers all possible ways that the coalition could
form). The Banzhaf index has properties similar to the Shapley value, but does not
satisfy efficiency (Chalkiadakis et al., 2011, p. 22). Two axiomatisations for this index
are provided in Dubey and Shapley (1979) and in Lehrer (1988).

We end this section by noting that the Shapley value and the Banzhaf index are
not the only measures of power used in (weighted) voting games. Examples of other
power indices include the Deegan-Packel index (Deegan and Packel, 1978), which
attempts to measure a player’s expected gain from participating in minimal-sized
winning coalitions; the Public Good index (Holler, 1982), which measures a player’s
power as the number of all minimal winning coalitions in which the player participates,
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divided by the sum of all such numbers over all players; and the Coleman initiative
and preventive power indices (Coleman, 1971), which, respectively, correspond to the
fraction of losing coalitions that a given player can turn into winning, and vice versa.

16.3 Basic Computational Properties

In this section, we consider computational questions associated with weighted voting
games. The main questions relate to the solution concepts for cooperative games—
the core and the Shapley value—that we discussed earlier. However, we will start by
considering some simpler properties. First, consider the following definition:

Definition 16.6. Let G = (N, v) be a cooperative game, and let i be a player in G.
Then i is said to be a veto player in G if v(C) = 0 for all C ⊆ N \ {i}.
Thus, a veto player is one whose presence is necessary for a coalition to be winning.
The obvious decision problem associated with veto players is as follows:

Name: Veto Player.
Instance: Weighted voting game G = [N ; w; q], player i ∈ N .
Question: Is i a veto player in G?

We start our survey of computational problems with some good news:

Lemma 16.5. The Veto Player problem is polynomial time solvable for weighted
voting games.

Proof. Given a player i, it suffices check whether the coalition N \ {i} is losing, which
is simple arithmetic.

The significance of this result is made apparent by the following:

Theorem 16.6. A simple cooperative game G = (N, v) has a nonempty core iff it
has a veto player. It follows that it is possible to check in polynomial time whether a
weighted voting game has a nonempty core.

Proof. For the left-to-right implication of the first statement, suppose for sake of
contradiction that G has a nonempty core but no veto player. Take an imputation x in
the core. Because x(N) = 1, we have xi > 0 for some i ∈ N , and hence x(N \ {i}) =
1 − xi < 1. However, because i is not a veto player then v(N \ {i}) = 1 > x(N \
{i}); contradiction. Now for the right-to-left implication. Suppose i is a veto player,
and consider the imputation in which xj = 0 for all j �= i. This imputation is in the
core: because i is a veto player, any deviating coalition would have value 0, and so
no such coalition could profitably deviate. The second statement then follows from
Lemma 16.5.

Now consider the following problem.

Name: Dummy Player.
Instance: Weighted voting game G = [N ; w; q], player i ∈ N .
Question: Is i a dummy player in G?



384 1 6 weighted voting games

In contrast to checking for veto players, identifying dummy players is compu-
tationally hard. To show this, we provide a reduction from the classic Partition
problem (Garey and Johnson, 1979, p. 223).

Theorem 16.7. Dummy Player is coNP-complete.

Proof. If a player i is not a dummy player, this can be proved by exhibiting a coalition
C such that w(C) < q, w(C ∪ {i}) ≥ q. Thus, Dummy Player is in coNP. To show
coNP-hardness, we will transform an instance I = (a1, . . . , ak, K) of Partition into
a weighted voting game G = [N ; w; q], which is constructed as follows. We set N =
{1, . . . , k, k + 1}, wi = 2ai for i = 1, . . . , k, wk+1 = 1, and q = 2K + 1. It is easy to
see that I is a “yes”-instance of Partition if and only if player k + 1 is not a dummy
in G. Indeed, suppose that there is a subset of indices J such that

∑
i∈J ai = K .

Then we have w(J ) = 2K , w(J ∪ {k + 1}) = 2K + 1 = q, that is, k + 1 is pivotal for
J ∪ {k + 1}. Conversely, suppose that k + 1 is pivotal for some coalition C. Then we
have w(C \ {k + 1}) < q, w(C) ≥ q. Because wk+1 = 1 and all weights are integer,
this means that w(C \ {k + 1}) = 2K , that is,

∑
i∈C\{k+1} ai = K . We conclude that I

is a “yes”-instance of Partition if and only if (G, k) is a “no”-instance of Dummy
Player; and thus, Dummy Player is coNP-hard.

Another important observation is that in our hardness reduction, the weights are
derived from the numbers in the instance of Partition. Thus, our hardness result is
relevant only if the weights are fairly large. Put differently, we have shown that Dummy
Player is unlikely to admit an algorithm that runs in time polynomial in the input
size, that is, poly(n, log wmax). Now, in some applications of weighted voting games,
such as shareholder voting, the weights (i.e., numbers of shares held by individual
shareholders) can be huge. However, in parliamentary voting the weight of each party
is usually fairly small: for instance, at the time of writing the U.K. House of Commons
has 650 seats, and the Hellenic Parliament has 300 seats. In such settings, we might
be satisfied with a pseudopolynomial algorithm, that is, an algorithm that runs in time
poly(n, wmax), or, equivalently, runs in polynomial time if all numbers in the input are
given in unary. It turns out that Dummy Player admits such an algorithm. This will
follow from Theorem 16.9, which shows that each player’s Shapley value in a weighted
voting game can be computed in pseudopolynomial time. Indeed, because weighted
voting games are monotone, a player is a dummy in a weighted voting game if and
only if her Shapley value is 0. Therefore, an algorithm for computing players’ Shapley
values can be used to identify dummies.

In order to use the Shapley value and the Banzhaf index to measure the agents’ power
in weighted voting games, we would like to have an efficient algorithm for computing
these indices. However, such an algorithm is unlikely to exist: Theorem 16.7, combined
with the dummy player axiom and the fact that weighted voting games are monotone,
directly implies that checking whether an agent’s Shapley value is 0 is coNP-hard. In
fact, computing the Shapley value and the Banzhaf index in weighted voting games is
computationally hard, and we will now investigate the complexity of this problem in
more detail (see also Deng and Papadimitriou, 1994; Faliszewski and Hemaspaandra,
2009; Matsui and Matsui, 2001; Prasad and Kelly, 1990).
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To understand just how hard the problem is, we need to recall some concepts from
computational complexity that are not quite as well known as notions such as NP-
hardness. We want to know how hard it is to compute the Shapley value in a weighted
voting game. Such a problem is not a decision problem like Dummy Player, because
the output of the problem is not “yes” or “no”: we want a numeric answer. In fact, it is
a counting problem. To understand what we mean by a counting problem, consider the
following problem: We are given a propositional logic formula ψ , and we are asked
how many satisfying assignments the formula has. This problem is known as #Sat.
Notice that the output of #Sat is not “yes” or “no”: it is a natural number. Also notice
that #Sat can be seen to trivially subsume the canonical NP-complete problem Sat,
because if we can count the number of satisfying assignments a formula has, we can
certainly tell whether it has at least one (which is what the Sat problem asks). The
relevant complexity class through which to understand the complexity of problems
like #Sat is called #P (Papadimitriou, 1994, p. 442). A problem is in #P if there is a
nondeterministic polynomial time Turing machine T such that the number of accepting
computations of T on a given input x gives the answer to the problem. For the case of
#Sat, for example, such a Turing machine simply guesses a valuation for the problem
instance ψ , accepts if that valuation satisfies ψ , and rejects otherwise; clearly, the
number of accepting runs is exactly the number of satisfying assignments. Hardness
can be shown in the usual way for computational complexity classes, for example by
showing how we can reduce #Sat. We will now show that computing the Shapley
value in weighted voting games is #P-complete.

Theorem 16.8 (Deng and Papadimitriou, 1994). The problem of computing the
Shapley value of a player i in a given weighted voting game G is #P-complete.

Proof. For membership, consider a Turing machine such that the computations of the
machine each correspond to an ordering π of the players; a computation accepts if
δi(πi) = 1. Clearly, the number of accepting computations is n!ϕi(G).

For hardness, we reduce the counting version of the well-known Knapsack problem.
In this problem, we are given positive integers a1, . . . , am and a further positive integer
K , and we are asked to compute the number of subsets S of {1, . . . , m} such that∑

i∈S ai = K . Computing the number of such sets is known to be #P-hard. In fact,
we work with a simplified version of this problem, which is also known to be #P-
hard (Papadimitriou, 1994). In this version it is first assumed that K = M

2 , where
M = ∑m

i=1 ai , and further, that all solutions have equal cardinality.
We create a weighted voting game with n = m + 1 players, as follows. For players

1 � i � m we set wi = ai , and we set wn = 1. The quota is set to be q =
∑

i∈N wi

2 .
Now, it is easy to see that for all S ⊆ N , we have v(S) − v(S \ {n}) = 1 iff the

following conditions hold:

1. n ∈ S

2.
∑

j∈S wj > (M + 1)/2
3.
∑

j∈S\{n} wj < (M + 1)/2
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But, because wn = 1, this is the same as saying that∑
j∈S\{n}

wj = M

2
= K.

But in this case, S \ {n} is clearly a solution to the original instance of Knapsack.
It follows from the alternate form of the Shapley value—recall Equation 16.2—that
ϕi(G) is exactly

(n − k)!(k − 1)!

n!
times the number of solutions to the instance of knapsack (recall that k is the common
size of any solution instance).

However, just as in the case of Dummy Player, these hardness results are only relevant
when the weights can be assumed to be large. For small weights both the Shapley value
and the Banzhaf index can be computed by a pseudopolynomial algorithm, as shown
by Matsui and Matsui (Matsui and Matsui, 2000).

Theorem 16.9. Given an n-player weighted voting game G = [N ; w; q] and a player
i ∈ N , we can compute βi(G) and ϕi(G) in time O(n2wmax) and O(n3wmax), respec-
tively.

Proof. We will first describe the algorithm for the Shapley value; later, we will explain
how to simplify it for the Banzhaf index.

By renumbering the players if necessary, we can assume that i = n, that is, our
goal is to compute the Shapley value of the last player. We can assume without loss
of generality that wn > 0, because otherwise we clearly have ϕn(G) = βn(G) = 0.
Observe first that it suffices to determine, for each s = 0, . . . , n − 1, the number Ns

of s-element subsets of N \ {n} that have weight W ∈ {q − wn, . . . , q − 1}. Indeed,
whenever i is pivotal for a coalition C, |C| = s + 1, it is pivotal for all permutations
in which the agents in C \ {i} appear in the first s positions, followed by i; there are
exactly s!(n − s − 1)! such permutations (where we use the convention that 0! = 1).
Therefore, the formula for the Shapley value can be rewritten as

ϕi(G) = 1

n!

n−1∑
s=0

s!(n − s − 1)!Ns. (16.3)

To compute Ns , we use dynamic programming. Specifically, we define X[j, W, s]
to be the number of s-element subsets of {1, . . . , j} that have weight W ; here, j ranges
from 1 to n − 1, s ranges from 0 to n − 1, and W ranges from 0 to w(N). For s = 0,
j = 1, . . . , n − 1, we have

X[j, W, 0] =
{

1 if W = 0

0 otherwise.

Furthermore, for j = 1, s = 1, . . . , n − 1 we have

X[1, W, s] =
{

1 if W = w1 and s = 1

0 otherwise.



1 6 .3 basic computational properties 387

Now, having computed the values X[j ′, W ′, s ′] for all j ′ < j , all W ′ = 0, . . . , w(N),
and all s ′ = 0, . . . , n − 1, we can compute X[j, W, s] for W = 0 . . . , w(N) and s =
1, . . . , n − 1 as follows:

X[j, W, s] = X[j − 1, W, s] + X[j − 1, W − wj, s − 1].

In the preceding equation, the first term counts the number of subsets that have weight
W and size s and do not contain j , whereas the second term counts the number of
subsets of this weight and size that do contain j .

Thus, we can inductively compute X[n − 1, W, s] for all W = 0, . . . , w(N) and all
s = 0, . . . , n − 1. Now, Ns , s = 0, . . . , n − 1, can be computed as

Ns = X[n − 1, q − wn, s] + · · · + X[n − 1, q − 1, s].

By substituting this expression into Equation 16.3, we can compute the Shapley value
of player n.

The running time of this algorithm is dominated by the time needed to fill out the
table X[j, W, s]. The size of this table can be bounded by n × nwmax × n, and each
of its entries can be computed in O(1) steps, which proves our bound on the running
time.

For the Banzhaf index, the dynamic program can be simplified by omitting the third
index, s: indeed, to compute the Banzhaf index, we simply need to know how many
subsets of N \ {n} have weight that is at least q − wn and at most q − 1. This allows
us to reduce the running time from O(n3wmax) to O(n2wmax).

When the weights are large, Theorem 16.9 is not very useful, and we may want to
resort to heuristics and/or approximation algorithms for computing the power indices.
Now, Theorem 16.7 implies that, unless P=NP, no efficient algorithm can approximate
the Shapley value within a constant factor on all instances. However, it does not rule
out the existence of randomized algorithms that are probably approximately correct
(PAC), that is, produce a good solution with high probability. In fact, the good news is
that such algorithms do actually exist.

Take the recent algorithm by Bachrach et al. (2010a), for instance. The main idea
of this algorithm, dating back to Mann and Shapley (1960), is to randomly sample
a coalition and check whether the given player is pivotal for it. It is not hard to see
that the fraction of coalitions for which i is pivotal provides an unbiased estimator of
i’s Banzhaf index. Bachrach et al. show that, by averaging over poly(n, ln 1/δ, 1/ε)
samples, we can obtain an estimate that is within a distance ε from i’s true Banzhaf
index with probability at least 1 − δ; this approach can be generalized to the Shapley
value. The accuracy and confidence achieved by use of the randomized algorithm are
typically very high, and can be achieved with only a fraction of the sample size that
is theoretically required by the approach—as verified by empirical results (Bachrach
et al., 2010a).

Many other papers consider the problem of computing power indices, either approx-
imately or exactly; an (incomplete) list includes Alonso-Meijide et al. (2012), Fatima
et al. (2008), Leech (2003), Mann and Shapley (1962), Merrill (1982), and Owen
(1975). Moreover, there are several recent attempts to efficiently compute power
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indices in restricted settings, taking advantage of specific domain characteristics (see,
e.g., Durán et al., 2003; Bachrach and Shah, 2013; See et al., 2014).

16.4 Voter Weight versus Voter Power

In weighted voting games, one might expect that there is a close correlation between
the weight wi that a player i is assigned, and the power that player i wields. After
all, a player’s ability to turn a losing coalition into a winning coalition derives from
their weight. This intuition is not entirely incorrect: it is not hard to show that power
is monotone in weight—that is, for any weighted voting game G = [N ; w; q] and
any two players i, j ∈ N we have ϕi(G) ≤ ϕj (G) if and only if wi ≤ wj . However,
the power of an agent cannot be simply represented by its weight, in general: in that
sense,“weighted voting doesn’t work” (Banzhaf, 1965). Indeed, two agents may have
identical voting power even if their weights differ dramatically.

Example 16.10. After the May 2010 elections in the United Kingdom, the Conservative
Party had 307 seats, the Labour Party had 258 seats, the Liberal Democrats (LibDems)
had 57 seats, and all other parties shared the remaining 28 seats (with the most powerful
of them getting 8 seats). The U.K. Parliament is a simple majority system, so the quota
is 326. To keep things simple in this analysis, we will treat the “other” parties as a
single block (the other parties would be unlikely to act as a block in practice).

Now, it is easy to see that in this weighted voting game there are two two-party
coalitions (Conservatives+Labour and Conservatives+LibDems) that can get a majority
of seats. Moreover, if Labour or LibDems want to form a coalition that does not include
Conservatives, they need each other and the others. Thus, Labour and LibDems have the
same Shapley value, despite being vastly different in size. In more detail, the Shapley
values are as follows:

i ϕi

Conservative 1/2
Labour 1/6
LibDem 1/6
Other 1/6

The phenomenon illustrated in Example 16.10 has been observed in many decision-
making bodies. It explains why major parties often end up making concessions to
smaller parties in order to form a winning coalition: the small parties may wield
substantial voting power. Example 16.10 also indicates that to determine an agent’s
power, we have to take into account the distribution of the other players’ weights as
well as the quota. In particular, if we keep the weights fixed, but alter the quota, an
agent’s power can change considerably.

Example 16.11. Consider a weighted voting game with two players of weight 4 and
two players of weight 1. If the quota is set to 10, the only winning coalition is the grand
coalition, so each player’s Shapley value is 1/4. If the quota is set to 8, the smaller
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players are dummies, so their Shapley value is 0. Finally, if the quota is set to 5, a player
of weight 1 is pivotal only if it appears in the second position, and a player of weight
4 appears in the first position. There are four permutations that satisfy this condition,
so for q = 5 the Shapley value of each of the smaller players is 1/6.

The role of the quota in determining the agents’ power in weighted voting games
was studied in detail by Zuckerman et al. (2008), and then by Zick et al. (2011).
Zuckerman et al. considered how a central authority might manipulate the quota of a
game from a worst-case point of view, and also from an algorithmic points of view.
They demonstrated that given a collection of voter weights and a specific undesirable
voter, it was possible to compute in polynomial time the quota that would minimize
the Banzhaf index of that voter. They also showed that checking whether a player was
more powerful with one quota than another, with respect to both the Shapley value
and Banzhaf index, is complete with respect to probabilistic polynomial time (i.e.,
PP-complete (Papadimitriou, 1994, p. 256)).

16.4.1 Paradoxes of Power

An agent’s Shapley value and his Banzhaf index may behave in an unexpected way if
we modify the game. For example, we might naively expect that adding players to a
game would reduce the power of players already present in the game, but this is not
necessarily the case: when a new player joins the game, the power of some existing
players may in fact increase! Consider the following example.

Example 16.12. Consider a weighted voting game G = [{1, 2, 3}; (2, 2, 1); 4]. Clearly,
player 3 is a dummy in this game, so ϕ3(G) = 0. Now, suppose that a new player with
weight 1 joins this game. In the resulting game G′, player 3 is pivotal for the coalition
consisting of himself, the new player and one of the other two players, so ϕ3(G′) > 0.

Another interesting observation is that, when a player i in a game G splits into two
different players—that is, distributes his weight between two identities i ′ and i ′′—the
sum of the new identities’ Shapley values in the resulting game can be considerably
different from i’s Shapley value in the original game.

Example 16.13. Consider an n-player weighted voting game G = [N ; w; q] with
w = (2, 1, . . . , 1) and q = n + 1. In this game the only winning coalition is the grand
coalition, so ϕi(G) = 1

n
for all i = 1, . . . , n. Now, suppose that player 1 decides to

split into two unit-weight players 1′ and 1′′. In the resulting game G′ = [N \ {1} ∪
{1′, 1′′}; (1, . . . , 1); n + 1] all players are symmetric, and therefore have equal Shapley
value, namely, 1

n+1 . Thus, the joint power of the two new identities of player 1 is 2
n+1 ,

that is, almost twice his original power!
However, weight-splitting may also lead to a reduction in power. To see this, consider

an n-player weighted voting game G = [N ; w; q] with w = (2, 2, . . . , 2) and q =
2n − 1. By symmetry, we have ϕi(G) = 1

n
for all i = 1, . . . , n. However, it can be

shown that if player 1 splits into two unit-weight players 1′ and 1′′, the sum of their
Shapley values in the new game G′ = [N \ {1} ∪ {1′, 1′′}; (1, 1, 2, . . . , 2); 2n − 1] is
only 2

n(n+1) ; the proof of this fact is left as an exercise for the reader. Thus, weight-
splitting lowers the agent’s power by a factor of (n + 1)/2.
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The phenomena illustrated in Examples 16.12 and 16.13 are known as the paradox
of new members and the paradox of size, respectively. There are several other forms of
counterintuitive behavior exhibited by the power indices; jointly, they are referred to as
the paradoxes of power. These paradoxes are discussed by Felsenthal and Machover
(1998) and subsequently by Laruelle and Valenciano (2005) (see also the references
therein). The paradox of size is studied in detail by Aziz et al. (2011), who show
that the games described in Example 16.13 exhibit the strongest form of this paradox
possible: in an n-player weighted voting game, splitting into two identities can increase
(respectively, decrease) an agent’s Shapley value by at most a factor of 2n/(n + 1)
(respectively, (n + 1)/2). Aziz et al. (2011) also show that deciding whether a given
player can split so as to increase his power is NP-hard. Rey and Rothe (2014) show
similar hardness results for coalitional splitting, merging and annexation in weighted
voting games.

16.5 Simple Games and Yes/No Voting Systems

At this point, let us step back from considering weighted voting games specifically,
and consider the wider class of social choice systems of which weighted voting games
are an instance. Yes/No voting systems are voting systems in which a proposal (e.g.,
a new law, or a change to tax regulations) is pitted against the status quo (Taylor and
Zwicker, 1999). Decision making in many political bodies can be understood as a
yes/no voting system (e.g., in the United Kingdom, the voting system of the House
of Commons; in the European Union, the voting system in the enlarged EU; in the
United States, the U.S. federal system; in the United Nations, the voting system of
the Security Council (Taylor, 1995)). Formally, yes/no voting systems have a very
simple structure:

Definition 16.7. A yes/no voting system is a pair Y = (N, W ), where N = {1, . . . , n}
is the set of voters, and W ⊆ 2N is the set of winning coalitions, with the intended
interpretation that, if C ∈ W , then C would be able to determine the outcome (either
“yes” or “no”) to the question at hand, should they collectively choose to.

Notice that yes/no voting systems can alternatively be understood as simple coopera-
tive games. Formally, we can understand a simple game G = (N, v : 2N → {0, 1}) as
defining a yes/no voting system YG = (N, WG) in which

WG = {C ⊆ N | v(C) = 1}.

Results relating to simple games can thus be applied directly to yes/no voting sys-
tems, and we can therefore choose to work with whichever model we find most
convenient.

Several possible conditions on yes/no voting games suggest themselves as being
appropriate for some (though of course not all) scenarios:

� Nontriviality: There are some winning coalitions, but not all coalitions are winning—
formally, ∅ ⊂ W ⊂ 2N .
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� Monotonicity: If C wins, then every superset of C also wins—formally, if C1 ⊆ C2 and
C1 ∈ W then C2 ∈ W .

� Zero-sum: If a coalition C wins, then the agents outside C do not win—formally, if
C ∈ W then N \ C �∈ W .

� Empty coalition loses: ∅ �∈ W .
� Grand coalition wins: N ∈ W .

Of course, these conditions are not independent: the final two conditions imply the
first, for example.

Now, we can think of weighted voting games as being a compact representation for
yes/no voting systems; the set W is simply

W = {C ⊆ N | w(C) � q}.
The representation is compact because we do not need to explicitly list all winning
coalitions; we simply specify the weights and quota. This suggests an interesting
question: Are weighted voting games a complete representation for yes/no voting
systems? Is it the case that, for every yes/no voting system Y = (N, W ) we can find a
weighted voting game G with player set N such that W is exactly the set of winning
coalitions in G? The answer is no:

Theorem 16.14. There are yes/no voting systems for which there exist no weighted
voting game with the same set of winning coalitions.

Proof. Consider a yes/no voting system Y = (N, W ) such that C ∈ W iff C contains
an odd number of players. Take an odd number k and consider the coalition C =
{1, . . . , k}. By definition we have

1. C ∈ W

2. C ∪ {k + 1} �∈ W

3. C ∪ {k + 2} �∈ W

4. C ∪ {k + 1, k + 2} ∈ W

But now consider the weight wk+2: the first and third conditions imply wk+2 < 0,
while the second and fourth imply wk+2 > 0. There can thus be no weighted voting
game representing the yes/no voting system in which the winning coalitions are those
containing an odd number of players.

This raises a further interesting question: Can we identify a condition on yes/no
voting systems that is necessary and sufficient to ensure that they can be represented
by a weighted voting game? The answer is yes. The property of trade robustness was
identified by Taylor and Zwicker as a necessary and sufficient condition for a yes/no
voting system to be representable as a weighted voting game (Taylor and Zwicker,
1999). “Trade robustness” is easily explained. Suppose we have some collection of
disjoint coalitions C1, . . . , Ck with members drawn from the set of voters N . Now
discard the losing coalitions from this list—that is, the coalitions Ci such that Ci �∈ W—
leaving us with winning coalitions only. Let us then say a trade is an exchange of players
between two of the winning coalitions. For example, it may be that coalition C1 gives
players {3, 4} to coalition C2, and in return coalition C2 gives player 7 to C1. Of course,
for such a trade to be “legal,” we would have to have {3, 4} ⊆ C1 and 7 ∈ C2. (We will
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permit the possibility of empty sets of players being transferred in a trade.) Then we
have:

Definition 16.8. A yes/no voting game is said to be trade robust if, after an any legal
sequence of trades starting with a set of winning coalitions, at least one of the resulting
coalitions is still winning.

We have:

Theorem 16.15 (Taylor and Zwicker, 1999). For every yes/no voting system Y =
(N, W ), there exists a weighted voting game that is equivalent to Y iff Y is trade robust.

To further illustrate trade robustness, let us consider a richer example.

Example 16.16. Consider a game G = (N, v) with N = {1, 2, 3, 4} given by

v(C) = 0, if |C| ≤ 1

v(C) = 1, if |C| ≥ 3

v({1, 2}) = v({3, 4}) = v({1, 4}) = v({2, 3}) = 1,

v({1, 3}) = v({2, 4}) = 0.

This game is not trade robust, because when two winning coalitions C1 = {1, 2} and
C2 = {3, 4} trade members (2 moves from C1 to C2 and 3 moves from C2 to C1), both
of the resulting coalitions are losing.

Notice, however, G can be represented as an intersection of two weighted voting
games, in the following sense. Let w1 = (1, 0, 1, 0), w2 = (0, 1, 0, 1), q1 = q2 = 1,
and set G1 = [N ; w1; q1], G2 = [N ; w2; q2]. Observe that a coalition C is winning
in both G1 and G2 if and only if it contains both an even-numbered player and an
odd-numbered player—that is, if and only if v(C) = 1.

The construction presented in Example 16.16 can be used to describe other simple
games in the language of weighted voting games. That is, we can take k ≥ 1 weighted
voting games G1, . . . , Gk over the same set of players N , and define a new simple
game G = (N, v) by setting v(C) = 1 if and only if C is a winning coalition in each of
the underlying games G1, . . . , Gk . It turns out that any yes/no game can be obtained
in this manner.

Theorem 16.17. For any simple game G = (N, v), there exists a list of weighted
voting games G1, . . . , Gk , where Gj = [N ; wj ; qj ] for j = 1, . . . , k such that for any
coalition C ⊆ N it holds that v(C) = 1 if and only if wj (C) ≥ qj for each j = 1, . . . , k.

Proof. Let C1, . . . , Ck be the list of losing coalitions in G. We define the j th weighted
voting game Gj by setting w

j
i = 0 if i ∈ Cj and w

j
i = 1 if i �∈ Cj (here w

j
i denotes

the weight of the ith player in Gj ) and qj = 1. That is, a coalition C is winning in
Gj if and only if it contains an agent i �∈ Cj , or, equivalently, if and only if it is not a
subset of Cj .

Consider a coalition C with v(C) = 1. By monotonicity, C is not a subset of any
losing coalition, so we have wj (C) ≥ qj for any j = 1, . . . , k. On the other hand, if
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v(C) = 0, then C = Cj for some j = 1, . . . , k, so wj (C) = 0 < qj . Thus, the theorem
is proved.

Games that are represented as intersections of k weighted voting games are
known as k-weighted voting games or vector weighted voting games. More for-
mally, a k-weighted voting game is given by a set of players N , |N | = n, for
each player i ∈ N , a k-dimensional weight vector wi = (w1

i , . . . , w
k
i ) whose entries

are nonnegative integers, and k nonnegative integer quotas q1, . . . , qk; we write
G = [N ; w1, . . . , wn; q1, . . . , qk]. A coalition C ⊆ N is deemed to be winning in
G if and only if

∑
i∈C w

j
i ≥ qj for all j = 1, . . . , k.

Observe that G can be associated with k weighted voting games G1, . . . , Gk , where
Gj = [N ; (wj

1 , . . . , w
j
n); qj ]; these games are called the component games of G, and

the weight vector of the j th game is denoted by wj . Clearly, any vector voting game is
a simple game, and Theorem 16.17 shows that the converse is also true.

It is important to note that vector weighted voting games are not theoretical con-
structs: they feature quite prominently in our lives. For example, the following political
systems can be understood as vector weighted voting games (Bilbao et al., 2002; Taylor,
1995; Taylor and Zwicker, 1999):

� The U.S. federal system is a 2-weighted voting game, in which the components corre-
spond to the two chambers (the House of Representatives and the Senate). The players
are the president, vice president, senators, and representatives. In the game correspond-
ing to the House of Representatives, senators have zero weight, while in the game
corresponding to the Senate, representatives have zero weight. The president is the only
player to have nonzero weight in both games.

� The voting system of the European Union is a 3-weighted voting game (Bilbao et al.,
2002). Specifically, in the Council of the European Union, a law requires the support
of 50% of the countries, 62% of the population of the European Union, and 74% of the
“commissioners” of the EU. Each member state is a player, so (as of 2011) the players
are as follows:

Germany, United Kingdom, France, Italy, Spain, Poland, Romania, The Netherlands, Greece,
Czech Republic, Belgium, Hungary, Portugal, Sweden, Bulgaria, Austria, Slovak Repub-
lic, Denmark, Finland, Ireland, Lithuania, Latvia, Slovenia, Estonia, Cyprus, Luxembourg,
Malta.

The three component games in the EU voting system are shown in Figure 16.1 (we omit
the player set N = {1, . . . , 27}, as well as all brackets and parentheses, from the nota-
tion). Weights in the first game are assigned according to the number of commissioners
the respective member state has. The second game is a simple majority game: every
member state gets one vote, and a law must have the support of at least 14 member
states. In the third game, weights are assigned in proportion to the population of the
respective member state.

Theorem 16.17 allows us to represent any simple game G as a vector weighted
voting game; however, the number k of the component games can be quite large (and,
in particular, exponential in the number of players n). The number of the component
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G1 : 29 29 29 29 27 27 14 13 12 12 12 12 12 10 10 10 7 7 7 7 7 4 4 4 4 4 3
G2 : 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
G3 :170123122120 82 80 47 33 22 21 21 21 21 18 17 17 11 11 11 8 8 5 4 3 2 1 1

255
14
620

Figure 16.1. Voting in the Council of the European Union is a 3-weighted voting game.

games in a minimal such representation can be interpreted as the inherent complexity
of the game. Therefore, given a simple game G, we may be interested in finding the
smallest value of k such that G can be represented as a k-weighted voting game. This
value of k is called the dimension of G; we write dim(G) = k. We emphasize that even
if we are given a representation of G as a k-weighted voting game, this does not mean
that dim(G) = k: indeed, there may exist a k′ < k such that G can be represented as a
k′-weighted voting game, so the only conclusion that we can derive is that dim(G) ≤ k.

It turns out that there exist simple games of exponentially large dimension. More
precisely, for any odd value of n there exists an n-player simple game G such that
dim(G) ≥ 2n/2−1 (see Taylor and Zwicker (1999) for a proof).

Vector weighted voting games can be interpreted as conjunctions of weighted voting
games. One can also combine weighted voting games according to more complex
Boolean formulas: for instance, to win in the game (G1 ∨ G2) ∧ G3, a coalition must
win in one of the games G1 and G2 as well as in G3. This representation for simple
games is studied in detail by Faliszewski et al. (2009a); in particular, Faliszewski et
al. show that it can be considerably more compact than the representation via vector
weighted voting games.

16.6 Conclusions

Despite their simple mathematical structure, weighted voting games are surprisingly
rich with respect to their computational and mathematical properties. In this chapter, we
have presented a survey of the key weighted voting games properties, with particular
emphasis on computing solution concepts.

16.7 Further Reading

For an outstanding introduction to cooperative game theory set in the wider context of
game theory, see Maschler et al. (2013). There seem to be relatively few texts that focus
specifically on cooperative games; some examples are Brânzei et al. (2005), Curiel
(1997), and Driessen (1988). A good introduction to the mathematics of cooperative
games is Peleg and Sudhölter (2007). Simple games in general are discussed in detail
in Taylor and Zwicker (1999). For an introduction to the computational aspects of
cooperative game theory, see Chalkiadakis et al. (2011). For a detailed survey of the
computational complexity of solution concepts for weighted voting games, see Elkind
et al. (2009b).
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CHAPTER 17

Judgment Aggregation

Ulle Endriss

17.1 Introduction

Social choice theory deals with the aggregation of information supplied by several
individuals into a collective decision that appropriately reflects the views of the group
as a whole. The most widely considered type of information is preference information.
For example, in an election each voter supplies information regarding her preferences
over the set of candidates and the voting rule in operation aggregates this information
into the collective decision of which candidate wins the election. But the methodology
of social choice theory may just as well be applied to other types of information, such
as beliefs about whether certain statements are true or false. Judgment aggregation (JA
from here on), the topic of this chapter, is an elegant formal framework for modeling
this form of aggregation.

Let us begin with a famous example from the work of legal scholars Lewis A. Korn-
hauser and Lawrence G. Sager (Kornhauser and Sager, 1993). Suppose three judges
together have to decide on a case regarding an alleged breach of contract. They will
try to establish whether (a) the document in question really is a binding contract and
whether (b) the promise given in that document really has been breached. Legal doc-
trine stipulates that the defendant is liable if and only if there have been both a contract
and a breach. The three judges differ in their assessment regarding the two premises
(and thus also regarding the conclusion):

Contract? Breach? Liable?

Judge Joe: Yes Yes Yes
Judge Judy: Yes No No
Judge Jules: No Yes No

What should be their collective decision regarding the defendant’s liability? If they
implement a majority vote on the conclusion (the rightmost column), then they will
find the defendant not liable (by a 2:1 majority). If instead they vote on the premises,

399



400 1 7 judgment aggregation

they will have to accept that the contract was binding (by a 2:1 majority) and that it
has been breached (again, by a 2:1 majority). In the latter case, legal doctrine requires
them to find the defendant liable. Thus, in the presence of this doctrine, two seemingly
reasonable procedures lead to contradictory outcomes. This is known as the doctrinal
paradox.

Now consider a more abstract rendering of the problem. Three judges have to assess
the truth of three formulas of propositional logic: p (“contract”), q (“breach”), and
their conjunction p ∧ q (which we said was equivalent to “liable”). This time we also
include the result of applying majority voting to each formula:

p q p ∧ q

Judge 1: Yes Yes Yes
Judge 2: Yes No No
Judge 3: No Yes No

Majority: Yes Yes No

Thus, we again obtain an unexpected, that is, paradoxical, outcome: despite the fact that
each individual judge provides a logically consistent set of judgments, the majority rule
results in a judgment set that is inconsistent (there exists no assignment of truth values
to propositional variables that would make p true, q true, and p ∧ q false). So, our
example demonstrates not merely a dilemma between premise-driven and conclusion-
driven approaches to collective decision making, but rather a dilemma between a certain
responsiveness to the views of decision makers (by respecting their majority decisions)
and the consistency of collective decisions. This point was first made by the political
philosopher Philip Pettit, who noted that this dilemma is not only relevant to analytical
jurisprudence, but may strike whenever a group of people engage in a democratic
decision making process involving several mutually dependent propositions (Pettit,
2001). Pettit introduced the term discursive dilemma for this problem, both to stress
its relevance to the political discourse in general and to reflect the fact that we do not
actually require the external legal doctrine from the original example to exhibit the
problem.

Is there a way around this dilemma? Maybe the majority rule is the root of the
problem and there are other methods of aggregation that can ensure a consistent out-
come? In a seminal paper that introduced a formal framework for JA that permits us
to ask and answer such questions, Christian List and Philip Pettit showed that this is
not the case (List and Pettit, 2002): it is impossible to devise an aggregation rule that
avoids the discursive dilemma—at least if we wish to maintain some of the most basic
properties of the majority rule that, arguably, are fundamental features of any reason-
able form of aggregation. These properties are anonymity (“treat all judges symmet-
rically”), neutrality (“treat all propositions symmetrically”), and independence (“base
the collective decision regarding a given proposition only on the individual judgments
regarding that same proposition”). We formally state and prove this surprising result in
Section 17.2.4.

The work of List and Pettit employs the axiomatic method commonly used in
economic theory, and specifically in social choice theory, for example, to establish
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impossibility results in preference aggregation. This—together with the fact that JA
is a natural framework in which to embed other frameworks of aggregation, specifi-
cally preference aggregation (see Section 17.2.2)—has triggered a sustained interest
in JA among economic theorists. Their work has led to a deeper understanding of the
circumstances under which it is either possible or impossible to perform consistent
aggregation. In particular, these results clarify the role of the agenda, the set of propo-
sitions to be judged. For instance, it is easy to see that when the agenda consists solely
of literals (i.e., propositional variables and their negations), then the majority rule will
never produce an inconsistent outcome. We review some representative examples of
such results later on in Section 17.4.

Besides analytical jurisprudence, political philosophy, and economic theory, JA
is also relevant to computer science, particularly to artificial intelligence (AI). For
instance, JA suggests itself as a framework in which to study collective decision
making in systems of autonomous software agents, given that logic is the preferred
language in which to model the beliefs of a single such agent (we will discuss this
and other applications of JA in computer science in Section 17.6). In fact, there are
close connections between some of the work on belief merging in AI and the model
of JA under consideration here (we briefly comment on some of these connections in
Section 17.5.1). Once computer scientists got interested in JA, this naturally led to a
view of aggregation procedures as algorithms and, more generally, of reasoning about
questions in JA as computational problems. We will adopt this perspective also in parts
of this chapter and report, for instance, on the computational difficulty of recognizing
whether an agenda is sufficiently simple to avoid all occurrences of the discursive
dilemma for a given aggregation procedure.

The remainder of this chapter is organized as follows. Section 17.2 defines the formal
framework of JA and, to exemplify the expressive power of the framework, shows how
preference aggregation can be embedded into JA. The same section also introduces the
most commonly used axioms in JA and then proves the basic impossibility theorem of
List and Pettit mentioned earlier. Section 17.3 reviews three specific types of aggre-
gators in some detail: quota rules, distance-based aggregators, and the premise-based
rule. In the context of quota rules, we also discuss examples of the axiomatic charac-
terization of aggregators; we use distance-based aggregation to exemplify the analysis
of the complexity of winner determination in JA; and we review questions of strategic
manipulation in the section dedicated to premise-based aggregation. Section 17.4 is
devoted to agenda characterization results that clarify the extent to which instances of
the discursive dilemma depend on the structural complexity of the agenda on which
judges are asked to vote. Section 17.5 discusses related frameworks for collective deci-
sion making and Section 17.6 sketches possible applications in computer science. To
improve readability, bibliographic references are kept to a minimum in the body of the
chapter; such details are instead supplied in Section 17.7, which also provides pointers
to further reading.

Throughout this chapter we shall assume familiarity with the very basics of proposi-
tional logic (see, e.g., van Dalen, 2013), particularly the notion of logical consistency.
In a few selected places we furthermore assume familiarity with basic concepts from
the theory of computational complexity (see, e.g., Arora and Barak, 2009, or the
introductory chapter of this volume).
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17.2 Basics

In this section we define the formal framework of JA, which originally was laid down by
List and Pettit (2002) and since then has been further refined by several authors, notably
Dietrich (2007).1 We also sketch how to embed preference aggregation problems into
JA, review the most important axioms encoding desirable properties of aggregators
proposed in the literature, and discuss a basic impossibility theorem.

17.2.1 Formal Framework

Let L be a set of propositional formulas built from a finite set of propositional variables
using the usual connectives ¬, ∧, ∨, →, ↔, and the constants ( (“true”) and ⊥
(“false”). For every formula ϕ, define ∼ϕ to be the complement of ϕ, that is, ∼ϕ = ¬ϕ

if ϕ is not negated, and ∼ϕ = ψ if ϕ = ¬ψ for some formula ψ . We write � |= ϕ in
case formula ϕ is true whenever all formulas in the set � are true.

An agenda is a finite nonempty subset � ⊆ L that does not contain any doubly-
negated formulas and that is closed under complementation (i.e., if ϕ ∈ � then ∼ϕ ∈
�).2 For ease of exposition, we shall assume that � is nontrivial in the sense of including
(at least) two logically independent formulas α and β (i.e., all of {α, β}, {α,∼β},
{∼α, β}, and {∼α,∼β} are consistent).3 Some authors exclude the possibility of �

including a tautology or a contradiction, but we do not make this assumption here. A
judgment set J for � is a subset J ⊆ �. For example, the discursive dilemma sketched
in the introduction involved the agenda � = {p,¬p, q,¬q, p ∧ q,¬(p ∧ q)}. The
judgment set of judge 3 was J3 = {¬p, q,¬(p ∧ q)}, that is, rather than labeling
formulas ϕ with “yes” and “no,” as we did earlier, we now either include ϕ or ∼ϕ in
the relevant judgment set.

We call a judgment set J complete if ϕ ∈ J or ∼ϕ ∈ J for all ϕ ∈ �; we call it
complement-free if for no ϕ ∈ � we have both ϕ ∈ J and ∼ϕ ∈ J ; and we call it
consistent if there exists an assignment of truth values (true or false) to propositional
variables under which all formulas in J are true. Note that every consistent set is
complement-free, but the converse is not true. For instance, the majority judgment set
from our introductory example, {p, q,¬(p ∧ q)}, is clearly complete and complement-
free, but it is not consistent: if we set both p and q to be true, then the third formula
¬(p ∧ q) necessarily comes out as false. Let J (�) denote the set of all complete and
consistent subsets of �.

Let N = {1, . . . , n} be a set of n > 1 judges (or individuals, or agents). For ease of
exposition, we shall assume that n is odd. We often refer to subsets C ⊆ N as coalitions
and we write C := N \ C for the complement of C. A profile is a vector of judgment
sets J = (J1, . . . , Jn) ∈ J (�)n, one for each judge. We write N J

ϕ := {i ∈ N | ϕ ∈ Ji}
for the set of judges accepting the formula ϕ in profile J .

1 The particular mode of exposition chosen here is closely based on the author’s joint work with Umberto Grandi
and Daniele Porello (Endriss et al., 2012).

2 The reason for introducing the notion of complement is that it often simplifies presentation. For example, if
ϕ ∈ �, then the “negation of ϕ” will only be in � if ϕ is not a negated formula, while we can speak of the
“complement of ϕ” without having to take any such precautions.

3 For example, this nontriviality condition is satisfied if α and β are propositional variables.
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A (resolute) judgment aggregation rule (or aggregator for short) for agenda �

and judges N = {1, . . . , n} is a function f : J (�)n → 2� mapping every profile into
a single (collective) judgment set (2� denotes the powerset of �).4 Note that the
resulting judgment set need not be complete and consistent, but the individual sets in
the profile are always assumed to have these properties. An example of an aggregator is
the (strict) majority rule fmaj : J �→ {ϕ ∈ � | |N J

ϕ | > n
2 }, which accepts a formula ϕ

if more than half of the individual judges do.
We conclude this review of the formal framework with two technical definitions.

First, we occasionally require a means of measuring how dissimilar two judgment sets
are. The Hamming distance H (J, J ′) of two complete and complement-free judgment
sets J and J ′ is the number of nonnegated agenda formulas on which they differ.
That is, H (J, J ′) := |J \ J ′| = |J ′ \ J |. Second, to better understand the sources of
inconsistency in aggregation we require a means of abstracting away from formulas
that do not contribute to an observed inconsistency. We call an inconsistent set X

minimally inconsistent if every proper subset of X is consistent.

17.2.2 An Example: Simulating the Condorcet Paradox

To demonstrate the versatility of JA, let us briefly sketch how we can use it to simulate
the standard framework of preference aggregation. Suppose three voters each express
a strict preference order (i.e., a complete, antisymmetric, and transitive binary relation)
over a set of alternatives A = {a, b, c}:

Ann: a � b � c

Bob: c � a � b

Chloé: b � c � a

If we try to aggregate these individual preferences using the majority rule (now in the
sense of accepting x � y if at least two of the three individuals do), then we obtain a
cycle: a � b � c � a (two out of three voters prefer a over b, and so forth). This is the
classical Condorcet paradox (McLean and Urken, 1995).

Now construct a JA scenario as follows. Let L be the propositional language built
from the propositional variables {pa�b, pa�c, pb�a, pb�c, pc�a, pc�b}. Let � consist of
all literals in L as well as these formulas (and their complements):

� pa�b ↔ ¬pb�a , pa�c ↔ ¬pc�a , pb�c ↔ ¬pc�b
� pa�b ∧ pb�c → pa�c, and similarly for all other permutations of a, b, c

Observe how, when we interpret pa�b as “I consider a being preferable over b” and
so forth, we get the first group of formulas to encode the fact that our preference order
should be complete and antisymmetric, while the second group expresses that it should
be transitive. Let us call � the preference agenda (for three alternatives). Now consider
a consistent and complete profile for judges Ann, Bob, and Chloé, in which all three

4 Irresolute aggregators, which allow for ties between several collective judgment sets in the outcome, while also
of some interest, are studied less frequently (but see, e.g., Lang and Slavkovik, 2013).
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of them accept the positive formulas listed. Such a profile is fully determined once we
fix each judge’s stance on pa�b, pb�c, and pa�c:

pa�b pb�c pa�c

Ann: Yes Yes Yes
Bob: Yes No No
Chloé: No Yes No

Majority: Yes Yes No

This corresponds directly to the Condorcet paradox. If we translate back to preference
aggregation, then {pa�b, pb�c,¬pa�c, . . .}, which is part of the judgment set returned
by the majority rule, corresponds to the cycle a � b � c � a. If we stay in JA, then that
same set becomes inconsistent once we add pa�b ∧ pb�c → pa�c (which must also be
part of the majority outcome, as it is accepted by all judges).

17.2.3 Axioms: Desirable Properties of Aggregation Rules

We have seen that using the majority rule can lead to problems. It does not meet all of
our requirements. But what are those requirements? Following is a list of properties of
aggregators that are intuitively appealing. In the jargon of social choice theory, such
desirable properties are called axioms.

� An aggregator f is (proposition-wise) unanimous if ϕ ∈ Ji for all i ∈ N entails ϕ ∈
f ( J), for all ϕ ∈ � and all J ∈ J (�)n. That is, if every individual judge accepts ϕ,
then so should the collective represented by f .5

� An aggregator f is anonymous if f ( J) = f (Jπ(1), . . . , Jπ(n)), for all J ∈ J (�)n and all
permutations π : N → N . That is, f should treat all judges the same.

� An aggregator f is neutral if ϕ ∈ Ji ⇔ ψ ∈ Ji for all i ∈ N entails ϕ ∈ f ( J) ⇔ ψ ∈
f ( J), for all ϕ,ψ ∈ � and all J ∈ J (�)n. That is, f should treat all formulas the same
(if ϕ and ψ are accepted by the same judges, then the collective must accept either both
or neither of them).6

� An aggregator f is independent if ϕ ∈ Ji ⇔ ϕ ∈ J ′
i for all i ∈ N entails ϕ ∈ f ( J) ⇔

ϕ ∈ f ( J ′), for all ϕ ∈ � and all J, J ′ ∈ J (�)n. That is, whether we accept ϕ should
only depend on the pattern of individual acceptances of ϕ.

� An aggregator f is monotonic if ϕ ∈ J ′
i \ Ji entails ϕ ∈ f ( J) ⇒ ϕ ∈ f ( J−i , J

′
i ), for all

i ∈ N , all ϕ ∈ �, all J ∈ J (�)n, and all J ′
i ∈ J (�).7 That is, if a collectively accepted

formula ϕ is accepted by an additional judge i (switching her judgment set from Ji to
J ′

i ), then ϕ should still get accepted.

5 Another common formulation of unanimity requires only f (J, . . . , J ) = J for all J ∈ J (�).
6 For some very simple agendas, such as � = {p,¬p}, all aggregators are vacuously neutral (because p ∈ Ji ⇔
¬p ∈ Ji is never true), even though, intuitively, they do not all treat all formulas the same. To exclude such
pathological cases, we have made the assumption that the agenda is nontrivial.

7 Here ( J−i , J
′
i ) denotes the profile we obtain when we replace Ji in J by J ′

i .
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Neutrality and independence together are also known as systematicity.8 Note that we
do not claim, or even wish, that every aggregator satisfies all of these axioms. They
merely are strong candidates to consider when drawing up a list of requirements. The
majority rule, however, clearly satisfies all of them.

Our remaining axioms express that we would like to see properties such as consis-
tency be lifted from the individual to the collective level:

� An aggregator f is complete if f ( J) is complete for all J ∈ J (�)n.
� An aggregator f is complement-free if f ( J) is complement-free for all J ∈ J (�)n.
� An aggregator f is consistent if f ( J) is consistent for all J ∈ J (�)n.

Consistency and completeness together are often referred to as collective rationality.
Observe that the majority rule is both complete and complement-free (at least in case
n is odd), but that we have seen that it is not consistent.

It is useful to reformulate the independence axiom as follows: f is independent if
(and only if) for every ϕ ∈ � there exists a family of sets of judges Wϕ ⊆ 2N such
that for all J ∈ J (�)n it is the case that ϕ ∈ f ( J) if and only if N J

ϕ ∈ Wϕ . We call
Wϕ the set of winning coalitions for ϕ. That is, under an independent aggregator we
only need to look at the coalition of judges accepting ϕ to be able to decide whether
ϕ should be collectively accepted (and those coalitions with the power of getting ϕ

accepted are what we call its winning coalitions). Understanding the structure of the
space of winning coalitions provides a crucial key to understanding the dynamics of
JA. For now, we pin down some basic facts about it:

Lemma 17.1 (Winning Coalitions). Let f be an independent aggregator and, for
every formula ϕ ∈ �, let Wϕ ⊆ 2N be the corresponding family of winning coalitions,
that is, ϕ ∈ f ( J) ⇔ N J

ϕ ∈ Wϕ for all J ∈ J (�)n. Then the following are all true:

(i) f is unanimous if and only if N ∈ Wϕ for all ϕ ∈ �.
(ii) f is anonymous if and only if Wϕ is closed under equinumerosity, that is, if and only

if C ∈ Wϕ and |C| = |C ′| entail C ′ ∈ Wϕ for all C,C ′ ⊆ N and all ϕ ∈ �.
(iii) f is neutral if and only if Wϕ = Wψ for all ϕ,ψ ∈ �.
(iv) f is monotonic if and only if Wϕ is upward closed, that is, if and only if C ∈ Wϕ and

C ⊆ C ′ entail C ′ ∈ Wϕ for all C,C ′ ⊆ N and all ϕ ∈ �.
(v) f is complement-free if and only if Wϕ does not contain complementary coalitions,

that is, if and only if C �∈ Wϕ or C �∈ Wϕ for all C ⊆ N and all ϕ ∈ �.
(vi) f is complete if and only if Wϕ is maximal, that is, if and only if C ∈ Wϕ or C ∈ Wϕ

for all C ⊆ N and all ϕ ∈ �.

Proof. These claims follow immediately from the relevant definitions. Only the case
of neutrality requires closer inspection. Clearly, Wϕ = Wψ for all ϕ, ψ ∈ � implies
the symmetric treatment of all formulas and thus neutrality in the technical sense. For
the converse, we make use of our assumption that � contains two formulas α and β

8 To be precise, any statement regarding the equivalence of axioms must be made w.r.t. a specific class of agendas.
The equivalence mentioned here holds for nontrivial agendas.
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such that all of {α, β}, {α,∼β}, {∼α, β}, and {∼α,∼β} are consistent. So let f be an
aggregator that is independent and neutral.

First, consider two formulas ϕ and ψ for which both {ϕ, ψ} and {∼ϕ,∼ψ} are
consistent and take any coalition C ∈ Wϕ . We can construct a profile J with N J

ϕ =
N J

ψ = C. From C being winning for ϕ, we get ϕ ∈ f ( J). From neutrality we then get
ψ ∈ f ( J), and from independence C ∈ Wψ . Thus, from {ϕ, ψ} and {∼ϕ,∼ψ} being
consistent we get Wϕ = Wψ , so in particular Wα = W∼α = Wβ = W∼β .

Note that α is contingent (i.e., it is neither a tautology nor a contradiction). Consider
any other formula ϕ that is also contingent. If both {ϕ, α} and {∼ϕ,∼α} are consistent,
then Wϕ = Wα and we are done. So suppose it is not the case that both {ϕ, α} and
{∼ϕ,∼α} are consistent. Observe that when we negate one of the formulas in an
inconsistent set of two contingent formulas, we obtain a consistent set. Thus, if {ϕ, α} is
inconsistent, then both {∼ϕ, α} and {ϕ,∼α} are consistent. And also in case {∼ϕ,∼α}
is inconsistent, both {∼ϕ, α} and {ϕ,∼α} are consistent. Thus, in either case we
get Wϕ = W∼α . To summarize, so far we have shown that Wϕ = Wψ for any two
contingent formulas ϕ and ψ in the agenda.

If ϕ is a tautology, then there exists a profile J ∈ J (�)n with N = N J
ϕ = N J

α . Thus,
by neutrality and independence, N ∈ Wϕ ⇔ N ∈ Wα . As no coalition other than the
grand coalition N can ever accept ϕ, it does not matter which other coalitions belong to
Wϕ and we may simply assume that Wϕ = Wα . The proof for contradictions ϕ (using
∅ in place of N) is analogous.

As a first simple example of the power of Lemma 17.1, let us see how we can use it to
prove that every aggregator f that is neutral, independent, monotonic, and complete is
also unanimous: From neutrality and independence we get that f is fully defined by
a single family W of winning coalitions. By completeness, either N ∈ W (in which
case we are done) or N = ∅ ∈ W . But also in this latter case, by monotonicity and due
to ∅ ⊆ N , we get N ∈ W , that is, f is unanimous.

17.2.4 A Simple Impossibility Theorem

We conclude our run through the basic theory of JA with a simple impossibility
theorem. It shows that it is not just the majority rule that fails to reliably produce
consistent outcomes, but that we cannot get consistency for any aggregator that satisfies
what would appear to be rather innocent axiomatic requirements. This is the original
impossibility theorem of JA, due to List and Pettit, which we had already mentioned
in the introduction.

Theorem 17.2 (List and Pettit, 2002). No aggregator for an agenda of the form
� ⊇ {p, q, p ∧ q} can be anonymous, neutral, independent, complete, and consistent.

Proof. Let f be an aggregator for an agenda � with {p, q, p ∧ q} ⊆ �. For the sake of
contradiction, assume f is anonymous, neutral, independent, complete, and consistent.
By Lemma 17.1 and the first three properties, if two formulas ϕ and ψ are accepted
by the same number of judges, then f must accept either both or neither of them. Now
consider a profile J in which n−1

2 judges accept both p and q; one judge accepts p

but not q; one judge accepts q but not p; and the remaining n−3
2 judges accept neither
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p nor q.9 Observe that for this profile we get |N J
p | = |N J

q | = |N J
¬(p∧q)| = n+1

2 . So we
must accept either all of p, q, and ¬(p ∧ q), or none of them. The former immediately
clashes with consistency. If we take the latter route, completeness forces us to accept
all of ¬p, ¬q, and p ∧ q, which again leads to a clash with consistency.

Theorem 17.2 is a negative result. Still, it can help us to pinpoint how we need to relax
our requirements to make consistent aggregation possible after all.

One approach is to weaken the axioms. For instance, it is easy to define certain
(trivial) aggregators that meet all but one of our requirements: the dictatorship that
always returns a copy of the judgment set of the first judge only violates anonymity,
while a constant aggregator that always returns some fixed judgment set in J (�)
only violates neutrality. Of course, such aggregators are of little practical interest. In
Section 17.3 we discuss some more practically useful aggregation rules, which account
for the impossibility by violating independence or completeness.

A second approach is to restrict the range of agendas on which we require our
aggregator to perform satisfactorily. Section 17.4 will be devoted to results that identify,
for a given (class of) aggregator(s), the precise class of agendas for which consistent
aggregation is possible. This also takes care of a somewhat unsatisfactory feature of
Theorem 17.2, namely, its restriction to an overly specific class of agendas (those
including p, q, and p ∧ q).

A third approach, finally, is to not restrict the agenda, but to instead assume that
not every possible profile will be encountered in practice. We shall not discuss such
domain restrictions in any detail here. They are similar to domain restrictions studied in
voting theory, but arguably lack the intuitive appeal of, say, Black’s single-peakedness,
a domain restriction for preference profiles avoiding paradoxical election outcomes
(Black, 1948). The most powerful result along these lines in JA is due to Dietrich
and List (2010). They showed that, if a profile is value-restricted in the sense that
for every minimally inconsistent (nonsingleton) subset X of the agenda � there exist
two formulas ϕX, ψX ∈ X such that no individual accepts both ϕX and ψX, then the
outcome of the majority rule will be consistent. The proof is immediate: For the sake
of contradiction, assume the majority outcome is inconsistent. Then it must include
some minimally inconsistent set X with associated formulas ϕX and ψX, each of which
must have been accepted by a (strict) majority. But then, by the pigeonhole principle,
at least one judge must have accepted both of them, which contradicts the assumption
of value restriction.

17.3 Aggregation Rules

The majority rule is but one method of aggregation. In this section we introduce three
families of aggregators (quota rules, distance-based rules, and premise-based rules),
and for each of them discuss to what extent they allow us to address the deficit of the

9 Note how we make use of our general assumption that n is odd. If n is even, we obtain a much more fundamental
impossibility: there can be no anonymous, neutral, complete and complement-free aggregator even for simple
agendas such as � = {p,¬p, q,¬q}. To see this, consider what to do in case the number of judges accepting
p equals that accepting ¬p.
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majority rule highlighted by the discursive dilemma. For each family, we then exemplify
a specific research direction in JA: the axiomatic characterization of aggregators, the
complexity of winner determination, and strategic manipulation.

17.3.1 Quota-Based Aggregation/Axiomatic Characterizations

Under a quota rule we accept a given formula ϕ if the number of individual judges
accepting ϕ reaches a certain threshold. Formally, a quota rule fq is induced by a
function q : � → {0, 1, . . . , n+1}, mapping formulas to thresholds:

fq( J) = {ϕ ∈ � | |N J
ϕ | � q(ϕ)}

Note that if the quota of a given formula is 0, then this means that that formula will
always get accepted, while quota n+1 means that the formula in question will never
get accepted. The rule fq is called a uniform quota rule if q maps all formulas to the
same number λ (in such a case, we simply write fλ). For example, the (strict) majority
rule is the uniform quota rule f% n+1

2 &, while fn is the intersection rule, mapping any
given profile J to the judgment set J1 ∩ · · · ∩ Jn.

It is intuitively clear that, if we increase the quota, then it should be less likely
that we obtain a collective judgment set that is inconsistent. For example, take once
more the agenda � = {p,¬p, q,¬q, p ∧ q,¬(p ∧ q)}. Then, provided we impose a
uniform quota strictly greater than 2

3n, the collective judgment set will be consistent
for every possible profile.10 This is a consequence of the following result:

Proposition 17.3 (Dietrich and List, 2007a). Let k be the size of the largest minimally
inconsistent subset of the agenda �. Then every uniform quota rule fλ with a quota of
λ > k−1

k
· n is consistent.

Proof. For the sake of contradiction, suppose there exists a profile J ∈ J (�)n for which
fλ( J) is inconsistent. Take an arbitrary minimally inconsistent subset X ⊆ fλ( J). By
assumption, we have |X| � k. For each formula ϕ ∈ X, there must have been at least
λ judges accepting it. Hence, summing over all the formulas in X, there must have
been at least |X| · λ occasions of a formula in X being accepted by some judge. By the
pigeon hole principle, at least one of the n judges must have accepted at least |X|·λ

n
of

these formulas. But due to λ > k−1
k

· n, we get |X|·λ
n

> |X| − |X|
k

, that is, (as |X|
k

� 1)
that judge must have accepted all of the formulas in X, contradicting our assumption
of individual consistency.

Thus, if we are willing to give up completeness (which is violated by quota rules with
high quotas), then we can circumvent the impossibility of Theorem 17.2.

Proposition 17.3 can be strengthened to say that for any quota not satisfying the
constraint λ > k−1

k
· n the corresponding rule is not consistent. In our earlier example,

{p, q,¬(p ∧ q)} with size 3 is the largest minimally inconsistent subset of the agenda
� = {p,¬p, q,¬q, p ∧ q,¬(p ∧ q)}. So if, for example, n = 30, then any quota of
21 or higher will guarantee consistency, while quota 20 does not.

10 On the downside, the collective judgment set may not always be complete (namely, when both ϕ and ∼ϕ are
accepted by fewer than two thirds of the judges).
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An important question in social choice theory is whether a given set of axiomatic
requirements fully characterizes a particular aggregator (or family of aggregators). If
this is the case and if we have strong normative support for the axioms in question, then
this forces us to adopt the corresponding aggregator. Let us briefly review a number of
such characterization results for quota rules.

Proposition 17.4 (Dietrich and List, 2007a). An aggregator is anonymous, indepen-
dent, and monotonic if and only if it is a quota rule.

Proof. For the right-to-left direction, observe that every quota rule clearly has those
three properties. For the left-to-right direction, the claim follows from Lemma 17.1: By
independence, we can decide formula by formula. By monotonicity, the set of winning
coalitions is upward closed. By anonymity, only the size of coalitions matters. Taken
together, this means that for every formula ϕ there exists a number λϕ such that ϕ is
collectively accepted if and only if at least λϕ judges accept ϕ. In other words, λϕ is
the quota associated with ϕ, that is, q(ϕ) = λϕ .

A quota rule is neutral if and only if it is a uniform quota rule.11 Thus, as an immediate
consequence of Proposition 17.4, we obtain the following characterization:

Corollary 17.5. An aggregator is anonymous, neutral, independent, and monotonic if
and only if it is a uniform quota rule.

We now want to add completeness and complement-freeness to our requirements
(but not consistency, which we already know to be impossible from Theorem 17.2).
Intuitively speaking, low quotas should favor completeness (as generally more formulas
will get accepted), while high quotas should favor complement-freeness (as generally
fewer formulas will get accepted). Let λ be the uniformly imposed quota. If k individuals
accept ϕ, then n−k individuals accept ∼ϕ. Thus, to guarantee completeness, we require
max{k, n−k} � λ for all k � n, as that way at least one of ϕ and ∼ϕ will get accepted
under all circumstances. Similarly, to guarantee complement-freeness, we require λ >

min{k, n−k} for all k � n. The closer k is to n
2 , the harder it gets to satisfy both of

these constraints. Recall that we assume n to be odd. For k = n+1
2 , there is only a

single value for λ that will satisfy both constraints, namely, λ = n+1
2 . That is, only the

majority rule satisfies all of our requirements and we obtain the following corollary to
Corollary 17.5:

Corollary 17.6. An aggregator is anonymous, neutral, independent, monotonic, com-
plete, and complement-free if and only if it is the (strict) majority rule.

We stress that Corollary 17.6 is true only when the number n of individual judges is
odd. As pointed out in Footnote 9 already, when n is even, there exists no aggregator
that satisfies all of these requirements. For the special case of an agenda with just a
single pair of complementary formulas, Corollary 17.6 reduces to May’s Theorem on
the characterization of the majority rule in voting theory (May, 1952).12

11 This characterization holds, provided the agenda is nontrivial. See also Footnote 6.
12 May allows for ties and uses a more sophisticated monotonicity axiom, known as positive responsiveness, so

as to be able to also cover the case of an even number of individuals. Refer to Chapter 2 for full details.
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17.3.2 Distance-based Aggregation/Winner Determination

Another approach to aggregation is to select as outcome a judgment set that, in some
sense, minimizes the distance to the profile. If we measure distances between judgment
sets using the Hamming distance and if we interpret the distance from an outcome to
a profile as the sum of the distances between that outcome and each of the individual
judgment sets, then we obtain the following aggregator:

fkem( J) = argmin
J∈J (�)

∑
i∈N

H (J, Ji).

That is, we go through all complete and consistent judgment sets J and return the one
that minimizes the sum of the Hamming distances to the individual judgment sets. This
rule, discussed under a variety of different names in the literature, is the most widely
used distance-based aggregator in JA. If we apply it to the preference agenda (see
Section 17.2.2), then we obtain the Kemeny rule familiar from preference aggregation
(Kemeny, 1959) and discussed in depth in Chapter 4 this is why we shall refer to it as
the generalized Kemeny rule. To be precise, fkem is an irresolute aggregator, as it may
return a set of several judgment sets (that are all equally close to the profile). To obtain
a resolute rule fitting our definition of Section 17.2.1, we have to combine fkem with a
tie-breaking rule.

The generalized Kemeny rule is clearly consistent: only consistent judgment sets
are considered as possible outcomes during the optimization process. It achieves con-
sistency by sacrificing independence.

A fundamental question in computational social choice concerns the computational
complexity of the winner determination problem of a given method of aggregation.
For a resolute aggregator f this can be cast as a decision problem by asking, for
a given profile J and a given formula ϕ ∈ �, whether it is the case that ϕ ∈ f ( J).
By answering this question for every formula ϕ in the agenda, we can compute the
outcome, the “winning” judgment set. Thus, the complexity of our decision problem
is directly relevant to the algorithmic feasibility of the pragmatic problem of applying
rule f . For irresolute aggregators, such as the generalized Kemeny rule, an appropriate
formulation of the question is whether, for a given profile J and a given set L ⊆ �,
there exists a winning set J � ∈ f ( J) such that L ⊆ J �. For the generalized Kemeny
rule, winner determination is highly intractable:

Theorem 17.7 (Endriss et al., 2012). The winner determination problem of the gen-
eralized Kemeny rule is �P

2 -complete.

The complexity class �P
2 is the class of problems that can be solved, in polynomial

time, by a (hypothetical) machine that has access to an oracle capable of deciding
NP-complete problems in an instant, with the restriction that the number of queries
to the oracle must be at most logarithmic in the size of the problem. Equivalently,
we may ask a polynomial number of oracle queries, provided we ask them all in
parallel. That is, the generalized Kemeny rule is complete for parallel access to NP.
The proof of Theorem 17.7 is beyond the scope of this chapter. It is based on a reduction
from the Kemeny Winner problem in voting theory, for which �P

2 -completeness was
established by Hemaspaandra et al. (2005). For a discussion of that problem we refer
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to Chapter 4. For comparison, it is easy to see that for any quota rule the winner
determination problem is polynomial.

The generalized Kemeny rule is not the only distance-based aggregator in JA. We
may use other distance metrics than the Hamming distance and we may vary the way
we define the distance to a profile in terms of that basic metric. Here we only give
one further example of a generalization of a rule familiar from preference aggregation:
Under the Slater rule we first compute the majority graph and then return the preference
order that minimizes the number of edges in the majority graph we have to invert before
we obtain a transitive order (Slater, 1961).13 This idea is easily transposed to JA to
obtain a generalized Slater rule:

fsla( J) = argmin
J∈J (�)

H (J, fmaj( J)).

That is, we first compute the majority outcome fmaj( J) and then find the complete and
consistent judgment set closest to it (again, more than one judgment set may be closest
and we may have to break ties if we need a unique winner).

The following example, with ϕ1 and ϕ2 representing two syntactically distinct formu-
las that are both semantically equivalent to p ∨ (q1 ∧ q2) ∨ (r1 ∧ r2 ∧ r3), demonstrates
that the Kemeny rule and the Slater rule do not always coincide:

p q1 q2 r1 r2 r3 ϕ1 ϕ2

1 judge: Yes No No No No No Yes Yes
10 judges: No Yes Yes No No No Yes Yes
10 judges: No No No Yes Yes Yes Yes Yes

Kemeny: No Yes Yes No No No Yes Yes
Slater: Yes No No No No No Yes Yes

Consult Section 17.7 for references to other distance-based aggregators.

17.3.3 Premise-based Aggregation/Strategic Manipulation

For some application scenarios it will be natural to think of certain formulas in the
agenda as premises and the others as conclusions. Suppose we can partition the
agenda � into a set �p of premises and a set �c of conclusions such that each of
them is closed under complementation, � = �p ∪ �c, and �p ∩ �c = ∅.

The premise-based rule fpre works by first applying the majority rule to the
premises and then accepting those conclusions that logically follow from the col-
lectively accepted premises:

fpre( J) = � ∪ {ϕ ∈ �c | � |= ϕ}, where � =
{
ϕ ∈ �p

∣∣∣∣N J
ϕ

∣∣ >
n

2

}
Clearly, in the general case fpre inherits all the problems of the majority rule and
cannot guarantee consistency (e.g., when every formula is declared a premise). In
addition, fpre may fail to be complete. For example, when p ∧ q and ¬(p ∧ q) are

13 For an in-depth discussion of the Slater rule we refer to Chapter 3.
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conclusions and no premise has either p or q as a subformula, then neither p ∧ q nor
¬(p ∧ q) will be logically entailed by whatever (consistent) set of premises we end
up accepting. However, if we impose suitable constraints on the definition of premises
and conclusions, we can obtain a well-behaved aggregator. The most common set of
assumptions, which we shall also adopt here, is the following:

(i) The set of premises is the set of literals in the agenda.
(ii) The agenda is closed under propositional variables, that is, if ϕ is a formula in the

agenda, then so is every propositional variable occurring within ϕ.

Assumption (i) guarantees consistency; a set of collectively accepted premises now
directly corresponds to an assignment of truth values to propositional variables.
Assumption (ii) then guarantees completeness, because, for every conclusion ϕ, either
ϕ or ∼ϕ will be satisfied by that truth assignment. That is, we obtain the following
result (given our assumption of n being odd):

Fact 17.8. For any agenda that is closed under propositional variables, the premise-
based rule, with the premises being the literals, is complete and consistent.

Thus, by sacrificing both neutrality and independence, the premise-based rule allows
us to circumvent the impossibility of Theorem 17.2.

We have seen that distance-based aggregators achieve consistency at the price of
high computational complexity. This is not the case for fpre:

Fact 17.9. The winner determination problem of the premise-based rule, with the
premises being the literals, is polynomial.

Indeed, applying the majority rule to the premises is certainly polynomial. Deciding
whether a given conclusion should be accepted then amounts to a model checking
problem for propositional logic, which can also be done in polynomial time.

One of the central phenomena studied in social choice theory is strategic behavior.
Under what circumstances do individuals have an incentive to truthfully report their
private information to the aggregation mechanism? This is a very natural question in
the context of voting or resource allocation, where this private information concerns the
individuals’ preferences and where we can use these very same preferences to define
what it means for an individual to have an incentive to perform a given action. In JA,
on the other hand, individuals do not have preferences, so it is not obvious what it
may mean for an individual to have an incentive one way or the other. To be able to
analyze strategic behavior in JA, we need to endow our judges with preferences. For
the purposes of this brief exposition, let us assume that every judge’s preferences are
induced by her true judgment set and the Hamming distance: judge i with true judgment
set Ji prefers J to J ′, denoted as J �i J ′, if and only if H (Ji, J ) < H (Ji, J

′). We say
that she has Hamming preferences.14 Now suppose three judges truthfully report their
judgment sets:

14 Preferences induced by the Hamming distance are also discussed in Chapter 9 on voting in combinatorial
domains.



1 7 .3 aggregation rules 413

p q r p ∨ q p ∨ r

Judge 1: No No No No No
Judge 2: Yes No No Yes Yes
Judge 3: No Yes Yes Yes Yes

Under the premise-based rule, all three premises will get rejected, which means that
also the two conclusions get rejected. For judge 3 the Hamming distance from this
outcome to her own judgment set is 4. But if she lies and answers “yes” for p, then p

will get accepted and thus also the two conclusions. Her distance to this new outcome
is only 3, that is, she has an incentive to manipulate in this manner. We say that an
aggregator f is immune to manipulation for a given method of deriving preferences
from judgment sets, if every judge i (at least weakly) prefers the sincere outcome f ( J)
to the manipulated outcome f ( J−i , J

′
i ) for any profile J ∈ J (�)n and any alternative

insincere judgment set J ′
i ∈ J (�) for judge i.

Proposition 17.10 (Dietrich and List, 2007c). Any independent and monotonic aggre-
gator is immune to manipulation by judges with Hamming preferences.

Proof. Independence means that the would-be manipulator can consider one formula
at a time. Monotonicity then means that it is always in her best interest to drive up the
support for formulas in her judgment set and to reduce the support for those not in her
judgment set, that is, it is in her best interest to report truthfully.

As discussed in depth in Chapter 6 for aggregators that are not immune to manipulation
a relevant question is whether it may be the case that manipulation is a computationally
intractable problem, as this may provide at least some level of protection against
unwanted strategic behavior. The manipulation problem for a given aggregator f and
a given method of deriving preferences from judgment sets is the problem of deciding
whether a judge may obtain a preferred outcome by misreporting her judgment set.
While we have seen that the premise-based rule can be manipulated, doing so is hard,
at least in the worst case and for agendas involving large formulas:15

Proposition 17.11 (Endriss et al., 2012). The manipulation problem for the premise-
based rule and judges with Hamming preferences is NP-complete.

The proof is not difficult, but beyond the scope of this chapter. It involves a reduction
from the NP-hard satisfiability problem for propositional logic to our manipulation
problem. Given a formula ϕ, the core idea is to build a profile where one judge has an
incentive to misreport her judgment set if and only if ϕ is satisfiable.

It is important to stress that the particular manipulation problem of Proposition 17.11
is just one of several natural definitions for which complexity results are known
(Baumeister et al., 2013a). For instance, we may vary the way in which preferences are
induced from judgment sets or we may assume that the manipulator is only interested
in some of the formulas in the agenda.

15 Given that for distance-based aggregators the winner determination problem is already intractable, questions
regarding the complexity of manipulation are considerably less interesting here.
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17.4 Agenda Characterization Results

Suppose we are given an agenda � and an aggregator f . Then we may want to ask: can
we be certain that the outcome f ( J) will be consistent for every possible consistent
profile J ∈ J (�)n over this agenda?

We want to answer such questions not only for one specific agenda �, but would like
to be able to offer a full characterization of all agendas for which the answer is positive.
In this section, we provide such characterizations in terms of agenda properties that tally
the structural richness of an agenda. Going beyond individual aggregators f , we also
prove agenda characterization results for families of aggregators F , defined in terms of
the axioms they satisfy. Such results come in two forms: existential results talk about
conditions under which at least some aggregator in F is consistent, while universal
results establish conditions under which all aggregators in F are. For the latter, in
particular, a relevant question is how difficult it is to verify whether a given agenda
satisfies certain agenda properties. Therefore, we briefly discuss the computational
complexity of this problem.

17.4.1 Consistent Aggregation under the Majority Rule

In the introduction we have seen that for one specific aggregator and one specific
agenda, namely, the majority rule and the agenda {p,¬p, q,¬q, p ∧ q,¬(p ∧ q)},
we may encounter a discursive dilemma. That is, for this agenda it is possible to
construct a consistent profile such that the majority rule will return a judgment set
that is inconsistent. In Section 17.2.4 we have seen a generalization of this insight: the
problem persists for any aggregator belonging to an entire class of aggregators (cf.
Theorem 17.2). We now want to discuss a different generalization and ask: what is the
class of agendas for which the majority rule has this deficiency?

Intuitively speaking, the discursive dilemma comes about when there is an inconsis-
tent subset X ⊆ �, such that each judge accepts sufficiently few of the formulas in X

to be individually consistent, but at the same time sufficiently many to ensure that every
formula in X gathers a majority. That is, the size of inconsistent sets, or more precisely
minimally inconsistent sets, that we can build from the formulas in the agenda seems
to matter. We say that an agenda � satisfies the median property if every inconsistent
subset of � does itself have an inconsistent subset of size at most 2.16 For example, the
agenda {p,¬p, q,¬q, p ∧ q,¬(p ∧ q)} does not have the median property, because
one of its minimally inconsistent subsets, namely, {p, q,¬(p ∧ q)}, has three elements.
This agenda property allows us to give a full characterization of the agendas on which
the majority rule is consistent:

Lemma 17.12 (Nehring and Puppe, 2007). The majority rule is consistent for a given
agenda � if and only if � has the median property.

Proof. The right-to-left direction is an instance of Proposition 17.3 for k = 2, because
� having the median property means that the largest minimally inconsistent subset of

16 The term median property is due to Nehring and Puppe (2007), who coined this term in the context of work
on social choice theory over a class of vector spaces known as median spaces. Agendas that satisfy the median
property are sometimes also called simple agendas.
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� has at most size 2. For the other direction, let � be an agenda that violates the median
property, that is, there exists a minimally inconsistent set X = {ϕ1, . . . , ϕk} ⊆ � with
k � 3. Now consider the profile J , in which judge i accepts all formulas in X except
for ϕ1+(i mod 3). Note that J is consistent. But the majority rule will accept all formulas
in X, that is, fmaj( J) is inconsistent.

Deciding whether a given agenda has the median property is �P
2 -complete (Endriss

et al., 2012). �P
2 , a complexity class located at the second level of the polynomial

hierarchy, is the class of decision problems for which a certificate for a negative
answer can be verified in polynomial time by a machine that has access to an oracle
for answering NP-complete problems in an instant. Deciding whether a quantified
Boolean formula of the form ∀x1 · · · ∀xn∃y1 · · · ∃ymϕ is true is the canonical example
of a problem that is complete for this class. �P

2 includes the other complexity classes
featuring in this chapter, particularly NP and �P

2 (and this inclusion is believed, but
not known, to be proper).

Thus, we have a doubly negative result: not only do we have to restrict ourselves to
highly simplistic agendas if we want to be certain to avoid instances of the discursive
dilemma (this is the import of Lemma 17.12), but on top of this determining whether
a given agenda is sufficiently simplistic is very difficult.

17.4.2 Existential Agenda Characterization

Next we want to go beyond specific aggregators (such as the majority rule), and instead
prove agenda characterization results for classes of aggregators, defined in terms of
certain axioms. For the first such result we take the axioms defining the majority
rule (cf. Corollary 17.6), except that we substantially weaken anonymity and instead
only require that our aggregator is not a dictatorship. Formally, an aggregator f is a
dictatorship if there exists an individual i� ∈ N (the dictator) such that f ( J) = Ji� for
every profile J ; otherwise f is nondictatorial.17 Lemma 17.12 shows that only agendas
with the median property guarantee consistent outcomes under the majority rule. We
will now see that, even if we allow ourselves to pick freely from the much larger class
of aggregators we obtain when we replace anonymity by nondictatoriality, we cannot
do better than that.

Before we state this result formally, let us say something about the technique we are
going to use to prove it. Recall that any independent and neutral aggregator is defined
by a family W ⊆ 2N of winning coalitions (cf. Lemma 17.1). In mathematics, a set W
of subsets of a set N is called an ultrafilter if it satisfies the following three conditions
(see, e.g., Davey and Priestley, 2002):18

(i) W does not include the empty set: ∅ �∈ W .
(ii) W is closed under taking intersections: C ∈ W and C ′ ∈ W entail C ∩ C ′ ∈ W for

all C,C ′ ⊆ N .
(iii) W is maximal: C ∈ W or C ∈ W for all C ⊆ N .

17 To appreciate that anonymity really is much stronger than nondictatoriality, observe that the former rules out
all weighted majority rules, while the latter does not.

18 Sometimes being upward closed is stated as a fourth defining condition of an ultrafilter. But note that we do
not need to do so, as this already follows from the other three conditions.
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An ultrafilter is called principal if it is of the form W = {C ⊆ N | i� ∈ C} for some
i� ∈ N . By a well-known fact, every ultrafilter W on a finite set N is principal (Davey
and Priestley, 2002).19 Translating back into the world of winning coalitions, this
means that if we can show that the set W of winning coalitions corresponding to a
given (independent and neutral) aggregator f meets the three preceding conditions,
then, given that the set N of judges is finite, f must be dictatorial (with the principal
element i� of the ultrafilter being the dictator).

We are now ready to prove a first important existential agenda characterization
theorem, for a class of aggregators defined by a natural combination of axioms:

Theorem 17.13 (Nehring and Puppe, 2007). There exists a neutral, independent,
monotonic, and nondictatorial aggregator that is complete and consistent for a given
agenda � if and only if � has the median property.

Proof. The right-to-left direction follows from Lemma 17.12: if � has the median
property, then the majority rule is consistent (and the majority rule is also neutral,
independent, monotonic, nondictatorial, and complete).

The left-to-right direction in effect establishes an impossibility result. It is equivalent
to the following claim: if a given neutral, independent, and monotonic aggregator f

is complete and consistent (and thus also complement-free) for a given agenda �

that violates the median property, then f must be a dictatorship. By Lemma 17.1,
neutrality and independence mean that f is determined by a single family W of
winning coalitions. Let us show that W must be an ultrafilter on N :

(i) ∅ �∈ W: If we had ∅ ∈ W , then N ∈ W by monotonicity (because ∅ ⊆ N ), which is
in direct conflict with the requirement of being complement-free (as ∅ = N ).

(ii) W is closed under taking intersections: This will be the (only) part in the proof
where we make use of the assumption that � violates the median property. The
median property being violated means that there exists a minimally inconsistent subset
X = {ϕ1, . . . , ϕk} ⊆ � with k � 3. Take any two winning coalitions C,C ′ ∈ W . (We
need to show that C ∩ C ′ ∈ W .) Observe that it is possible to construct a complete
and consistent profile J with the following properties:
� N J

ϕ1
= C

� N J
ϕ2

= C ′ ∪ (N \ C)
� N J

ϕ3
= N \ (C ∩ C ′)

� N J
ϕ


= N for all 
 with 4 � 
 � k

That is, each judge accepts exactly k−1 of the formulas in X (which means that every
judge is consistent). Note that N J

∼ϕ3
= C ∩ C ′. Now, C being winning implies ϕ1 ∈

f ( J). By monotonicity, any superset of C ′ is winning, including C ′ ∪ (N \ C). The
latter implies ϕ2 ∈ f ( J). Finally, from ∅ �∈ W we get N ∈ W (i.e., f is unanimous)
and therefore all judges accepting all of X \ {ϕ1, ϕ2, ϕ3} entails X \ {ϕ1, ϕ2, ϕ3} ⊆

19 The proof is immediate: Let C� := ⋂
C∈W C. As N is finite, we can apply (ii) inductively and obtain C� ∈ W .

By construction, C� must be the smallest element of W . If we can show that C� is a singleton, then we
are done. First, by (i), C� �= ∅. Second, for the sake of contradiction, suppose |C�| � 2. Take any nonempty
proper subset C of C�. By (iii), either C ∈ W or C ∈ W . If it is the latter, then from (ii) and C� ∈ W we
get C� ∩ C = C� \ C ∈ W . Hence, in either case a proper subset of C� must be an element of W . This is the
required contradiction and concludes the proof.
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f ( J). Taken together, this means X \ {ϕ3} ⊆ f ( J). Thus, to ensure consistency of the
outcome, we must have ϕ3 �∈ f ( J). But then, to ensure completeness, we are forced
to accept ∼ϕ3 ∈ f ( J). That is, we are forced to accept a formula that was accepted
by precisely the judges in the intersection C ∩ C ′. In other words, C ∩ C ′ is winning,
that is, C ∩ C ′ ∈ W .

(iii) W is maximal: This follows immediately from completeness (cf. Lemma 17.1).

As N is finite, W must in fact be a principal ultrafilter. But we have already seen that
this is equivalent to f being dictatorial, so we are done.

The ultrafilter method is very powerful. We will see one more example of its use. Our
next theorem concerns independent and unanimous aggregators. The most important
difference is that this time we do not want to assume neutrality, that is, we cannot
work with a single family W of winning coalitions from the outset. To still make
the ultrafilter method applicable, we have to derive neutrality. As we shall see, this is
possible for agendas that are sufficiently rich. Merely violating the median property is
not sufficient: for example, if the positive formulas in the agenda are {p, q, p ∧ q, r},
then the aggregator under which judge 1 dictates the outcome for {p, q, p ∧ q} and r

is decided upon by majority is nondictatorial, independent, and unanimous. That is,
we require an agenda with sufficiently strong connections between its formulas to rule
out such “localized” aggregators.

Write ϕ
�−→ ψ in case there exists a minimally inconsistent set X ⊆ � with ϕ,∼ψ ∈

X. This notation indicates that, in the context of the remaining formulas in X, accepting

ϕ forces us to also accept ψ . Let
�=⇒ be the transitive closure of

�−→. An agenda � is

called totally blocked if ϕ
�=⇒ ψ for every two formulas ϕ, ψ ∈ �.

Lemma 17.14 (Neutrality). Every unanimous and independent aggregator f that is
complete and consistent for a totally blocked agenda � is neutral.

Proof. Let � be a totally blocked agenda and let f be a unanimous and independent
aggregator that is complete and consistent for �. By independence, for each ϕ ∈ �

there exists a Wϕ ⊆ N such that ϕ ∈ f ( J) ⇔ N J
ϕ ∈ Wϕ for all profiles J .

Consider two formulas ϕ, ψ ∈ � such that ϕ
�−→ ψ . We show that this implies

Wϕ ⊆ Wψ : Let X be the minimally inconsistent set establishing ϕ
�−→ ψ . Take any

winning coalition C ∈ Wϕ . Construct a complete and consistent profile J in which all
judges accept all of X \ {ϕ,∼ψ}, those in C also accept ϕ and ψ , and the rest also
accept ∼ϕ and ∼ψ . By unanimity, X \ {ϕ,∼ψ} ⊆ f ( J). Due to C ∈ Wϕ , furthermore
ϕ ∈ f ( J). Hence, consistency forces ∼ψ �∈ f ( J) and thus completeness forces ψ ∈
f ( J). As it was exactly the judges in C who accepted ψ , this means that C is also a
winning coalition for ψ , that is, C ∈ Wψ .

Now, by induction, not only ϕ
�−→ ψ implies Wϕ ⊆ Wψ , but also ϕ

�=⇒ ψ implies
Wϕ ⊆ Wψ . Total blockedness means that ϕ

�=⇒ ψ for all ϕ, ψ ∈ �. Hence, Wϕ = Wψ

for all ϕ, ψ ∈ �, that is, by Lemma 17.1, f is indeed neutral.

We require one further agenda property: � is even-number-negatable if it has a mini-
mally inconsistent subset X for which (X \ Y ) ∪ {∼ϕ | ϕ ∈ Y } is consistent for some
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set Y ⊂ X of even cardinality. Any minimally inconsistent set X can be made consis-
tent by flipping exactly one of its elements; even-number-negatability requires that for
at least one X we can also get consistency by flipping an even number of formulas
in X. The agenda property used in the following theorem is intuitively weaker than the
median property used in Theorem 17.13. This is exactly what we would expect, as the
axioms we impose are also weaker.

Theorem 17.15 (Dokow and Holzman, 2010). There exists a unanimous, independent,
and nondictatorial aggregator that is complete and consistent for a given agenda � if
and only if � is not both totally blocked and even-number-negatable.

Proof. For the right-to-left direction, for any agenda � that is either not totally blocked
or not even-number-negatable, we show how to construct an aggregator that meets our
requirements.

First, suppose � is not totally blocked. Then we can partition � into two disjoint
sets �1 and �2 (i.e., �1 ∪ �2 = � and �1 ∩ �2 = ∅) such that there exist no ϕ1 ∈ �1

and ϕ2 ∈ �2 with ϕ1
�=⇒ ϕ2. We use this partition to define an aggregator f : judge 1

dictates acceptance for formulas ϕ with {ϕ,∼ϕ} ⊆ �1; judge 2 dictates acceptance
for formulas ϕ with {ϕ,∼ϕ} ⊆ �2; and for formulas ϕ with ϕ ∈ �1 and ∼ϕ ∈ �2

we accept ϕ unless there is unanimous support for ∼ϕ. This rule is easily seen to be
unanimous, independent, nondictatorial, and complete. It also is consistent: For if not,
there would be a profile for which f accepts some minimally inconsistent set X. But X

cannot be fully included in �1, as then judge 1 would be inconsistent. It cannot be fully
included in �2 either, as then judge 2 would be inconsistent. Finally, X cannot be split
across �1 and �2: if ∼ϕ2 ∈ �1 for all ϕ2 ∈ X ∩ �2, then all of X ∩ �2 would have
had to be accepted unanimously, meaning that judge 1 would have had to accept all
of X (contradicting consistency of judge 1); and if ∼ϕ2 ∈ �2 for some ϕ2 ∈ X ∩ �2,

then ϕ1
�−→ ∼ϕ2 for all ϕ1 ∈ X ∩ �1 (in contradiction to how the partition into �1 and

�2 has been defined).
Second, suppose � is not even-number-negatable. Consider the parity rule fpar that

accepts a formula if and only if an odd number of the judges does.20 This rule clearly is
unanimous, independent, nondictatorial, and complete. To show that it is also consistent
we will make use of the fact that � is not even-number-negatable. Assume, for the sake
of contradiction, that there exists a profile J ∈ J (�) for which fpar( J) is inconsistent.
Let X be a minimally inconsistent subset of fpar( J). Suppose |X| is odd (the case
where |X| is even works analogously). As � is not even-number-negatable, every set
of the form (X \ Y ) ∪ {∼ϕ | ϕ ∈ Y } with Y ⊂ X and |Y | even must be inconsistent.
Hence, every judge must accept a subset of X of even cardinality. So, if we sum over
all judges, we obtain an even number of instances of an acceptance of an X-formula by
a judge. On the other hand, by definition of fpar, each of the odd number of formulas
in X must have been accepted by an odd number of judges, which implies that the
overall number of acceptances of X-formulas must be odd. Thus, we obtain the desired
contradiction.

20 Here we will make use of our assumption that n, the total number of judges, is odd.
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For the left-to-right direction, we have to prove that for any agenda � that is totally
blocked and even-number-negatable, any aggregator f that is unanimous, independent,
complete, and consistent must be dictatorial. As � is totally blocked we can apply
Lemma 17.14 and infer that f must be neutral. As � is even-number-negatable, it is
also pair-negatable in the sense that there must exist a minimally inconsistent set X

such that (X \ Y ) ∪ {∼ϕ | ϕ ∈ Y } is consistent for some Y ⊂ X of cardinality 2.21 In
other words, � has a minimally inconsistent subset X including at least three formulas
ϕ1, ϕ2, ϕ3 such that all of (X \ {ϕ1}) ∪ {∼ϕ1}, (X \ {ϕ2}) ∪ {∼ϕ2}, and (X \ {ϕ1, ϕ2}) ∪
{∼ϕ1,∼ϕ2} are consistent. In summary, we now have all the conditions of the left-to-
right direction of Theorem 17.13 in place, except for monotonicity; and in addition we
can make use of slightly stronger assumptions on �. Recall that the only points in the
proof of Theorem 17.13 where we required monotonicity were the derivations of the
first two ultrafilter conditions. The first of them, ∅ �∈ W , can instead be inferred from
maximality, the third ultrafilter condition, together with N ∈ W (which follows from
unanimity). We are left with establishing the second ultrafilter condition, closure under
taking intersections. Take any two winning coalitions C, C ′ ∈ W . We can construct a
complete and consistent profile J with N J

ϕ1
= C, N J

ϕ2
= C ′, N J

ϕ3
= N \ (C ∩ C ′), and

N J
ϕ = N for all ϕ ∈ X \ {ϕ1, ϕ2, ϕ3}. Observe that this slightly simplified construction

was not available to us in the proof of Theorem 17.13, because in the absence of
pair-negatability we would have had no guarantee that the judgment set of judges in
N \ (C ∩ C ′), missing two of the formulas in X, is consistent. Now ϕ1 gets accepted
by virtue of C being winning, ϕ2 gets accepted by virtue of C ′ being winning, and all
of X \ {ϕ1, ϕ2, ϕ3} get accepted by virtue of unanimity. So we must reject ϕ3 and thus
accept ∼ϕ3. But it is exactly the judges in C ∩ C ′ who support ∼ϕ3, so C ∩ C ′ must
be winning.

Interestingly, independence and unanimity are also the core axioms in Arrow’s Theorem
in preference aggregation (Arrow, 1963). Indeed, using the embedding of preference
aggregation into JA sketched in Section 17.2.2, we can obtain a proof of Arrow’s
Theorem in the same way as we have shown the left-to-right direction of Theorem 17.15
(this involves showing that the preference agenda is both totally blocked and even-
number-negatable). To be precise, the JA encoding given here allows individuals to, for
instance, not accept the formulas for transitivity, while Arrow’s Theorem applies even
under the assumption that they always do. This can be accounted for by altering the
underlying logic and adding the formulas expressing properties of preference orders
as logical axioms on top of those of the propositional calculus, rather than including
them in the agenda (Dietrich and List, 2007b).

17.4.3 Universal Agenda Characterization

Let us call an agenda � safe for a given aggregator f if f ( J) is consistent for every
admissible profile J ∈ J (�)n. That is, Theorems 17.13 and 17.15 talk about properties

21 This may be proved as follows: Suppose � is even-number-negatable by virtue of X and Y , with |Y | = k > 2.
If � is not also pair-negatable by virtue of X and some Y ′ with |Y ′| = 2, then (X \ {ϕ1, ϕ2}) ∪ {∼ϕ1,∼ϕ2}
for some ϕ1, ϕ2 ∈ Y is also minimally inconsistent, and we get even-number-negatability by virtue of that set
together with Y \ {ϕ1, ϕ2} of cardinality k − 2. The claim then follows by induction on |Y |.
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of agendas that guarantee safety for at least one aggregator from a given class. Now we
want to establish conditions under which every aggregator of a given class guarantees
safety. We will see one example of such a universal agenda characterization theorem.
As is to be expected, the conditions we have to impose on our agendas will be more
restrictive than for existential agenda characterization theorems. We shall work with
a restriction of the median property: agenda � is said to satisfy the simplified median
property if every nonsingleton minimally inconsistent subset of � consists of two
formulas that are logical complements, that is, every such set is of the form {ϕ, ψ} with
|= ϕ ↔ ¬ψ .22

Theorem 17.16 (Endriss et al., 2012). An agenda � is safe for all unanimous,
anonymous, neutral, independent, complete and complement-free aggregators if and
only if � has the simplified median property.

Proof. First, suppose � has the simplified median property. Take any aggregator f that
is unanimous, neutral, and complement-free (we will not need the other axioms) and
for the sake of contradiction assume there exists a profile J ∈ J (�)n such that f ( J)
is inconsistent. By unanimity and complement-freeness, this inconsistency cannot be
due to a single inconsistent formula (as no judge would accept that formula), so we
must have {ϕ, ψ} ⊆ f ( J) with |= ϕ ↔ ¬ψ for some ϕ, ψ ∈ �. By completeness
and consistency of the profile, ϕ and ∼ψ must be accepted by the same coalition.
Thus, by neutrality, ϕ ∈ f ( J) implies ∼ψ ∈ f ( J), that is, {ψ,∼ψ} ⊆ f ( J). But this
contradicts complement-freeness of f . Hence, f ( J) cannot be inconsistent.

For the opposite direction, suppose � violates the simplified median property. If
� also violates the (normal) median property, then we are done, as we already know
that the majority rule is inconsistent (cf. Lemma 17.12) and satisfies all the required
axioms (cf. Corollary 17.6). So, w.l.o.g., suppose � has a minimally inconsistent
subset consisting of two formulas that are not logical complements, that is, there exist
ϕ, ψ ∈ � with ϕ |= ¬ψ but ¬ψ �|= ϕ. But now consider the parity rule fpar, accepting
all those formulas that are accepted by an odd number of judges. It is easy to see
that fpar is unanimous (as n is odd), anonymous, neutral, independent, complete and
complement-free. However, fpar is not safe: If one judge accepts (the consistent set)
{ϕ,∼ψ}, one judge accepts (the consistent set) {∼ϕ, ψ}, and all other judges (an odd
number) accept (the consistent set) {∼ϕ,∼ψ}, then f will accept the inconsistent set
{ϕ, ψ}. This concludes the proof.

Let us consider two examples. First, an agenda that consists solely of literals satisfies
the simplified median property. Thus, any such agenda will be safe, not only for the
majority rule, but for every aggregator that meets the axioms of Theorem 17.16. Second,
consider the agenda {p,¬p, p ∧ q,¬(p ∧ q), r,¬r}, which violates the simplified
median property, and the following profile:

22 An example of a set that satisfies the median property but not the simplified median property is {¬p, p ∧ q}:
the two formulas together are inconsistent, but they are not logical complements.
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p p ∧ q r

Judge 1: Yes Yes Yes
Judge 2: No No Yes
Judge 3: Yes No Yes

All three judgment sets are consistent. Yet, if we aggregate using the parity rule fpar,
we have to reject p but accept p ∧ q, which corresponds to an inconsistent judgement
set. Thus, as predicted by Theorem 17.16, our agenda is not safe for fpar.

Suppose we have some limited information on the method of aggregation a group
of agents is going to use (e.g., we might know that they will respect certain axioms).
Results such as Theorem 17.16 allow us to give consistency guarantees in such situa-
tions. Unfortunately, however, respecting the simplified median property severely limits
the expressive power of the JA framework, and verifying whether a given agenda sat-
isfies the simplified median property is computationally intractable; more specifically,
this problem is �P

2 -complete (Endriss et al., 2012).
To conclude our discussion of agenda characterization results, let us briefly compare

existential and universal theorems. For a given class F of aggregators, the former speak
about agenda properties ensuring some aggregators in F are consistent, while the latter
speak about agenda properties ensuring that all of them are.23 The former is a natural
question from the perspective of economics. For instance, a mechanism designer who
is working in a specific application domain (determining the agenda properties) and
who wants to respect certain axioms (determining F), must ask this question to find
out whether her desiderata are feasible. The latter problem is more likely to surface in
computer science. For instance, a system designer may only have partial knowledge of
the decision making methods employed by the users of a platform she is providing (say,
enough to determine F , but not enough to single out a specific aggregator), but still
wants to be able to issue guarantees against inconsistencies in the agreements forged
over this platform.

17.5 Related Frameworks

In this section, we briefly review three approaches to collective decision making that
are closely related to JA, namely, belief merging, binary aggregation, and voting in
combinatorial domains.

17.5.1 Belief Merging

In computer science, specifically in artificial intelligence and database theory, the prob-
lem of belief merging had been investigated already some time before the emergence of
the modern literature on JA in philosophy and economics (see, e.g., Baral et al., 1992;
Liberatore and Schaerf, 1998; Konieczny and Pino Pérez, 2002). Suppose we are given

23 If F is a singleton, then the two notions coincide, as for Lemma 17.12.
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several knowledge bases encoding knowledge provided by experts in a logical language
and we want to integrate these individual bases to obtain a large overall knowledge
base. The naı̈ve approach of simply taking the union of all individual bases will, in most
cases, lead to an inconsistent knowledge base. One possible refinement is to choose
a maximally consistent subset of the union (Baral et al., 1992), but this and similar
approaches do not track which individual provided which formulas in the knowledge
base, that is, it is not possible to give equal weight to different individuals. The latter
is possible using distance-based procedures (Konieczny and Pino Pérez, 2002), which
are also briefly discussed in Chapter 9.

There are important differences between JA and typical work in belief merging. In JA
we have an agenda and we usually assume that every individual expresses a judgment
regarding every formula in the agenda, while in belief merging the knowledge/belief
bases coming from distinct individuals need not concern the same set of formulas.
Furthermore, in JA we (implicitly) impose the same constraints on different individuals
and the collective, while in belief merging we typically impose an integrity constraint
to be satisfied by the merged base that need not be satisfied by every individual base.
Like in JA, work in belief merging often evokes the notion of “axiom” to define what
makes a good procedure for merging, but most of the axioms used in the literature are
inspired by work in belief revision (and typically are “outcome-oriented,” talking about
consistency requirements) rather than social choice theory (where axioms tend to have
more of an “agent-oriented” flavor).

17.5.2 Binary Aggregation

Binary aggregation (see, e.g., Dokow and Holzman, 2010; Grandi and Endriss, 2013)
has its origins in the work of Wilson (1975) and Rubinstein and Fishburn (1986) on
abstract (algebraic) aggregation. In binary aggregation, each individual is asked to
supply a vector of 0’s and 1’s of some fixed length, and we then have to aggregate
this information into a single such vector. The application domain under consideration
determines which vectors are feasible. This is very closely related to the formula-based
framework of JA we have discussed in this chapter. For example, if the set of feasible
vectors is {000, 010, 100, 111}, then this induces the same domain of aggregation as
the agenda formulas p, q, and p ∧ q. In fact, in the literature the term “judgment
aggregation” is sometimes taken to encompass both JA in the narrow sense (i.e.,
formula-based JA) and binary aggregation.

In the economics literature the set of feasible vectors is usually assumed to be
specified explicitly (Dokow and Holzman, 2010), while in the computer science liter-
ature the set of feasible vectors is usually defined implicitly by means of an integrity
constraint expressed in the language of propositional logic (Grandi and Endriss,
2013). For example, the integrity constraint x1 ∧ x2 ∧ x3 ↔ x4 defines the domain
{0000, 0010, 0100, 0110, 1000, 1010, 1100, 1111}. The advantage of using integrity
constraints is that they provide a compact representation of the domain of aggrega-
tion, which is important when we are interested in algorithmic aspects of aggregation.
Integrity constraints also allow for alternative characterizations of aggregators. For
instance, an aggregator is unanimous if and only if it maps feasible profiles to feasible
outcomes for every integrity constraint expressible as a conjunction of literals; and
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the only aggregators that “lifts” all possible integrity constraints in this sense are the
generalized dictatorships, that is, those aggregators that amount to first selecting one
of the individuals and then copying that individual’s input vector to produce the output
(Grandi and Endriss, 2013).

17.5.3 Voting in Combinatorial Domains

When voting on complex matters, such as the composition of a committee or the
outcome of a referendum involving a set of proposals, each of which has to be either
accepted or rejected, we face problems not dissimilar to those faced in JA. In such
a multiattribute election we have a number of variables, each ranging over a finite
domain, and we ask each voter for her preferences regarding the assignment of values
to these variables. For instance, in the committee example the variables are the seats
on the committee and the values are the candidates. When each variable is binary (as is
the case for referenda), we obtain a similar problem as in binary aggregation. However,
a crucial difference is that in binary aggregation we assume that each individual can
only communicate one vector (i.e., one set of variable assignments), while in general
we may ask each individual to report a complex preference structure over the set of all
possible outcomes. This raises interesting questions, not only regarding the aggregation
of such information, but also regarding the compact representation of the preferences
themselves.

Such questions are studied in the field of voting in combinatorial domains. Chapter 9
is devoted to this important topic.

17.6 Applications in Computer Science

In the introduction we have already alluded to the fact that JA has important applica-
tions in analytical jurisprudence and political philosophy. We want to conclude this
chapter with a few words about possible applications in computer science. Maybe the
most important of these, and certainly the one most often quoted as an example, is
collective decision making in systems of autonomous software agents. In such a multi-
agent system we have several agents, which may have been designed and programmed
by different developers and which may act on behalf of different users, and these
agents need to interact, both cooperating and competing with each other. Social choice
theory is part of the basic repertoire available for modeling the fundamental features of
multiagent systems (Wooldridge, 2009; Shoham and Leyton-Brown, 2009). Given that
important aspects of the agents themselves, such as their beliefs or goals, are often rep-
resented using logic, JA is a useful formalism for modeling agreements made by those
agents.

Another important formal tool for modeling the dynamics of multiagent systems is
the theory of abstract argumentation, widely studied in artificial intelligence, which
is concerned with high-level representations of the relationships that hold between
arguments for and against a given position. Given a network of arguments together with
information on which argument attacks which other argument, different agents may
hold competing views on which arguments to accept. JA then is a useful framework for
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modeling the process of finding a common view in such situations (see, e.g., Caminada
and Pigozzi, 2011).

Besides multiagent systems, another potential application for JA is informa-
tion merging, for example, the merging of knowledge bases provided by dif-
ferent experts briefly discussed in Section 17.5.1. This includes the merging of
ontologies, which play a central role in the development of the Semantic Web
(Porello and Endriss, 2011).

JA and particularly the closely related binary aggregation are also relevant to crowd-
sourcing. Several areas in or related to computer science, such as, computer vision or
computational linguistics, rely on the availability of annotated data, such as images
labeled with object names or text corpora annotated with semantic information. Crowd-
sourcing platforms provide fast and cheap means for labeling large amounts of data
using nonexpert annotators. The annotations provided by different workers then need
to be aggregated to obtain a collective annotation, a task that shares many similarities
with JA (Endriss and Fernández, 2013).

It is important to stress that, at the time of writing, none of the applications of JA
sketched here has been developed in depth. Still, JA certainly holds great potential for
these, as well as other, areas of computer science.

17.7 Bibliographic Notes and Further Reading

In this section we supply additional bibliographic references and explanations regarding
some of the material covered in this chapter. We also provide pointers to further reading
on specific topics. Let us begin by pointing out that, while research on JA proper started
with the work of List and Pettit (2002), the work of Guilbaud (1952) on what he called
“the logical problem of aggregation” may be considered an early precursor of JA
(Eckert and Monjardet, 2010).

Following the publication of the original impossibility theorem of List and Pettit
(our Theorem 17.2), several other authors derived technically stronger results of a
similar nature, replacing in particular anonymity by absence of dictatorships (see, e.g.,
Pauly and van Hees, 2006; Dietrich, 2007). Gärdenfors (2006) showed that giving up
the requirement of completeness amounts to moving from dictatorships to oligarchic
aggregators, that is, aggregators where the outcome is the set of those propositions a
fixed set of individuals completely agrees on (dictatorships and the intersection rule
are extreme cases of such oligarchic rules). We refer to List (2012) for a systematic
discussion on how to cope with impossibility results by relaxing certain desiderata,
and to Grossi and Pigozzi (2014) for an in-depth discussion of proofs of impossibility
results using the ultrafilter method.

In work integrating the classical axiomatic method with ideas from computer sci-
ence, Nehama (2013) showed that relaxing the cornerstones of most impossibility
theorems, consistency and independence, to approximate variants of these desiderata
does not allow us to significantly improve on known negative results.

The simulation of preference aggregation in JA sketched in Section 17.2.2 follows
Dietrich and List (2007b), who for notational convenience use predicate rather than
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just propositional logic (which, as we have seen, is not technically required). Also the
idea of deriving Arrow’s Theorem from results in JA, as briefly mentioned at the end
of the Section 17.4.2, is due to Dietrich and List (2007b).

While initial work in JA had focused on impossibility results and the axiomatic
method, work on the design of concrete practically useful methods of aggregation only
started several years later. Distance-based methods originally entered JA via the field
of belief merging (Revesz, 1997; Konieczny and Pino Pérez, 2002; Pigozzi, 2006). We
have only discussed two such methods here; several others are analyzed in the work
of Miller and Osherson (2009), Lang et al. (2011), and Lang and Slavkovik (2013).
The premise-based rule has been part of the JA literature from the very beginning,
due to its importance in the context of legal decision making in practice (Kornhauser
and Sager, 1993). Other approaches for designed JA rules not discussed here include
support-based methods (Lang et al., 2011; Porello and Endriss, 2011; Everaere et al.,
2014), where aggregation is guided by the numbers of judges accepting a given formula,
methods inspired by scoring rules in voting theory (Dietrich, 2014), and methods that
copy the choice of the judge that, in some sense, is the “most representative” in the
group (Endriss and Grandi, 2014).

The analysis of strategic behavior is a major topic in social choice theory. As we have
discussed in Section 17.3.3, how to best model an individual’s preferences, and thus
her incentives, is debatable in JA. Our definition of strategic manipulation in terms of
preferences induced by the Hamming distance is but one possibility (Dietrich and List,
2007c; Baumeister et al., 2013b). Manipulation is not the only type of strategic behavior
of interest in JA. Baumeister et al. (2011) have initiated a study of the computational
complexity of related problems in JA, namely, bribery and control problem. For the
former, we ask whether a given budget suffices to bribe sufficiently many judges to
obtain a particular outcome. An example for a control problem is the question of
whether we can obtain a given outcome by removing at most k judges. Alon et al.
(2013) have focussed on a specific control problem, where we ask whether a desired
outcome can be enforced by conducting separate elections for certain subsets of the
agenda.

In Section 17.4, we have seen that the normal and the simplified median property
are both �P

2 -complete (Endriss et al., 2012). For most other commonly used agenda
properties, at the time of writing, no complexity results are known.

The agenda characterization results in Section 17.4.2 have been adapted to our
framework of formula-based JA from original results in binary aggregation (Dokow and
Holzman, 2010) and the “property space” formulation of abstract aggregation (Nehring
and Puppe, 2007). For a comprehensive review of existential agenda characterization
results we refer to List and Puppe (2009). The ultrafilter method we employed in
Section 17.4.2 is useful also in other areas of social choice theory, where it was
pioneered by Kirman and Sondermann (1972).

Finally, JA uses logic to define the structure of the domain of aggregation. A
broader review of uses of logic in computational social choice, for example, to describe
properties of aggregators in a logical language or to use techniques from automated
reasoning to support the verification or discovery of results in social choice theory, is
available elsewhere (Endriss, 2011).
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CHAPTER 18

The Axiomatic Approach and
the Internet

Moshe Tennenholtz and Aviv Zohar

18.1 Introduction

The Internet reinforces types of multiagent systems which can effectively utilize this
new media. Reputation systems, ranking systems, trust systems, recommendation sys-
tems, affiliate marketing in social networks, and more, are flowering in its midst. This
recent wave of online social systems is typically associated with a large amount of data
that is collected online, which leads to the “big data” approach to the utilization of
such information. Quite surprisingly, however, the abundance of available data does not
help system designers to come up with the right design for online systems in the first
place. Indeed, available data is typically generated by the use of a particular system,
and mining the data generated by users while interacting with one system does not
provide a tool for exploring the overwhelmingly large design space. Interestingly, the
main practical approach to software and hardware design, the formal specification of
clear system requirements and the implementation of a system satisfying these exact
requirements, has not been used often. This classical approach, when adapted to the
context of multiagent systems, coincides with extensions of a standard tool of social
choice theory and cooperative game theory, namely, the axiomatic approach.

The use of axioms can be either in a descriptive or in a normative context. In both
cases basic properties of a system are phrased as axioms. In the descriptive approach
a basic set of properties of a known system is sought out, with the aim of finding one
that characterizes the system uniquely, hence teaching us much about its essence. The
normative approach, on the other hand, starts from a specification of a basic set of
requirements which is followed by an attempt to construct a system that satisfies them.
Our goal in this chapter is to demonstrate both approaches in the context of the Internet.

Perhaps the best known axiomatic theory in the social sciences is the theory of
social choice. In the classical social choice setting we have a set of voters and a set
of alternatives, where each voter has a ranking over the set of alternatives, and our
aim is to find a good aggregation of the individual rankings into a global (or social)
ranking. Various properties of such aggregation functions have been considered and
have led to different characterizations of particular systems as well as impossibility

427
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results showing no system can satisfy certain sets of properties all at once. In the
Internet setting, the study of ranking and reputation systems, such as page-ranking
systems, defines a natural extension of classical social choice to the case where the set
of voters and the set of alternatives coincide. For example, in graph ranking systems,
one wishes to obtain a ranking of the nodes based on the structure of the graph. In
this case, the nodes in the graph serve the dual role of both the voters and of the
objects being ranked, with their outgoing edges determining their votes. In a particular
application, the nodes can represent Internet pages and the search for an aggregated
ordering of the pages is in fact the page ranking problem. The edges which are formed
from the links between the pages represent votes in support of the page being linked
to. In such a setting the classical axioms of social choice become less relevant, and are
replaced with new axioms which lead to a completely new theory. Indeed, we will
use the axiomatic approach in the context of graph ranking systems, applicable to
page ranking algorithms, as our first illustrative study. In particular, we will present an
axiomatic treatment of the classical PageRank algorithm.

Further removed from direct extensions of social choice, one can find systems
originating from personalized versions of ranking and reputation systems. Here we
no longer consider the aggregation of preferences into a global or social ranking,
but instead seek to provide personalized rankings or recommendations to each agent.
Such recommendations are still aggregate measures, based on trust between agents
and their own local rankings. Examples of these extensions include trust systems in
which we aim to derive an agent’s trust toward other agents he does not directly
know based on the aggregate of localized trust-relationships between agents in the
system. The designer is then faced with questions like the following that define the
way trust should be used in the system: Who should an agent trust more, a participant
which is unknown to others and whom the agent alone trusts directly, or an agent
who is trusted only indirectly but by many trustworthy sources? Perhaps even more
interestingly, what is the best way to aggregate both measures of trust and of preference?
Based on trust-relationships among the agents, and their expressed opinions about a
service or a product, we may be interested in trust-based recommendation systems,
in which a recommendation about a service or a product is provided to agents who
did not evaluate it personally. The puzzling challenge of generating useful trust-based
recommendation systems is amenable to an axiomatic treatment, beginning with an
attempt to characterize the systems satisfying different sets of desired properties. We
will use trust-based recommendation systems as our second illustrative study as they
show how the spirit of axiomatic social choice can be brought into personalized systems
and not only to global preference aggregation.

In addition to the two application areas mentioned earlier, other domains for which
axiomatic approaches have been suggested can be viewed as extensions of topics typ-
ically covered in cooperative game theory. Cooperative game theory typically deals
with issues such as the distribution of monetary gains or the attribution of credit to
participating agents. Traditional solution concepts used in cooperative games such as
the Shapley value, which originate from a purely axiomatic treatment, aim to tackle
such issues. These, however, do not immediately extend to the design of practical
incentive and credit distribution systems that are found in some of the emerging set-
tings on the Internet. An illuminating study in this context is the axiomatic approach
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to multilevel marketing (also known as affiliate marketing). In this form of marketing,
which is facilitated by social networks, products may be sold through referrals gener-
ated by previous customers. Affiliate marketing systems offer credit in exchange for
such referrals (especially for successful ones). We will use the axiomatic approach to
multilevel marketing as our third illustrative study.

In this chapter we have selected to focus on the preceding illustrative studies,
showing technical details of the related axiomatic approaches, but omitting most of
the proofs. We add some informal discussion of complementary treatments such as the
normative approach to ranking systems and axiomatic treatments of personalized trust
systems at the end of the chapter.

We believe the axiomatic approach is one of the fundamental messages theory brings
to the flowering industry designing Internet mechanisms in the multiagent context.
While the recent trend in the research and design of social systems is to employ data
mining heavily because “data is everywhere,” this approach alone is not informative
enough to design new systems from scratch, but rather leads to ad-hoc design that is
only incrementally improved by mining data and revising the system. The axiomatic
approach is a solid complementary alternative, and the illustration of its power in the
preceding settings, augmented with its conceptual depth, provides clear evidence for
that.

18.2 An Axiomatic Characterization of PageRank

The ranking of agents based on other agents’ input is fundamental to Internet-based
systems (see, e.g., Resnick et al., 2000), and has become a central ingredient of a
variety of sites, where perhaps the most famous examples are Google’s PageRank
algorithm (Page et al., 1998) which ranks web pages, and eBay’s reputation sys-
tem (Resnick and Zeckhauser, 2001) in which both buyers and sellers are ranked based
on trustworthiness.

In the classical theory of social choice, as manifested by Arrow (1950), a set of
voters is called upon to rank a set of alternatives. Given the agents’ input, that is, the
agents’ individual rankings, a social ranking of the alternatives is generated. The theory
studies desired properties of the aggregation of agents’ rankings into a social ranking.

The setting of ranking systems introduces a new social choice model. The novel
feature of this setting is that the set of agents and the set of alternatives coincide.
Therefore, in such a setting one may need to consider the transitive effects of voting.
For example, if agent a reports on the importance of (i.e., votes for) agent b then this
may influence the credibility of a report by b on the importance of agent c; these indirect
effects should be considered when we wish to aggregate the information provided by
the agents into a social ranking.

A natural interpretation of this setting is the ranking of Internet pages. In this case,
the set of agents represents the set of Internet pages, and the links from a page p

to a set of pages Q can be viewed as a two-level ranking where agents in Q are
preferred by p over pages which are not in Q. The problem of finding an appropriate
social ranking in this case is in fact the problem of (global) page ranking. Particular
approaches for obtaining a useful page ranking and to quantify the so called importance
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of web pages using the link structure have been implemented by search engines (Page
et al., 1998).

Due to Arrow-like impossibility results and inspiration from the page ranking set-
ting, we limit the discussion to ranking systems in which agents have dichotomous
preferences (see Bogomolnaia et al., 2005, for a discussion in the social choice set-
ting). In these settings agents have only two levels of preferences: either they vote for
some agent, or they do not.

18.2.1 Ranking Systems

We begin by formally defining the term “ranking system” in the context of graphs and
linear orderings:

Definition 18.1. Let A be some set. A relation R ⊆ A × A is called a linear ordering
on A if it is reflexive, transitive, antisymmetric, and complete. Let L(A) denote the set
of all linear orderings on A.

Notation 18.1. Let / be a linear ordering, then ∼ is the equality predicate of /, and
≺ is the strict order induced by /. Formally, a ∼ b if and only if a / b and b / a; and
a ≺ b if and only if a / b but not b / a.

Given the preceding, we can define a ranking system f , which for each graph G

generates a ranking of its vertices.

Definition 18.2. Let GV be the set of all directed graphs G = (V, E) with no parallel
edges, but possibly with self-loops. A ranking system f is a functional that for every
finite vertex set V maps graphs G ∈ GV to corresponding orderings /f

G∈ L(V ).

18.2.2 PageRank

In this section we present the PageRank algorithm, which among its many other uses
forms the basis for Google’s search technology1 (Brin and Page, 1998).

The current practice of the ranking of Internet pages is based on the idea of computing
the limit stationary probability distribution of a random walk on the Internet graph,
where the nodes are pages, and the edges are links among the pages. Roughly speaking,
page p1 will be ranked higher than page p2 if the probability of reaching p1 is greater
than the probability of reaching p2.

The version of PageRank we present is slightly idealized form of the original
algorithm. In its original form, small adaptations were included to deal with vertices
without outgoing edges (sinks, and dangling vertices as they were called). In particular,
in order for the result of that process to be well defined, we restrict our attention to
strongly connected aperiodic graphs in which such corrections are not necessary.2

1 Its use can indeed be found in other contexts. See Pinski and Narin (1976) for the use of PageRank-like procedure
in the comparison of journals’ impact, or Newman (2008) for its use as a measure of centrality in social network
analysis studies.

2 A graph is aperiodic if the greatest common divisor of its circles’ lengths is 1. This is a common restriction
which guarantees, along with strong connectivity, a unique limiting distribution for the Markov chain defined
by the random walk process on a finite graph.
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Definition 18.3. A directed graph G = (V, E) is called strongly connected if for all
vertices v1,v2 ∈ V there exists a path from v1 to v2 in E.

In order to define the PageRank ranking system, we first recall the following standard
definitions:

Definition 18.4. Let G = (V, E) be a directed graph, and let v ∈ V be a vertex in G.
Then: The successor set of v is SG(v) = {u|(v, u) ∈ E}, and the predecessor set of v

is PG(v) = {u|(u, v) ∈ E}.
We now define the PageRank matrix which is the matrix which captures the random

walk created by the PageRank procedure. Namely, in this process we start in a random
page, and iteratively move to one of the pages that are linked to by the current page,
assigning equal probabilities to each such page.

Definition 18.5. Let G = (V, E) be a directed graph, and assume V = {v1, v2, . . . , vn}.
the PageRank Matrix AG (of dimension n × n) is defined as:

[AG]i,j =
{

1/|SG(vj )| (vj , vi) ∈ E

0 Otherwise.

The PageRank procedure will rank pages according to the stationary probability
distribution obtained in the limit of the preceding random walk; this is formally defined
as follows:

Definition 18.6. Let G = (V, E) be some strongly connected graph, and assume V =
{v1, v2, . . . , vn}. Let r be the unique solution of the system AG · r = r where r1 = 1.3

The PageRank PRG(vi) of a vertex vi ∈ V is defined as PRG(vi) = ri . The PageRank
ranking system is a ranking system that for the vertex set V maps G to /PR

G , where
/PR

G is defined as: for all vi, vj ∈ V : vi /PR
G vj if and only if PRG(vi) � PRG(vj ).

The preceding defines a powerful heuristic for the ranking of Internet pages, as
adopted by search engines (Page et al., 1998). This is, however, a particular numeric
procedure, and another may have been chosen in its stead. We therefore treat the general
question from an axiomatic social choice perspective, providing a graph-theoretic,
ordinal representation theorem for PageRank.

18.2.3 The PageRank Axioms

From the perspective of the theory of social choice, each page in the Internet graph
is viewed as an agent, where this agent prefers the pages (i.e., agents) it links to over
pages it does not link to. The problem of finding a social aggregation rule will therefore
become the problem of page ranking. The idea is to search for simple axioms, that is,
requirements we wish the page ranking system to satisfy. Most of these requirements
will have the following structure: page a is preferable to page b when the graph is G

if and only if a is preferable to b when the graph is G′. Our aim is to exhibit a small

3 The solution is unique up to a scaling factor that can be applied to both sides of the equation. This is guaranteed
for finite, strongly connected aperiodic graphs.
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Figure 18.1. Sketch of several axioms.

set of axioms that can be shown to be satisfied by PageRank. The axioms will thus be
simple graph-theoretic, ordinal properties.

In explaining some of the axioms we will refer to Figure 18.1. For simplicity, while
the axioms are stated as “if and only if” statements, we will sometimes emphasize in
the intuitive explanation of an axiom only one of the directions (in all cases similar
intuitions hold for the other direction).

The first axiom is straightforward:

Axiom 18.2 (Isomorphism). A ranking system f satisfies Isomorphism if for every
isomorphism function ϕ : V1 �→ V2, and two isomorphic graphs G ∈ GV1, ϕ(G) ∈ GV2 :
/f

ϕ(G)= ϕ(/f
G).

The isomorphism axiom tells us that the ranking procedure should be independent
of the names we choose for the vertices. It resembles the anonymity and neutrality
properties often discussed in social choice.

The second axiom is also quite intuitive. It tells us that if a is ranked at least as high
as b in the graph G, where in G vertex a does not link to itself, then a should be ranked
higher than b if all that we add to G is a link from a to itself. Moreover, the relative
ranking of other vertices in the new graph should remain as before. Formally, we have
the following notation and axiom:4

4 One may claim that this axiom makes no sense if self loops are not allowed. This is, however, only a simple
technical issue. If we disallow self loops, the axiom should be replaced by a new one, where the addition of
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Notation 18.3. Let G = (V, E) ∈ GV be a graph and a let v ∈ V s.t. (v, v) /∈ E. Let
G′ = (V, E ∪ {(v, v)}). Let us denote SelfEdge(G, v) = G′ and SelfEdge−1(G′, v) =
G.

Axiom 18.4 (Self Edge). A ranking system f satisfies the Self Edge axiom if for
every vertex set V and for every vertex v ∈ V and for every graph G = (V, E) ∈ GV

s.t. (v, v) /∈ E, and for every v1, v2 ∈ V \ {v}: Let G′ = SelfEdgeG, v. If v1 /f
G v then

v �/f
G′ v1; and v1 /f

G v2 iff v1 /f
G′ v2.

The third axiom (titled Vote by Committee) captures the following idea, which is
illustrated in Figure 18.1a. If, for example, page a’s successors are b and c, then the
relative ranking of all pages should be the same as in the case where the direct links
from a to b and c are replaced by links from a to a new set of pages, which link (only)
to b and c. The idea here is that the amount of importance a provides to b and c by
linking to them, should not change due to the fact that a assigns its power through
a committee of (new) representatives, all of which behave as a. More generally, and
more formally, we have the following:

Axiom 18.5 (Vote by Committee). A ranking system f satisfies Vote by Committee
if for every vertex set V , for every vertex v ∈ V , for every graph G = (V, E) ∈ GV ,
for every v1, v2 ∈ V , and for every m ∈ N: Let G′ = (V ∪ {u1, u2, . . . , um}, E \
{(v, x)|x ∈ SG(v)} ∪ {(v, ui)|i = 1, . . . , m} ∪ {(ui, x)|x ∈ SG(v), i = 1, . . . , m}),
where {u1, u2, . . . , um} ∩ V = ∅. Then, v1 /f

G v2 iff v1 /f
G′ v2.

The 4th axiom, termed Collapsing is illustrated in Figure 18.1b. The idea of this
axiom is that if there is a pair of pages, with no link between them, say a and b, where
both a and b link to the same set of pages, but the sets of pages that link to a and b are
disjoint, then if we collapse a and b into a singleton, say a, where all links to b become
now links to a, then the relative ranking of all pages (excluding a and b) should remain
as before. The intuition here is that if there are two voters (i.e., pages), a and b, who
vote similarly (i.e., have the same outgoing links), and the power of each of them stems
from the fact a set of (other) voters who have voted for him, where the sets of voters for
a and for b are disjoint, then if all voters for a and b would vote only for a (dropping
b) then a should provide the same importance to other agents as a and b did together.
This of course relies on having a and b voting for the same individuals. As a result, the
following axiom is quite intuitive:

Axiom 18.6 (Collapsing). A ranking system f satisfies Collapsing if for
every vertex set V , for every v, v′ ∈ V , for every v1, v2 ∈ V \ {v, v′}, and for
every graph G = (V, E) ∈ GV for which SG(v) = SG(v′), PG(v) ∩ PG(v′) = ∅,
and [PG(v) ∪ PG(v′)] ∩ {v, v′} = ∅: Let G′ = (V \ {v′}, E \ {(v′, x)|x ∈ SG(v′)} \
{(x, v′)|x ∈ PG(v′)} ∪ {(x, v)|x ∈ PG(v′)}). Then, v1 /f

G v2 iff v1 /f
G′ v2.

The last axiom we introduce, termed the Proxy axiom, is illustrated in Figure 18.1c.
Roughly speaking, this axiom tells us that if there is a set of k pages, all having the
same importance, which link to a, where a itself links to k pages, then if we drop a and

self-loop to a is replaced by the addition of a new page, a′, where a links to a′ and where a′ links only to a. All
results remain similar.
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connect directly, and in a 1-1 fashion, the pages which linked to a to the pages that a

linked to, then the relative ranking of all pages (excluding a) should remain the same.
This axiom captures equal distribution of importance. The importance of a is received
from k pages, all with the same power, and is split among k pages; alternatively, the
pages that link to a could pass directly the importance to pages that a link to, without
using a as a proxy for distribution. More formally, and more generally, we have the
following:

Axiom 18.7 (Proxy). A ranking system f satisfies Proxy if for every vertex set V ,
for every vertex v ∈ V , for every v1, v2 ∈ V \ {v}, and for every graph G = (V, E) ∈
GV for which |PG(v)| = |SG(v)|, for all p ∈ PG(v): SG(p) = {v}, and for all p, p′ ∈
PG(v): p ∼f

G p′: Assume PG(v) = {p1, p2, . . . , pm} and SG(v) = {s1, s2, . . . , sm}. Let
G′ = (V \ {v}, E \ {(x, v), (v, x)|x ∈ V } ∪ {(pi, si)|i ∈ {1, . . . , m}}). Then, v1 /f

G v2

iff v1 /f
G′ v2.

18.2.4 A Representation Theorem for PageRank

Although we have provided some intuitive explanation for the axioms, one may argue
that particular axiom(s) are not that reasonable. As it turns out, however, all the pre-
ceding axioms are satisfied by the PageRank procedure:

Proposition 18.8 (Altman and Tennenholtz, 2005). The PageRank ranking system
satisfies isomorphism, self edge, vote by committee, collapsing, and proxy.

This proposition assures us of the soundness of the axioms. Moreover, it can be
shown that the preceding axioms are not only satisfied by PageRank, but also completely
and uniquely characterize the PageRank procedure:

Theorem 18.9 (Altman and Tennenholtz, 2005). A ranking system f satisfies iso-
morphism, self edge, vote by committee, collapsing, and proxy if and only if f is the
PageRank ranking system.

The way this is shown, given Proposition 18.8, is by proving the uniqueness of the
system satisfying the preceding axioms. Namely:

Proposition 18.10. Let f1 and f2 be ranking systems that satisfy isomorphism, self
edge, vote by committee, collapsing, and proxy. Then, f1 and f2 are the same ranking
system (notation: f1 ≡ f2).

The proof in can therefore be viewed as “inefficient” procedure for computing
PageRank. It starts from a graph which it slowly changes by application of the axioms.
The sequence of graphs that are created maintain the ordering of a given pair of nodes,
but get progressively “simpler.” In the end, the graph shrinks to only this single pair
of nodes, where the ordering of PageRank is determined by the number of their self
loops. Technically, the axioms are not used directly to derive all of the graphs in the
sequence. Instead, the transitions between graphs are based on higher level properties
derived from the axioms (the complete definition of these properties and their use is
quite lengthy).
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An interesting open problem is whether the preceding axioms are independent. The
current conjecture, offered by Altman and Tennenholtz (2005), is that they are.

18.3 Trust-Based Recommendations

Reputation, recommendation, and trust systems have become fundamental and essential
ingredients of multiagent systems, especially in e-commerce applications (e.g., Klein-
berg, 1999; Resnick et al., 2000; Bakos and Dellarocas, 2003; Tennenholtz, 2004;
Dash et al., 2004). All of these systems aggregate agents’ reviews of one another, as
well as about external events, into valuable information. Notable commercial exam-
ples include Amazon and E-Bay’s recommendation and reputation systems (Resnick
and Zeckhauser, 2001), and the Epinions web of trust/reputation system (Massa and
Avesani, 2005). Personalized recommendations add value to an agent’s experience and
may also be naturally paired with personalized advertising.

In a typical application, there is an item of interest (e.g., a product, service, candidate,
restaurant). A subset of the agents have prior opinions about this item. Any of the
remaining agents might want to estimate whether they would like the item or not,
based on the opinions of others. In the real world, a person might first consult friends
for their recommendations. In turn, the friends (who do not have opinions of their
own) may consult their friends, and so on. Based on the cumulative feedback that
is received, an agent might form its own subjective opinion. An automated trust-
based recommendation system aims to simulate such a process to provide high-quality
personalized recommendations to agents.

The model we present here (which was originally presented by Andersen et al.,
2008) represents the social connections using a directed graph, partially labeled with ±
votes. A node in the graph represents an agent, an edge from a to b represents the
fact that agent a trusts agent b, and a subset of the nodes are labeled by + or −,
indicating prior opinions. Based on this input, the recommendation system must output
a recommendation for each unlabeled node. We call such an abstraction a voting network
because it models a variety of two-candidate voting systems, where the candidates
are + and −.

We first show that a number of elementary axioms lead to an impossibility theorem.
This set is minimal in the sense that any proper subset of the axioms is satisfied
by some recommendation system. We then explore relaxations that lead to a unique
system that is most easily described in terms of random walks. Then we show a second
axiomatization that leads to a unique “min-cut” system on graphs. For simplicity, the
focus is placed on the case of unweighted graphs and binary votes.

18.3.1 Notation and Definitions

We now formally define the basic setting of a trust-based recommendation system.

Definition 18.7. A voting network is a directed annotated multigraph G =
(N, V+, V−, E) where N is a set of nodes, V+, V− ⊆ N are disjoint subsets of positive
and negative voters, and E ⊆ N2 is a multiset of edges with parallel edges allowed but
no self loops.
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Edges in the voting network imply trust relations between participants, and multiple
parallel edges, signify a stronger degree of trust. When V+ and V− are clear from
context, we denote the set of voters by V = V+ ∪ V− and the set of nonvoters by
V = N \ V .

Definition 18.8. A recommendation system R takes as input a voting network G and
source s ∈ V and outputs recommendation R(G, s) ∈ {−, 0,+}. We denote R(G) =
〈R+(G), R−(G), R0(G)〉 where R+(G) = {s ∈ V | R(G, s) = +} and similarly for
R−(G), R0(G).

We denote by sgn : R → {−, 0,+} the function that computes the sign of its input.
We denote by PredE(v) and SuccE(v) the multisets of nodes that point to v and that v

points to, respectively.
Given a multiset of recommendations, S ⊆ {−, 0,+}, we define the majority

MAJ(S) to be + if a strict majority of S is +, − if a strict majority of S is −,
and 0 otherwise (a strict majority simply means more than half).

18.3.2 Five Appealing Properties and an Impossibility

We now consider various properties of recommendation systems as candidate axioms.
The first property, Symmetry, is purely structural. Symmetry implies that the names
of the agents do not matter for the source node; all that matters is the structure of the
trust graph and the votes provided. In addition we treat the values +/- as arbitrary, and
require that they be treated symmetrically.

Axiom 18.11 (Symmetry). A recommendation system R satisfies Anonymity if for
every voting network G = (N, V+, V−, E): For any permutation π : N → N , let G′,
be the isomorphic voting network under π . Then R+(G′) = π(R+(G)) and R−(G′) =
π(R−(G)).

A recommendation system R satisfies Neutrality if for every voting network G =
(N, V+, V−, E): Let G′′ = (N, V−, V+, E). Then R+(G) = R−(G′′) and R−(G) =
R+(G′′).

A recommendation system R satisfies Symmetry if it satisfies both Anonymity and
Neutrality.

The next axiom states that if a node s has recommendation 0 (or +) and a brand new
+-voter is added to the network along with an edge from s to the new node, then s’s new
recommendation should be +. It reflects a razor’s-edge view of a 0 recommendation.
The axiom “pushes” the systems toward strict recommendations. (Without such an
axiom, systems may almost always recommend 0.)

Axiom 18.12 (Positive Response). A recommendation system R satisfies Positive
Response if for every voting network G = (N, V+, V−, E): for every w �∈ N , s ∈ V ,
and G′ = (N ∪ {w}, V+ ∪ {w}, V−, E 0 {(s, w)}); If s /∈ R−(G) then s ∈ R+(G′).

Note that this axiom is presented asymmetrically in terms of ± votes and recommen-
dations. In combination with the Symmetry axiom, the corresponding version with −
votes and recommendations follows directly. We use an asymmetric presentation for
readability in several of the axioms.
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The next axiom, Independence of Irrelevant Stuff (IIS), captures the fact that voters
have already made up their minds. This means that when considering the recommenda-
tion for a particular source node in a particular trust graph, where part of the agents vote
(perhaps based on first-hand experience), feedback from these agents is independent of
who they trust (i.e., they trust themselves infinitely more than others) and the recom-
mendation system should consider only reachable nodes and should ignore links out of
voters. While one may consider other types of semantics, this one is (approximately)
quite typical for actual systems.

Axiom 18.13 (IIS). A recommendation system R satisfies Independence of Irrelevant
Stuff (IIS) if for every voting network G = (N, V+, V−, E): for any edge e ∈ V × N

leaving a voter, and the subgraph G′ = (N, V+, V−, E \ {e}) in which e has been
removed, R(G) = R(G′). In addition, for every s ∈ V and v ∈ N not reachable from
s, for the subgraph G′′ in which node v (and its associated edges) have been removed,
we have R(G, s) = R(G′′, s).

When we write R(G) = R(G′), as earlier, the recommendations in the two voting
networks are identical.

Notice that IIS captures two aspects of relevant information. First, when one expe-
riences a service, trust relations are irrelevant, as his opinion is completely framed by
his direct experience; second, the opinion of a person unreachable in the trust network
is irrelevant.

The following requirement deals with some minimal rationality we wish to attribute
to the agents; as in the classical theory of choice we are willing to assume something
about the vote of an agent who has no a priori opinion only in extreme cases. The
Neighborhood Consensus axiom does just that: if all the outgoing neighbors of (i.e.,
agents trusted by) a node v in a trust network vote +, and no other nodes point to v’s
neighbors, then v might be considered to vote + as well. Formally, we have:

Axiom 18.14 (Neighborhood Consensus). A recommendation system R satisfies
Neighborhood Consensus if for every voting network G = (N, V+, V−, E), and for
every distinct nonvoters s, u ∈ V , where u has at least one outgoing edge and each
outgoing edge (u, v) ∈ E points to v such that v ∈ V+ and v has no (incoming or
outgoing) neighbors other than u: Let G′ = (N, V+ ∪ {u}, V−, E), then R(G, s) =
R(G′, s).

Transitivity is a central concept in the axiomatization of voting, and in our intuition
regarding trust relations. In this context, we consider the case when the underlying
trust graph is fixed, while the system needs to deal with more than one item, where
different subsets of nodes vote on different items. The idea is that if a source node is
recommended, say, +, then it means that the system assigns higher trust to the agents
who report + than to the agents who report −.

Definition 18.9. Let G = (N, V+, V−, E) be a voting network , s ∈ V , and R a rec-
ommendation system. If s ∈ R+(G), then we say that s trusts V+ more than V− relative
to multigraph (N, E) under the recommendation system R.
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In this case, a partial ordering among sets of nodes is generated, and we wish this
relation to be transitive. This axiom is not only natural, but also builds a strong tie
between trust systems and recommendation systems.

Axiom 18.15 (Transitivity). A recommendation system R satisfies Transitivity if for
all multigraphs (N, E), and mutually disjoint A, B, C ⊆ N , and s /∈ A ∪ B ∪ C: if s

trusts A more than B and s trusts B more than C, then s trusts A more than C.

Unfortunately, the following result, says that the five axioms cannot be obtained
simultaneously by any system.

Theorem 18.16 (Andersen et al., 2008). The axioms Symmetry, Positive Response,
Independence of Irrelevant Stuff (IIS), Neighborhood Consensus, and Transitivity are
inconsistent. Any proper subset of these axioms is satisfied by some reputation system.

18.3.3 Alternatives to Transitivity and the Random Walk System

In this section, we consider propagation of trust. Intuitively, if u trusts v and v trusts
w, then u trusts w as well. Much has been written about trust propagation within
social networks (see, e.g., Guha et al., 2004) and the following axiom is a conservative
interpretation that agrees with much of the literature.

One would like to say that if u trusts nonvoter v, and v trusts w, then we can simply
add an edge from u to w without changing anything. However, the system is supposed
to reflect degrees of trust, and this would falsely inflate such trust. Instead, edges are
counted as follows. Suppose there are k edges leaving v (that do not point to u). Suppose
that there happen to be k edges from u to v. Then we can remove k edges from u to v

and replace them by k new edges from u to the k nodes that v trusts (besides u), and
no recommendations should change.

Axiom 18.17 (Trust Propagation). A recommendation system R satisfies Trust
Propagation if for every voting network G = (N, V+, V−, E): for every distinct
u, v ∈ V , suppose that the edges leaving v (besides those to u) are (v, w1), . . . , (v, wk),
(wi �= u) for some integer k, and that E contains exactly k copies of (u, v). Then, for
E′ = (

E 0 {(u, w1), . . . , (u, wk)}) \ {(u, v) ∗ k} and G′ = (N, V+, V−, E′), we have
that R(G) = R(G′).

Another natural axiom is Scale Invariance. Loosely speaking, this means that the
amount of trust placed in a node is relative.

Axiom 18.18 (Scale Invariance). A recommendation system R satisfies Scale Invari-
ance if for every voting network G = (N, V+, V−, E): for every u ∈ V , and k � 1, let
G′ = (N, V+, V−, E 0 E′), where E′ is the multiset containing k copies of each of the
edges leaving u, then R(G) = R(G′).

It states that we can duplicate all edges leaving a node an arbitrary number of times
without changing recommendations.

Theorem 18.19. Axioms Symmetry, Positive Response, Independence of Irrelevant
Stuff (IIS), Neighborhood Consensus, Trust Propagation and Scale Invariance are
satisfied uniquely by the Random Walk System (see later).



1 8 .3 trust-based recommendations 439

Input: G = (N, V+, V−, E), s ∈ V .
Output: recommendation ∈ {−, 0,+}.

1. Let S ⊆ V be the set of nonvoters that cannot reach any voter.
2. For each v ∈ N , create a variable rv ∈ R. Solve the following from rv:

rv =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if v ∈ S

1, if v ∈ V+
−1, if v ∈ V−∑

w∈SuccE (v) rw

|SuccE (v)| , otherwise

3. Output sgn(rs).

Figure 18.2. The random walk algorithm. (Recall that V = V+ ∪ V− is the set of voters and
V = N \ V is the set of nonvoters.)

The Random Walk System

We first give a recommendation system for the case of directed graphs. Undi-
rected graphs will be considered later. The recommendation of the system for
G = (N, V+, V−, E) to source s ∈ V is most easily described in terms of the fol-
lowing random walk. It originates at node s and, at each step, chooses a random
outgoing edge and follows it to the destination node. This terminates when a node
with a +/- vote is reached, or when a node with no outgoing edges is reached. Let ps

be the probability that the random walk terminates at a node with positive vote and
qs be the probability that the random walk terminates at node with negative vote. Let
rs = ps − qs . (Note that ps + qs � 1 and it is possible that this random walk never
terminates.) The random walk recommendation system recommends sgn(rs) to s.

The algorithm in Figure 18.2 correctly computes the recommendations defined by
this system.

18.3.4 The Groupthink Axiom and the Min-Cut Mechanism

Groupthink refers to a social phenomenon in which an entire group of people arrive at
a ridiculous conclusion, simply by unfounded group interactions. The No Groupthink
axiom rules this out and imposes a strong semantics on the system. There are two parts
to this axiom. First, we consider the case that an entire group of nonvoters are all rec-
ommended +. This strong position should be based on something external, because no
member voted. The requirement is that, among the edges leaving the group, a majority
must point to nodes with + votes or recommendations. Conversely, if a majority of
the edges leaving the group point to nodes with + votes or recommendations, then the
group must contain at least one node with + recommendation.

For example, the reader may consider the following situation. There are three unde-
cided people, each connected to the two others. In addition each of the three indi-
viduals has a friend of his own who expresses a negative opinion about a product. A
“wrong” recommendation system may provide positive recommendations to each of
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the undecided persons, saying that now each one of them is consistent with the
majority of his friends. This is a typical example of group thinking that we wish to
avoid.

Formally, we say that a recommendation system R avoids Groupthink for G =
(N, V+, V−, E) if the following holds.

Axiom 18.20 (No Groupthink). A recommendation system R satisfies No Group-
think if for every voting network G = (N, V+, V−, E), and S ⊆ V , a nonempty
set of nonvoters: Let E′ be the multiset of edges in E from S to N \ S. (a) If
S ⊆ R+(G) (resp. R−(G)), then a strict majority of the edges in E′ must point to
nodes in R+(G) ∪ V+ (resp. R−(G) ∪ V−). (b) Conversely, if a strict majority of the
edges in E′ point to nodes in R+(G) ∪ V+ (resp. R−(G) ∪ V−), then S ∩ R+(G) �= ∅
(resp. S ∩ R−(G) �= ∅).

As it turns out, the No Groupthink axiom can not be satisfied in general directed
graphs. We define it here for specific graphs, namely, undirected graphs, as the ones
employed, for example, by Facebook. An undirected graph is a (directed) graph where
node v links to node u iff node u links to node v.

Theorem 18.21. Axiom No Groupthink on an undirected graph implies the min-cut
recommendation system (see later).

The Min-Cut System

Let G = (N, V+, V−, E) be a voting network. Let E′ ⊆ E be the set of edges in E that
originate at nonvoters, that is, eliminate edges out of voters. We say that cut C ⊆ E′ is
a V+-V− cut of G if there is no path from V+ to V− using edges in E′ \ C. We say that
C is a min cut of G if its size |C| is minimal among all such cuts.

More intuitively, a cut in a voting network is a set of the edges, originating from
nonvoters, such that any path from a + voter to a − voter must pass through at least
one of them. A min-cut is such a cut of minimal size.

The min-cut system can be defined as follows. The recommendation of a source s is
+ (resp. −) if and only if in all min-cuts there is a path from s to V+ (resp. V−) among
edges in E′ \ C. If neither is the case, then the recommendation is 0.

This is easily computed as follows. Compute a min-cut C. Then, consider the graph
when adding an edge from source s to a + (resp. −) voter and compute C+ (resp. C−).
If |C| < |C−| then the recommendation is +. If |C| < |C+| then the recommendation
is −. Otherwise, the recommendation is 0. The computation can be done efficiently
because min s-t cut can be found in polynomial time. To see that this procedure matches
the preceding definition, note that if s is connected to V+ in all min-cuts then adding an
edge from s to a − voter will create a path from V− to V+ in any min-cut and necessarily
increase the min-cut cost by 1. Similarly if s is connected to V− in all min-cuts. In
the remaining case, the sizes of all three min-cuts will be the same because there are
some min-cuts in which s is not connected to V− and some in which s is not connected
to V+.
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18.4 Mechanisms for Multilevel Marketing

Social networks have existed long before the Internet, but their recent web-based form,
as exhibited by companies like Facebook, Twitter, or LinkedIn, made them more tan-
gible. In this new manifestation, social networks have become an attractive playground
for viral marketing: the dream of any marketer is to successfully market products via
“word of mouth” thus utilizing social networks. In order to make that dream a reality,
various forms of marketing have been advocated. The so-called affiliate marketing,
direct marketing, and multilevel marketing all refer to (overlapping) approaches that
facilitate viral marketing.

The fundamental idea behind multilevel marketing is that one customer, who already
purchased the product, is rewarded for referrals, that is, for purchases made by another
as a result of his promotion. The reward mechanism associated with multi-level market-
ing may take various forms. In particular, agents may be rewarded for both purchases
made by direct referrals and for indirect ones in a recursive manner.

The potential to accumulate small rewards from each person to a sizable sum, a
feature which is now manageable thanks to the Internet and information technology, is
important as it allows advertisers to attract early adopters and trendsetters that are of
great value to them. (On the downside, the possibility of gathering a large sum has also
inspired more illicit versions of multilevel marketing, which are not really intended
to promote a product, namely, pyramid schemes.) Needless to say that selecting an
appropriate reward mechanism is inherent to the design of a successful multilevel
marketing scheme.

The design of mechanisms for social settings is widely relevant. Kleinberg and
Raghavan (2005) consider a setting that is perhaps the most similar in spirit to the
one presented here, in which they elicit effort from agents that forward queries in a
social network. In their setting, the final rewards are only allocated along the path
to the agent that gave the answer, and not to all those who forwarded the question.
Similar reward mechanisms were used by the team from MIT that won the DARPA
network challenge (Pickard et al., 2011), in the context of incremental deployment on
the Internet (Douceur and Moscibroda, 2007), and in the context of message passing
within the Bitcoin protocol (Babaioff et al., 2012).

18.4.1 The Referral Tree Model

There are many possible ways to take the social network that forms the basis of the
referral process into account. In principle, one may wish to consider the times at
which promoting messages were sent from one user to another, to consider referrals
that were not followed up by a purchase of the product being promoted, or even to
consider the social links along which a referral was not made. However, this information
may not be all available to the original seller.5 We therefore take the straightforward

5 In some social networks such as Facebook there is often more explicit knowledge of social connections, but
general referral systems do not necessarily have all the information about the underlying social structure and
may not be able to track messages in the network.
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approach of looking only at the structure of successful referrals. For each buyer, we
mark only a single referrer for introducing the product to her (in reality, this would
typically be specified at the time of purchase). The induced structure of referrals forms
a collection of directed trees, each rooted at a node that corresponds to some buyer that
has purchased the product directly from the seller.

To better illustrate why trees (and more generally forests) are considered, picture
the following tracking procedure for Internet affiliate marketing: Upon purchasing a
product the buyer gets a code; this code can be now shared by him/her in any way
(SMS, email, Facebook page, etc.); when another user makes a purchase and provides
that code, this fact is recorded. The original owner of the code may then get some
reward for a successful referral. The new buyer then gets another code, which may be
used further. Notice that a code is delivered only upon purchase, and a buyer shows
a particular code (associated with another buyer) upon purchase following a referral.
This creates a well-define forest structure which will be used to allocate the rewards.

We shall refer to this tree collection as the referrals forest, denoted T , and to the
rooted trees in T as the referrals trees. We find the assumption that T can be maintained
by the seller sufficiently weak.

It should be clarified that the referrals forest corresponds to a single multilevel
marketing campaign (typically associated with a single product). Moreover, social
network users that did not purchase the product are not represented in T even if some
of their friends have sent them referrals. For ease of presentation, we assume that T
is fully known when the rewards are to be distributed, although all the mechanisms
explored in this section are also suited for incremental payments performed online. It
will also be convenient to identify the buyers with their corresponding nodes in T ,
denoting the reward of (the buyer corresponding to) node u under the referrals forest
T by RT (u).

18.4.2 Properties of Reward Mechanisms

The reward mechanism is essentially a function that maps the referrals forest T to
the nonnegative real rewards of its nodes. However, not every such function should
be considered; specifically, we impose three constraints on the reward mechanisms.
Through the remainder of the chapter, these axioms will not be questioned, but will
rather be considered a part of every reward mechanism. The first one is the Subtree
constraint:

Axiom 18.22 (SubTree (ST)). A reward mechanism R satisfies the Subtree axiom if:
RT (u) is uniquely determined by Tu, namely, by the subtree of T rooted at u.

This is sensible, as each user u can really be credited only for bringing in users she
promoted the product to, either directly (the children of u in T ) or indirectly (lower
level descendants of u). Moreover, a dependence of RT (u) on the position of u within
T (rather than on Tu only) may result in an undesirable behavior on behalf of u: in
some cases u is better off delaying the purchase of the product after receiving a referral
in hope for a “better” offer, that is, for a referral that would place u in a better position
within T .
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One of the consequences of the subtree constraint is that there is no point in dealing
with the referrals forest T in full, but rather focus on trees which are rooted at the
nodes whose reward we are trying to calculate. In other words, the reward mechanism is
completely specified by the function R(T ) that maps the rooted tree T to the nonnegative
real reward of its root (which may be an internal node within the whole referrals forest).

The second constraint that we impose on the reward mechanism is the Budget
constraint: the seller is willing to spend at most a certain fraction φ � 1 of her total
income on rewarding her buyers for referrals. Given that the price of the product is
π , this means that the total sum of rewards given to all nodes is at most φ · π |T |. We
assume without loss of generality that π and φ are scaled so that φ · π = 1. Thus,

Axiom 18.23 (Budget Constraint (BC)). A reward mechanism R satisfies the Budget
Constraint if: ∑

u∈T
R(Tu) � |T | .

The third requirement is the Unbounded Reward constraint: there is no limit to the
rewards one can potentially receive even under the assumption that each user has a
limited circle of friends in the underlying social network (imposing a limited number
of direct referrals). This requirement is a way to capture the high motivation that is
given in affiliate marketing schemes even to those with a bounded number of friends.
Formally,

Axiom 18.24 (Unbounded Reward (UR)). A reward mechanism R satisfies
Unbounded Reward if: there exists some positive integer d (a property of the reward
mechanism) such that for every real Rθ , there exists some tree T of maximum degree
d (i.e., every node has at most d children) such that R(T ) � Rθ .

In particular, this constraint implies that the reward mechanisms we consider must
take indirect referrals into account. From this point on, we restrict discussion only to
mechanisms for which the three preceding axioms (ST, BC, UR) hold. We term these
proper reward mechanisms.

18.4.3 Geometric Mechanisms

We now focus on characterizing the following well-known family of reward mecha-
nisms, referred to as geometric mechanisms. Given two constants 0 < a < 1 and b > 0
such that b + 1 � 1/a, the reward from a referral tree T under the (a, b)-geometric
mechanism is defined to be

R(T ) =
∑
u∈T

adep(u) · b .

Where dep(u) is the depth of node u in the referral tree. The constraints on a and b

ensure that the amount contributed by each node to the reward of its ancestors will not
exceed 1.

Let us begin by defining and discussing three additional properties (that will prove
useful in the context of geometric mechanisms). We define the operation ∪ on trees
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such that if T1, T2 are trees, then T1 ∪ T2 is the tree formed by contracting (or merging)
the roots of T1 and T2. This allows us to define the Additivity axiom as follows:

Axiom 18.25 (Additivity (ADD)). A reward mechanism R satisfies Additivity if: for
any two disjoint trees T , T ′

R(T ) + R(T ′) = R(T ∪ T ′).

This property suggests that if two disjoint trees are merged at the root, then the
reward of the root is exactly the sum of the rewards of the two original trees. Generally
speaking this property implies that the reward to each node can be independently
attributed to the subtrees rooted at its children.

The next axiom, Child Dependence, determines the reward of the root uniquely from
the rewards of its children. This property ensures that the actual computation of the
rewards can be performed locally. In fact, we shall consider a weaker condition for this
property:

Axiom 18.26 (Child Dependence (CD)). A reward mechanism R satisfies Child Depen-
dence if: given that the root of T has a single child u, then R(T ) is uniquely determined
by R(Tu).

This is captured by a function χ : R�0 → R�0 (a property of the mechanism) so
that R(T ) = χ(R(Tu)).

The next axiom states that the reward R(T ) is uniquely determined by the number
of nodes on each depth level in T . We denote by dk the number of nodes of T at depth
level k > 0, and the infinite vector containing these numbers for all depth levels by
d = (d1, . . . , dh, 0, 0, . . . ), where h is the height of the tree. Let D be the set of all such
vectors, that is, the set of all infinite vectors over Z�0 with a strictly positive prefix
followed by a countably infinite suffix of zeros.

Axiom 18.27 (Depth Level Dependence (DLD)). A reward mechanism R satisfies
Depth Level Dependence if: There exists some function f : D → R�0 (a property of
the mechanism) such that R(T ) = f (d).

This property essentially means that the credit for a referral depends solely on how
direct (or better said, indirect) this referral is.

The preceding axioms characterize the family of geometric mechanisms:

Theorem 18.28 (Emek et al., 2011). A proper reward mechanism satisfies DLD, ADD,
and CD if and only if it is a geometric mechanism.

An appealing property of geometric mechanisms is that the contribution of descen-
dants to their ancestor decreases with distance. This reflects the fact that the ancestor
gets less credit for more distant indirect referrals.

It is important to point out that each of the three properties we used to characterize
the family of geometric mechanisms is needed, that is, if we remove one of the three
properties then there exists another proper mechanism (outside the geometric family)
for which the remaining two hold.

To prove the theorem, we will need the definition of the following additional
property:
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Figure 18.3. T (n, m) for n = 4 and m = 10.

Definition 18.10. We say that a proper reward scheme satisfies the Summing Contri-
butions (SC) property if and only if there exists a sequence {ck}k�1 of non-negative
reals such that

R(T ) =
∑
u∈T

cdep(u) =
∞∑

k=1

#nodes at depth level k · ck .

That is,SC implies that each node in the tree T contributes some independent amount
to the root, and that amount depends only on its depth. The following lemma reveals
the connection between this property and the ones we have already defined.

Lemma 18.29 (Emek et al., 2011). A proper reward mechanism satisfies SC if and
only if it satisfies DLD and ADD.

Theorem 18.28 is established by showing that the contribution values ck form a
geometric progression.

Lemma 18.30 (Emek et al., 2011). A proper reward mechanism satisfies SC and CD
if and only if it is a geometric mechanism.

Proof. It is trivial to show that a geometric mechanism satisfies both properties, so
we focus on the converse direction. Let us restrict our attention to a specific class of
trees: For n > 1 and m > 0, we denote by T (n, m) the tree consisting of n + m nodes
organized as a path of length n − 1 emerging from the root with the last node in this
path having m children, all of which are leaves. Refer to Figure 18.3 for illustration.

We first argue that cks implied by SC must be strictly positive for every k � 1. To
that end, suppose that ck∗ = 0 for some k∗ � 1 and consider the trees T (k∗, m) and
T (k∗, m′) for some m, m′ > 0, m �= m′. SC implies that R(T (k∗, m)) = R(T (k∗, m′))
because ck∗ = 0. By CD, we conclude that the same holds for T (k∗ + 1, m) and T (k∗ +
1, m′), namely, R(T (k∗ + 1, m)) = R(T (k∗ + 1, m′)), because both the root of T (k∗ +
1, m) and that of T (k∗ + 1, m′) have a single child whose reward is R(T (k∗, m)) =
R(T (k∗, m′)). This implies that ck∗+1 must also be 0 and by induction, that ck = 0 for
every k � k∗. But this contradicts the unbounded reward constraint: if ck = 0 for every
k � k∗, then no tree T of maximum degree d can provide a reward greater than 2 · dk∗

.
So, assume hereafter that ck > 0 for every k � 1. In attempt to simplify the analysis,

we shall impose another assumption on the contribution values ck . Specifically, we
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assume that each ck is rational, so that ck = xk/yk for some positive integers xk and yk .
We later on outline how this assumption can be lifted.

Let us compare the reward that is given to the root node in two specific T (n, m)
trees:

R(T (k − 1, xk · yk−1 + 1)) =
k−2∑
i=1

ci + (xk · yk−1 + 1) · ck−1

=
k−1∑
i=1

ci + xk−1 · xk =
k−1∑
i=1

ci + xk−1 · yk · ck = R(T (k, xk−1 · yk)) . (18.1)

Now, observe that CD implies that if R(T (n, m)) = R(T (n′, m′)), then R(T (n +
1, m)) = R(T (n′ + 1, m′)). By applying this observation to Equation 18.1, we conclude
that

R(T (k, xk · yk−1 + 1)) = R(T (k + 1, xk−1 · yk)) .

SC then implies that

k−1∑
i=1

ci + (xk · yk−1 + 1) · ck =
k∑

i=1

ci + (xk−1 · yk) · ck+1,

hence xk · yk−1 · ck = (xk−1 · yk) · ck+1. It follows that

(ck)2 = ck−1 · ck+1, (18.2)

which implies a geometric progression (ck is the geometric mean of ck−1 and ck+1).
Recall that our proof thus far only works if all cks are rational numbers. We can

extend the proof to irrational numbers if we add a requirement on the continuity of
the function that determines the rewards of a parent from the reward of its children.
If the cks are not rational, it is possible to approximate them as closely as one wishes
with rational numbers xk/yk and with the extra assumption, the preceding derivation
results in an equation similar to Equation 18.2 which is modified with terms that
represent the error in the approximation of ck . As this error can be made arbitrarily
small, Equation 18.2 holds even for irrational values.

18.4.4 Sybil Attacks

The goal of this section is to exhibit proper reward mechanisms that are not vulnerable
to forging identities on behalf of the users (something which is very easily done in
most online scenarios). Fake identities may allow users to create fictitious referrals,
and perhaps to collect a greater reward.

We model such fake identities (Sybils) in this context using the notion of a split.
Consider some tree T and some node v ∈ T and let u1, . . . , uk be the children of v

in T . Intuitively speaking, a split of v refers to a scenario in which v presents itself
as several nodes—aka replicas—thus modifying the (sub)tree Tv that determines its
reward (possibly turning it into several trees), while keeping its subtrees Tu1, . . . , Tuk

intact. The subtrees are kept intact in order to model the fact that while v may create
several false identities, it does not gain additional new social connections through them,
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Figure 18.4. The tree collection {T̃ 1, T̃ 2} can be obtained from Tv by a split of v. The white
circles depict the (a) children of v in T and (b) their positions in T̃ 1 and T̃ 2 after the split. The
gray circles in 18.4b depict the replicas of v under that split.

and the referrals directly and indirectly attributed to him remain the same. In the same
manner, the initial referral to node v is through the same original ancestor, and v cannot
“implant” its newly created identities elsewhere in the tree.

A local split refers to the special case of a split in which u1, . . . , uk are forced to
share the same parent in the resulting tree. In this way, we model cases where nodes do
not readily accept referrals from fake identities (that they do not know), and will only
accept referrals from the agent’s true identity.

Formally, we say that the tree collection {T̃ 1, . . . , T̃ m} can be obtained from Tv by
a split of v if
(1) for every 1 � i � k, there exists a single 1 � j (i) � m such that ui ∈ T̃ j (i); and
(2) T̃

j (i)
ui

= Tui
for every 1 � i � k.

The nodes in (
T̃ 1 ∪ · · · ∪ T̃ m

)− (
T̃ j (1)

u1
∪ · · · ∪ T̃ j (k)

uk

)
are referred to as the replicas of v under that split. By definition, ui must be a (direct)
child of some replica of v for every 1 � i � k as otherwise, at least one of the subtrees
rooted at u1, . . . , uk must have been changed, thus violating condition (2). Refer to
Figure 18.4 for an illustration of a split. The split is called local if u1, . . . , uk are all
children of the same replica of v.

When does a node v gain from a split? Clearly, v has to invest π × #replicas in
introducing the new replicas (purchasing new copies of the product). However, she
now collects the rewards from all her replicas, which sums up to

m∑
i=1

∑
replica u of v in T̃ i

R(T̃ i
u ) .

Thus, the profit of v changes from R(Tv) − π to

m∑
i=1

∑
replica u of v in T̃ i

R(T̃ i
u ) − π × #replicas ;

the split is called profitable for v if this change is positive. This leads to the definition
of the following two properties of reward mechanisms:
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Axiom 18.31 (Split Proof (SP)). A reward mechanism R is Split Proof if it does not
admit a profitable split for any node v in any tree T .

Axiom 18.32 (Local Split Proof (LSP)). A reward mechanism R is Local Split Proof
if it does not admit a profitable local split for any node v in any tree T .

The geometric mechanisms presented in Section 18.4.3 do not satisfy SP. In fact,
they do not even satisfy LSP (see Section 18.4.5). A simple mechanism that does
satisfy SP is the single level mechanism defined by fixing RMsl (T ) = α · deg(r) for
some constant α � 1, however, this mechanism does not adhere to the Unbounded
Reward constraint.

18.4.5 Negative Results

Let us now exhibit two negative results regarding the design of split-proof mechanisms.
The first result shows that the reward guaranteed to a node in a split-proof mechanism
cannot be a constant fraction of even its least influential child.

Lemma 18.33 (Emek et al., 2011). A proper reward mechanism that satisfies LSP
cannot guarantee a node some fraction 0 < α � 1 of the reward of its least rewarded
child.

Next, we see that even a family of reward mechanisms much wider than geometric
mechanisms is still not split-proof. This requires the introduction of another axiom
which is clearly satisfied by every geometric mechanism (thus, it is not independent),
yet, cannot replace any of the characterizing properties listed in Theorem 18.28.

Axiom 18.34 (Monotonicity (MONO)). A reward mechanism R satisfies Monotonicity
if: for every pair of trees T , T ′ such that the tree T can be obtained from the tree T ′ by
removing some leaf, then R(T ) < R(T ′).

Lemma 18.35 (Emek et al., 2011). A proper reward mechanism that satisfies MONO
and ADD cannot satisfy SP.

18.4.6 A Split-Proof Mechanism

In this section we present a split-proof reward mechanism, denoted Msplit. Informally,
the mechanism Msplit is defined in two stages: in the first stage, we define a simple
base mechanism, denoted Mbase; Msplit is then defined with respect to the maximum
profit a node can make under Mbase from splits.

Mechanism Mbase

The base mechanismMbase is defined by setting RMbase (T ) to be the maximum h ∈ Z�0

such that T exhibits as a subtree, a perfect binary tree6 B rooted at r whose height is
h. In that case we say that B realizes RMbase (T ) (see Figure 18.5). If there are several

6 A perfect binary tree is a rooted tree in which all leaves are at the same distance from the root and all nonleaves
have exactly two children.
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Figure 18.5. The tree T and the perfect binary tree that realizes RMbase (T ) (nodes depicted by
gray circles).

perfect binary trees that can realize RMbase (T ), then it will be convenient to take the
first one in a lexicographic order based on a breadth-first-search traversal and consider
it as the perfect binary tree that realizes RMbase (T ).

A node u ∈ T is said to be visible in T if it belongs to the perfect binary tree that
realizes RMbase (T ); otherwise, u is said to be invisible in T . This definition is extended
as follows: given some ancestor v of u in T , u is said to be visible to v if u is visible
in Tv , and invisible otherwise. The parent of a (nonroot) node u in T is denoted pT (u).
Note that if u is invisible to v, then it is also invisible to pT (v) (assuming of course
that v �= r). The contrary is not necessarily true: u may be visible to v but invisible
to pT (v). By definition, for every node u ∈ T and for every j ∈ Z�1, it holds that u

admits either 2j or 0 visible depth-j descendants.
We denote the distance from u to v by δT (u, v), that is, the number of edges along

the unique path in T leading from u to v. The mechanism Mbase can now be redefined
by setting

RMbase (T ) =
∑

visible u∈T

2−δT (u,r) .

This alternative view of mechanism Mbase calls for the definition of contributions: a
node u ∈ T contributes 2−k to the reward of its kth ancestor v, k � 1, if u is visible to
v; otherwise, u does not contribute anything to the reward of v. Let CMbase (u, v) denote
the contribution of u to the reward of v under Mbase. The reward of a node can now be
calculated by summing the contributions that its descendants make to it. This implies
that Mbase satisfies the budget constraint: the total contribution made by a node u ∈ T

to all its ancestors is bounded from above by the geometric sum
∑δ(u,r)

j=1 2−j < 1, hence,
by changing the summation, we conclude that

∑
v∈T RMbase (Tv) < |T |.

Mechanism Msplit

The mechanism Msplit is defined by setting RMsplit (T ) so that it reflects the maximum
profit that r can get under Mbase from splits. More formally, let S be the collection of
all tree collections that can be obtained from T by a split of r . Then Msplit is defined
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(a) T (b) T 1

Figure 18.6. The tree T and a possible split of its root r (into a single tree T̃ 1). The gray
circles in 18.6b depict the replicas of r under that split. If π = 1, then this split realizes
RMsplit (T ) = 2 + 3 + 4 − 2 · π = 7.

by setting

RMsplit (T ) = sup
T̃ ={T̃ 1...,T̃ m}∈S

⎧⎨⎩
⎛⎝ m∑

i=1

∑
repl. v of r in T̃ i

RMbase

(
T̃ i

v

)⎞⎠
− π · (∣∣T̃ 1 ∪ · · · ∪ T̃ m

∣∣− |T |)
⎫⎬⎭ .

To avoid cumbersome notation, we shall denote

ρ(T̃ ) ≡
m∑

i=1

∑
replica v of r in T̃ i

RMbase

(
T̃ i

v

)
and

⋃
T̃ ≡ T̃ 1 ∪ · · · ∪ T̃ m so that RMsplit (T ) = supT̃ ∈S{ρ(T̃ ) − π · (|⋃ T̃ | − |T |)}.

Refer to Figure 18.6 for illustration.
It is easy to see that Msplit satisfies the SubTree constraint and the Unbounded

Reward constraint (Mbase already satisfies the Unbounded Reward constraint and the
rewards under Msplit dominates those of Mbase). Moreover, by definition, Msplit satis-
fies SP, that is, a node cannot increase its profit by splitting (recall that the mechanism
takes every possible split into account). The difficult part is to show that Msplit satisfies
the budget constraint, that is,

∑
v∈T RMsplit (Tv) � |T |. This is indeed the case:

Theorem 18.36 (Emek et al., 2011). Mechanism Msplit satisfies the budget constraint
and is therefore a proper referral reward mechanism with the SP property.

Additional work on mechanisms for this setting appears in the work by Drucker and
Fleischer (2012).

18.5 Discussion: Additional Applications

Earlier we surveyed three major applications of the axiomatic approach to Internet
settings. In this section we briefly mention and discuss additional applications with
complementary views.
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18.5.1 Normative Approach to Ranking Systems

Reasoning about agent preferences on a set of alternatives, and the aggregation of
such preferences into some social ranking is a fundamental issue in reasoning about
multiagent systems. When the set of agents and the set of alternatives coincide, we
get the ranking systems setting for which we have explored the descriptive approach
via PageRank. Altman and Tennenholtz (2008) present an extensive axiomatic study
of the normative approach to such systems. In particular, two fundamental axioms
are considered: Transitivity and Consistency. Surprisingly, it is shown that there is no
general social ranking rule that satisfies both requirements. Furthermore, it is shown
that this impossibility result holds under various restrictions on the class of ranking
problems considered. However, when transitivity is weakened, an interesting positive
result is obtained.

Incentive Compatibility

Altman and Tennenholtz (2007) introduce a study of incentives in ranking systems,
where agents act in order to maximize their position in the ranking. Several basic
properties of ranking systems are considered, and fully characterize the conditions
under which incentive compatible ranking systems exist, demonstrating that, in general,
no system satisfies all the properties together.

Altman and Tennenholtz (2006) consider three measures for quantifying the incen-
tive compatibility of ranking systems. These measures are applied to several known
ranking systems, yielding tight bounds on their level of incentive compatibility. The
paper also introduce two novel nonimposing ranking systems (i.e., in which each
agents’ ranking can be materialized), in which the measure of manipulation is such
that manipulation is not severely harmful.

18.5.2 Selection Systems

In the selection system setting, agents elect representatives from within their groups.
Voting profiles are represented by directed graphs over the set of agents, where an
edge (i, j ) is taken to mean that agent i trusts or supports agent j . Given such a graph,
the goal is to select a subset of agents of fixed size that maximizes the sum of inde-
grees, that is, a subset of most popular or most trusted agents. On the other hand, each
agent is only interested in being selected, and may misreport its outgoing edges to
this end. This problem formulation captures realistic scenarios where agents choose
among themselves, in the context of, for example, social networks such as Twitter,
reputation systems such as Epinions, and Internet search (Alon et al., 2011; Fischer
and Klimm, 2014) consider the design of mechanisms that satisfy two constraints: strat-
egyproofness, that is, agents cannot benefit from misreporting their outgoing edges;
and approximation, that is, the mechanism must always select a subset of agents that is
close to optimal in terms of the sum of indegrees. The paper shows a surprising impos-
sibility: no deterministic strategyproof mechanism can yield a finite approximation
ratio for any k ∈ {1, 2, . . . , n − 1}, where k is the size of the selected subset and n is
the number of agents. However, the paper also shows that a randomized strategyproof
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mechanism yields an approximation ratio of four for any value of k, and provides a
ratio that approaches one as k grows.

18.5.3 Link Prediction

The link prediction problem is central to the field of complex network analysis. Link
prediction functions essentially map a graph to a ranking over pairs of vertices it. Highly
ranked pairs constitute links that are likely to form, or may exist in the social network
(such as Facebook friends the users have not yet reported about). Cohen and Zohar
(2015) discuss the axiomatic approach to link prediction, and characterize several well
known link prediction functions.

18.5.4 Trust Systems

Trust systems are in fact personalized ranking systems in which trust relations between
many agents are aggregated to produce a personalized trust rating of the agents. Altman
and Tennenholtz (2010) present an extensive axiomatic study of this setting, and
explores a wide array of well-known and new trust / personalized ranking systems.
Several axioms are adapted from the literature on (global) ranking systems to the
context of trust systems / personalized ranking systems, and fully classify the set of
systems that satisfy all of these axioms. It is also shown that all these axioms are
necessary for this result.

18.5.5 Axioms for Collaborative Filtering

Pennock et al. (2000a) present several requirements from collaborative filtering meth-
ods, and show that they fit the classical setting of social choice. This allows the authors
to deduce that the set of systems satisfying the related requirements is extremely nar-
row. While this treatment is still in the setting of Arrow’s Theorem (applied before to
other CS settings, see, e.g., Kfir-Dahav and Tennenholtz, 1996) it also illustrates the
power of axiomatization in Internet settings.



CHAPTER 19

Knockout Tournaments

Virginia Vassilevska Williams

19.1 Introduction

The theory of social choice has developed an immense variety of voting rules, ranging
from simple rules such as plurality to more complicated rules such as the tournament
equilibrium set studied in Chapter 3. Even though the variety may seem vast, most
voting rules can be grouped into a small number of types. The main two types are scoring
rules and Condorcet-consistent rules (also called Condorcet extensions). The former
contain rules such as Borda and approval voting. A large portion of the latter type of
rules consists of majority rules that determine the winner by using pairwise comparisons
between candidates using the majority rule. Examples of such rules include the binary
cup and the tournament solutions such as the Slater, Banks and uncovered sets (see
Chapter 3).

Majority voting rules can be viewed as tournaments:1 competitions between the
candidates that determine the winner using some rule based solely on the results of
matches, that is pairwise comparisons.

Besides as voting rules, tournaments are prevalent in many social settings, most
commonly in sports competitions, but also in patent races (Lita, 2008; Durant, 2010),
hiring employees (Ryvkin, 2010), and even drug trials (these are commonly referred
to as “head-to-head” drug trials).

Tournaments have a wide variety of formats; their common feature is that they
proceed in stages. In each stage several pairwise comparisons called matches take
place. As mentioned earlier, in social choice, a match is typically implemented by a
simple majority rule. The outcome of the matches in a stage influences (using some rule)
which matches take place in the next stage. In the final stage a winner is determined.
Different types of tournaments differ in how matches in different stages are selected
and how the final winner is determined.

1 Unlike in Chapter 3, in this chapter, a tournament refers to a competition, and not to the majority graph which
we call the tournament graph in this chapter.
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A very common type of tournament is the so-called knockout or single-elimination
tournament. In a knockout tournament, no ties are allowed, so that every match produces
a match winner. The important property of a knockout tournament is that once a player
loses a match, he is eliminated, that is, “knocked-out,” from the tournament. Thus the
winner of a knockout tournament has won all of her matches. Knockout tournaments
are typically represented by a binary tree the leaves of which are labeled by players
and each internal node is labeled by the winner between the two children. In social
choice such a tree is called a voting tree or an agenda. (We give a formal definition of
a knockout tournament later.)

In this chapter we will focus on knockout tournaments and issues related to manip-
ulating the winner that they pick by changing something about their structure. The
latter is perhaps the most central topic in the study of knockout tournaments within
computational social choice. Other topics around knockout tournaments are mentioned
in Section 1.5.

19.2 Formal Definition and Some Properties

We begin by formally defining a knockout tournament.

Definition 19.1. Given a set C of m players, a knockout tournament (T , S) is defined
by a binary tree T with m leaves L(T ) and a bijective function S : C → L(T ) called
the seeding, mapping the m players to the m leaves. Suppose that in addition to C, for
each two u, v ∈ C one and exactly one of u and v is picked to be the winner of the
match between u and v. Then the winner of a knockout tournament (T , S) is determined
recursively: the winner at a leaf l is the player j with l = S(j ), and the winner of the
subtree rooted at a node v is the winner of the match between the winners of the two
subtournaments rooted at the children of v.

In sports tournaments such as the tennis tournament Wimbledon or the basketball
tournament March Madness, the tree T is often referred to as the bracket. There T is
typically a complete balanced binary tree, and the seeding depends on the prior match
history of the players. In the sequential majority comparisons voting rule, T is a path
on n nodes with an extra edge attached to each node except the last, that is, in each
stage, a new candidate is compared to the current winner and if the current winner
loses, the new candidate replaces him.

Properties

As mentioned in the introduction, all natural majority voting rules are Condorcet
extensions (see Chapter 2), that is, if there is a Condorcet winner, it is elected. This is
easy to see for knockout tournaments—regardless of the tree structure and the seeding,
if a candidate is preferred over any other candidate by a majority of the voters, then
that candidate will win all matches and will be the winner.

Knockout tournaments satisfy an even stronger property—they are Smith-consistent:
if the set A of candidates is split into A1 and A2 = A \ A1 so that every candidate in
A1 is preferred (by a majority) over every candidate in A2, then regardless of the
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a always beats b and c.
c always beats b and d, and
d always beats a and b.

Figure 19.1. Here, for each of the three players that can beat at least two others, there is a
seeding that guarantees that they can win. For seeding a, b, c, d, player a wins. For seeding
a, d, c, b, player c wins, and for seeding a, c, b, d, player d wins.

seeding of the candidates at the leaves, a knockout tournament using pairwise majority
comparisons always elects a candidate in A1. (The smallest nonempty set satisfying
the requirement for A1 is called the Smith set or the top cycle; see Chapter 3.)

Knockout tournaments suffer from all the drawbacks of all resolute Condorcet-
consistent voting rules—they do not satisfy the reinforcement and participation criteria
(see Chapter 2 and Moulin, 1988a, pp. 237 and 239). Participation states that no voter
has an incentive to not vote. Reinforcement2 states that if the voter set N is split into
two sets N1 and N2 that both elect a candidate a, then N should also elect a.

In addition, knockout tournaments have other drawbacks. For instance, as
Figure 19.1 demonstrates, the seeding easily affects the winner, and because the seed-
ing depends on the names of the candidates, knockout tournaments do not satisfy
neutrality—renaming candidates can change the elected winner. They also do not sat-
isfy Pareto-optimality when the number of candidates is at least 5, regardless of T and
S (see Moulin, 1988a, p. 245, for a proof). That is, for any (T , S) on more than 5 candi-
dates, there is a voter profile so that there is some other candidate that is unanimously
preferred to the elected winner.

Regardless of all these problems, knockout tournaments are extremely popular,
largely because of their simplicity. They are popular in sports also because of their
efficiency—the number of matches they require is no more than the number of players.
They also have the advantage that no player has an incentive to intentionally lose a
match because a single loss causes elimination. (Other tournament formats such as
double-elimination no longer have this property.) This also makes knockout sports
tournaments exciting to watch as in most cases players try to play their best.

Computing the Probability of Winning

The definition of the winner of a knockout tournament is constructive and provides
a linear time algorithm to find the winner for a given seeding, provided for any pair

2 Knockout tournaments not satisfying reinforcement means the following: there exists a set of candidates C, a
set of voters N with preferences over C, a splitting of N into N1 and N2 = N \ N1 and a knockout tournament
(T , S), such that if one uses either the preferences solely of N1 or solely of N2 to compute the winner of (T , S),
then that winner is some candidate a, whereas if one uses the preferences of all of N , then the winner is a
different candidate b.
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of players a, b we can determine the winner of the match between a and b. Suppose,
however, that we are given an m × m probability matrix P such that P [i, j ] is the
probability that i beats j , so that 0 � P [i, j ] = 1 − P [j, i] � 1. Can we determine
which player has the maximum probability of winning the tournament?

The answer to this question turns out to be yes. In fact, there is an O(m2) time
algorithm that can calculate for any given seeding and player j , the probability that j

wins a tournament on m players defined by P . Given (T , S), P and a player j , one
runs the following dynamic programming algorithm.

Let q(j, v) be the probability that j reaches tree node v of T . For all players j , we
have that q(j, S(j )) = 1. If v is a node with children r and l, such that j is seeded at
a descendent of r , then q(j, v) = q(j, r) ·∑i q(i, l) · P [j, i]. The runtime is O(m2)
because i and j are only matched at the least common ancestor of their leaves.

Notice that the preceding algorithm does not depend on the structure of T , just on
the fact that T is binary. The structure of the tree T does play a role in some settings.
For instance, if T is a balanced binary tree on � 4 candidates, then one can show
that it selects a Pareto-optimal candidate. In the next section we will show that if one
can manipulate the shape of T , then one can almost arbitrarily pick the winner of the
tournament.

19.3 Agenda Control for General Knockout Tournaments

We mentioned earlier that no single player has an incentive to lose on purpose in a
knockout tournament. However, one can imagine many other different types of manip-
ulation of the tournament outcome. One type of manipulation defined by Bartholdi
et al. (1989a, 1992) is called agenda control. Here, one considers how much power an
election chairman has in affecting the outcome of the election by changing something
in the protocol itself.3 For the special case of knockout tournaments, the chairman (or
the tournament organizer) has the freedom to pick two things, the tree T and the seed-
ing S. If the chairman can change T , then we can assume that the seeding is fixed by
fixing an ordering of the leaves of T . Hence we will consider only two types of agenda
control—when the chairman can change T , and when T is fixed but the chairman can
change S.

In order for the chairman to be able to control the agenda, we need to consider what
type of information he has about the pairwise comparisons.

In the deterministic setting most commonly used in social choice, we may assume
that the chairman has access to a tournament graph: a directed graph such that for any
two vertices4 i and j exactly one of (i, j ) and (j, i) is an edge. The vertices of the
tournament graph correspond to the players/candidates in the knockout tournament,
and the tournament graph gives the match outcome for any pair of players. In the social
choice setting, the tournament graph obtained by adding a directed edge from i to j if
and only if i is preferred to j by a majority of voters, is called the majority graph.

3 Agenda control should not be confused with the implementation by agenda problem discussed in Chapter 3.
4 In this chapter we refer to vertices and nodes interchangeably.
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In a more general probabilistic setting, one is given a probability matrix P with
rows and columns indexed by the candidates, so that P [i, j ] is the probability that i is
preferred to j . Here P [i, j ] � 0 and P [i, j ] + P [j, i] = 1 for all i, j .

Now, the general agenda control problem is as follows:

Definition 19.2 (General Agenda Control for Knockout Tournaments). Let the
following be given: a candidate i, a threshold p ∈ (0, 1], and voter profile information.
The voter profile information can be a probability matrix P on the candidates, in which
case we say it is probabilistic, or it can be a tournament graph G, in which case we say
it is deterministic and we can assume that p = 1. The general agenda control problem
for knockout tournaments asks to determine whether there is a knockout tournament
(T , S) so that i wins (T , S) with probability at least p.

We refer to the problem as

� agenda control if the chairman can only modify S (T is fixed) and his input is determin-
istic

� P -agenda control if the chairman can only modify S (T is fixed) and his input is
probabilistic

� full agenda control if the chairman can modify T and his input is deterministic
� full P -agenda control if the chairman can modify T and his input is probabilistic

Each of these problems is in NP: when m is the number of candidates, it can be
solved by guessing the tree T on m leaves and the seeding S of T , and then computing
the probability that the given candidate i wins for the given T and S. In the remainder
of the chapter we will discuss the time complexity of the problems, that is, we will try
to address the question:

Is there an efficient algorithm that decides each of the preceding four variants of the
agenda control problem?

Full Agenda Control

In this deterministic setting, there is a simple algorithm for full agenda control running
in time linear in the size of the tournament graph G. The algorithm does depth-first-
search in G starting from the input candidate i and returns “yes” if and only if all nodes
in G are reachable from i.

To see why this algorithm works, we will prove two claims. Claim 19.1 shows that
any winner of a knockout tournament is in the top cycle of the tournament graph.
Claim 19.2 shows that any candidate in the top cycle is a winner of some knockout
tournament. Claim 19.1 is proven for instance by Moulin (1988a), and Claim 19.2
appears in Lang et al. (2007).

Claim 19.1. Suppose that (T , S) is a knockout tournament that i wins. Then in the
tournament graph G, every node j is reachable from i.

Proof. We prove this by induction on the number of leaves of the tree. Base case: if
the tree has a single leaf node, the candidate seeded at that leaf is the single node in the
tournament graph so the claim is trivially true.
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Figure 19.2. The construction of T (y) from T ′(y) in Claim 19.2.

Now suppose that for all trees T ′ on at most n − 1 leaves if a candidate c is a winner
of the knockout tournament at T ′ then all nodes in G that are seeded at the leaves of
T ′ are reachable from c. Consider a candidate i that wins the knockout tournament at
T . Let r be the root node of T and let T1 and T2 be the subtrees rooted at the children
of r . Without loss of generality assume that i is seeded at a leaf of T1. Let j be the
winner of T2. By the induction hypothesis, all candidates seeded at the leaves of T2 are
reachable from j in G and all candidates seeded at the leaves of T1 are reachable from
i in G. Because i beats j in the final match, the candidates seeded at the leaves of T2

must also be reachable from i by taking the edge (i, j ) in G and then the paths from j

to them.

Claim 19.2. Suppose that all nodes in G are reachable from i, then there is a tree T

(and thus a seeding S) such that i wins (T , S).

Proof. Let T ′ be a depth-first-search tree in G rooted at i. Because all nodes of G are
reachable from i, T ′ contains all candidates. We will recursively build T .

For a subtree T ′(y) of T ′ rooted at y, we define a binary tree T (y) with leaves labeled
with the nodes of T ′(y), such that y wins the knockout tournament defined by T (y). If
T ′(y) is just the node y, then let T (y) also be a single node labeled y.

Otherwise, let c1, . . . , cd be the children of y in T ′(y). Build T (y) from the trees
T (c1), . . . , T (cd ) as follows; see Figure 19.2. Let v0, v1, . . . , vd be a path on d + 1
nodes, that is, (vi, vi+1) is an edge. Set vd to be the root of T (cd ); all other vj are new
nodes. Add an edge from vj to the root of T (cj ), for each j ∈ {1, . . . , d − 1}. Add an
edge (v0, y). Root the tree at v0. This completes the description of T (y).

Notice that T (y) is a binary tree and the leaves of T (y) are labeled with distinct
candidates because the trees T (cj ) are disjoint. Furthermore, by induction, because cj

is the winner of T (cj ) for every j , y must be the winner of T (y). Because T ′ contains
all candidates, T (i) is a binary tree with all candidates mapped to a unique leaf, and
moreover i is the winner of T (i).

Full P-Agenda Control

Vu et al. (2009a) consider the full P -agenda control problem and show by induction that
for all input matrices P , the best knockout tournament for a candidate i is unbalanced
with i only playing in the last round. This restricts the shape of T somewhat. However,
no polynomial time algorithm for finding the best tree structure for a given P and i is
known.
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Open Problem 19.3. Is the full P -agenda control problem in polynomial time?

P-Agenda Control

The P -agenda control has been extensively studied, especially for the case of balanced
binary trees. The complete balanced binary tree is the most widely used tournament
tree in practice. It is defined when the number of candidates/players is a power of 2, but
the concept can also be extended to arbitrary numbers 2i − k of players by allowing
k players a bye, that is, these players play their first match in the second round of the
tournament.

There are several reasons for why most knockout tournaments in sports are balanced.
First, they are considered more fair, because in order to win the tournament, any player
must win exactly the same number of matches. In fact, Lang et al. (2007) call the
winners of balanced knockout tournaments “fair possible winners.” Another reason
is that balanced tournaments offer the maximum possible parallelism, so that the
tournament can be scheduled to last the shortest possible time.

The history of the P -agenda control problem for balanced binary trees is as follows.
First, several papers proved that the P -agenda control problem is NP-complete (Lang
et al., 2007; Hazon et al., 2008) for arbitrary P . Vu et al. (2009a) then showed that
the P -agenda control problem is NP-complete even when the probabilities in P are in
{0, 1, 1/2}. Finally, in a breakthrough result, Aziz et al. (2014e) showed that even the
agenda control problem for balanced binary trees (i.e., when P is just over {0, 1}) is
NP-complete.

Besides putting a restriction on the values in P , one can also restrict P in a different
way. Suppose that we have some order of the players, so that we think of player i

as stronger than any player j > i, then a natural way to capture this is to enforce a
monotonicity property on the probability matrix P . Intuitively, if i is at least as strong
as j > i, then we would like that i beats j with probability at least 1/2. Moreover, for
any other player k, we would expect that k has a harder time beating i than beating j ,
that is, P [k, i] � P [k, j ]. This motivates the following definition.

Definition 19.3. A probability matrix P is monotonic if

� P [i, j ] � 1/2 for i < j
� P [i, j ] � P [i, k] for every i and j < k

A matrix is monotonic exactly when it is sorted in each row and column and has
entries � 1/2 above the diagonal. A natural question is whether the P -agenda control
problem is still NP-complete when we restrict ourselves to monotonic matrices P , as
we would expect probability matrices arising from practical applications to be roughly
monotonic. It turns out, however, that the complexity of this version of the problem is
still unknown.

Open Problem 19.4. Is the P -agenda control polynomial time solvable when P is
monotonic?
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Figure 19.3. An example of an SMC-tree with seven vertices.

Consider relaxing the monotonicity property by allowing for the rows and columns
to be “roughly” sorted up to some noise. (From a practical perspective, this makes
sense as in the real world there is always noise.) One way to define such a relaxation
is that if j < k then for all i, P [i, j ] is at most P [i, k], plus some slack ε.

Definition 19.4. A probability matrix P is ε-monotonic if

� P [i, j ] � 1/2 for i � j
� P [i, j ] � P [i, k] + ε for every i and all j < k

As ε goes closer to 0, such a matrix P becomes closer and closer to monotonic.
Interestingly, Vu et al. (2009a) showed that P -agenda control for ε-monotonic P for
any ε > 0 is NP-complete, thus almost settling Open Problem 19.4.

Even though the P -agenda control problem is NP-complete even for very structured
matrices, it is still interesting to consider how fast it can be solved. Even if P �= NP,
it could be that there is a subexponential, that is, O(2εm) time algorithm for all ε > 0,
which although not polynomial, is still extremely fast.

Open Problem 19.5. Is the P -agenda control problem in subexponential time?

Agenda Control

In the previous paragraph we noted that the agenda control for balanced binary trees is
NP-hard (Aziz et al., 2014e). In the following, we show that there exist natural trees T

for which the agenda control problem is efficiently solvable. Thus, the complexity of
the agenda control problem crucially depends on the tree.

Recall the sequential majority comparisons rule from the previous section. The
binary tree associated with its tournament is a directed path v1 . . . , vm on m nodes with
an extra edge (vi, ui) attached to each vi for i < m. We will call this tree an SMC-tree.
See Figure 19.3 for an example. The following claim shows that the chairman can
always efficiently manipulate the outcome of a sequential majority election.

Claim 19.6. If T is an SMC-tree, then the agenda control problem for any tournament
graph G and candidate i can be solved in polynomial time.

Proof. Given G = (V, E) on m nodes, let us first compute the strongly connected
components of G. This can be done in O(m2) time as G has O(m2) edges. The strongly
connected components form a directed acyclic graph, the SCC-DAG. The nodes of the
SCC-DAG are the strongly connected components, and there is a directed edge from
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C to C ′ if and only if there is some u ∈ C, v ∈ C ′ with (u, v) ∈ E. We will show that
i is a winner of a knockout tournament if and only if i is in the unique source node of
the SCC-DAG of G.

As we proved in Claim 19.1, if i is a winner of a knockout tournament, regardless of
the structure of T , i must have a path in G to all other nodes. Thus i is in a source node
of the SCC-DAG, and because G is a tournament graph this source node is unique.

On the other hand, suppose that i is in the unique source node of the SCC-DAG.
We will show that one can construct (in polynomial time) a Hamiltonian path in G

starting from i. (This also proves that tournament graphs always contain a Hamiltonian
path and one can be found in polynomial time.) After this, from the Hamiltonian path
starting from i we will construct a seeding of an SMC-tree on m leaves so that i

wins, as follows. If there is a Hamiltonian path in G starting from i, let this path be
i = x1 → x2 → . . . → xm. For each j < m, seed xj at leaf uj of the SMC-tree, and
seed xm at vm. It is easy to see by induction that xj wins the tournament rooted at
the parent of its leaf node, and hence i wins the knockout tournament defined by the
seeded SMC-tree.

Now, let us show that if i is in the source node of the SCC-DAG, then one can find a
Hamiltonian path in G starting with i. Consider G′ = G \ {i}. G′ is still a tournament
graph. By induction, assume that for any vertex j in the source node C of the SCC-DAG
of G′ we can construct a Hamiltonian path of G′ starting from j . This is true for the
base case when G′ has only one vertex. Now, because i can reach all nodes in G, and
all edges incident to C in G′ go out of C, i must have an out-neighbor j ∈ C. Build the
Hamiltonian path P in G′ starting from j . Then i, followed by the edge (i, j ) followed
by P is a Hamiltonian path of G.

Although some variants of the agenda control problem are NP-hard, NP-hardness
only implies that (unless P = NP) there is no polynomial time algorithm for the
problem. How fast can one solve the problem in general? Is exponential time necessary
for some T ? It is not hard to devise a dynamic programming algorithm that solves
the agenda control problem for arbitrary T in O(3mpoly(m)) time. We describe this in
what follows.

Theorem 19.7. Given any tree T , the agenda control problem for T can be solved in
O(3mpoly(m)) time.

Proof. One computes a table entry σ (u, U, j ) for every node u of T , subset U of
the players and every j ∈ U . σ (u, U, j ) represents a seeding of the leaves of the
subtournament Tu of T rooted at u with the players of U for which j wins the
tournament Tu. Here we can assume that |U | is exactly the number of leaves |L(Tu)|
of Tu, and σ (u, U, j ) = ∅ if j cannot win Tu.

If |Tu| = 1, then set σ (u, {j}, j ) = {j} for all j . Otherwise, suppose that for some
integer s � 1 we have computed σ (v, S ′, i) for all v ∈ T , S ′ ⊆ V and i ∈ S ′ such
that |S ′| = |L(Tv)| < s. We show how to compute σ (u, S, j ) for any particular u ∈ T ,
S ⊆ V and j ∈ S with |S| = |L(Tu)| = s.

Let v and w be the children of u and let s ′ = |L(Tv)|, so that |L(Tw)| = s − s ′.
Consider all subsets U ⊆ S such that |U | = s ′. Because s ′, s − s ′ < s, we have already
computed σ (v, U, i) for all i ∈ U and σ (w, S \ U, k) for all k ∈ S \ U .
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Now, for each choice of U with |U | = s ′, j ∈ U such that σ = σ (v, U, j ) �= ∅, we
go through all i ∈ S \ U such that j beats i. If σ (w, S \ U, i) �= ∅, then set σ (u, S, j ) =
σ 1 σ (w, S \ U, i). That is, if there is a seeding for U such that j wins Tv and a seeding
of S \ U such that i wins Tw and j beats i, then the concatenation of those seedings is
a seeding for which j wins Tu.

If no choice of U with j ∈ U works, do the same for choices for U with |U | = s ′,
j /∈ U , reversing the roles of v and w. Finally, if no partitioning of S gives a good
seeding for j , then j cannot win the tournament on S with tree Tu, so set σ (u, S, j ) = ∅.

Let us analyze the running time. For each node u of T , we consider all subsets S

of size t = |L(Tu)| and to compute σ (u, S, j ) for some j ∈ S in the worst case we
consider all possible 2t subsets of S. (For some special cases of T we may consider
fewer subsets.) The runtime per subset U of S is O(t). Thus the final runtime over all
choices of u, t , S of size t and j ∈ S is asymptotically

m
∑
t�m

t

(
m

t

)
2t · t � m3

∑
t�m

(
m

t

)
2t1m−t � m33m.

The fastest known algorithm for the agenda control problem for complete balanced
trees is by Vassilevska Williams (2009) and runs in O(2mpoly(m)) time and uses sophis-
ticated machinery such as fast subset convolution (Björklund et al., 2007). However,
the algorithm of Vassilevska Williams (2009) uses �(2mpoly(m)) space. Aziz et al.
(2014e) present a family of algorithms for the agenda control problem for complete
balanced trees with a sophisticated time/space trade-off. The fastest of their algorithms
runs in O(2.8285m) time and uses O(1.7548m) space.

The algorithm in Theorem 19.7 and the algorithms of Vassilevska Williams (2009)
and Aziz et al. (2014e) can be made to count the number of seedings for which the given
player wins. This counting version of the agenda control problem is called #Agenda
Control.

Definition 19.5. The #Agenda Control problem is as follows: given a tournament graph
G, a tree T and a node v ∈ G, count the number of seedings of T for which v wins the
tournament defined by T , using the match outcomes given by G.

The number of winning seedings for a player is an extremely interesting measure. For
instance, it immediately gives the probability that the player will win a randomly seeded
tournament given by T . Being able to compute the count efficiently would give an
interesting new way of ranking players. Unfortunately, even when we restrict ourselves
to complete balanced trees, computing the count exactly is NP-hard by the result
of Aziz et al. (2014e) mentioned earlier. What about approximations? Unfortunately
again, Aziz et al. (2014e) also show that, unless RP = NP, there is not even a fully
polynomial randomized approximation scheme (FPRAS) for the problem, that is, an
algorithm that for all ε > 0, returns in poly(m, 1/ε) time a value that is between
c/(1 + ε) and (1 + ε)c where c is the true answer. Thus #Agenda Control is a truly hard
problem.

In the rest of the chapter we will focus on the natural special case of the agenda
control problem for complete balanced trees and will present two cases for which the
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Figure 19.4. A seeded balanced knockout tournament and its outcome, and its corresponding
binomial tree.

problem is actually efficiently solvable, thus circumventing the NP-hardness result of
Aziz et al. (2014e).

Balanced Tournament Agenda Control as a Graph Problem

Recall that a player v can win the tournament under some seeding if and only if there
is a partition of the players V into S and V \ S with v ∈ S and |S| = m/2 such that

� v can win a balanced knockout tournament on S under some seeding
� there is a player u ∈ V \ S that v beats and u can win a balanced knockout tournament

on V \ S under some seeding

Consider the tournament graph G of match outcomes. Because v beating u is the
same as the existence of the directed edge (v, u) in G, the preceding conditions are
equivalent to the existence of a tree of a particular shape, rooted at v, with edges directed
away from v spanning the entire graph. This tree is a binomial spanning arborescence
of G rooted at v.

A binomial arborescence is the directed version of binomial trees as in Knuth (1973).
A binomial arborescence on m nodes rooted at a node v is recursively built by taking
two disjoint binomial arborescences on m/2 nodes, one rooted at v, and one rooted at a
node u, and then adding the directed edge (v, u). The smaller binomial arborescences
represent the two subtournaments that u and v win, and the edge (v, u) represents the
final match between them. See Figure 19.4 for an illustration.

Thus the balanced tournament agenda control problem is equivalent to the following.

Definition 19.6 (Tournament Fixing Problem (TFP)). Given a tournament graph G

and a node v, is there a binomial arborescence rooted at v, spanning G?

19.4 Agenda Control for Balanced Trees Is Easy
for Special Instances

This section provides some proofs that in some cases agenda control for balanced trees
is easy. We will consider two different types of results. The first type are structural
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results of the following form: suppose that the tournament graph G or the given player
i have some special property, then there always exists a seeding for which i can win
the balanced tournament, and this seeding can be found efficiently.

The second type of results are of the following distributional form: consider a
special probabilistic model for generating majority graphs, then for almost all graphs
generated by the model, one can always efficiently find a winning seeding for all (or
most) players.

19.4.1 Structural Results

Our goal in this section is to consider various notions of strength that a candidate
has so that regardless of the individual match outcomes, there is always an efficiently
computable winning balanced knockout tournament seeding for any candidate that
fulfills the strength criterion.

A requirement for any winner w of a balanced knockout tournament is that in the
tournament graph there is a path of length at most log m between w and all other
candidate/player nodes. A natural notion of strength that we can glean from this is that
a node is strong if there are short paths between it and all other nodes. The strictest
such strength notion is that the player should be a Condorcet winner—in this case the
node has distance 1 to all other nodes. The next strictest such strength notion is that
the player should be a king.

Definition 19.7. A king is a node that has a path of length at most two to any other
node.

Every tournament graph contains a king as any node that beats the maximum number
of other nodes (i.e., every Copeland winner) is a king. To see this, let K be a Copeland
winner and let b be any node that beats K. Then b cannot beat every node that K
beats, as otherwise it would have outdegree that is at least 1 larger than that of K,
contradicting the fact that K is a node of maximum outdegree.

In fact, if there is no node that beats all other nodes, that is, if there is no Condorcet
winner, there are at least three kings in any tournament graph. The set of kings is also
called the uncovered set (see Chapter 3).

Although in general the tournament fixing problem is NP-hard, in the NP-hardness
proof of Aziz et al. (2014e) the desired winner of the tournament has long shortest
paths to some nodes in the tournament graph instance, so that it is far from being a
king. Nevertheless, we can show that the tournament fixing problem is also NP-hard
when the favorite player is a king. The proof of the theorem is due to Kim (2014).

Theorem 19.8. The agenda control problem for balanced binary trees is NP-hard even
when the given player is a king in the tournament graph.

Proof. We will reduce from the agenda control problem where the desired winner is
not necessarily a king. Let G be the given tournament graph on m nodes, and let v

be the desired winner. Let H be a transitive tournament on m new nodes and let u be
the unique node of outdegree m − 1 in H . Add a directed edge from v to u, and for
every x ∈ H and y ∈ G add a directed edge (x, y) (except for (u, v) which we already
fixed in the opposite direction). Let this new tournament graph be G′. First note that
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v is now a king in G′, as it beats u and u beats everyone but v. Second, if there is a
seeding of G for which v is a winner of a balanced single-elimination tournament over
G, then this seeding can be completed to a winning seeding for v over G′ by arbitrarily
seeding the players of H in the second half of the bracket. Then v wins the first half of
the tournament, u wins the second and then v beats u in the final.

Suppose on the other hand that there is a seeding for which v can win a balanced
tournament over G′. Then in this seeding, every player of H must be in the same half
of the bracket, and the players of G must be in the other half. To see this, suppose that
without loss of generality u is in the left half of the seeding, and some nodes of H are
in the right half of the seeding. Then, because every node of H \ {u} beats every node
of G, the winner of the right half of the tournament bracket is some node h ∈ H \ {u}.
However, this is already a contradiction, because this means that h will play in the
final, and even if v is in the final, it would lose to h. Thus, one half of the seeding
is a seeding solely of G which v must win, thus v can win G′ if and only if v can
win G.

In this section we consider some further restrictions on the king node that make the
player strong enough to always be a winner of a balanced knockout tournament.

In the following, we assume that the number m of vertices of G is a power of 2. We
also let the input player to the agenda control problem be a king K, and introduce the
notation A = Nout (K) and B = Nin(K) for the out- and in-neighborhood of K.

In all of the results in this section we use the following representation of a seeding
of a knockout tournament. When one has deterministic match outcome information,
the seeding permutation is equivalent to specifying which matches occur in each
of the log m rounds of the tournament. The matches in round i are m/2i disjoint edges
in the match outcome tournament graph, that is, a matching of size m/2i . Because each
matching consists of directed edges, we let for each matching M , sources(M) denote
{u | ∃v with (u, v) ∈ M}. If M is the set of matches played in round r , then the players
surviving till round r + 1 is exactly sources(M). Let V (M) denote the vertices that
have incident edges in M . We thus use the following representation of a seeding.

Definition 19.8 (Matching Representation of a Seeding). A seeding in a balanced
knockout tournament on m players with match outcomes from a tournament graph T

is represented by a set of tuples S = {(M1, 1), . . . , (Mlog m, log m)} where

� for each r , Mr is a matching of size m/2r in T
� V (Mi+1) = sources(Mi)

Here if (M, r) ∈ S, then M are the set of matches to be played in round r . Adding the
round number is redundant—we could have just had S be an ordered set of matchings.
We add the round so that the algorithms would be easier to read.

In the following, we sometimes abuse notation and use M to denote V (M) when it
is clear from the context that we are talking about vertices.

For a node v and subset S of the vertex set, we denote by Nin
S (v) the set of in-

neighbors of v that are in S. Similarly, Nout
S (v) denotes the set of out-neighbors of v

that are in S. We denote |Nin
S (v)| by indegS(v) and |Nout

S (v)| by outdegS(v).
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Algorithm SuperSeed(G,K):

1. If E(G) = {(K, a)} for some a, then

return ({(K, a)}, logm).

2. A = Nout
G (K)

3. B = N in
G (K)

4. Pick some a ∈ A , and set M = {(K, a)}.
5. M = maximal matching from A \ {a} to B

6. MA = maximal matching within A \ {a} \M
7. MB = maximal matching within B \M
8. M = M ∪M ∪MA ∪MB

9. If |B \M | is odd, then let x ∈ B \M ,

y ∈ A \M and set M = M ∪ {(x, y)}.
10. Return {(M, logm− log |G| + 1)} ∪

SuperSeed(G[sources(M)],K).

K

MA

MB

M

a

x

y
A

B

Figure 19.5. Algorithm SuperSeed picks a winning seeding for any given superking K in G.

Superkings

The notion of a king K required that each node has at least one path of length at most
2 from K. Here we define a stronger notion that requires that all nodes that are not
out-neighbors of K have at least log m paths of length 2 from K.

Definition 19.9. A node K in an m-node directed graph is a superking if for every
b /∈ Nout (K), there are at least log m nodes c ∈ Nout (K) such that (c, b) is an edge.

Superkings do not necessarily exist in tournament graphs. However, if a node is
a superking, then finding a winning seeding for it is relatively simple. We give the
algorithm for constructing a winning seeding in Figure 19.5, and it serves as a warm-
up for the later more complicated construction.

Let m and K be global variables denoting the number of players in the original
tournament and K is the given superking player. The algorithm is as follows.

Theorem 19.9 (Vassilevska Williams, 2010). Algorithm SuperSeed computes in poly-
nomial time a winning knockout tournament seeding for any superking K.

Proof. The runtime is polynomial because in each recursive call the size of the graph
reduces in half, and because each individual step takes polynomial (in fact linear) time.
It remains to show that the computed seeding makes the superking K the winner. We
prove this by induction. The base case is when G is a single edge. Then the only seeding
is to match the two players against each other, as step 1 does.

Suppose now that for all tournament graphs on k vertices the algorithm produces a
winning seeding for a superking. Then, we will show that given a graph on 2k vertices,
SuperSeed picks a perfect directed matching M containing K as a source and K is still
a superking in the graph induced by the sources of M . Because the latter graph has k

vertices, it follows that SuperSeed returns a winning seeding for K in it, and combined
with M this gives a winning seeding for K in the entire graph.

First, we show that the matching M produced by SuperSeed is a perfect matching.
All we need to do is to show that step 9 completes M to a perfect matching. If |B ′ \ M ′|
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is odd, because M has an even number of vertices and because G has an even number
of vertices, |A′ \ M| must also be odd. After step 8, however, all but at most one node
of B ′ and at most one node of A′ are matched. Hence |A′ \ M| = |B ′ \ M| = 1, and
step 9 just maps the two vertices from these two sets. The direction of the edge (x, y)
is also correct because M ′ was a maximal matching.

Now we show that if K is a superking in G, then it is also one in G[sources(M)].
Consider any b ∈ B ′. As K is a superking, A′ \ {a} must contain at least log |G| − 1
in-neighbors of b. If b ∈ sources(M), then b was not matched by M ′, and because
M ′ is a maximal matching, all of the in-neighbors of b that are in A′ \ {a} are also
in sources(M). Thus b has at least log |G| − 1 = log(|G|/2) in-neighbors in A′ ∩
sources(M). As |sources(M)| = |G|/2 because M is a perfect matching, this makes K
a superking in G[sources(M)].

As we will see later on, even though superkings may seem like a restrictive notion,
most nodes are superkings in almost all tournament graphs generated by a natural
random graph model.

Kings of Highish Outdegree

Here we give a second clean condition under which a king player can be made a winner.
Let Hin(a) be the set of in-neighbors of a that have higher outdegree than a. We show
that if K is a node in a tournament graph such that outdeg(K) � |Hin(K)| + 1, then
there is an efficiently constructible seeding for which K can win a balanced knockout
tournament. We present a simplified version of the original proof of Stanton and
Vassilevska Williams (2011).

Theorem 19.10 (Kings of Highish Outdegree). Let G be a tournament graph and K
be a king. If outdeg(K) � |Hin(K)| + 1, then one can efficiently compute a winning
knockout tournament seeding for K.

This result is tight in the sense that there are tournament graphs and kings K with
outdeg(K) = |Hin(K)| such that K loses the tournament regardless of the seeding. An
example of this is Figure 19.6. In this figure, K beats exactly m/2 − 1 nodes and loses
to m/2. There is a player a that K beats that beats all players in Nin(K), and all players
in Nout (K) \ {a} lose to everyone in Nin(K). Each player in Nin(K) beats at least one
other player in Nin(K), so that the outdegree of each player in Nin(K) is at least m/2.
Thus, Hin(K) = Nin(K) and outdeg(K) = |Hin(K)|. If K is to be the winner, every
player in Nin(K) must be eliminated either by a player in Nin(K) or by a. However,
this means that a must survive at least log(|Nin(K)| + 1) > (log m) − 1 rounds, and
hence will be the winner of the tournament because the tournament has exactly log m

rounds. Thus K cannot win, regardless of the seeding.
An interesting special case of Theorem 19.10 is when K is a king that beats at least

half the graph, that is, m/2 players. Figure 19.6 also shows that there are graphs in
which even if a king beats m/2 − 1 other players, he cannot win regardless of the
seeding, so in that special case the result is tight as well.

We give a new algorithm, Algorithm Seed (Figure 19.7) and the algorithm of
Theorem 19.10 just runs Seed on input (G,Hin(K),K).
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K

m/2 players

m/2 − 1 playersa
A = Nout(K)

B = Nin(K)

Figure 19.6. An example of an m-node tournament graph and a king K of outdegree m/2 − 1
so that K cannot win a balanced knockout tournament, regardless of the seeding. Here the set
of nodes B does not contain a sink vertex. The outdegree of each node of B is thus at least
m/2, and so B = Hi n(K) and outdeg(K) = |Hi n(K)|.

Algorithm Seed(G,H,K):

1. If E(G) = {(K, a)} for some a, then

return ({(K, a)}, logm).

2. A = Nout
G (K).

3. B = N in
G (K).

4. M = maximal matching from A to H.

5. M = maximal matching from A \M to B \H.

6. If A\(M ∪M) = ∅, then pick a ∈ A\(M ∪M),

and set M = M ∪M ∪ {(K, a )}.
7. Else, pick any (a , q) ∈ M , and set

M = M \{(a , q)}, M = M∪M ∪{(K, a )}.
8. MA = maximal matching within Ā = A \M
9. MB = maximal matching within B̄ = B\H\M
10. MH = maximal matching within H̄ = H \M .

11. M = M∪MA ∪MB ∪MH .

12. If |Ā \MA| > 0 or |B̄ \MB | > 0 or

|H \M \MH | > 0, then pick distinct

x, y ∈ (Ā \MA) ∪ (B̄ \MB) ∪ (H̄ \MH) and

set M = M∪ {(x, y)}.
13. Return {(M, logm− log |G| + 1)}∪
Seed(G[sources(M)], H ∩ sources(M),K).

K

MA

MB

M

a

x

y

A

B

H

M

MH

Figure 19.7. Algorithm Seed picks a winning seeding for any highish outdegree king K.

We will first show that the algorithm always returns a valid seeding. To do this, we
need to show that steps 7 and 12 make sense.

Claim 19.11. If |A| � |H | + 1, in step 7, M ′ is nonempty, so that a′ can be picked.
In step 12, x and y exist and M is a perfect matching in G.

Proof. Because |A| � |H | + 1, |M| < |A| and either step 6 succeeds and step 7 is not
run, or |M ′| � 1.
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For step 12, consider the parity of |Ā| + |B̄| + |H̄ |. Here m is even, and m =
|A| + 1 + |B| = (|A \ M \ M ′ \ {a′}| + |M| + |M ′| + 1) + 1

+ (|B \ H \ M ′| + |M ′| + |H \ M| + |M|)
= |Ā| + |B̄| + |H̄ | + 2(|M| + |M ′| + 1),

and hence |Ā| + |B̄| + |H̄ | must be even.
Thus either 0 or 2 of |Ā|, |B̄|, |H̄ | are odd. Hence in step 12, if |Ā \ MA| > 0 (i.e.,

|Ā| is odd) or |B̄ \ MB | > 0 (i.e., |B̄| is odd) or |H \ M \ MH | > 0 (i.e., |H̄ | is odd),
then exactly two of these are the case. Thus in step 12, x and y exist and moreover
(Ā \ MA) ∪ (B̄ \ MB) ∪ (H \ M \ MH ) = {x, y}, and adding (x, y) to M makes M a
perfect matching.

This claim implies that the algorithm gives a valid seeding. To show that the seeding
is in fact a winning seeding for K, we will show that an invariant is preserved by the
algorithm.

Lemma 19.12. Algorithm Seed preserves the following invariant:

|A| � |H | + 1, K is a king and the subset of nodes from Nin
G (K) that have larger

outdegree than K is contained in H .

If the invariant is maintained, K remains in G after each iteration, so that when
|G| = 1, G contains only K, and the algorithm computes a winning seeding.

Before we begin the proof of Lemma 19.12, let us assert the following fact.

Claim 19.13. For any b ∈ B,

outdeg(b) � outdeg(K) ⇐⇒ outdegB(b) < indegA(b).

The proof of the claim is simple: outdeg(b) = 1 + outdegA(b) + outdegB(b) = 1 +
outdeg(K) − indegA(b) + outdegB(b).

Proof of Lemma 19.12. Let us assume that in some iteration of the algorithm we have
that |A| � |H | + 1, K is a king and the subset of nodes from Nin

G (K) that have larger
outdegree than K is contained in H .

We will first show that |A ∩ sources(M)| > |H ∩ sources(M)| which of course
implies |A ∩ sources(M)| � |H ∩ sources(M)| + 1.

|A ∩ sources(M)| � !(|A| + |M| + |M ′| − 1)/2" � (|A| + |M| + |M ′| − 2)/2

because all of A ∩ (M ∪ M ′) survive and the !(|A| − 1 − |M| − |M ′|)/2" sources of
MA survive. On the other hand,

|H ∩ sources(M)| � %(|H | − |M|)/2& � (|H | − |M| + 1)/2

because the only nodes of H that survive are the sources of MH and potentially a single
extra node if |H | − |M| is odd.

If |A| � |H | + 2, then because |M| � 1, (|A| + |M| + |M ′| − 2)/2 � (|H | +
|M|)/2 = (|H | − |M| + 2|M|)/2 > (|H | − |M| + 1)/2, so that |A ∩ sources(M)| >

|H ∩ sources(M)|.
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Otherwise, assume that |A| = |H | + 1. Then, if |M| + |M ′| � 2,

|A ∩ sources(M)| � |A|/2 = (|H | + 1)/2 > (|H | − |M| + 1)/2

� |H ∩ sources(M)|.

The final case is that |A| = |H | + 1, |M| = 1 and |M ′| = 0. In this case, |A ∩
sources(M)| � !(|H | + 1)/2" and |H ∩ sources(M)| � %(|H | − 1)/2& � |H |/2.
Because |A| and |B| have different parities, there are only two cases: either B = H , or
there are at least two nodes b and b′ in B \ H .

Suppose that B = H . Then, |B| < |G|/2 and |H ∩ sources(M)| � |H |/2 =
|B|/2 < |G|/4, so that |A ∩ sources(M)| � |G|/2 − 1 − |H ∩ sources(M)| �
|G|/4 > |H ∩ sources(M)|.

Suppose now that there are two nodes b and b′ in B \ H . Without loss of generality,
assume that b beats b′. Thus outdegB(b) � 1. But then by Claim 19.13, we must have
that b has at least two in-neighbors from A, so that if |H | > 1, then there is a node to
match K to, while matching b to an in-neighbor from A, and |M ′| � 1 but we assumed
that |M ′| = 0. Thus we must have that |H | = 1. But then, consider B \ H . Because
the number of nodes in G is a power of 2, we must have that |B \ H | = |G| − 4 � 4.
However, then there is a node b ∈ B \ H with outdegB(b) � 2. By Claim 19.13 this
would imply that indegA(b) � 3 > |A|, a contradiction. Thus this case never occurs.

We have shown that the algorithm maintains that |A| � |H | + 1. Now let’s consider
some node b ∈ Nin

G (K) that survives the iteration, in the sense that is among the
sources of the matching M. We need to show that b must have at least one in-neighbor
in A ∩ sources(M), and that if b /∈ H , then its outdegree in the remaining graph is at
most that of K.

Consider the outdegree of b at the beginning of the iteration. Because b was not
included in M ∪ M ′, all but possibly one of its in-neighbors (a′) are in sources(M).
Thus, if b survived by beating another node of B, then its indegree from A must have
been at least 2 by Claim 19.13 and thus b must have an in-neighbor in A ∩ sources(M).
If on the other hand b survived by beating a node in A, then step 7 did not happen
and no node a′ is removed from M ′. Thus all of the in-neighbors of b from A are in
sources(M). This proves that K is still a king after the iteration.

Now consider a node b ∈ B \ H that survives the iteration and is in sources(M).
Because outdeg(b) � outdeg(K), by Claim 19.13, outdegB(b) < indegA(b). We will
show that after the iteration outdegB∩sources(M)(b) < indegA∩sources(M)(b), completing
the proof via Claim 19.13.

If all in-neighbors of b from A also survive the iteration, then

outdegB∩sources(M)(b) � outdegB(b) < indegA(b) = indegA∩sources(M)(b).

We can therefore assume that Step 7 of the algorithm occurs and that a′ was an in-
neighbor of b that did not survive. Because all other in-neighbors of b survive, we
have that indegA∩sources(M)(b) = indegA(b) − 1. However, because Step 7 happened
and b still survived, it must have done so by beating an out-neighbor in B. Thus
outdegB∩sources(M)(b) � outdegB(b) − 1 < indegA(b) − 1 = indegA∩sources(M)(b). This
completes the proof. �
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19.4.2 Distributional Results

So far we have only considered worst case inputs to the agenda control problem. It is
natural to ask how the complexity of the problem changes if instead the input is taken
from a probability distribution.

For tournament problems, an extremely natural probabilistic generative model was
proposed by Condorcet as follows. The players are totally ordered from 1 to m. Let
p be a value less than 1/2. Then, a tournament graph T is sampled as follows. For
each i, j with i < j , a directed edge (i, j ) is added to T with probability 1 − p and
otherwise, with probability p, edge (j, i) is added.

This model attempts to capture real-world scenarios, where there is a hidden total
order of the players but we observe a noisy sample of it, so that with some small
probability p, a weaker player actually beats a stronger one, but otherwise, stronger
players beat weaker players.

Consider the agenda control problem for balanced knockout tournaments restricted
to inputs generated in this way. For any player w and any seeding, apriori the probability
that w wins the tournament is at most (1 − p)log m � 1/mγ for some γ (depending on
p) even for the strongest player. Hence no fixed seeding can give a good probability
of winning for w for all tournaments generated by the Condorcet model. The situation
changes, however, if we are allowed to see the tournament graph T generated by the
model. Then one can show that with high probability, T has some structure so that even
for very small p, one can find a winning seeding for every player!

Theorem 19.14 (Every Node Is a Winner). Let p = C
√

log m/(m − 1) for C � 8.
Then for almost all tournament graphs T generated by the Condorcet model, for every
player w in T , there is an efficiently computable seeding for which w wins the balanced
knockout tournament with outcomes given by T .

The proof of the preceding theorem appears in Vassilevska Williams (2010). It
is based on showing, using standard Chernoff bounds, that in a tournament graph
generated with p = C

√
log m/(m − 1) with C > 8, with high probability, every vertex

is a superking.
The theorem requires that p � �(

√
log m/m). Can anything be said for smaller

values of p? In order for the weakest player vm to be able to win, it needs to be
able to win at least log m matches. In order for this to happen with good probability,
p must be �(log m/m). Such low probability is not sufficient to make every player
a possible winner. However, Stanton and Vassilevska Williams (2011) show that if
p � �(2i log m/m) for some positive integer i, then any one of the top 1 + m(1 − 1/2i)
players have a winning seeding.

19.5 Extensions and Further Reading

There has been a lot of experimental work on tournament seeding. Russell (2010),
for instance, extends the distributional results presented in the previous section. He
generates tournament graphs from real data and shows experimentally that the agenda
control problem for the generated tournaments is typically easily solved, even when
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one places restrictions on the tournament organizer. The restrictions can be of many
different types: some players may be required to play each other before facing anyone
else; there may be strict rules on positioning the teams, for instance that geographically
close-by teams should play each other, and so on. Russell’s results indicate that the
agenda control problem may be easy in real life, even if the tournament organizer’s
hands may seem tied. One catch here is, of course, just as with the distributional
results from the previous section, that the tournament organizer needs to be able to
see the actual outcomes. Nevertheless, it could be that the probabilistic setting, that
is, P -agenda control, is also easy for real-world instances. Indeed, Vu et al. (2009b)
investigate how different natural heuristics perform in solving the P -agenda control
problem for both balanced and caterpillar voting trees. Their experiments use both
randomly generated and real data. Interestingly, the heuristics perform extremely well
for real-world tennis data, but poorly for real-world basketball data.

Many sports tournaments such as most major tennis tournaments use a so-called
standard seeding that aims to benefit each player according to the player’s perceived
strength. This seeding matches up the top player with bottom player, the second player
with the second-to last (and so on in a specified way) and makes sure that the first
and second players are in opposite sides of the bracket. Marchand (2002) compares the
standard seeding of a balanced elimination tournament to a random seeding, considering
how the seeding affects the probability that a given player wins. Marchand analyzes
this change for the strongest player in some interesting special cases and proves that
the standard seeding does not increase the probability of winning by much. Marchand
conjectures that this is true in general. Under some assumptions on the probability
matrix, Marchand shows that for some players, even if they are relatively strong (such
as the third out of 16), a random seeding actually increases their probability of winning
over the standard seeding. This suggests that the standard seeding only really benefits
the very top players.

There have been several studies on what is the optimal seeding of a knockout
tournament. For instance, Horen and Riezman (1985) study the following scenario:
suppose that one is to seed a balanced knockout tournament on m players, given a
monotonic probability matrix P , what is the seeding that maximizes the probability
that the best player wins, or that maximizes the expected quality of the winner? Horen
and Riezman (1985) give definitive answers to these questions for m = 4. However,
they show that for m = 8, monotonic probability matrices can have a rich structure
and depending on the matrix, different seedings may be best, even for just maximizing
the probability that the top player wins. Vu and Shoham (2010a) and Vu and Shoham
(2010b) continue this study for m � 8. They show that for m = 8, the probabilities that
the best player wins under the optimal seeding and under the worst seeding differ at
most by 1/8. They also give heuristics with which they can estimate a variety of seeding
properties such as the probability that the top player wins for any given seeding. They
use these heuristics to experimentally evaluate the standard seeding and some others
for values of m up to 128. Groh et al. (2012) use game theoretic techniques to analyze
similar measures for four players, obtaining optimal seedings in some settings, and
comparing their results to real data from basketball tournaments.

Kräkel (2014) also considers a game theoretic scenario for four players. Here players
exert effort and in a match, the winner is the player who exerted substantially more
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effort than the other player. There are two types of players: strong and weak, and there
are two of each. The organizer’s goal is either to maximize the total expected effort, or
two maximize the probability that a strong player wins. Kräkel (2014) concludes that
often the best strategy for the organizer is, in the first stage of the knockout tournament,
to match the two strong players against each other and the two weak players against
each other, rather than matching players of different types. Kräkel’s framework is
partially based on work by Lazear and Rosen (1981) and Rosen (1986) that analyzed
what the prizes for different finishes in a balanced knockout tournament should look
like to maximize the players’ effort.

Ryvkin (2010) and Ryvkin and Ortmann (2008) also analyze the expected quality
of the winner, the probability that the strongest player becomes the winner and related
measures for SMC-trees, balanced knockout tournaments (of arbitrary size) and round-
robin tournaments. These works consider a probabistic model of player abilities, where
the winner of each match is determined via a comparison of randomly perturbed values
of these abilities.

Other research investigates other types of manipulation of the outcome of knockout
tournaments. Russell and Walsh (2009) consider manipulations by coalitions of players,
where each coalition can decide which players in it are to lose their matches on purpose.
They analyze the complexity of both constructive (making a favorite player win) and
destructive (preventing a player from winning) manipulations in knockout and round-
robin tournaments, showing for instance that one can compute in polynomial time
whether a coalition can make a player win a knockout tournament. The results of
Russell and Walsh (2009) are based partially on results by Conitzer et al. (2007) that
concern whether a coalition of voters can manipulate the outcome of a cup election
by changing their votes. Altman et al. (2009) further investigate the manipulability of
different tournament choice rules such as voting trees or Copeland when players can
drop matches or coalitions of players can change the outcome of any matches between
them.

A different type of manipulation is bribery. Here, an external agent can pay some
number of players to intentionally lose matches. Bribery in elections was studied
by Faliszewski et al. (2009b). Mattei et al. (2012b) consider bribery questions for
seeded SMC-trees, balanced trees and round-robin tournaments. In this work, there
are probabilities for match outcomes and costs associated with bribing each particular
player. The manipulator wants to raise her favorite player’s probability of winning by
using a minimal amount of bribe cash. One result is that in polynomial time, one can
determine whether the manipulator can raise the probability of their favorite player
winning above 0, given a fixed budget of bribery money.

A natural extension of knockout tournaments are tournaments with multiple elimina-
tion rounds. In such tournaments, there is a tournament/voting tree for each elimination
round. The losers in the ith round are seeded (according to some rule) in the tree for
the (i + 1)st round. The winner is determined from matches between the winners of all
elimination rounds. In a k-elimination tournament, a player is eliminated only when
they lose k matches. In double-elimination tournaments, for instance, there are two
brackets. The losers of the winner bracket are seeded in the loser bracket. Losers in
the loser bracket are eliminated, and the winner of the tournament is the winner of the
match between the winners of the loser and the winner bracket.
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There are very few papers on the complexity of any type of manipulation for
multiple elimination tournaments. Russell and Walsh (2009) consider manipulation
of the outcome of a double-elimination tournament by coalitions of players show-
ing that for small enough coalitions the problem is efficiently solvable. Stanton and
Vassilevska Williams (2013) extend the results of Russell and Walsh (2009). They
also focus on formalizing the definition of a double-elimination tournament. Prior
work defined double-elimination only as two tournament trees, where the losers of
the first get seeded in the second. However, neither the structure of the trees, nor
the seeding of the losers has been formalized before. The definitions in Stanton and
Vassilevska Williams (2013) capture the format of most real-world double-elimination
tournaments. They also allow for new proofs on the complexity of double-elimination
tournament manipulation.

There is some literature analyzing more complex competition formats. Connolly and
Rendleman (2011) use Monte Carlo simulations and statistical modeling to analyze
the seeding and selection efficiency of the PGA TOUR’s FedExCup, a very complex
multistage golf competition. Pauly (2014) studies certain complex competition formats
used in the soccer world cup and the Olympics. In these formats, there is a round-robin
stage followed by a knockout stage. In the round-robin stage, the teams/players are
partitioned into groups, each group plays a round-robin tournament and typically
the top two players from each group advance and are seeded into a balanced knockout
tournament. In such tournaments it is often advantageous for a team to lose intentionally
in order to be second in their group, as this may sometimes benefit their seeding into
the knockout tournament. This happens in real life, as evidenced by a scandal at the
2012 Olympics in which eight badminton players were disqualified for intentionally
losing matches (CNN, 2012). Pauly (2014) investigates whether one can obtain a
round-robin-based knockout tournament format resistant to manipulation. He proves an
impossibility theorem: any such tournament format satisfying several natural conditions
is vulnerable to manipulation by the players.
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Abdulkadiroğlu, A. 2013. School Choice. In Oxford Handbook of Market Design, 138–169. New
York: Oxford University Press.
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Abdulkadiroğlu, A. Pathak, P. A., Roth, A. E., and Sönmez, T. 2005a. The Boston Public School
Match. American Economic Review, 95(2), 368–371.
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Ángel Ballester, M. and Rey-Biel, P. 2009. Does Uncertainty Lead to Sincerity? Simple and Complex
Voting Mechanisms. Social Choice and Welfare, 33(3), 477–494.



references 477

Anshelevich, E., Dasgupta, A., Kleinberg, J. M., Tardos, É., Wexler, T., and Roughgarden, T. 2004.
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Eğeciouğlu, Ö. and Giritligil, A. E. 2014. Anonymous and Neutral Social Choice: Existence Results
on Resoluteness. Working paper 201401, Murat Sertel Center for Advanced Economic Studies.

Ehlers, L. and Klaus, B. 2004. Resource-Monotonic House Allocation. International Journal of Game
Theory, 32, 545–560.

Ehlers, L. and Klaus, B. 2007. Consistent House Allocation. Economic Theory, 30, 561–574.
Ehlers, L. and Klaus, B. 2011. Corrigendum to “Resource-Monotonicity for House Allocation Prob-

lems.” International Journal of Game Theory, 40, 281–287.
Ehlers, L. and Klaus, B. 2014. Strategy-Proofness Makes the Difference: Deferred-Acceptance with

Responsive Priorities. Mathematics of Operations Research, 39, 949–966.
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Hajduková, J. 2006. Coalition Formation Games: A Survey. International Game Theory Review, 8(4),
613–641.

Hammond, P. 1991. Interpersonal Comparisons of Utility: Why and How They Are and Should Be
Made. In Interpersonal Comparisons of Well-Being, ed. Elster, J., and Roemer, J., 200–254. New
York: Cambridge University Press.

Hare, T. 1859. Treatise on the Election of Representatives, Parliamentary and Municipal. London:
Longman, Green, Reader, and Dyer.

Hartvigsen, D. 2006. Vote Trading in Public Elections. Mathematical Social Sciences, 52(1), 31–48.
Hazon, N. and Elkind, E. 2010. Complexity of Safe Strategic Voting. In Proceedings of the 3rd

International Symposium on Algorithmic Game Theory (SAGT), 210–221. New York: Springer.
Hazon, N., Dunne, P. E., Kraus, S., and Wooldridge, M. 2008. How to Rig Elections and Competitions.

In Proceedings of the 2nd International Workshop on Computational Social Choice (COMSOC).
Hazon, N., Aumann, Y., Kraus, S., and Wooldridge, M. 2012. On the Evaluation of Election Outcomes

Under Uncertainty. Artificial Intelligence, 189, 1–18.
Hazon, N., Lin, R., and Kraus, S. 2013. How to Change a Group’s Collective Decision? In Proceedings

of the 23rd AAAI Conference on Artificial Intelligence, 198–205. Palo Alto, CA: AAAI.
Hemachandra, L. 1989. The Strong Exponential Hierarchy Collapses. Journal of Computer and

System Sciences, 39(3), 299–322.
Hemaspaandra, E. and Hemaspaandra, L. 2007. Dichotomy for Voting Systems. Journal of Computer

and System Sciences, 73(1), 73–83.
Hemaspaandra, L. and Ogihara, M. 2002. The Complexity Theory Companion. New York: Springer.
Hemaspaandra, L. and Williams, R. 2012. An Atypical Survey of Typical-Case Heuristic Algorithms.

SIGACT News, 43(4), 71–89.
Hemaspaandra, E. and Rothe, J. 1998. Recognizing When Greed Can Approximate Maximum Inde-

pendent Sets Is Complete for Parallel Access to NP. Information Processing Letters, 65(3), 151–
156.



references 503

Hemachandra, L. and Wechsung, G. 1991. Kolmogorov Characterizations of Complexity Classes.
Theoretical Computer Science, 83, 313–322.

Hemaspaandra, E., Hemaspaandra, L., and Rothe, J. 1997a. Exact Analysis of Dodgson Elections:
Lewis Carroll’s 1876 Voting System is Complete for Parallel Access to NP. Journal of the ACM,
44(6), 806–825.

Hemaspaandra, E., Hemaspaandra, L., and Rothe, J. 1997b. Raising NP Lower Bounds to Parallel
NP Lower Bounds. SIGACT News, 28(2), 2–13.

Hemaspaandra, E., Spakowski, H., and Vogel, J. 2005. The Complexity of Kemeny Elections. Theo-
retical Computer Science, 349(3), 382–391.

Hemaspaandra, E., Hemaspaandra, L., and Rothe, J. 2007. Anyone But Him: The Complexity of
Precluding an Alternative. Artificial Intelligence, 171(5–6), 255–285.

Hemaspaandra, E., Hemaspaandra, L., and Rothe, J. 2009. Hybrid Elections Broaden Complexity-
Theoretic Resistance to Control. Mathematical Logic Quarterly, 55(4), 397–424.

Hemaspaandra, E., Hemaspaandra, L., and Rothe, J. 2012a. Controlling Candidate-Sequential Elec-
tions. In Proceedings of the 20th European Conference on Artificial Intelligence (ECAI), 905–906.
Amsterdam: IOS Press.

Hemaspaandra, E., Hemaspaandra, L., and Rothe, J. 2012b. Online Voter Control in Sequential
Elections. In Proceedings of the 20th European Conference on Artificial Intelligence (ECAI),
396–401. Amsterdam: IOS Press.

Hemaspaandra, E., Hemaspaandra, L., and Menton, C. 2013a. Search versus Decision for Election
Manipulation Problems. In Proceedings of the 30th Annual Symposium on Theoretical Aspects of
Computer Science, 377–388. Dagstuhl: LIPICS.

Hemaspaandra, L., Lavaee, R., and Menton, C. 2013b. Schulze and Ranked-Pairs Voting Are Fixed-
Parameter Tractable to Bribe, Manipulate, and Control. In Proceedings of the 12th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS), 1345–1346. Richland, SC:
IFAAMAS.

Hemaspaandra, E., Hemaspaandra, L., and Rothe, J. 2014a. The Complexity of Online Manipulation
of Sequential Elections. Journal of Computer and System Sciences, 80(4), 697–710.

Hemaspaandra, E., Hemaspaandra, L., and Schnoor, H. 2014b. A Control Dichotomy for Pure Scoring
Rules. In Proceedings of the 28th AAAI Conference on Artificial Intelligence, 712–720. Palo Alto,
CA: AAAI.

Hemaspaandra, L. A., Lavaee, R., and Menton, C. 2014c. Schulze and Ranked-Pairs Voting Are
Fixed-Parameter Tractable to Bribe, Manipulate, and Control. CoRR, abs/1210.6963.

Hemaspaandra, E., Hemaspaandra, L., and Rothe, J. 2015. The Complexity of Manipulative Actions
in Single-Peaked Societies. In Economics and Computation: An Introduction to Algorithmic Game
Theory, Computational Social Choice, and Fair Division, ed. Rothe, J., Chapter 5, 327–360. New
York: Springer.

Henriet, D. 1985. The Copeland Choice Function: An Axiomatic Characterization. Social Choice
and Welfare, 2(1), 49–63.

Herreiner, D. K. and Puppe, C. D. 2002. A Simple Procedure for Finding Equitable Allocations of
Indivisible Goods. Social Choice and Welfare, 19, 415–430.

Herreiner, D. K. and Puppe, C. D. 2009. Envy Freeness in Experimental Fair Division Problems.
Theory and Decision, 67(1), 65–100.

Hillinger, C. 2005. The Case for Utilitarian Voting. Discussion Papers in Economics No. 653,
University of Munich.

Hoag, C. G. and Hallett, G. H., eds. 1926. Proportional Representation. New York: Macmillan.
Hojati, M. 1996. Optimal Political Districting. Computers & OR, 23(12), 1147–1161.
Holler, M. J. 1982. Forming Coalitions and Measuring Voting Power. Political Studies, 30, 262–271.



504 references

Homan, C. and Hemaspaandra, L. 2009. Guarantees for the Success Frequency of an Algorithm for
Finding Dodgson-Election Winners. Journal of Heuristics, 15(4), 403–423.

Homeshaw, J. 2001. Inventing Hare-Clark: The Model Arithmetocracy. In Elections: Full, Free and
Fair, ed. Sawer, M., 96–114. Annandale: The Federation Press.

Horen, J. and Riezman, R. 1985. Comparing Draws for Single Elimination Tournaments. Op.
Research, 33(2), 1401–1409.

Horan, S. 2013. Implementation of Majority Voting Rules. Working paper.
Houy, N. 2009a. A Few New Results on TEQ. Mimeo.
Houy, N. 2009b. Still More on the Tournament Equilibrium Set. Social Choice and Welfare, 32,

93–99.
Howard, R. A. and Matheson, J. E. 1984. Influence Diagrams. In Readings on the Principles and

Applications of Decision Analysis, vol. 2, ed. Howard, R. A., and Matheson, J. E., 720–761. Menlo
Park, CA: Strategic Decision Group.

Huang, C. C. and Kavitha, T. 2012. Weight-Maximal Matchings. In Proceedings of MATCH-UP ’12:
The 2nd International Workshop on Matching Under Preferences, 87–98.

Huang, J. and Guestrin, C. 2009. Riffled Independence for Ranked Data. In Advances in Neural
Information Processing Systems 21, 799–807. Cambridge, MA: MIT.

Hudry, O. 1989. Recherche d’ordres Médians: Complexité, Algorithmique et Problèmes Combina-
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Kolm, S.-C. 1972. Justice et équité. Éd. du Centre National de la Recherche Scientifique.
Komusiewicz, C. and Niedermeier, R. 2012. New Races in Parameterized Algorithmics. In Proceed-

ings of the 37th International Symposium on Mathematical Foundations of Computer Science,
19–30. New York: Springer.

Konczak, K. and Lang, J. 2005. Voting Procedures with Incomplete Preferences. Pages 124–129 of:
Proceedings of the Multidisciplinary IJCAI-05 Workshop on Advances in Preference Handling.
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Schwartz, T. 1986. The Logic of Collective Choice. New York: Columbia University Press.
Schwartz, T. 1990. Cyclic Tournaments and Cooperative Majority Voting: A Solution. Social Choice

and Welfare, 7(1), 19–29.
Scott, A. and Fey, M. 2012. The Minimal Covering Set in Large Tournaments. Social Choice and

Welfare, 38(1), 1–9.
Scott, S. 2005. A Study of Stable Marriage Problems with Ties. PhD thesis, University of Glasgow.
See, A., Bachrach, Y., and Kohli, P. 2014. The Cost of Principles: Analyzing Power in Compatibility

Weighted Voting Games. In Proceedings of the 13th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), 37–44. Richland, SC: IFAAMAS.

Seedig, H. G. 2014. Majority Relations and Tournament Solutions: A Computational Study. PhD
thesis, Technische Universität München.

Sen, A. K. 1966. A Possibility Theorem on Majority Decisions. Econometrica, 34, 491–499.
Sen, A. K. 1970. Collective Choice and Social Welfare. Amsterdam: North-Holland.
Sen, A. K. 1986. Social Choice Theory. In Handbook of Mathematical Economics, vol. 3, ed. Arrow,

K. J., and Intriligator, M. D., 1073–1181. New York: Elsevier.
Serafini, P. and Simeone, B. 2012. Parametric Maximum Flow Methods for Minimax Approximation

of Target Quotas in Biproportional Apportionment. Networks, 59(2), 191–208.
Sertel, M. R. and Sanver, M. R. 2004. Strong Equilibrium Outcomes of Voting Games are the

Generalized Condorcet Winners. Social Choice and Welfare, 22(2), 331–347.



522 references

Service, T. C. and Adams, J. A. 2012a. Strategyproof Approximations of Distance Rationalizable
Voting Rules. In Proceedings of the 11th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), 569–576. Richland, SC: IFAAMAS.

Service, T. C. and Adams, J. A. 2012b. Communication Complexity of Approximating Voting Rules.
In Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), 593–602. Richland, SC: IFAAMAS.

Shapley, L. S. 1953. A Value for n-Person Games. In Contributions to the Theory of Games, vol. 2,
ed. Kuhn, H. W., and Tucker, A. W., 307–317. Princeton, NJ: Princeton University Press.

Shapley, L. S. and Grofman, B. 1984. Optimizing Group Judgmental Accuracy in the Presence of
Interdependencies. Public Choice, 43, 329–343.

Shapley, L. S. and Scarf, H. 1974. On Cores and Indivisibility. Journal of Mathematical Economics,
1, 23–37.

Shepard, R. N. 1959. Stimulus and Response Generalization: A Stochastic Model Relating General-
ization to Distance in Psychological Space. Psychometrika, 22(4), 325–345.

Shepsle, K. A. and Weingast, B. R. 1984. Uncovered Sets and Sophisticated Outcomes with Impli-
cations for Agenda Institutions. American Journal of Political Science, 28(1), 49–74.

Shoham, Y. and Leyton-Brown, K. 2009. Multiagent Systems: Algorithmic, Game-Theoretic, and
Logical Foundations. New York: Cambridge University Press.

Simjour, N. 2009. Improved Parameterized Algorithms for the Kemeny Aggregation Problem. In
Proceedings of the 4th International Workshop on Parameterized and Exact Computation, 312–
323. New York: Springer.

Simjour, N. 2013. Parameterized Enumeration of Neighbour Strings and Kemeny Aggregations. PhD
thesis, University of Waterloo.

Skowron, P., Faliszewski, P., and Slinko, A. 2013a. Achieving Fully Proportional Representation
is Easy in Practice. In Proceedings of the International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), 399–406. Richland, SC: IFAAMAS.

Skowron, P., Yu, L., Faliszewski, P., and Elkind, E. 2013b. The Complexity of Fully Proportional
Representation for Single-Crossing Electorates. In Proceedings of the International Symposium on
Algorithmic Game Theory (SAGT), 1–12. New York: Springer.

Skowron, P., Faliszewski, P., and Slinko, A. 2013c. Fully Proportional Representation as Resource
Allocation: Approximability Results. In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), 353–359. Palo Alto, CA: AAAI.

Skowron, P., Faliszewski, P., and Lang, J. 2015. Finding a Collective Set of Items: From Propor-
tional Multirepresentation to Group Recommendation. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2131–2137. Palo Alto, CA: AAAI.

Slater, P. 1961. Inconsistencies in a Schedule of Paired Comparisons. Biometrika, 48(3–4), 303–
312.

Slinko, A. 2004. How Large Should a Coalition be to Manipulate an Election? Mathematical Social
Sciences, 47(3), 289–293.

Slinko, A. and White, S. 2008. Non-Dictatorial Social Choice Rules are Safely Manipulable. In
Proceedings of the 2nd International Workshop on Computational Social Choice (COMSOC),
403–413.

Smith, J. 1973. Aggregation of Preferences with Variable Electorate. Econometrica, 41(6), 1027–
1041.

Smith, R. G. 1980. The Contract Net Protocol: High-Level Communication and Control in a Dis-
tributed Problem Solver. IEEE Transactions on Computers, C-29(12), 1104–1113.

Smith, W. D. 2000. Range Voting. http://scorevoting.net/WarrenSmithPages/homepage/rangevote.pdf.
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Arrovian social choice, 261
Arrow’s Theorem, 6
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AV, see approval voting rule
aversion to enemies game, 373
axiomatic method, 30, 427
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computational properties, 386
belief merging, 206, 421
binary aggregation, 422
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Black’s rule, 97
Black’s Theorem, 51

bloc voting, 207
blocking coalition, 360
blocking pair, 337
Borda

score, asymmetric, 28
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voting rule (Borda count), 28, 97, 147, 154, 163,

164
Borda, Jean-Charles de, 3
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Brams-Taylor algorithm, 321
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in combinatorial domains, 166
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BTT conditions, 132
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C3 social choice function, 39
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coalition, 402
coalition structure, 357
coalitional manipulation, 473
coarsening of a tournament solution, 61
Coleman index, 382
collaborative filtering, 452
collective combinatorial optimization, 16
combinatorial domain, 198, 200

connection with judgment aggregation, 423
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communication complexity, 235
compact preference representation language, 210
compilation complexity, 143, 247
complement

of a coalition (C), 402
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complement-freeness
of a judgment set, 402
of an aggregator, 405

complete vs. incomplete information, 138
completeness

of a judgment set, 402
of an aggregator, 405

completion (extension) principle, 204
complex competition format, 474
complexity theory, 17
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composition property, 277
composition-consistency, 62
computational complexity of manipulation, 131
computer-assisted theorem proving, 14
conditional preference table, 212
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Condorcet
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domain (DCondorcet), 35
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generative model, 471
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jury theorem, 184
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principle, 25
voting rule, 152, 154
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Condorcet, 175

majority, 175
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conservative extension, 81
consistency, 40, 276
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constructive manipulation, 473
Constructive-Control-by-Adding-an-

Unlimited-Number-of-Candidates, 150
Constructive-Control-by-Adding-
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Constructive-Control-by-Adding-Voters, 151
Constructive-Control-by-Deleting-
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Contagion Lemma, 6
contractual Nash stability (CNS), 360
contractually individual stability (CIS), 361
control, 149
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constructive, 149
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destructive, 154
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experimental study of, 158
in combinatorial domains, 158
in judgment aggregation, 159, 425
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online

in sequential elections, 159
control problem, 149

counting variant of a, 167
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cooperative game, 13, 358, 378
cooperative vs. noncooperative game theory, 144
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computational properties, 383
definition, 380
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cumulative voting, 207
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Debord’s Theorem, 86
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destructive manipulation, 473
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on control, 158
on manipulation, 158
on possible winners, 158, 164
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discrete, 176
edge reversal, 177
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Kendall tau, 176
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vote insertion, 177
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distance rationalizability, 104
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distributed fair division, 308
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Dodgson approximation, 118
Dodgson score, 104
Dodgson voting rule, 45, 103, 125
Dodgson winner problem, 109, 110
Dodgson, Charles Lutwidge, 4, 103
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domain, 264
domain restrictions, 29

in judgment aggregation, 407
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Dubins-Spanier algorithm, 314
Duggan-Schwartz Theorem, 50
dummy player, 381
dynamic programming, 116
dynamic social choice, 17
dynamics, 143
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effort, 472
egalitarian-equivalence, 272
election fraud detection, 159

electoral control, see control
electorate

single-crossing, 158
nearly, 158

Elevator Lemma, 276
envy

cycle, 301
maximal, 300
possible / necessary, 303
ratio, 302

envy-freeness, 295, 313
equal treatment of equals, 269, 278
equal-division lower bound, 271
equal-division Walrasian rule, 270
equitability, 313
essential set (ES), 82, 101
even-number-negatable agenda, 417
Even-Paz algorithm, 314
expected quality of the winner, 472
Extension-Bribery, 168

f -equivalence, 248
fair allocation, 261
fair division with single-peaked preferences, 264
fallback voting, 148, 154, 163
false-name-proofness, 144
Field Expansion Lemma, 6
Fishburn’s classification, 38
Fisher market, 327
fixed electorate, 29
fooling set, 236
fractional hypergraph matching, 375
frequency of manipulability, 141
full P -agenda control, 457, 458
full agenda control, 457
fully proportional representation, 208

Gale–Shapley algorithm, 334, 338, 339
game-theoretic models of manipulation, 142
Gamson’s hedonic game, 374
general agenda control, 457
geometric reward mechanism, 443
GETCHA, 71, 82
Gibbard-Satterthwaite Theorem, 46, 76, 128

quantitative versions, 141
GOCHA, 83
group activity selection game, 374
group classification, 16
Group Contraction Lemma, 6
group recommendation, 16
Groupthink, 439

Hamming distance, 205
between two judgment sets, 403

Hare voting rule, 37
hedonic coalition formation game, additively

separable, 364
hedonic coalition formation game, fractional, 357,

374
hedonic coalition formation game, with

B-preferences, 365
hedonic coalition formation game, with

W-preferences, 366
hedonic coalition net, 362
heuristic algorithm

frequently self-knowingly correct, 113
highish outdegree, 467, 468
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homogeneity, 122
Hospitals/Residents problem (hr), 336, 337
Hospitals/Residents problem with Couples (hrc),

344
Hospitals/Residents problem with Ties (hrt), 343
House Allocation problem (ha), 346, 349
Housing Market (hm), 347, 349
hybrid voting rules, 138
hypercube, 205, 211

idempotency of a tournament solution, 61
IIA, see independence of irrelevant alternatives
immediate acceptance rule, 270
impartial culture, 226
implementation by agenda, 456
imposition, 32
imputation, 380
inapproximability

of Dodgson score/ranking, 124
of StrongYoung score, 126

independence
in judgment aggregation, 404

independence of irrelevant alternatives, 5
individual rationality, 359
Individually Rational Lists of Coalitions (IRLC),

362
individual stability (IS), 360
instant run-off voting (IRV) voting rule, 37
integer programming, 19
irresolute voting rules, 131
issues, 200
iterative voting, 14

judgment aggregation, 159
judgment aggregation axioms

anonymity, 404
complement-freeness, 405
completeness, 405
consistency, 405
independence, 404
monotonicity, 404
neutrality, 404
nondictatoriality, 415
systematicity, 405
unanimity, 404

judgment aggregation rule, 403
judgment set, 402

k-approval voting rule, 37, 147, 163
k-veto voting rule, 147, 163
Kemeny’s voting rule, 86, 45, 112

approximation algorithms, 90
computational hardness, 88
in judgment aggregation, 410
parameterized algorithms, 91
practical algorithms, 93

Kendall’s tau distance, 44, 87
Kendall-Wei method, 64
king, 464
knockout tournament, 454

balanced, 459, 473

linear programming, 19
linear programming formulation

of Dodgson score, 120
link prediction, 452

Llull, Ramon, 3
lobbying problem, 166
logic, 401, 425
lower bound on welfare, 271
LP-tree, 213

majority cycle, 34
majority graph, 456
majority margin, 85
majority relation, 58
majority rule, 185

in judgment aggregation, 403, 409, 414
Mallows model, 227
Manipulation, 163, 164
manipulation

approximability of, 158
in judgment aggregation, 413
online

in sequential elections, 159
manipulation as a computational problem

basic variant, 132
coalitional manipulation, 134
coalitional weighted manipulation, 135

margin-of-victory problem, 167
marginal contribution net, 362
marginal preference, 200
Markov set, 65
marriage game, 374
match, 453, 454
matching, 267, 337, 346, 353

greedy maximum, 353
individually rational, 347, 350
maximum Pareto optimal, 351
pairwise stable, 345
Pareto optimal, 346, 349
popular, 352, 353
rank-maximal, 353
setwise stable, 345
stable, 337, 340, 344, 345
strict core, 347, 349
strongly stable, 343
super-stable, 343
weak core, 347
weakly stable, 343

matching representation of a seeding, 465
maximal lottery, 66
maximin voting rule, 148, 154, 163

computation, 97
maximin share, 297
maximum likelihood estimator, 187

for ranking (MLERIV), 189
for winner (MLEWIV), 193

maximum regret, 231
maxmin fairness, 295
May’s Theorem, 34
McGarvey’s Theorem, 58
mechanism, 340, 347

core, 349
Core from Fixed Endowments (CFE), 349
Core from Random Endowments (CRE), 349
Random Serial Dictatorship (RSD), 348
Roth-Vande Vate, 342
Serial Dictatorship (SD), 348
strategyproof, 340, 341, 350, 351

mechanism design, 13, 129
median order, 87
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median property, 414
Min-Cut recommendation system, 440
minimal TC-retentive set, 74
minimal consistent enlargement, 282
minimal covering set

of a weighted tournament, 102
minimal covering set, 72
minimal extending set, 72
minimally inconsistent set, 403
minimax approval voting, 205
minimax regret, 231
misrepresentation, 208, 252
monotonic probability matrix, 459, 472
monotonicity, 122

down, 42
half-way, 42
in judgment aggregation, 404
Maskin, 42
of a tournament solution, 61
one-way, 42
strong, 42
weak, 41

Monroe scheme, 208
Muller-Satterthwaite Theorem, 47
multi-level marketing, 441
multiagent systems, 423
multiple election paradoxes, 201, 221
multiple elimination tournament, 473
multiple referenda, 197, 198
multiwinner elections, 197, 207

Nanson’s voting rule, 37
computation, 97

Nash stability, 360
necessary winner, 228
net preference (NetP (a > b)), 27
network analysis, 376
neutrality, 31, 455

in judgment aggregation, 404
no-domination of equal division, 271
no-envy, 269

for groups, 272
in trades, 269

noise model
Mallows, 186, 187
rankings, 187
winners, 193

nontrivial agenda, 402
nonunique-winner model, 160
norm, 180
null object, 266

O-legal, 216
object, 267

desirable, 266
undesirable, 266

object allocation
priority-augmented, 267

object-allocation problem, 266
objects-and-money allocation problem, 266
odd-max-clique, 108
opportunity, 272
optimal seeding, 472
order preservation in awards, 278
orthogonal decomposition into cyclic and cocyclic

components, 39

ownership
collective, 263
individual, 263
mixed, 263
semi-collective, 263

ownership data, 263

P -agenda control, 457, 459, 460
PageRank, 430
pair-negatable agenda, 419
pairwise comparison, 225, 235, 453
pairwise majority

>μ, 27
pairwise majority rule (PMR), 34

paradoxes of power, 388, 389
parameterized complexity

of Dodgson score, 116
of StrongYoung elections, 115

Pareto-optimality, 5, 32, 61, 68, 78, 295, 359, 455,
456

parity rule, 418
partial preference, 225
participation, 42, 455
party affiliation game, 369
peak amount, 265
perfect partition, 359
picking sequences, 307
pivotal player, 382
Pliny the Younger, 3
PLS (polynomial local search), 368
plurality with run-off voting rule, 37
plurality voting rule, 27, 147, 152, 154, 161, 163
polynomial hierarchy, 108
polynomial-time many-one reduction, 149
population monotonicity, 275
positional scoring rule, 147

pure, 158
positive responsiveness, 33
possible and necessary winner problems, 144
possible winner, 228
Possible-Winner, 164
potential function, 365
PPAD, 375
preference agenda, 403
preference elicitation, 239
preference query, 235
preference ranking, 26
Preference Refinement Algorithm, 371
preferences, 264

additive, see modular
compact representation, 289
lifting, 287
modular, 287
monotonic, 294
responsive, 287
separable, 199, 200, 364
single-peaked, 51, 112, 130, 141, 158, 166, 238,

265
value-restricted, 52

premise-based rule, 411
price function, 159

discrete, 160
$discrete, 160
family of price functions, 160
swap-bribery, 160

price of fairness, 296, 325
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principal ultrafilter, 416
priority

absolute, 263
relative, 263

priority data, 263
priority order, 267
probability distribution, 471
probability matrix, 457
probability of winning, 455
probably approximately correct (PAC) learning,

254
product of tournaments, 60
profile, 26

in judgment aggregation, 402
profile completion, 226
profile of weak rankings, 26
proper reward mechanism, 443
proportionality, 313
pseudodistance, 175
Public Good index, 382
punctual requirement, 271

with full coverage, 271

quota, 378
quota rule, 408

Random Walk recommendation system,
439

randomized social choice, 14, 130
range voting rule, 148, 154, 163

normalized, 148, 154
ranked pairs voting rule, 98, 148, 163

computation, 99
ranking scoring rule, 45
ranking system, 430
ranking system axioms

Collapsing, 433
Isomorphism, 432
Proxy, 434
Self Edge, 433
Vote by Committee, 433

rationalizable choice function, 245
recommendation system, 436
recommendation system axioms

Independence of Irrelevant Stuff, 437
Neighborhood Consensus, 437
No Groupthink, 440
Positive Response, 436
Scale Invariance, 438
Symmetry, 436
Transitivity, 438
Trust Propagation, 438

referal reward axioms
Additivity, 444
Budget, 443
Child Dependence, 444
Depth Level Dependence, 444
Local Split Proof, 448
Monotonicity, 448
Split Proof, 448
SubTree, 442
Unbounded Reward, 443

referral forest, 442
referral tree, 441
refinement of a tournament solution, 61
reinforcement, 40, 455

relational requirement, 273
resoluteness, 29
resource data, 263
resource monotonicity, 274
Robertson-Webb model, 316
robust winner, 246
robustness principle, 276
roommate game, 374
round-robin tournament, 473, 474
Rural Hospitals Theorem, 339

safe strategic voting, 144
safety of the agenda, 419
SCF, see social choice function
School Choice problem (sc), 337, 341,

350
Schulze’s voting rule, 98, 148, 154, 163

computation, 98
Schwartz set, 83
Schwartz’s conjecture, 74
scoring rule, 37, 177, 189, 193

characterization, 194
compound, 40
continuity of, 40

scoring vector, 147
Seed Algorithm, 467
seeding, 454, 455
seeding efficiency, 474
selection systems, 451
Selfridge-Conway algorithm, 315
Sen’s Possibility Theorem, 52
sequential majority comparison voting rule (SMC),

36, 454, 460
sequential voting protocol, 216
set extension, 77, 365

Fishburn’s extension, 77
Kelly’s extension, 77

Shapley value, 381
characterization, 382
computational properties, 385, 386

Shapley-Shubik voting index, 382
Shift-Bribery, 164
simple agenda, 78, 414
simple game, 378, 390
simple ranking scoring function, 187, 193
simplified median property, 420
Simpson’s voting rule, see maximin voting rule
simultaneous voting, 200
sincere voting, 79
single transferable vote, 37, 148, 163
single-elimination tournament, 454, 465
single-peakedness, see preferences, single-peaked

approximation, 15
single-valuedness, 268
skew-adjacency matrix, 60
Slater rule, 64

in judgment aggregation, 411
SMC-tree, 460, 473
Smith set, 71, 82
Smith-consistent, 454
SNTV, 207
social choice function, 29
social distance games, 374
social preference function, 44
social welfare, 225, 250, 323
social welfare function, 5, 29



index 535

solidarity, 273
sophisticated voting, 79
SP-AV, see approval voting, sincere-strategy

preference-based
split proof reward mechanism, 448
Splitting Lemma, 6
stability, 279, 355
stability of a tournament solution, 61
Stable Marriage problem (sm), 337
Stable Marriage problem with Incomplete lists (smi),

337
standard seeding, 472
strategic sequential voting, 220
strategyproofness, 127, 355

Fishburn-strategyproofness, 77
Kelly-strategyproofness, 77
of tournament solutions, 76

strict core, 360
strict strong Nash stability (SSNS), 360
strong individual stability (SIS), 360
strong superset property, 61
StrongYoung voting rule, 105
StrongYoung winner problem, 112
STV, see single transferable vote
subtournament, 59
summary of a tournament, 60
Summing Contributions property, 445
superking, 466, 471
Superseed Algorithm, 466
Support-Bribery, 166
Swap-Bribery, 161, 164
SWF, see social welfare function
sybil attacks, 446

local split, 447
split, 446

systematicity, 405

�
p
2 , 107, 112, 125

TE, see ties eliminate
tentative acceptance rule, 270
Tideman’s voting rule, 123
ties eliminate, 155
ties promote, 155
Top Covering Algorithm, 370
top cycle, 36, 71, 455, 457
top responsive preferences, 367
Top Trading Cycles (TTC) algorithm, 348, 349
top-k voting (query), 243
totally blocked agenda, 417
tournament, 28, 59
tournament equilibrium set, 74
tournament fixing problem, 463, 464
tournament graph, 456
tournament solution, 60
TP, see ties promote
trade robustness, 391
transferable utility cooperative game, 358
trivial tournament solution, 62
trust based recommendations, 435
trust systems, 452
truth-biased voters, 143

ultrafilter, 415
unanimity

in judgment aggregation, 404
unavailable candidate model, 245
uncovered set, 67, 464

of a weighted tournament, 102
undercut procedure, 306
uniform quota rule, 408
uniform rule, 270
unique-winner model, 112, 160
upper bound on welfare, 271
utilitarian optimality, 295
utility function, cardinal, 250

value density function, 312
piecewise constant, 312
piecewise uniform, 312

variable electorate, 29
vector weighted voting games, 393
veto, 147, 163
veto player, 383
voter weight vs. voter power, 388
voting equilibrium, 256
voting network, 435
voting protocol, 236
voting rule, 147

Borda, voting rule (Borda count), 191, 192
Condorcet-consistent, 148
continuity, 152
distance rationalizable, 178
immune to a control type, 151
Kemeny’s voting rule, 186, 192
resistant to a control type, 152
susceptible to a control type, 151
Tideman’s voting rule, 191
vulnerable to a control type, 152

voting situation, 27
voting tree, 454, 472, 473

weak composition-consistency, 62
weak Condorcet winner, 103
weak tournament, 81
WeakDodgson voting rule, 104
WeakDodgson winner problem, 112
weight, 378

total weight of a coalition, 379
weight vs. power, see voter weight vs. voter power
weighted tournament, 28, 85
weighted voting games, 377, 379
Weighted-Bribery, 161, 163, 164
Weighted-$Bribery, 161
Weighted-Manipulation, 164
welfare dominance under preference replacement,

275
winning coalition, 405
worst-case vs. typical-case hardness, 139

yes/no voting systems, 378, 390
Young score, 104
Young winner problem, 112
Young’s voting rule, 103, 104
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