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Foreword

Hervé Moulin

Axiomatics and algorithmics are two methodologies at the forefront of modern mathe-
matics. The latter goes back to the very birth of mathematics, whereas the former was
not developed until Hilbert’s famous contributions in the late 1800s.

Yet the axiomatic approach was the first to appear in modern social sciences, through
the instant success in 1951 of K. Arrow’s Social Choice and Individual Values. Beyond
the negative, discouraging message of its famous (im)possibility theorem, that book
had an immensely positive influence on the development of mathematical economics.
It opened the way to the critical evaluation of actual democratic institutions through
the filter of “self-evident” normative principles. Conversely, it allowed us to define
“optimal” rules for collective decision making and/or the allocation of scarce resources
by the convergence of a collection of such principles. In short, it started the field of
mechanism design.

Cake division is probably the first instance of an economic model with an algorith-
mic twist. The mathematical statement of the problem goes back to B. Knaster and
H. Steinhaus in the 1940s: it combines the normative choice of fairness axioms with
the algorithmic concern for a protocol made of simple “cut and choose” operations.
This literature did not have noticeable influence on the exponential development of
mechanism design in the last 40 years, in part because it was developed mostly by
mathematicians. Computational social choice will, I believe, bring it out from its rela-
tive obscurity.

In less than two decades, the COMSOC community has generated an intense dia-
logue between economists working on the normative side of mechanism design and
computer scientists poised to test the computational complexity of these mechanisms. A
remarkable side product of this collaboration is clear from the choice of the 19 thorough
chapters. Under a common axiomatic and computational umbrella, they discuss

¢ the social choice problem of selecting a public outcome from the conflicting opinions
of the citizens

¢ the microeconomic problem of dividing private commodities fairly and efficiently when
individual preferences differ

xi



xii FOREWORD

* the market design problem of (bilaterally) matching employees to firms, students to
schools, and so on

* the design of reputation indices and ranking methods in peer-to-peer systems such as
the Internet

* the formation and stability of “local public goods,” that is, (hedonic) coalitions of agents
with common interests

The relative weights of these problems are naturally quite unequal, but the point is their
coexistence.

The book offers to noneconomists an outstanding self-contained introduction to
normative themes in contemporary economics and to economists a thorough discussion
of the computational limits of their art. But I also recommend it to anyone with a taste
for axiomatics: it is replete with new and open questions that will be with us for some
time.
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CHAPTER 1

Introduction to Computational
Social Choice

Felix Brandt, Vincent Conitzer, Ulle Endriss,
Jérome Lang, and Ariel D. Procaccia

1.1 Computational Social Choice at a Glance

Social choice theory is the field of scientific inquiry that studies the aggregation of indi-
vidual preferences toward a collective choice. For example, social choice theorists—
who hail from a range of different disciplines, including mathematics, economics,
and political science—are interested in the design and theoretical evaluation of voting
rules. Questions of social choice have stimulated intellectual thought for centuries.
Over time, the topic has fascinated many a great mind, from the Marquis de Condorcet
and Pierre-Simon de Laplace, through Charles Dodgson (better known as Lewis Car-
roll, the author of Alice in Wonderland), to Nobel laureates such as Kenneth Arrow,
Amartya Sen, and Lloyd Shapley.

Computational social choice (COMSOC), by comparison, is a very young field that
formed only in the early 2000s. There were, however, a few precursors. For instance,
David Gale and Lloyd Shapley’s algorithm for finding stable matchings between two
groups of people with preferences over each other, dating back to 1962, truly had a
computational flavor. And in the late 1980s, a series of papers by John Bartholdi, Craig
Tovey, and Michael Trick showed that, on the one hand, computational complexity,
as studied in theoretical computer science, can serve as a barrier against strategic
manipulation in elections, but on the other hand, it can also prevent the efficient use of
some voting rules altogether. Around the same time, a research group around Bernard
Monjardet and Olivier Hudry also started to study the computational complexity of
preference aggregation procedures.

Assessing the computational difficulty of determining the output of a voting rule,
or of manipulating it, is a wonderful example of the importation of a concept from
one field, theoretical computer science, to what at that time was still considered an
entirely different one, social choice theory. It is this interdisciplinary view on collective
decision making that defines computational social choice as a field. But, importantly,
the contributions of computer science to social choice theory are not restricted to the
design and analysis of algorithms for preexisting social choice problems. Rather, the
arrival of computer science on the scene led researchers to revisit the old problem of
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social choice from scratch. It offered new perspectives, and it led to many new types
of questions, thereby arguably contributing significantly to a revival of social choice
theory as a whole.

Today, research in computational social choice has two main thrusts. First,
researchers seek to apply computational paradigms and techniques to provide a better
analysis of social choice mechanisms, and to construct new ones. Leveraging the the-
ory of computer science, we see applications of computational complexity theory and
approximation algorithms to social choice. Subfields of artificial intelligence, such as
machine learning, reasoning with uncertainty, knowledge representation, search, and
constraint reasoning, have also been applied to the same end.

Second, researchers are studying the application of social choice theory to compu-
tational environments. For example, it has been suggested that social choice theory
can provide tools for making joint decisions in multiagent system populated by het-
erogeneous, possibly selfish, software agents. Moreover, it is finding applications in
group recommendation systems, information retrieval, and crowdsourcing. Although
it is difficult to change a political voting system, such low-stake environments allow
the designer to freely switch between choice mechanisms, and therefore they provide
an ideal test bed for ideas coming from social choice theory.

This book aims to provide an authoritative overview of the field of computational
social choice. It has been written for students and scholars from both computer sci-
ence and economics, as well as for others from the mathematical and social sciences
more broadly. To position the field in its wider context, in Section 1.2, we provide a
brief review of the history of social choice theory. The structure of the book reflects
the internal structure of the field. We provide an overview of this structure by briefly
introducing each of the remaining 18 chapters of the book in Section 1.3. As compu-
tational social choice is still rapidly developing and expanding in scope every year,
naturally, the coverage of the book cannot be exhaustive. Section 1.4 therefore briefly
introduces a number of important active areas of research that, at the time of conceiving
this book, were not yet sufficiently mature to warrant their own chapters. Section 1.5,
finally, introduces some basic concepts from theoretical computer science, notably the
fundamentals of computational complexity theory, with which some readers may not
be familiar.

1.2 History of Social Choice Theory

Modern research in computational social choice builds on a long tradition of work on
collective decision making. We can distinguish three periods in the study of collective
decision making: early ideas regarding specific rules going back to antiquity; the
classical period, witnessing the development of a general mathematical theory of social
choice in the second half of the twentieth century; and the “computational turn” of the
very recent past. We briefly review each of these three periods by providing a small
selection of illustrative examples.

1.2.1 Early Ideas: Rules and Paradoxes

Collective decision-making problems come in many forms. They include the question
of how to fairly divide a set of resources, how to best match people on the basis of their
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preferences, and how to aggregate the beliefs of several individuals. The paradigmatic
example, however, is voting: how should we aggregate the individual preferences of
several voters over a given set of alternatives so as to be able to choose the “best”
alternative for the group? This important question has been pondered by a number of
thinkers for a long time. Also the largest part of this book, Part I, is devoted to voting.
We therefore start our historic review of social choice theory with a discussion of early
ideas pertaining to voting.'

Our first example for the discussion of a problem in voting goes back to Roman
times. Pliny the Younger, a Roman senator, described in A.D. 105 the following problem
in a letter to an acquaintance. The Senate had to decide on the fate of a number of
prisoners: acquittal (A), banishment (B), or condemnation to death (C). Although
option A, favored by Pliny, had the largest number of supporters, it did not have an
absolute majority. One of the proponents of harsh punishment then strategically moved
to withdraw proposal C, leaving its former supporters to rally behind option B, which
easily won the majority contest between A and B. Had the senators voted on all three
options, using the plurality rule (under which the alternative ranked at the top by the
highest number of voters wins), option A would have won. This example illustrates
several interesting features of voting rules. First, it may be interpreted as demonstrating
a lack of fairness of the plurality rule: even though a majority of voters believes A to
be inferior to one of the other options (namely, B), A still wins. This and other fairness
properties of voting rules are reviewed in Chapter 2. Second, Pliny’s anecdote is an
instance of what nowadays is called election control by deleting candidates. By deleting
C, Pliny’s adversary in the senate was able to ensure that B rather than A won the
election. Such control problems, particularly their algorithmic aspects, are discussed
in Chapter 7. Third, the example also illustrates the issue of strategic manipulation.
Even if option C had not been removed, the supporters of C could have manipulated
the election by pretending that they supported B rather than C, thereby ensuring a
preferred outcome, namely, B rather than A. Manipulation is discussed in depth in
Chapters 2 and 6.

In the Middle Ages, the Catalan philosopher, poet, and missionary Ramon Llull
(1232-1316) discussed voting rules in several of his writings. He supported the idea
that election outcomes should be based on direct majority contests between pairs of
candidates. Such voting rules are discussed in detail in Chapter 3. What exact rule he
had in mind cannot be unambiguously reconstructed anymore, but it may have been
the rule that today is known as the Copeland rule, under which the candidate who wins
the largest number of pairwise majority contests is elected. Whereas Pliny specifically
discussed the subjective interests of the participants, Llull saw voting as a means of
revealing the divine truth about who is the objectively best candidate, for example,
to fill the position of abbess in a convent. The mathematical underpinnings of this
epistemic perspective on voting are discussed in Chapter 8.

Our third example is taken from the period of the Enlightenment. The works of
the French engineer Jean-Charles de Borda (1733-1799) and the French philosopher
and mathematician Marie Jean Antoine Nicolas de Caritat (1743-1794), better known

! There are also instances of very early writings on other aspects of social choice. A good example is the discussion
of fair division problems in the Talmud, as noted and analyzed in modern terms by game theorists Aumann and
Maschler (1985).
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as the Marquis de Condorcet—and particularly the lively dispute between them—are
widely regarded as the most significant contributions to social choice theory in the early
period of the field. In 1770, Borda proposed a method of voting, today known as the
Borda rule, under which each voter ranks all candidates, and each candidate receives
as may points from a given voter as that voter ranks other candidates below her. He
argued for the superiority of his rule over the plurality rule by discussing an example
similar to that of Pliny, where the plurality winner would lose in a direct majority
contest to another candidate, while the Borda winner does not have that deficiency. But
Condorcet argued against Borda’s rule on very similar grounds. Consider the following
scenario with 3 candidates and 11 voters, which is a simplified version of an example
Condorcet described in 1788:

4 3 2 2

Peter Paul Paul James
Paul James Peter Peter
James Peter James Paul

In this example, four voters prefer candidate Peter over candidate Paul, whom they
prefer over candidate James, and so forth. Paul wins this election both under the plurality
rule (with 3 + 2 = 5 points) and the Borda rule (with4-1+4+3-242-242-0=14
points). However, a majority of voters (namely, 6 out of 11) prefer Peter to Paul. In
fact, Peter also wins against James in a direct majority contest, so there arguably is a
very strong case for rejecting voting rules that would not elect Peter in this situation.
In today’s terminology, we call Peter the Condorcet winner.

Now suppose two additional voters join the election, who both prefer James, to
Peter, to Paul. Then a majority prefers Peter to Paul, and a majority prefers Paul to
James, but now also a majority prefers James to Peter. This, the fact that the majority
preference relation may turn out to be cyclic, is known as the Condorcet paradox. It
shows that Condorcet’s proposal, to be guided by the outcomes of pairwise majority
contests, does not always lead to a clear election outcome.

In the nineteenth century, the British mathematician and story teller Charles Dodgson
(1832-1898), although believed to have been unaware of Condorcet’s work, suggested
a voting rule designed to circumvent this difficulty. In cases where there is a single
candidate who beats every other candidate in pairwise majority contests, he proposed
to elect that candidate (the Condorcet winner). In all other cases, he proposed to count
how many elementary changes to the preferences of the voters would be required before
a given candidate would become the Condorcet winner, and to elect the candidate for
which the required number of changes is minimal. In this context, he considered the
swap of two candidates occurring adjacently in the preference list of a voter as such an
elementary change. The Dodgson rule is analyzed in detail in Chapter 5.

This short review, it is hoped, gives the reader some insight into the kinds of questions
discussed by the early authors. The first period in the history of social choice theory is
reviewed in depth in the fascinating collection edited by McLean and Urken (1995).

1.2.2 Classical Social Choice Theory

While early work on collective decision making was limited to the design of specific
rules and on finding fault with them in the context of specific examples, around the
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middle of the twentieth century, the focus suddenly changed. This change was due to
the seminal work of Kenneth Arrow, who, in 1951, demonstrated that the problem with
the majority rule highlighted by the Condorcet paradox is in fact much more general.
Arrow proved that there exists no reasonable preference aggregation rule that does
not violate at least one of a short list of intuitively appealing requirements (Arrow,
1951). That is, rather than proposing a new rule or pointing out a specific problem with
an existing rule, Arrow developed a mathematical framework for speaking about and
analyzing all possible such rules.

Around the same time, in related areas of economic theory, Nash (1950) published
his seminal paper on the bargaining problem, which is relevant to the theory of fair allo-
cation treated in Part II of this book, and Shapley (1953) published his groundbreaking
paper on the solution concept for cooperative games now carrying his name, which
plays an important role in coalition formation, to which Part III of this book is devoted.
What all of these classical papers have in common is that they specified philosophically
or economically motivated requirements in mathematically precise terms, as so-called
axioms, and then rigorously explored the logical consequences of these axioms. As an
example of this kind of axiomatic work of this classical period, let us review Arrow’s
result in some detail.

Let N ={1,...,n} be a finite set of individuals (or voters, or agents), and let
A be a finite set of alternatives (or candidates). The set of all weak orders 77, on
A, that is, the set of all binary relations on A that are complete and transitive, is
denoted as R(A), and the set of all linear orders - on A, which in addition are
antisymmetric, is denoted as £(A). In both cases, we use > to denote the strict part
of . We use weak orders to model preferences over alternatives that permit ties and
linear orders to model strict preferences. A social welfare function (SWF) is a function
of the form f : L(A)" — R(A). That is, f is accepting as input a so-called profile
P =(Z1,..., ) of preferences, one for each individual, and maps it to a single
preference order, which we can think of as representing a suitable compromise. We
allow ties in the output, but not in the individual preferences. When f is clear from the
context, we write 2~ for f(271, ..., ZZ,), the outcome of the aggregation, and refer to it
as the social preference order.

Arrow argued that any reasonable SWF should be weakly Paretian and independent
of irrelevant alternatives (I1A). An SWF f is weakly Paretian if, for any two alternatives
a,b € A, it is the case that, if a >; b for all individuals i € N, then also a > b. That
is, if everyone strictly prefers a to b, then also the social preference order should rank
a strictly above b. An SWF f is IIA if, for any two alternatives a, b € A, the relative
ranking of a and b by the social preference order 2~ only depends on the relative
rankings of a and b provided by the individuals—but not, for instance, on how the
individuals rank some third alternative c. To understand that it is not straightforward
to satisfy these two axioms, observe that, for instance, the SWF that ranks alternatives
in the order of frequency with which they appear in the top position of an individual
preference is not IIA, and that the SWF that simply declares all alternatives as equally
preferable is not Paretian. The majority rule, while easily seen to be both Paretian and
ITA, is not an SWF, because it does not always return a weak order, as the Condorcet
paradox has shown.

An example of an SWF that most people would consider rather unreasonable is
a dictatorship. We say that the SWF f is a dictatorship if there exists an individual
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i* € N (the dictator) such that, for all alternatives a, b € A, it is the case that a >;« b
implies @ > b. Thus, f simply copies the (strict) preferences of the dictator, whatever
the preferences of the other individuals. Now, it is not difficult to see that every
dictatorship is both Paretian and ITA. The surprising—if not outright disturbing—result
due to Arrow is that the converse is true as well:

Theorem 1.1 (Arrow, 1951). When there are three or more alternatives, then every
SWEF that is weakly Paretian and 1A must be a dictatorship.

Proof. Suppose |A| = 3, and let f be any SWF that is weakly Paretian and IIA. For
any profile P and alternatives a, b € A, let Na’;b C N denote the set of individuals
who rank a strictly above b in P. We call a coalition C C N of individuals a decisive
coalition for alternative a versus alternative b if N aP>b D C implies a > b, that is,
if everyone in C ranking a strictly above b is a sufficient condition for the social
preference order to do the same. Thus, to say that f is weakly Paretian is the same as
to say that the grand coalition N is decisive, and to say that f is dictatorial is the same
as to say that there exists a singleton that is decisive. We call C weakly decisive for a
vs. b if we have at least that N/, = C implies a > b.

We first show that C being weakly decisive for a versus b implies C being (not just
weakly) decisive for all pairs of alternatives. This is sometimes called the Contagion
Lemma or the Field Expansion Lemma. So let C be weakly decisive for a versus b.
We show that C is also decisive for a’ versus b’. We do so under the assumption that
a,b,a’, b’ are mutually distinct (the other cases are similar). Consider any profile P
such that @’ >; a >; b >; b’ foralli e C, and a’ >; a, b >; V', and b > a for all
Jj & C. Then, from weak decisiveness of C for a versus b we get a > b; from f being
weakly Paretian, we get a’ > a and b > b’, and thus from transitivity, we get a’ > b’.
Hence, in the specific profile P considered, the members of C ranking a’ above b’ was
sufficient for a’ getting ranked above b’ also in the social preference order. But note
that, first, we did not have to specify how individuals outside of C rank a’ versus ', and
that, second, due to f being ITA, the relative ranking of @’ versus b’ can only depend
on the individual rankings of a’ versus »’. Hence, the only part of our construction that
actually mattered was that everyone in C ranked a’ above b'. So C really is decisive
for @’ versus b’ as claimed.

Consider any coalition C € N with |C| > 2 that is decisive (for some pair of
alternatives, and thus for all pairs). Next, we will show that we can always split C
into two nonempty subsets Cy, C, with C; U C, = C and C; N C, = ¥ such that one
of C; and C; is decisive for all pairs as well. This is sometimes called the Splitting
Lemma or the Group Contraction Lemma. Recall that |A| > 3. Consider a profile P in
which everyone ranks alternatives a, b, ¢ in the top three positions and, furthermore,
a>ib>;cforalli e Ci,b>;jc>jaforall j € Cy, and ¢ >, a > b for all k ¢
C,UC,. As C = C; UC(; is decisive, we certainly get b > c. By completeness, we
must have either a > ¢ or ¢ 2 a. In the first case, we have a situation where exactly
the individuals in C| rank a above ¢ and in the social preference order a also is ranked
above c. Thus, due to f being IIA, in every profile where exactly the individuals in C,
rank a above c, a will come out above c. That is, C; is weakly decisive for a versus c.
Hence, by the Contagion Lemma, C; is in fact decisive for all pairs. In the second case



1.2 HISTORY OF SOCIAL CHOICE THEORY 7

(¢ 7 a), transitivity and b > ¢ imply that b > a. Hence, by an analogous argument as
before, C; must be decisive for all pairs.

Recall that, due to f being weakly Paretian, N is a decisive coalition. We can
now apply the Splitting Lemma again and again, to obtain smaller and smaller decisive
coalitions, until we obtain a decisive coalition with just a single member. This inductive
argument is admissible, because N is finite. But the existence of a decisive coalition
with just one element means that f is dictatorial. O

Arrow’s Theorem is often interpreted as an impossibility result: it is impossible to devise
an SWF for three or more alternatives that is weakly Paretian, IIA, and nondictatorial.
The technique we have used to prove it is also used in Chapter 2 on voting theory and in
Chapter 17 on judgment aggregation. These chapters also discuss possible approaches
for dealing with such impossibilities by weakening our requirements somewhat.

The authoritative reference on classical social choice theory is the two-volume
Handbook of Social Choice and Welfare edited by Arrow et al. (2002, 2010). There
also are several excellent textbooks available, each covering a good portion of the field.
These include the books by Moulin (1988a), Austen-Smith and Banks (2000, 2005),
Taylor (2005), Gaertner (2006), and Nitzan (2010).

1.2.3 The Computational Turn

As indicated, Arrow’s Theorem (from 1951) is generally considered the birth of mod-
ern social choice theory. The work that followed mainly consisted in axiomatic, or
normative, results. Some of these are negative (Arrow’s Theorem being an example).
Others have a more positive flavor, such as the characterization of certain voting rules,
or certain families of voting rules, by a set of properties. However, a common point
is that these contributions (mostly published in economics or mathematics journals)
neglected the computational effort required to determine the outcome of the rules
they sought to characterize, and failed to notice that this computational effort could
sometimes be prohibitive. Now, the practical acceptability of a voting rule or a fair
allocation mechanism depends not only on its normative properties (who would accept
a voting rule that is considered unfair by society?), but also on its implementability
in a reasonable time frame (who would accept a voting rule that needs years for the
outcome to be computed?). This is where computer science comes into play, start-
ing in the late 1980s. For the first time, social choice became a field investigated
by computer scientists from various fields (especially artificial intelligence, opera-
tions research, and theoretical computer science) who aimed at using computational
concepts and algorithmic techniques for solving complex collective decision making
problems.

A paradigmatic example is Kemeny’s rule, studied in detail in Chapter 4. Kemeny’s
rule was not explicitly defined during the early phase of social choice, but it appears
implicitly in Condorcet’s works, as discussed, for instance, in Chapter 8. It played a key
role in the second phase of social choice: it was defined formally by John G. Kemeny
in 1959, characterized axiomatically by H. Peyton Young and Arthur B. Levenglick in
1978, and rationalized as a maximum likelihood estimator for recovering the ground
truth by means of voting in a committee by Young in 1988. Finally, it was recognized
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as a computationally difficult rule, independently and around the same time (the “early
phase of computational social choice”) by John Bartholdi, Craig Tovey, and Michael
Trick, as well as by Olivier Hudry and others. None of these papers, however, succeeded
in determining the exact complexity of Kemeny’s rule, which was done only in 2005,
at the time when computational social choice was starting to expand rapidly. Next
came practical algorithms for computing Kemeny’s rule, polynomial-time algorithms
for approximating it, parameterized complexity studies, and applications to various
fields, such as databases or “web science.” We took Kemeny’s rule as an example, but
there are similar stories to be told about other preference aggregation rules, as well as
for various fair allocation and matching mechanisms.

Deciding when computational social choice first appeared is not easy. Arguably,
the Gale-Shapley algorithm (1962), discussed in Chapter 14, deals both with social
choice and with computation (and even with communication, since it can also be seen
as an interaction protocol for determining a stable matching). Around the same time,
the Dubins-Spanier Algorithm (Dubins-Spanier, 1961), discussed in Chapter 13, was
one of the first important contributions in the formal study of cake cutting, that is, of
fairly partitioning a divisible resource (again, this “algorithm” can also be seen as an
interaction protocol). Just as for preference aggregation, the first computational studies
appeared in the late 1980s. Finally, although formal computational studies of the fair
allocation of indivisible goods appeared only in the early 2000s, they are heavily linked
to computational issues in combinatorial auctions, the study of which dates back to the
1980s.

By the early 2000s this trend toward studying collective decision making in the
tradition of classical social choice theory, yet with a specific focus on computational
concerns, had reached substantial momentum. Researchers coming from different fields
and working on different specific problems started to see the parallels to the work of
others. The time was ripe for a new research community to form around these ideas. In
2006 the first edition of the COMSOC Workshop, the biannual International Workshop
on Computational Social Choice, took place in Amsterdam. The announcement of this
event was also the first time that the term “computational social choice” was used
explicitly to define a specific research area.

Today, computational social choice is a booming field, carried by a large and grow-
ing community of active researchers, making use of a varied array of methodologies to
tackle a broad range of questions. There is increasing interaction with representatives of
classical social choice theory in economics, mathematics, and political science. There
is also increasing awareness of the great potential of computational social choice for
important applications of decision-making technologies, in areas as diverse as policy
making (e.g., matching junior doctors to hospitals), distributed computing (e.g., allo-
cating bandwidth to processes), and education (e.g., aggregating student evaluations
gathered by means of peer assessment methods). Work on computational social choice
is regularly published in major journals in artificial intelligence, theoretical computer
science, operations research, and economic theory—and occasionally also in other
disciplines, such as logic, philosophy, and mathematics. As is common practice in
computer science, a lot of work in the field is also published in the archival proceed-
ings of peer-reviewed conferences, particularly the major international conferences on
artificial intelligence, multiagent systems, and economics and computation.
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1.3 Book Outline

This book is divided into four parts, reflecting the structure of the field of computa-
tional social choice. Part I, taking up roughly half of the book, focuses on the design
and analysis of voting rules (which aggregate individual preferences into a collective
decision). The room given to this topic here mirrors the breadth and depth with which
the problem of voting has been studied to date.

The remaining three parts consist of three chapters each. Part II covers the problem
of allocating goods to individuals with heterogeneous preferences in a way that satisfies
rigorous notions of fairness. We make the distinction between divisible and indivisible
goods. Part IIT addresses questions that arise when agents can form coalitions and each
have preferences over these coalitions. This includes two-sided matching problems
(e.g., between junior doctors seeking an internship and hospitals), hedonic games
(where agents’ preferences depend purely on the members of the coalition they are part
of), and weighted voting games (where coalitions emerge to achieve some goal, such
as passing a bill in parliament).

Much of classical (noncomputational) social choice theory deals with voting (Part I).
In contrast, fair allocation (Part II) and coalition formation (Part III) are not always
seen as subfields of (classical) social choice theory, but, interestingly, their intersection
with computer science has become part of the core of computational social choice,
due to sociological reasons having to do with how the research community addressing
these topics has evolved over the years.

Part IV, finally, covers topics that did not neatly fit into the first three thematic
parts. It includes chapters on logic-based judgment aggregation, on applications of the
axiomatic method to reputation and recommendation systems found on the Internet,
and on knockout tournaments (as used, for instance, in sports competitions). Next, we
provide a brief overview of each of the book’s chapters.

1.3.1 Part I: Voting

Chapter 2: Introduction to the Theory of Voting (Zwicker). This chapter provides an
introduction to the main classical themes in voting theory. This includes the definition
of the most important voting rules, such as Borda’s, Copeland’s, and Kemeny’s rule.
It also includes an extensive introduction to the axiomatic method and proves several
characterization and impossibility theorems, thereby complementing our brief exposi-
tion in Section 1.2.2. Special attention is paid to the topic of strategic manipulation in
elections.

Chapter 2 also introduces Fishburn’s classification of voting rules. Fishburn used this
classification to structure the set of Condorcet extensions, the family of rules that
respect the principle attributed to the Marquis de Condorcet, by which any alternative
that beats all other alternatives in direct pairwise contests should be considered the
winner of the election. Fishburn’s classification groups these Condorcet extensions
into three classes—imaginatively called C1, C2, and C3—and the following three
chapters each present methods and results pertaining to one of these classes.

Chapter 3: Tournament Solutions (Brandt, Brill, and Harrenstein). This chapter
deals with voting rules that only depend on pairwise majority comparisons, so-called
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C1 functions. Pairwise comparisons can be conveniently represented using directed
graphs. When there is an odd number of voters with linear preferences, these graphs are
tournaments, that is, oriented complete graphs. Topics covered in this chapter include
McGarvey’s Theorem, various tournament solutions (such as Copeland’s rule, the top
cycle, or the bipartisan set), strategyproofness, implementation via binary agendas, and
extensions of tournament solutions to weak tournaments. Particular attention is paid to
the issue of whether and how tournament solutions can be computed efficiently.

Chapter 4: Weighted Tournament Solutions (Fischer, Hudry, and Niedermeier).
This chapter deals with voting rules that only depend on weighted pairwise majority
comparisons, so-called C2 functions. Pairwise comparisons can be conveniently rep-
resented using weighted directed graphs, where the weight of an edge from alternative
x to alternative y is the number of voters who prefer x to y. Prominent voting rules
of type C2 are Kemeny’s rule, the maximin rule, the ranked pairs method, Schulze’s
method, and—anecdotally—Borda’s rule. The chapter focusses on the computation,
approximation, and fixed-parameter tractability of these rules, while paying particular
attention to Kemeny’s rule.

Chapter 5: Dodgson’s Rule and Young’s Rule (Caragiannis, Hemaspaandra, and
Hemaspaandra). This chapter focuses on two historically significant voting rules
belonging to C3, the class of voting rules requiring strictly more information than a
weighted directed graph, with computationally hard winner determination problems.
The complexity of this problem is analyzed in depth. Methods for circumventing this
intractability—approximation algorithms, fixed-parameter tractable algorithms, and
heuristic algorithms—are also discussed.

The remaining five chapters in Part I all focus on specific methodologies for the analysis
of voting rules.

Chapter 6: Barriers to Manipulation in Voting (Conitzer and Walsh). This chapter
concerns the manipulation problem, where a voter misreports her preferences in order
to obtain a better result for herself, and how to address it. It covers the Gibbard-
Satterthwaite impossibility result, which roughly states that manipulation cannot be
completely avoided in sufficiently general settings, and its implications. It then covers
some ways of addressing this problem, focusing primarily on erecting computational
barriers to manipulation—one of the earliest lines of research in computational social
choice, as alluded to before.

Chapter 7: Control and Bribery in Voting (Faliszewski and Rothe). Control and
bribery are variants of manipulation, typically seen as carried out by the election
organizer. Paradigmatic examples of control include adding or removing voters or
alternatives. Bribery changes the structure of voters’ preferences, without changing the
structure of the entire election. This chapter presents results regarding the computational
complexity of bribery and control problems under a variety of voting rules. Much like
Chapter 6, the hope here is to obtain computational hardness in order to prevent strategic
behavior.

Chapter 8: Rationalizations of Voting Rules (Elkind and Slinko). While the best-
known approach in social choice to justify a particular voting rule is the axiomatic one,
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several other approaches have also been popular in the computational social choice
community. This chapter covers the maximum likelihood approach, which takes it that
there is an unobserved “correct” outcome and that a voting rule should be chosen
to best estimate this outcome (based on the votes, which are interpreted as “noisy
observations” of this correct outcome). It also covers the distance rationalizability
approach, where, given a profile of cast votes, we find the closest “consensus” profile
which has a clear winner.

Chapter 9: Voting in Combinatorial Domains (Lang and Xia). This chapter
addresses voting in domains that are the Cartesian product of several finite domains,
each corresponding to an issue, or a variable, or an attribute. Examples of contexts
where such voting processes occur include multiple referenda, committee (and more
generally multi-winner) elections, group configuration, and group planning. The chap-
ter presents basic notions of preference relations on multiattribute domains, and it
outlines several classes of solutions for addressing the problem of organizing an elec-
tion in such a domain: issue-by-issue and sequential voting, multiwinner voting rules,
and the use of compact representation languages.

Chapter 10: Incomplete Information and Communication in Voting (Boutilier and
Rosenschein). This chapter unifies several advanced topics, which generally revolve
around quantifying the amount of information about preferences that is needed to
accurately decide an election. Topics covered include the complexity of determining
whether a given alternative is still a possible winner after part of the voter preferences
have been processed, strategies for effectively eliciting voter preferences for different
voting rules, voting in the presence of uncertainty regarding the availability of alterna-
tives, the sample complexity of learning voting rules, and the problem of “compiling”
the votes of part of the electorate using as little space a possible for further processing
at a later point in time.

1.3.2 Part II: Fair Allocation

Chapter 11: Introduction to the Theory of Fair Allocation (Thomson). This chapter
offers an introduction to fair resource allocation problems as studied in economics.
While in most models of voting the alternatives are not structured in any particular
way, in resource allocation problems the space of feasible alternatives naturally comes
with a lot of internal structure. The chapter motivates and defines a wide range of
fairness criteria that are relevant to such problems, for different concretely specified
economic environments.

While Chapter 11 is restricted to concepts classically studied in economic theory, the
next two chapters zoom in on specific classes of resource allocation problems and focus
on work of a computational nature.

Chapter 12: Fair Allocation of Indivisible Goods (Bouveret, Chevaleyre, and
Maudet). This chapter addresses the fair allocation of indivisible goods. The main
topics covered are the compact representation of preferences for fair allocation prob-
lems (typically, though not always, using utility functions rather than ordinal preference
relations as in voting), the definition of appropriate fairness criteria, the algorithmic
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challenges of computing socially optimal allocations, complexity results for computing
socially optimal allocations, and protocols for identifying such optimal allocations in
an interactive manner.

Chapter 13: Cake Cutting Algorithms (Procaccia). This chapter deals with fair
allocation of heterogeneous divisible goods, also known as cake cutting. This is
quite different from the indivisible goods case, especially when taking the compu-
tational perspective, because utility functions may not have a finite discrete repre-
sentation. The chapter discusses models for reasoning about the complexity of cake
cutting. Furthermore, the chapter covers classical cake cutting methods, as well as
recent work on optimization and the tension between efficiency and fairness in cake
cutting.

1.3.3 Part III: Coalition Formation

Chapter 14: Matching under Preferences (Klaus, Manlove, and Rossi). This chapter
covers matching theory, starting with the setting where each side has preferences over
the other side, which includes the traditional example of matching men to women
but also the real-world application of matching residents (junior doctors) to hospitals.
It then covers the setting where only one side has preferences over the other, which
includes examples such as assigning students to campus housing and assigning papers
to reviewers. The chapter covers structural, algorithmic, and strategic aspects.

Chapter 15: Hedonic Games (Aziz and Savani). Matching under preferences can be
seen as a special case of coalition formation which only allows for certain types of
coalitions (e.g., coalitions of size two). Hedonic games are more general in the sense
that any coalition structure (i.e., any partitioning of the set of agents into subsets) is
feasible. The defining property of hedonic games is that an agent’s appreciation of a
coalition structure only depends on the coalition he is a member of and not on how
the remaining players are grouped. This chapter surveys the computational aspects
of various notions of coalitional stability (such as core stability, Nash stability, and
individual stability) in common classes of hedonic games.

Chapter 16: Weighted Voting Games (Chalkiadakis and Wooldridge). Weighted
voting games model situations where voters with variable voting weight accept or reject
a proposal, and a coalition of agents is winning if and only if the sum of weights of
the coalition exceeds or equals a specified quota. This chapter covers the computation
of solution concepts for weighted voting games, the relation between weight and
influence, and the expressive power of weighted voting games.

1.3.4 Part IV: Additional Topics

Chapter 17: Judgment Aggregation (Endriss). This chapter provides an introduction
to judgment aggregation, which deals with the aggregation of judgments regarding the
truth (or falsehood) of a number of possibly related statements. These statements are
expressed in the language of propositional logic, which is why judgment aggregation
is also referred to as logical aggregation. The origin of the field can be traced back
to discussions of the so-called doctrinal paradox in legal theory. The chapter covers
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the axiomatic foundations of judgment aggregation, the discussion of specific aggre-
gation procedures, connections to preference aggregation, the complexity of judgment
aggregation, and applications in computer science.

Chapter 18: The Axiomatic Approach and the Internet (Tennenholtz and Zohar).
The axiomatic approach, which is prevalent in social choice theory, gauges the desir-
ability of decision mechanisms based on normative properties. This chapter presents
applications of the axiomatic approach to a variety of systems that are prevalent on the
Internet. In particular, the chapter discusses the axiomatic foundations of ranking sys-
tems, including an axiomatic characterization of the PageRank algorithm. Furthermore,
the axiomatic foundations of crowdsourcing mechanisms and recommender systems
are discussed in detail.

Chapter 19: Knockout Tournaments (Vassilevska Williams). A knockout tourna-
ment specifies an agenda of pairwise competitions between alternatives, in which
alternatives are iteratively eliminated until only a single alternative remains. Knockout
tournaments commonly arise in sports, but more generally provide a compelling model
of decision making. This chapter covers a body of work on controlling the agenda of
a knockout tournament with the objective of making a favored alternative win, both in
terms of computational complexity and structural conditions.

1.4 Further Topics

In this section, we briefly review a number of related topics that did not fit into the
book, and provide pointers for learning more about these. We have no pretense to be
complete in our coverage of the terrain.

1.4.1 Mechanism Design

In mechanism design, the goal is to design mechanisms (e.g., auctions, voting rules, or
matching mechanisms) that result in good outcomes when agents behave strategically
(see, e.g., Nisan, 2007). Here, “strategic behavior” is typically taken to mean behavior
according to some game-theoretic solution concept. Several of the chapters discuss
some concepts from mechanism design (notably Chapters 6 and 14), but a thorough
introduction to mechanism design with money (e.g., auction theory), and topics such
as approximate mechanism design without money (Procaccia and Tennenholtz, 2013)
or incentive compatible machine learning (Dekel et al., 2010), are all outside the scope
of the book.

1.4.2 (Computational) Cooperative Game Theory

Part III of the book covers coalition formation, and thereby overlaps with (computa-
tional) cooperative game theory. Of course, it does not exhaustively cover that field,
which is worthy of a book in itself—and in fact such a book is available (Chalkiadakis
etal., 2011).
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1.4.3 Randomized Social Choice

While a voting rule returns a winning alternative (or possibly a set of tied winners), a
social decision scheme returns a probability distribution over alternatives. The role of
randomization as a barrier to strategic behavior is discussed in Chapter 6. Depending
on how preferences over probability distributions are defined, one can define various
degrees of strategyproofness, economic efficiency, and participation. The trade-off
between these properties has been analyzed by Aziz et al. (2013d, 2014c) and Brandl
et al. (2015a). Another line of inquiry is to quantify how well strategyproof social
decision schemes approximate common deterministic voting rules such as Borda’s
rule (Procaccia, 2010; Birrell and Pass, 2011; Service and Adams, 2012a).

Aziz et al. (2013a) and Aziz and Mestre (2014) have addressed the computational
complexity of computing the probability of alternatives under the random serial dic-
tatorship rule, in the context of voting as well as fair allocation. Randomization seems
particularly natural in the domain of fair allocation and researchers have transferred
concepts from voting to fair allocation (Kavitha et al., 2011; Aziz et al., 2013c), and
vice versa (Aziz and Stursberg, 2014).

1.4.4 Iterative Voting

In iterative voting settings, voters cast their vote repeatedly, starting from some initial
profile. In each round, the voters observe the outcome and one or more of them may
change their vote. Depending on the voting rule used and some assumptions regarding
the voters’ behavior, we may be able (or not) to predict that the process will converge,
as well as to guarantee that the outcome to which the process converges has some
desirable properties. In a paper that initiated a great deal of activity in this area, Meir
et al. (2010) proved for the plurality rule that, if voters update their ballots one at a
time and adopt a myopic best-response strategy, then the process converges to a Nash
equilibrium, whatever the initial state. Other voting rules and other assumptions on
voter behavior were considered by several authors (e.g., Chopra et al., 2004; Lev and
Rosenschein, 2012; Reyhani and Wilson, 2012; Grandi et al., 2013; Obraztsova et al.,
2015b). Reijngoud and Endriss (2012) added the assumption of incomplete knowledge
regarding the voting intentions of others and Meir et al. (2014) added the assumption of
uncertainty regarding this information. Alternative notions of equilibria (with truth bias
or lazy voters) were considered by Obraztsova et al. (2015a). Branzei et al. (2013b)
studied the price of anarchy of such iterated voting processes for several rules. A
different iterative model was studied by Airiau and Endriss (2009), where in each step
a voter is randomly selected, proposes a new alternative as a challenger to the current
winning alternative, and the voters have to choose between the two.

1.4.5 Computer-Assisted Theorem Proving in Social Choice

A promising direction in computational social choice is to address open research
questions using computer-aided theorem proving techniques. The role of computer
science here is very different from that in mainstream computational social choice:
computational techniques are not used to address the computation of existing social
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choice mechanisms or to identify new problems, but rather to prove and/or discover
theorems in social choice theory.” For example, Nipkow (2009) verified an existing
proof of Arrow’s Theorem using a higher-order logic proof checker. Tang and Lin
(2009) reduced the same theorem to a set of propositional logic formulas, which
can be checked automatically by a satisfiability solver, and Geist and Endriss (2011)
extended this method to a fully automated search algorithm for impossibility theorems
in the context of preference relations over sets of alternatives. Brandt and Geist (2014)
and Brandl et al. (2015b) applied these techniques to improve the understanding of
strategyproofness and participation in the context of set-valued (or so-called irresolute)
rules, and Brandt et al. (2014b) to compute the minimal number of voters required to
realize a given majority graph.

1.4.6 Approximate Single-Peakedness and Related Issues

Itis well-known that certain domain restrictions enable the circumvention of impossibil-
ity theorems and can make computationally difficult problems easy. Arguably the most
well-known of these domain restrictions is Black’s single-peakedness (see Chapter 2);
another important (but somewhat less well-known) restriction is single-crossedness. It
is usually computationally easy to recognize whether a profile satisfies such restric-
tions (Trick, 1989; Doignon and Falmagne, 1994; Escoffier et al., 2008; Bredereck
et al., 2013b; Elkind and Faliszewski, 2014). However, for larger electorates, it is often
unreasonable to expect profiles to satisfy these restrictions. Therefore, researchers
have sought to quantify the extent to which a profile satisfies one of these domain
restrictions, and also to say something informative about its structure (for instance, for
single-peakedness, by identifying the most plausible axes). Several recent papers study
such notions of near-single-peakedness, or more generally approximate versions of
domain restrictions—especially (Conitzer, 2009; Cornaz et al., 2012; Bredereck et al.,
2013a; Sui et al., 2013; Elkind and Lackner, 2014; Elkind et al., 2015b)—and their
implications to computing and manipulating voting rules (Faliszewski et al., 201 1c;
Cornaz et al., 2012, 2013; Faliszewski et al., 2014; Brandt et al., 2015¢c). A related
issue is the detection of components or clone structures in profiles (Brandt et al., 2011;
Elkind et al., 2012a).

1.4.7 Computational Aspects of Apportionment and Districting

Apportionment is the process of allocating a number of representatives to different
regions (or districts), such as states or provinces, usually according to their relative
population. Apportionment comes with electoral districting—subdividing the territory
into districts in which the election is performed, which in turn can give rise to ger-
rymandering, the redrawing of district borders for strategic reasons. Another case of
apportionment occurs in party-list proportional representation systems, in which seats
are allocated to parties in proportion to the number of votes they receive. This area of
research, which is sometimes seen as being located at the borderline between social

2 Automated reasoning has been very successful in some branches of discrete mathematics (e.g., in graph theory,
with the famous computer-assisted proof of the Four Color Theorem).
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choice theory and political science, gives rise to a variety of computational problems.
Algorithms for districting are reviewed by Ricca et al. (2013) (see also the works of
Pukelsheim et al. (2012), Ricca et al. (2007), and Hojati (1996) for technical con-
tributions to this field). Algorithms for apportionment are discussed by Balinski and
Demange (1989), Serafini and Simeone (2012), and Lari et al. (2014). The computa-
tional aspects of strategic candidacy in district-based elections are studied by Ricca
etal. (2011) and Ding and Lin (2014). Finally, related to that, the computational aspects
of vote trading (interdistrict exchange of votes) are studied by Hartvigsen (2006) and
Bervoets et al. (2015).

1.4.8 New Problem Domains for Social Choice

As stressed already in the opening paragraphs of this chapter, the interaction between
social choice theory and other disciplines, such as artificial intelligence, theoretical
computer science, and operations research, led some researchers to work on new
problem domains. Perhaps the most prominent of these new domains is the topic of
Chapter 18, which discusses social choice problems that came about with the rise of
the Internet. But there are others, some of which we mention next.

Collective combinatorial optimization. Collective combinatorial optimization deals
with the design of methods for the collective version of some combinatorial optimiza-
tion problems. An example is the group travel problem (Klamler and Pferschy, 2007),
where one has to find a Hamiltonian path in a graph (that is, a path that goes through
each vertex exactly once), given the preferences of a set of agents. Other examples are
the group knapsack problem (Nicosia et al., 2009) and the group minimum spanning
tree problem (Darmann et al., 2009; Darmann, 2013). Other such problems are con-
sidered, in a more systematic way, by Escoffier et al. (2013). In a similar vein, group
planning (Ephrati and Rosenschein, 1993) is concerned with finding a joint plan, given
the agents’ preferences over possible goals.

Group classification. Automated classification is a well-known supervised machine
learning task where the input consists of a training set of examples (e.g., a set of email
messages, some of them labeled as spam by the user and some not), and the output is a
classifier mapping any possible input (any future incoming message) to a class (spam or
not spam). Now, in many real-life situations, the training set may consist of data labeled
by several experts, who may have conflicting preferences about the learned classifier.
This problem has been studied by Meir et al. (2012), who characterize strategyproof
classification algorithms.’

Group recommendation. Recommender systems suggest interesting items for users
based on their past interaction with the system. A well-known example are book rec-
ommendations issued by online book sellers based on a user’s purchasing or browsing
history. Group recommendation is based on the idea that we sometimes want to make
such recommendations to groups of people, based on their (possibly diverse) prefer-
ences (e.g., a restaurant for a group of friends, or a holiday package for a family).

3 This line of research should not be confused with the use of voting techniques in classification (see, e.g., Bauer
and Kohavi, 1999).
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Examples of work on this problem include the contributions of Amer-Yahia et al.
(2009) and Chen et al. (2008).

Crowdsourcing. Online platforms such as Amazon’s Mechanical Turk have become a
popular method for collecting large amounts of labeled data (e.g., annotations of images
with words describing them). Social choice mechanisms can be used to aggregate the
information obtained through crowdsourcing. Besides a growing number of purely
theoretical contributions, examples for work in this area also include experimental
studies aimed at understanding how best to model the divergence between objectively
correct answers and answers actually submitted by participants (Mao et al., 2013), and
the design and evaluation of practical aggregation methods for concrete tasks, such as
the semantic annotation of corpora used in research in linguistics (Qing et al., 2014).

Dynamic social choice. Parkes and Procaccia (2013) deal with sequences of collective
decisions to be made in a population with evolving preferences, where future prefer-
ences depend on past preferences and past actions. The output of the collective decision
making process then is a policy in a Markov decision process. This setting is motivated
by online public policy advocacy groups. The causes advocated by the group’s leader-
ship have an impact on the preferences of members, leading to a dynamic process that
should be steered in a socially desirable direction.

1.5 Basic Concepts in Theoretical Computer Science

We conclude this chapter with a brief review of some standard concepts from (theoreti-
cal) computer science that will be used in many places in the book, particularly concepts
from the theory of computational complexity. Of course, it is challenging to commu-
nicate in so little space material that students usually learn over a sequence of courses.
Nevertheless, we hope that this provides the reader without computational background
some intuitive high-level understanding of these concepts—enough to appreciate a
result’s significance at a high level, as well as to know for which terms to search in
order to obtain more detailed background as needed. We imagine this may also serve
as a useful reference for some readers who do have computational background.

1.5.1 Computational Complexity

Computational complexity deals with evaluating the computational resources (mostly,
time and space) needed to solve a given problem. We first need to make explicit what
we mean by a “problem.” Most computational problems considered in this book are
phrased as decision problems. Formally, a decision problem P is defined as a pair
(Lp,Yp) where Lp is a formal language, whose elements are called instances, and
Yp C Lp is the set of positive instances. For instance, the problem of deciding whether
a directed graph is acyclic is defined by the set L p of all directed graphs, while Yp is
the set of all directed acyclic graphs. If I € Yp, then [ is said to be a positive instance
of P. Sometimes we will also need to deal with search problems, also called function
problems, whose answer is a solution (when there exists one): a function problem is a
set (Lp, Sp, Rp), where Sp is another formal language (the set of possible solutions)
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and Rp C Lp x Sp is a relation between instances and solutions, where (I, S) € Rp
means that S is a solution for /. For instance, find a nondominated vertex in a directed
graph, if any and find all vertices with maximum outdegree are both search problems.
Solving the function problem on instance I € L p consists in outputting some S € Sp
such that (1, §) € Rp, if any, and “no solution” otherwise.

Complexity theory deals with complexity classes of problems that are computation-
ally equivalent in a certain well-defined way. Typically, (decision or function) problems
that can be solved by an algorithm whose running time is polynomial in the size of the
problem instance are considered tractable, whereas problems that do not admit such an
algorithm are deemed intractable. Formally, an algorithm is polynomial if there exists
a k € N such that its running time is in O(n*), where n is the size of the input. Here,
O(n*) denotes the class of all functions that, for large values of n, grow no faster than
c - n* for some constant number ¢ (this is the “Big-O notation™). For instance, when
k = 1, the running time is linear, and when k = 2, the running time is quadratic in n.

The class of decision problems that can be solved in polynomial time is denoted by
P, whereas NP (for “nondeterministic polynomial time”) refers to the class of decision
problems whose solutions can be verified in polynomial time. For instance, the problem
of deciding whether a directed graph is acyclic is polynomial while deciding whether
a directed graph has a cycle that goes through all vertices exactly once (called a
Hamiltonian cycle) is in NP (but is not known to be in P).

The famous P % NP conjecture states that the hardest problems in NP do not admit
polynomial-time algorithms and are thus not contained in P. Although this statement
remains unproven, it is widely believed to be true. Hardness of a problem for a particular
class intuitively means that the problem is no easier than any other problem in that class.
Both membership and hardness are established in terms of reductions that transform
instances of one problem into instances of another problem using computational means
appropriate for the complexity class under consideration. Most reductions in this book
rely on reductions that can be computed in time polynomial in the size of the problem
instances, and are called polynomial-time reductions. Finally, a problem is said to
be complete for a complexity class if it is both contained in and hard for that class.
For instance, deciding whether a directed graph possesses a Hamiltonian cycle is
NP-complete.

Given the current state of complexity theory, we cannot prove the actual intractabil-
ity of most algorithmic problems, but merely give evidence for their intractability.
Showing NP-hardness of a problem is commonly regarded as very strong evidence for
computational intractability because it relates the problem to a large class of problems
for which no efficient, that is, polynomial-time, algorithm is known, despite enormous
efforts to find such algorithms.

Besides P and NP, several other classes will be used in this book. Given a decision
problem P = (L p, Yp), the complementary problem of P is definedas P = (Lp, Lp \
Yp). Given a complexity class C, a decision problem belongs to the class coC if P
belongs to C. Notably, coNP is the class of all decision problems whose complement
is in NP. For instance, deciding that a directed graph does not possess a Hamiltonian
cycle is in coNP (and coNP-complete).

We now introduce several complexity classes which are supersets of NP and coNP
(and are strongly believed to be strict supersets). Given two complexity classes C and
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C’, we denote by C® the set of all problems that can be solved by an algorithm for C
equipped with C'-oracles, where a C'-oracle solves a problem in C’ (or in coC’) in unit
time. The class Ag , defined as PNP_ is thus the class of all decision problems that can
be solved in polynomial time with the help of NP-oracles, which answer in unit time
whether a given instance of a problem in NP is positive or not. The class ®2P is the subset
of Ag consisting of all decision problems that can be solved in polynomial time using
“logarithmically many” NP-oracles. Equivalently, @g may be defined as the subset of
Ag for which a polynomial number of NP-oracles may be used, but these need to be
queried in parallel, that is, we cannot use the answer to one oracle to determine what
question to put to the next oracle. Finally, ©) = NPN" and T} = coZ)*. Thus, for
instance, Eg is the class of decision problems for which the correctness of a positive
solution can be verified in polynomial time by an algorithm that has access to an
NP-oracle. The following inclusions hold:

P € NP,coNP € ®F c A} c =f, .

It is strongly believed that all these inclusions are strict, although none of them was
actually proven to be strict. Interestingly, @; and (to a lesser extent) A", E; and H; play
an important role in computational social choice (and indeed, we find them referred to
in Chapters 3, 4, 5, 8, 12, and 17). We occasionally refer to other complexity classes
(such as PLS or #P) in the book; they are introduced in the chapter concerned.

For a full introduction and an extensive overview of computational complexity
theory, we refer the reader to Papadimitriou (1994) and Ausiello et al. (1999).

1.5.2 Linear and Integer Programming

One notable computational problem is that of solving linear programs. A linear program
consists of a set of variables x; (1 < j < n), a set of constraints indexed by i (1 <
i < m), and an objective. Constraint i is defined by parameters a;; (1 < j < n) and
b;, resulting in the following inequality constraint:

n
E ajjX; < bi.
j=1

The objective is defined by parameters c;, resulting in the following objective:

n
> cix;.
j=l1

The goal is to find a vector of nonnegative values for the x; that maximizes the value of
the objective while still meeting all the constraints (i.e., all the inequalities should hold).
Natural variants, such as not requiring variables to take nonnegative values, allowing
equality constraints, having a minimization rather than a maximization objective, and
so on, are not substantively different from this basic setup. There is a rich theory of
linear programming; for the purpose of this book, what is most important to know
is that linear programs can be solved to optimality in polynomial time. Thus, if a
computational problem can be formulated as (equivalently, reduced to) a polynomial-
sized linear program, then it can be solved in polynomial time.
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Linear programs allow all their variables to take fractional values. If instead, we
require the variables to take integer values, we obtain an integer linear program. If we
allow some but not all variables to take fractional values, we obtain a mixed integer
linear program. This apparently minor modification has significant computational ram-
ifications: solving (mixed) integer linear programs is NP-hard. Indeed, many NP-hard
problems are easily formulated as (mixed) integer linear programs. One may wonder
what the point of doing so is, as after all the latter are hard to solve. However, (mixed)
integer linear program solvers are available that scale quite well on many (though,
unsurprisingly, not all) families of instances. Moreover, (mixed) integer linear program
formulations of a problem often help us develop deeper insight into the problem at hand.
One particularly natural and helpful notion is that of the linear program relaxation of
a mixed integer linear program, which simply drops the integrality requirement, taking
us back to an easy-to-solve linear program. While this relaxation necessarily does not
always have the same optimal solutions as the original, it nevertheless often serves as
a useful starting point for analysis and computation.

A good reference for the theory and practice of both integer and linear programming
is the book by Nemhauser and Wolsey (1999).

Acknowledgments

Putting together this Handbook of Computational Social Choice has been a major
project, taking more than four years from conception to publication. We would like
to thank everyone in the research community for their significant support of this
project. This includes not only the authors, but also the many colleagues who vol-
unteered to provide in-depth reviews of individual chapters: Stéphane Airiau, Haris
Aziz, Yoram Bachrach, Péter Bir6, Craig Boutilier, Sylvain Bouveret, Michel Le Bre-
ton, Markus Brill, Ioannis Caragiannis, Franz Dietrich, Yair Dombb, John Duggan,
Edith Elkind, Piotr Faliszewski, Felix Fischer, Wulf Gaertner, Serge Gaspers, Umberto
Grandi, Davide Grossi, Paul Harrenstein, Lane Hemaspaandra, Sean Horan, Olivier
Hudry, Christian Klamler, Jean-Francois Laslier, Nicolas Maudet, Vincent Merlin,
Rolf Niedermeier, Shmuel Nitzan, Eric Pacuit, Marc Pauly, Jorg Rothe, Nisarg Shah,
Arkadii Slinko, John Weymark, Gerhard Woeginger, Lirong Xia, Yair Zick, and William
S. Zwicker. While our own background is primarily in computer science, many of these
reviewers, as well as some authors, come from other disciplines, particularly economics.
This makes the book a truly interdisciplinary resource of information. Finally, we thank
our editor Lauren Cowles at Cambridge University Press for her support and patience.

Online Version
An online version of the book can be found under the Resources tab at

www.cambridge.org/9781107060432
Password: cam1CSC


http://www.cambridge.org/9781107060432

PART 1

Voting






CHAPTER 2

Introduction to the Theory
of Voting

William S. Zwicker

2.1 Introduction to an Introduction

Suppose a finite society is about to vote on a choice of one option from among finitely
many. The options, called alternatives in voting theory, might be candidates for mayor
of a town, or different amounts to spend on building a new firehouse, or several versions
of an immigration reform bill. If we assume that

1. every two voters play equivalent roles in our voting rule
2. every two alternatives are treated equivalently by the rule
3. there are only two alternatives to choose from

then the situation is simple: May’s Theorem, discussed in Section 2.4, tells us that the
only reasonable voting method is majority rule.

Many voting contexts, however, require us to relax some of these assumptions. In
these settings, the matter of choosing a voting rule can become much less straightfor-
ward. What are the principal issues that complicate matters? Contexts for voting vary
too greatly to admit any unified answer, so we will have to narrow the question.

Our focus here is on the context of multicandidate voting, for which an appropriate
metaphor is that of electing a mayor when there are three or more candidates—so we
will relax the third condition, while holding out for the first two.'-2 Even within this
framework, “voting” can mean different things, depending on the specified form of a
ballot and of a collective decision. Our primary concern will be with ranked ballots—
each voter submits a linear ordering of the alternatives, specifying their most favored

Legislative voting, in which a representative assembly must choose between collective approval or disapproval
of some proposal or bill under consideration, provides quite a different context. While there are only two
alternatives, they may be treated unequally (as when a supermajority is required to amend a constitution) and
some legislators may play different roles than others (if they represent districts with different populations and
economies, as happens in the EU Council of Ministers, or have veto power, as do the five permanent members
of the UN Security Council).

Metaphor notwithstanding, our perspective here is primarily mathematical. See Cox (1997) and Blais et al.
(1997) for a look at how the world actually votes from the political science viewpoint.

[S]
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candidate, their second choice, and so on—and with single winners (or several winners,
in the event of a tie) as outcomes.” A voting rule in this setting is called a social choice
function or SCF (see examples in Section 2.2).

Within multicandidate voting, three results are most prominent. The first, observed
by Marie Jean Antoine Nicolas de Caritat, Marquis de Condorcet (1785) and arguably
most fundamental,* is the existence of majority cycles, in which collective preference
violates what we might expect from any “rational” individual: a majority of voters
prefer some alternative a to b, a (different) majority prefers b to ¢, and a third majority
prefers ¢ to a.’

Kenneth Arrow’s Independence of Irrelevant Alternatives principle (aka IIA) asserts
that collective voter opinion as to the relative merits of two alternatives should not be
influenced by individual voter opinions about an “irrelevant” third.® The famous Arrow
Impossibility Theorem (Arrow, 1950) tells us that, with some mild assumptions, every
voting rule for three or more alternatives either violates IIA or is a dictatorship, in
which the election outcome depends solely on the ballot of one designated voter. This
important result, establishing a basic limitation of collective decision-making methods,
contributed in a major way to the broad revival of interest in the theory of voting, about
150 years after the “Golden Age” of social choice.” More on IIA as well as a proof of
Arrow’s Theorem appear in Chapter 1 of this handbook, so we will not be dealing with
it here.

The Gibbard-Satterthwaite Theorem (aka GST), third member of the triad, estab-
lishes a different fundamental limitation on voting and is the principal topic of
Section 2.8 here. The GST asserts that every SCF f other than a dictatorship fails to be
strategyproof — f sometimes provides an incentive for an individual voter i to manip-
ulate the outcome, that is, to misrepresent his or her true preferences over the alterna-
tives by casting an insincere ballot. The incentive is that voter i prefers the alternative

3 Some view the reliance on ranked ballots as a major error, and see the major theorems of the field (see
Section 2.8, for example) more as artifacts of this mistake than as fundamental limitations on democracy. They
advocate voting rules such as range voting (Smith, 2000), majority judgment (Balinski and Laraki, 2010), or
approval voting (Brams and Fishburn, 2007) that use different ballot forms. For the argument in favor of ranked
ballots, see Arrow (1950).

Look for its appearance in proofs of Arrow’s Theorem and the Gibbard-Satterthwaite Theorem.

Buchanan (1954) argues that as society is not an “organic entity,” the concept of collective rationality (or
irrationality) has no meaning; it should be unsurprising, then, when a cooked-up form of collective preference
behaves inconsistently.

Imagine that applicants x and y are in a tight race for an open position in your department, with a third candidate
z drawing little support. An initial poll would have given the position to x. Subsequent discussion leads no
one to change their mind about x vs. y, but all support for z is withdrawn, and the effect of this change is
that y beats x in the revote. That’s a failure of ITA. The context for Arrow’s Impossibility Theorem is that of
a social welfare function (aka SWF) for which an outcome is a (weak) ranking of all alternatives. Thus Arrow
presumes transitivity of social preference. Our major (but not exclusive) concern in this chapter is with social
choice functions, for which the election outcome is the winning alternative(s) (with no assumption that social
preference is transitive in its entirety).

The McLean and Urken (1995) collection contains English translations of original works by de Borda and
Condorcet from the Golden Age (late eighteenth century), as well as some much earlier work by Ramon
Lull and Nicolaus Cusanus, and important nineteenth-century contributions by Nanson and Dodgson. Dun-
can Black’s (1958) book as well as the treatise of Thomas Hare (1859) on single transferable vote (see
Section 2.4) should also be mentioned in any brief history of pre-Arrovian social choice. Homeshaw (2001)
argues that STV was invented by the Danish mathematician and politician Carl Andrz, two years before Hare’s
treatise.

[N
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that wins when she casts some insincere ballot to the winner that would result from
a sincere one. One limitation of the GST is that it presumes every election to have
a unique winner (no ties). This might seem problematic, but the Duggan-Schwartz
Theorem (Section 2.8) provides a pretty good solution.

Most of this chapter is devoted to introducing some of the more important voting
rules in the social choice function context, along with a selection of properties, or
axioms, that distinguish among these rules. We discuss a number of theorems that
characterize classes of SCFs axiomatically, or that establish fundamental limits on
what is possible by showing that certain packages of axioms conflict with others. The
topic of strategic manipulation, while far from being our sole concern, never lies far
beneath the surface, and a detailed proof of the GST appears in Section 2.8.

The rest of the chapter is organized as follows. In Section 2.2 we provide the
definitions and notation needed for a careful discussion of social choice functions,
introducing the variety of ways that a voting rule can use the information in ranked
ballots through two examples, Copeland and Borda voting. We contrast these rules
with plurality voting, which looks only at each voter’s top choice. The idea of strategic
manipulation is introduced via examples for these three SCFs, in Section 2.2. Our first
consideration of axioms, in Section 2.3, looks at three examples: anonymity, neutrality,
and the Pareto property. We see that even these “innocuous” axioms can conflict with
other desiderata; they can force all rules to admit some ties, for example.

In Section 2.4 we introduce additional SCFs from three important classes. Condorcet
extensions, including Copeland, respect Condorcet’s principle by choosing the alterna-
tive majority-preferred to each other alternative—the Condorcet winner—whenever it
exists; majority cycles mean that it might not exist. Scoring rules (including Borda and
plurality) have each voter award points to the alternatives according to how highly they
rank them. Scoring run-offs eliminate lower-scoring alternatives sequentially, until a
surviving alternative exceeds some threshold of acceptance (or until only one survives).
Fishburn’s classification, in Section 2.5, provides insight into how these rules differ in
the type of information (extracted from the ballots) that they actually use.

The reinforcement (aka consistency) axiom and various monotonicity axioms of
Section 2.6 are different from those in Section 2.3, in that they discriminate among these
three classes of rules. Our approach to monotonicity properties is to view them as limited
forms of strategyproofness. Theorems in this section illustrate several major themes:

e It is best to avoid love at first sight with some voting rule, based on an appearance
of fairness in its method for calculating winners. The law of unintended consequences
applies . . . so wait until you see which axioms it satisfies.

¢ There is a trade-off among axioms: asking for one may rule out another.

* There is a trade-off between desirable axioms and decisiveness: some rules manage to
satisfy difficult criteria by having lots of ties.

* The split between Condorcet extensions and scoring rules is fundamental: the philo-
sophical differences between Condorcet and de Borda endure.

In Section 2.7 we consider two rules initially defined using Kendall’s tau metric.
The first, suggested by John Kemeny,® reconciles the apparent conflict between the

8 Peyton Young (1988) argues that Kemeny’s rule was first proposed by Condorcet.
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reinforcement axiom and respect for Condorcet’s principle, though the change in ballot
form weakens the implications of reinforcement. This rule shares, with Dodgson’s rule,
an important role in computational social choice, as seen in Chapters 4, 5, and 6.

Our detailed proof of the Gibbard-Satterthwaite Theorem is in Section 2.8. It is
followed, in Section 2.9, by results of Black and Sen showing that under certain
domain restrictions (limitations on allowable ballots) strategyproofness is possible.

Because of its different ballot form, the approval voting system is not generally
considered to be an SCF. Its practical and theoretical interest, however, would jus-
tify making an exception and including a brief look, in Section 2.10, at this system.
Moreover, if we relax the SCF notion by allowing voters to express indifference among
alternatives, approval voting becomes an SCF—in fact it coincides both with Borda and
with all Condorcet extensions, when these rules are suitably adapted to handle ballots
with many indifferences. The chapter ends with some brief discussion, in Section 2.11,
of the possible future of voting theory.

2.2 Social Choice Functions: Plurality, Copeland, and Borda

Voting takes place whenever a group of voters cast ballots, that are used as the basis
for a collective decision reached through the application of a voting rule. A variety
of voting contexts are possible, depending on the specified form of a ballot and of a
collective decision, and also on the interpretation we choose to make of these forms;
the term “voting rule” is generic, covering all possibilities. Our principal focus will be
on one context—that of social choice functions—which uses ranked ballots:

e N ={1,2,...,n}is afinite set (of voters).

* A is afinite set of m alternatives (e.g., candidates for mayor), with m > 2.

* The ballot cast by voter i is a linear ordering —; of A: 7=; is transitive (if a 7Z; b and
b¥x;cthena =; c,foralla, b, c € A), complete (a =—; borb =; a,foralla # b € A),
reflexive (a -; aforalla € A), and antisymmetric (ifa -; band b -; a,thena = b, for
alla, b € A); L(A) denotes the set of all linear orderings for a given A. The antireflexive
version x > y means x 2~ y holds and y = x fails.

* A profile P = (71, 7o, ..., 7n) specifies such a ballot for each voter i € N; L(A)"
denotes the set of all such profiles for a given n, and L(A)=> stands for ( J, .y L(A)"
(where N denotes the set of all natural numbers).

Such ballots are called preference rankings because of the favored interpretation:
X >; y expresses voter i’s (strict) preference for alternative x over alternative y.” By
imposing antisymmetry we are making the simplifying assumption that individual
rankings are strict—no voter may express indifference to two alternatives. Alterna-
tively, we might allow weak preference rankings (aka pre-linear orderings) as ballots,
by dropping the antisymmetry requirement. We will use R to denote a profile of weak
preference rankings, R(A) to denote the set of all weak rankings of A, and R(A)" as
the set of all profiles of weak rankings for a given A and n.

9 Itis common to state x >; y aloud as “voter i strictly prefers x to y.” but keep in mind that i s sincere preferences
might differ from the binary relation ~; expressed as i’s ballot.
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In practice, will often present a profile in tabular form, with each preference ranking
written vertically (in descending order of preference) and the number of voters casting
each ballot recorded on top. In profile P; that follows, A = {a, b, ¢} with m = 3, and
of the n = 303 voters, 102 cast the ballota > b > ¢:

102 101 100

a b c
b c b
c a a

While the table shows the number of voters who cast each ballot, it does not reveal their
individual identities (as a profile would); strictly speaking, P; is a voting situation—a
function s: £L(A) — N U {0} assigning to each linear ordering the number of voters
with that order as ballot—rather than a profile. Each voting situation corresponds to
several profiles, but many voting rules are blind to the distinction between “profile”
and “voting situation,” so we will use the terms interchangeably.

A plurality ballot names a single, most-preferred alternative, and the plurality vot-
ing rule then selects, as the winner(s) of an election (aka the “social choice(s)”) the
alternative(s) with a plurality (greatest number) of votes. Alternately, we can identify a
ranking with a plurality ballot for the top-ranked alternative (while we ignore the rest
of the ranking). When we do this for Py, a is the unique plurality winner, or “social
choice” (although her 102 votes fall well short of a majority).

Much of the interest in voting theory arises from a widespread critique of plurality
voting; the winner can be enormously unpopular (because a plurality is quite different
from a majority). For example, with Pj it is difficult to see how a could win under any
reasonable rule that seriously made use of the second versus third place information
in the ballots; in fact, » wins under each one of the voting methods (that use ranked
ballots) discussed in the rest of this chapter.'”

To make fuller use of the information in the ranking, consider profile P;:

102 101 100 1

c
a b
c a b a

SR
o

Note that 202 P,-voters rank a over b, while 102 rank b over a. The net preference
Netp(a>b)=|{jeNl|a>;b}|—|{j e NI|b>;a}l 2.1)

for a over b is 202 — 102 = 100 (for P = P,) and is strictly positive. Thus a beats
b in the pairwise majority sense, and we write a >* b (or a >’;)7 b to identify the
profile). Here >* is the strict pairwise majority relation, which is always complete
for an odd number of voters with strict preferences; x >* y denotes the weak version

10 Plurality voting led to conservative Republican Alfonse D’Amato’s 1980 U.S. Senate win in New York (a
predominantly liberal state), with 44.88% of the vote; liberal democrat Elizabeth Holtzmann and liberal
Republican incumbent Jacob Javits split the liberal vote (with 43.54% and 11.05%, respectively). This is not
the only real-world example resembling P;.
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b b

0 X)z
100 c

Figure 2.1. The pairwise majority tournament (left) and weighted version (right) for P,.

10
a<————¢ a

(Netp(x > y) = 0), and x =" y stands for a pairwise majority tie (Netp(x > y) = 0).
Figure 2.1 (left) depicts >* as a complete directed graph,'' or tournament, using x — y
to indicate x >* y; the weighted version, on the right, labels x — y with Netp(x > ),
to obtain a weighted tournament.

Our next voting rule scores candidates according to their win-loss record in this
pairwise majority sense. We will define Copeland(x), the (symmetric) Copeland score
of an alternative x,'? as the difference

Copeland(x) = |{y € Alx >* y} —{y € A|y >* x}|. (2.2)

For P, we have a >" b and ¢ >" a, so that a’s Copeland scoreis 1 — 1 = 0. Similarly,
Copeland(b) = 0 and Copeland(c) = 0. The Copeland rule (Copeland, 1951) selects,
as the social choice, the alternative(s) with highest Copeland score. For P,, then,
Copeland declares a three-way tie, with {a, b, c} as the winning set.

Copeland rewards an alternative x for each pairwise victory x >* y over an opponent
and punishes her for each defeat, but disregards the margins of victory or defeat. If
we weight such rewards and punishments by these margins, the resulting voting rule is
quite different.

Given a profile P, the symmetric Borda score of an alternative x is given by

Bordagm(x) = Z%A Netp(x > y)."” (2.3)

The Borda rule (also called the Borda count;, see Borda, 1781) selects as winner
the alternative(s) with the highest such score. For P, the symmetric Borda scores of
alternatives a, b, c are 0, +2, —2 respectively, and the set of Borda winners is {b}.

The more common asymmetric Borda score for 3 alternatives is defined via the
vector of scoring weights (aka score vector) w = (2, 1, 0). Each voter awards 2 points
to her top-ranked alternative, 1 point to the next, and O to her least preferred, and
the asymmetric Borda score Borda’,”"(x) is obtained by summing points awarded
to x by all voters. The two versions are affinely equivalent (see Footnote 12), with
Borda',"" (x) = n + %Bordaspym (x), so they induce the same SCF.

If we sum points awarded via the symmetric score vector w = (+2,0, —2) we
will replicate the (2.3) scores. With m alternatives the asymmetric score vector is

T That is, >* is complete as a relation, so that each edge occurs in exactly one of its two orientations (as is the
case when the number of voters is odd, and ballots are linear orders).

12 One commonly sees asymmetric forms of Copeland score, such as C%%(x)=|{y € A|x > y}| or
CHstx)=|{y e A|lx >* y}| + %l{y € A|x =* y}|. It is easy to see that Copeland(x) and C*F(x)
are affinely equivalent as scores; there is a positive affine transform S +— oS + B (where o > 0 and $ are
real number constants) that carries Copeland(x) to C%*%(x); it follows that they always choose the same
winners. Note that C** can differ from these two, for example when there are three alternatives satisfying
a>"b>tc="a.

13 We will reconcile this nonstandard definition of Borda score with the standard version shortly.
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w=m-—1,m—2,m—3,...,0); the symmetric version w=(m —1,m — 3, m —
5,...,—(m — 1)) replicates the scores from (2.3).'* An advantage of the symmet-
ric approach embodied by (2.1), (2.2), and (2.3) is that it is well-defined for pro-
files of weak preferences, yielding plausible extensions of the Borda and Copeland
rules.”

As these examples suggest, our interest lies mainly with voting rules that take profiles
of strict preferences as inputs, and return one alternative (the winner) or several (in the
event of a tie). Let C(X) denote the set of all nonempty subsets of a set X. Then:

Definition 2.1. A social choice function, or SCF, is a map f: L(A)" — C(A) that
returns a nonempty set of alternatives for each profile of strict preferences. If | f (P)| = 1
then f is single valued on P (and we sometimes write f(P) = x instead of f(P) =
{x}). A resolute SCF is one with no ties: it is single valued on all profiles.'®

We will also be interested in SCFs with restricted domain—voting rules that fit the
definition, except that they are defined only on some proper subset of L(A)". Definition
2.1 associates each SCF with a single choice of N: these are fixed electorate SCFs;
for variable electorate SCFs, substitute £(A)<* for L(A)"."” The rest of this chapter
presumes a fixed electorate, except where explicitly noted otherwise.

Note that for the plurality, Copeland, and Borda SCFs the assignment of numerical
scores does more than just select the socially most desirable alternative—it induces a
“social ranking” in which one alternative is ranked over another when it has a higher
score. Tied scores are possible, so this is a “weak” ranking in R(A). Many social choice
functions use mechanisms that yield a weak ranking of all alternatives, and so fit the
following definition:

Definition 2.2. A social welfare function, or SWF, is a map f: L(A)" — R(A)
that returns a weak ranking of the set of alternatives for each profile of strict
preferences.'®

A Taste of Strategic Manipulation

Do these rules give voters an incentive, on occasion, to cast insincere ballots? Consider
Ali, one of thetwoa > b > ¢ > d > e voters of profile P (see later). Under Copeland,
he is about to see his least preferred alternative win: e’s (symmetric) Copeland score is
2, b’sis —2, and the other scores are each 0. If Ali misrepresents his sincere preferences
by completely reversing his ballot ranking, the Copeland winner shifts to d—which he
prefers—with a score of 4, the maximum possible.

14 Any two scoring vectors of form w = (c,c —d,c—2d,...,c — (m — 1)d), d > 0 have affinely equivalent
scoring weights, yielding affinely equivalent total scores for the alternatives. Thus, the weak ordering of
alternatives induced by these scores is the same.

See last part of Section 2.10, including footnotes.

Some authors reserve “SCF” for the resolute case, and use social choice correspondence (SCC) when multiple
winners are allowed.

The fixed/variable distinction is often suppressed; Borda and Copeland fit both contexts, for example.

18 Domains R(A)" and R(A)<> are also considered for SCFs and SWFs.
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Definition 2.3. An SCF f is single voter manipulable if for some pair P, P’ of profiles
on which f is single valued, and voter i with E\j’] = forall j #i, f(P) > f(P);
f is single voter strategyproof if it is not single voter manipulable.

We interpret 2~; (in Definition 2.3) as representing voter i ’s sincere ranking; by switch-
ing from 77; to the insincere ballot 2} voter i can change the winning alternative to one
that, according to her sincere ballot, she strictly prefers.

Notice that for each pair of alternatives, Ali’s reversed ballotof e > d > ¢ > b > a
misrepresents which of the two he actually prefers. Under Borda, Ali alone can still
manipulate profile P, but not by completely reversing his ranking.'” Instead, by lifting
d to the top (casting ballot d > a > b > ¢ > e) Ali can get d to displace e, as earner
of the uniquely highest Borda score.

Plurality voting is not single voter manipulable; any one voter preferring y to the
unique plurality winner x does not top-rank x on her sincere ballot, so she cannot lower
x’s score. At best she can raise y’s plurality score to a tie with x’s. However, if the two
e > ¢ > a > b > d voters of P; both switch to a > ... the former plurality winner d
will be replaced by a, which they prefer. The example suggests that for rules with ties,
single voter manipulability is an inappropriate test—we need to ban ties, or deal with
them, and we touch on both routes in Section 2.3.

2.3 Axioms I: Anonymity, Neutrality, and the Pareto Property

A variety of interesting SCFs have been proposed, often based on mechanisms that
seem to calculate the winner in an intuitively “fair” way. Experience suggests, however,
that mechanisms may have unintended consequences that undercut their initial appeal.
As a result, scholars have come to distrust arguments based solely on the intuitive
appeal of an underlying mechanism” for calculating winners. They rely instead on
axioms—precisely defined properties of voting rules as functions (phrased without
referring to a particular mechanism). Axioms often have normative content, meaning
that they express, in some precise way, an intuitively appealing behavior we would like
our voting rules to satisfy (such as a form of fairness).

As applied to the theory of voting, the axiomatic method identifies interesting voting
rules, formulates intuitively appealing or useful axioms, and proves theorems showing
which rules satisfy which axioms. Ideally, such theorems characterize a class S of

19 The example thus shows that Copeland can be manipulated via complete reversal. Borda, on the other hand,
can never be manipulated in this way—see later discussion of half-way monotonicity in Section 2.6.

20 As we already glimpsed in the case of the Borda SCF, a function may be computable via a variety of mechanisms,
not all having the same intuitive appeal. Which of them should determine the intuitive appeal of the common
function they compute? This is a second reason to be cautious when passing judgment as to the fairness of a
voting rule based on its mechanism alone.



2.3 AXIOMS I: ANONYMITY, NEUTRALITY, AND THE PARETO PROPERTY 31

voting rules via a set A of axioms, by proving that S contains exactly those rules
satisfying all axioms in 4. Such theorems may uniquely characterize one rule in terms
of its properties (when S is a singleton), or demonstrate the impossibility of satisfying
all properties of A (by showing S to be empty). In fact, impossibilities are among the
most consequential results in the field, for it turns out that axioms also have unintended
consequences ...as when one seemingly reasonable axiom rules out any hope of
satisfying some other one.

Axioms for SCFs can be loosely sorted into three groups. The first group represent
minimal demands. These axioms are absolutely required (for some contexts) and plenty
of SCFs satisfy them (including plurality, Borda, and Copeland). There is little cost,
then, to requiring them and they seem, as well, to offer less scope for unintended
consequences, so they tend to be seen as uncontroversial.

In this section we discuss five axioms from the first group. In Section 2.6 we consider
a second group of axioms, of middling strength—they are satisfied by some interesting
SCFs, but requiring any one of these axioms would have a high cost: some very
attractive rules, and some of the other axioms from the same group, would be ruled out.
These axioms are the most controversial; your favorite voting rule may violate some
axiom from this group, and be seen as illegitimate by anyone who finds that axiom to
be compelling. A third group of axioms include strategyproofness and IIA, and these
are the strongest, in that they tend to rule out all reasonable voting rules. Of course
these axioms are associated with some controversy, in terms of how one interprets the
corresponding impossibilities—does Arrow’s Theorem really say that democracy is
impossible? Or does a closer look at IIA suggest that it is less compelling than might
first appear? But there is no controversy over whether or not to impose any of these
axioms when choosing an SCF—the cost is too high.”!

Definition 2.4. An SCF f is anonymous if each pair of voters play interchangeable
roles: f(P) = f(P*) holds whenever a profile P* is obtained from another P by
swapping the ballots cast by some two voters i and j (/=2 ;, 5=, and 22j=2

~J ~j
for all k # i, j);**> f is dictatorial if some voter i acts as dictator, meaning f(P)
coincides with i’s top-ranked alternative, for every profile P.

Anonymity is a very strong form of equal treatment of voters, and nondictatoriality
serves as a particularly weak version of anonymity.

Definition 2.5. An SCF f is neutral if each pair of alternatives are interchangeable in
the following sense: whenever a profile P is obtained from another P by swapping the
positions of the two alternatives x and y in every ballot, the outcome f(P7) is obtained

21 We should qualify, in at least two respects, the picture painted here. First, there are important strands of research
that are not axiomatic—they do not measure the success or failure of some SCF to satisfy some property in
black-or-white terms. These include empirical and experimental methods in the political realm (e.g., van der
Straeten et al., 2013), as well as enumerations and simulations (e.g., Kelly, 1993; Aleskerov and Kurbanov,
1999). Second, while strategyproofness may be impractical as a requirement for SCFs, it can be achieved in
some collective decision-making contexts other than voting (Moulin, 1988a). Moreover, SCFs can achieve
strategyproofness when their domains are limited appropriately, as we see in Section 2.9.

Transpositions 7;; of pairs generate the full permutation group on N, so anonymity demands that f be blind
to every permutation of the voters; informally, “f is invariant under renaming voters.” Anonymous SCFs are
those that use only the information in the voting situation derived from a profile P (which represents P’s
equivalence class under permutations of voters).

2!
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from f(P) via a similar swap;”’ f is imposed if some alternative x is unelectable: for
no profile P does f(P) = {x}.

Neutrality is a very strong form of equal treatment of alternatives, and nonimposition
serves as a particularly weak version of neutrality.

So far, nothing we have said rules out the following “reverse Borda” SCF: elect
the alternative(s) having the lowest Borda score. Given a profile P we will say that
alternative x Pareto dominates alternative y if every voter ranks x over y; y is Pareto
dominated if such an x exists.

Definition 2.6 (Pareto Principle; Pareto, 1919). An SCF f is Pareto (aka Pareto
optimal, or Paretian) if f(P) never contains a Pareto dominated alternative.

Plurality, Copeland, and Borda are clearly anonymous, neutral, and Pareto (while
reverse Borda is not Pareto). Note also that Pareto implies nonimposition.

Should a voting rule be immediately rejected if it fails anonymity, or neutrality, or
Pareto optimality? Yes, in some voting contexts—but not in others. Legislative voting
rules are often neither anonymous nor neutral,”* and if our goal, for example, were to
elect a committee rather than an individual, we might wish to consider the rule that
adds alternatives having progressively lower Copeland scores as winners, until some
minimal committee size is achieved; such a rule is not Pareto.

These three axioms, while uncontroversial, do illustrate the law of unintended con-
sequences, in the form of a (small) impossibility theorem. Consider profile P, for

n = 3k voters and m > 3 alternatives (with A = {a, b, ¢, x1, ..., Xp_3}:
k k k
a c b
b a c
c b a

X1 X1 X1

Symmetries imply that every neutral, anonymous, and Pareto SCF f satisfies f(Py) =
{a, b, ¢}.”° A similar construction forces tied outcomes whenever some factor r of n
satisfies 1 < r < m (with r = 3 for Py), establishing

23 That is, f(PT) is the image of f(P) under Tyy. As with anonymity, transpositions may be replaced with
arbitrary permutations. However, neutrality is not an invariance property, so the analogy with anonymity is
imperfect; we cannot directly apply f to equivalence classes of profiles under permutations of alternatives . . .
but for a way around this see Egeciouglu and Giritligil (2013).

In a legislative voting system, representatives vote for or against proposals (such as adding a new law) and the
set of alternatives might be A = {yes, no} (or {yes, no, abstain}, or . ..). It is fairly common for the voting
rule to have a deliberate bias in favor of the status quo (“no, do not alter the current body of law by adding
a new one”), which may be quite strong when voting on constitutional change. Such rules are not neutral. In
bicameral legislatures (wherein passage of a new law requires approval of both chambers) a legislator from
one of the chambers is not interchangeable with one from the other, so the rule is not anonymous.

While Definition 2.6 fails for this rule, arguably it is a different version of Pareto that should be applied
here—one for which the committees are considered to be the alternatives.

Suppose f(Ps) = X. As f is Pareto, X C {a, b, ¢}, so assume w.l.o.g. a € X. The transposition t,, coupled
with a suitable permutation of the voters, both fixes P4 and carries X to X’s image under t,5. Thus, b € X.
Similarly, ¢ € X.

24
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Proposition 2.1 (Moulin, 1983). Let m = 2 be the number of alternatives and n be
the number of voters. If n is divisible by any integer r with 1 < r < m, then no neutral,
anonymous, and Pareto SCF is resolute (single-valued).”’

Tied outcomes make life complicated in terms of real applications (we only want
one mayor) and of theory: how can we decide whether a strategically cast ballot results
in a successful manipulation, if both it and the sincere ballot yield several winning
alternatives? The four main approaches taken in the literature’® are as follows:

1. Use a fixed ordering of the alternatives (or a designated voter) to break all ties.
2. Use a randomized mechanism to break all ties.

3. Deal with set-valued outcomes directly.

4. Ignore or suppress the issue (assume no ties exist).

The first approach breaks neutrality (or anonymity, if using a designated voter).
The second requires that we consider “indeterminate” voting rules, along with what it
means to manipulate one. With approach 3, adapting the definitions (in Section 2.6) of
monotonicity properties and strategyproofness might seem to require choosing a “set
extension principle” (which extends preferences over individual alternatives to ones
over sets), although alternative approaches exist.”’

We can agree that approach 4 is quite reasonable as a preliminary, simplifying
assumption when first exploring some new concept. As to the importance of (or interest
in) a subsequent careful reconsideration of that concept in light of ties, opinions differ.

2.4 Voting Rules I: Condorcet Extensions, Scoring Rules,
and Run-Offs

When there are only two alternatives, the distinction between a preference ranking and
a plurality ballot disappears, and one SCF in particular jumps to mind. Majority rule
declares the winner to be the alternative that gets strictly more votes, with a two-way
tie when the alternatives split the vote evenly. Majority rule is neutral and anonymous,
and is resolute if the number of voters is odd. A characterization, however, requires an
additional element of monotonicity (if x is a winner and one voter switches her ballot
from y to x, then x remains a winner) or of positive responsiveness (if x is a winner
and one voter switches her ballot from y to x, then x becomes the unique winner).
Monotonicity excludes certain perverse rules (e.g., elect whichever alternative gets an
odd number of votes) while positive responsiveness additionally breaks all ties that are

27 qf every factor of n exceeds m, then a resolute SCF can be neutral, anonymous, and Pareto. See later discussion
immediately after Theorem 2.7.

28 For a fifth approach, see Footnote 66. In real world political elections with large numbers of voters, election
returns may be too “noisy” to declare an exact tie with certainty, and very close elections are sometimes settled
in court. However, some countries have election laws that mandate coin tosses to settle ties; in 2013 the mayoral
election in San Teodoro, the Philipines, was settled this way. The French electoral code specifies that ties be
broken in favor of the older candidate (consequently, parties favor older candidates in some elections).

2 For more on these approaches—which are less different than may first appear—see Girdenfors (1976),
Girdenfors (1979), Barbera et al. (2001), Barbera et al. (2004), Brandt and Brill (2011), Sanver and Zwicker
(2012).
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not “knife-edge” (excluding, for example, the rule electing all alternatives getting at
least one third of the vote).

Proposition 2.2 (May’s Theorem; May, 1952). For two alternatives and an odd
number of voters, majority rule is the unique resolute, anonymous, neutral, and mono-
tonic SCF. For two alternatives and any number of voters, it is the unique anonymous,
neutral, and positively responsive SCF.

Proof. Tt is evident that majority rule satisfies these properties. For uniqueness, note
that with any other rule we may choose a profile for which x wins with fewer votes than
y. Switch enough ballots from y to x to exactly reverse these vote totals. Monotonicity
implies x still wins, but neutrality 4+ anonymity say y wins. Similarly, if x ties y, yet
has fewer votes, positive responsiveness contradicts neutrality 4+ anonymity. O

It is not unreasonable to interpret Proposition 2.2 as saying that majority rule is the
best voting rule for two alternatives (in certain contexts, anyway). So, which SCFs can
claim the mantle as “majority rule for 3 or more alternatives”? On one hand, each of
the SCFs we have considered so far (along with a host of others) reduces to majority
rule for the case m = 2, and in quite a natural way. So one might argue that most rules
can claim this mantle. On the other hand, for SCFs defined on the “full domain” (all
of L(A)") there is no completely satisfactory extension of May’s Theorem to the case
of 3 or more alternatives.’® In this sense, then, no voting method wins the mantle.
Nonetheless, one rule has long claimed a special place as most deserving:

Definition 2.7. A Condorcet winner for a profile P is an alternative x that defeats
every other alternative in the strict pairwise majority sense: x >/, y for all y # x.’'
Pairwise Majority Rule, henceforth PMR, declares the winning alternative to be the
Condorcet winner . . . and is undefined when a profile has no Condorcet winner.

When a Condorcet winner exists, it is unique. With three or more alternatives,
however, majority cycles can rule them out. The cycle a >* b, b >* ¢, and ¢ >" a
of profile P, is depicted in Figure 2.1; no PMR winner exists. Such a cycle is also
known as Condorcet’s voting paradox, and corresponds to intransitivity of the relation
>". Cycles represent a disturbing type of instability. Imagine a version with 10 voters
and 10 alternatives,’” wherein any alternative x selected as winner would prompt 90%
of the voters to agree on an alternative y they all prefer to x and to approve, by an
overwhelming margin, a referendum replacing x with y. A different 90% would then
replace y with z, and so on. One cannot overstate the importance of majority cycles to
the theory of voting—they lie behind a number of the most important results.

A significant literature is concerned with calculating the probability that a Condorcet
winner exists (or that >* is transitive), or the Condorcet efficiency of a voting rule—the
conditional probability that the rule elects the Condorcet winner, given that a Condorcet

30 Such extensions do exist in voting contexts other than SCFs (see Freixas and Zwicker (2009), for example)
and also for SCFs on restricted domains (as we will see in a moment).

31 Some prefer strong Condorcet winner for this notion; a weak Condorcet winner satisfies x 2’;, yforall y # x.

32 Voter 1 ranks a on top, with b through j following in alphabetical order; each subsequent ballot is derived
from its predecessor by “vertical rotation”: lift the bottom-ranked alternative to the top, and drop each of the
others down by one spot.
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winner exists—or with identifying the most Condorcet efficient rule (from among
all scoring rules, for example).>* The answers depend on the underlying probability
distribution over profiles.**

PMR does not always declare a winner, so it is an SCF with restricted domain. Our
interest here is with full SCFs that agree with PMR on its domain:

Definition 2.8. Let D¢,4orcer denote the Condorcet domain—the set of all profiles P for
which a Condorcet winner exists. An SCF f is a Condorcet extension (or is Condorcet
consistent) if f selects the Condorcet winner alone, for each profile P € Dcondorce:-

Note that the monotonicity hypothesis in May’s Theorem is equivalent to strategy-
proofness (because m = 2). Thus if we are willing to consider SCFs whose domain
is restricted to Deondorcer, the following result (see Campbell and Kelly, 2003) can
plausibly claim to be “May’s Theorem for three or more alternatives”:

Theorem 2.3 (Campbell-Kelly Theorem).” Consider SCFs with domain D¢ondorcer
for three or more alternatives. Pairwise Majority Rule is resolute, anonymous, neutral,
and strategyproof: for an odd number of voters, it is the unique such rule.*

Proof. Clearly PMR, as restricted to Deondorcer> 18 resolute, neutral, and anonymous.
To see that it is strategyproof (Definition 2.3), assume that voter i’s (sincere) ballot has
y =i x with x being the Condorcet winner. Then replacing 7~; with some alternative
(insincere) ballot cannot reverse x >" y, and thus cannot make y the new Condorcet
winner. We postpone the proof of uniqueness to Section 2.8. O

Some find Condorcet consistency so compelling that they view it as absolutely
necessary when choosing a voting rule, but this view is not universal. We treat it here
as a member of the second group—plausible axioms that cannot all be satisfied at once.
Borda can fail to elect an alternative who is top-ranked by a majority of the voters, and
in this sense fails rather badly to be a Condorcet extension.’’ On the other hand, the
Borda score of a Condorcet winner is always strictly above the average Borda score of
all alternatives.*®

33 See Gehrlein (2006), Saari (2009), Favardin et al. (2002), Cervone et al. (2005), for example.

34 The two most prominent distributions studied are “IC” (Impartial Culture—voters choose linear orderings
randomly and independently, with probability % for each ordering) and “IAC” (Impartial Anonymous Cul-
ture—each voting situation is equiprobable); see Berg (1985), Gehrlein (2002). But others have been considered,
e.g., in Regenwetter et al. (2006) and Egeciouglu and Giritligil (2013).

Campbell and Kelly’s result (Theorem 1 in Campbell and Kelly, 2003) is stronger; it assumes nonimposition
and nondictatoriality in place of anonymity and neutrality. Another version of their theorem assumes group
strategyproofness and does not require odd n.

In applying the definition of strategyproofness to a function having this restricted domain we require that the
profiles P and P’ (arising respectively before, and after, voter i switches to > from her sincere ballot >;) both
lie in DCandvrzfet~

For example, this happens if three of five voters rank a > b > ¢ while two rank b > ¢ > a. For this reason,
some describe Borda as a compromise that takes minority views into account, even when they are opposed by
a majority who completely agree with one another.

The symmetric Borda score (2.3) of a Condorcet winner is a sum of strictly positive numbers, whereas the
average symmetric Borda score is always zero. Similarly, a Condorcet loser—an x for which y ># x for each
alternative y # x—is assigned a negative score, which is strictly below average. In particular, a Borda winner
is never a Condorcet loser.

35

36

37

38



36 2 INTRODUCTION TO THE THEORY OF VOTING

The Copeland score of a Condorcet winner is m — 1, and uniquely highest, so
Copeland is a Condorcet extension. Other well-known Condorcet extensions include:

e Simpson Rule (aka Simpson-Kramer, minimax): Let min{Netp(x > y) | y € A\ {x}}
give the (symmetric) Simpson score Simpsonp(x) of an alternative x. The Simpson
winner is the alternative(s) with highest Simpson score.*

* Top Cycle: If there is a chain x = x; >* x, 2* ... 2# x; = y from alternative x to y
we will write x 2’; y; >’T‘ is the transitive closure of the weak pairwise majority relation
>". An alternative x is in the fop cycle if x 27 y for each alternative y # x, and the
Top Cycle SCF declares each such x to be a winner. Equivalently, the top cycle is the
uniquely smallest dominant set (where a set X of alternatives is dominant if x >" y for
eachx € Xand y ¢ X).*

* Sequential Majority Comparison (SMC): Fix some enumeration {x{, x,, ..., X,,} of the
alternatives. The winner of round 1 is x; the winner of round i + 1 is the winner w of
round i, if w >* x;41, and is x; 11, if x;31 > w; and the ultimate winner is the winner
of round m.*!

To break the three-way Copeland tie of profile P», how many voters would need to
switch their vote? As the answer suggests, Copeland is highly indecisive as a voting
rule, yielding many ties. Simpson has an advantage over Copeland in this respect. Top
Cycle is even less decisive than Copeland—in fact, the Copeland winners are always
within the top cycle, and the top cycle can include Pareto-dominated alternatives.
Every SMC winner is in the top cycle, and SMC can likewise elect a Pareto-dominated
alternative.

Sequential Majority Comparison figures prominently in Chapter 19 and has also
been called sequential pairwise majority. Although we use “sequential” here to refer
to a linear sequence, one can also use a partial order—a tree—to dictate the order of
majority comparisons between pairs of alternatives; see Horan (2013), for example. In
its dependence on the enumeration, SMC may initially seem a rather odd rule, and of
course its failure to be neutral argues against its use in electing the mayor of a town
(for example). But legislative voting bodies are often limited by their constitutions to
making binary decisions via majority rule, so if they wish to consider more than one
alternative to the current body of law (such as an immigration reform bill with multiple
versions arising from a number of possible amendments),*” there is little alternative to
employing something resembling SMC.

Scoring rules form a second large class of related SCFs:

39
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Alternately, Simpson winners minimize max{Netp(y > x)|y € A\ {x}}, whence the term “minimax.”

A strictly weaker graph-theoretic notion has a similar name: X is a dominating set if for each vertex y ¢ X there
exists an x € X with x — y. A set X of alternatives that is dominating for the pairwise majority tournament
need not be dominant.

Banks (1985) assumes sophisticated voting (wherein voters “take into account the optimal behavior of others
in solving their own optimal decisions”) and characterizes the set of SMC winners arising from all possible
enumerations, now known as the Banks set.

In this case, the official with agenda setting power gets to choose the order in which amendments are considered,
and may wield considerable influence over the final form of the legislation.

4
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Definition 2.9. A score vector w = (w;, wa, ..., w,,) consists of real number scoring
weights; wis properifw; = wp, = -+ 2 wy,—1 2 wy, and w; > w,,. Any score vector
induces a scoring rule, in which each voter awards w; points to their top-ranked
alternative, w; points to their second-ranked, and so on. All points awarded to a given
alternative are summed, and the winner is the alternative(s) with greatest sum.** A
proper scoring rule is one induced by a proper score vector.

In addition to the Borda count, with w=(m — 1,m —2,...,1,0), scoring rules
include:

* Plurality:w = (1,0,0,...,0)

e Anti-plurality:w = (1,1,1,...,1,0)

* k-Approval: w=(1,1,1,...,1,0,0,...,0) (with k 1s)

¢ Formula One Championship: w = (25,18, 15,12,10,8,6,4,2,1,0, ..., 0)*

A third class of multiround rules is based on the idea that less popular alternatives in
one round be dropped from all ballots in the next round (with each ballot then ranking
the remaining alternatives in the same relative order that they had in the initial version of
that ballot); these rounds continue until some surviving alternative achieves majority
support (or until only one is left standing). The best-known of these has multiple
names—Alternative Vote, Hare (Hare, 1859), Single Transferable Vote (STV), Instant
Run-off Voting (IRV), and Ranked Choice Voting (RCV)—and proceeds as follows: at
each stage, the alternative with lowest plurality score is dropped from all ballots, and
at the first stage for which some alternative x sits atop a majority of the ballots, x is
declared the winner.*

Related rules include the following:

* Plurality Run-off: If some alternative is top ranked by a majority of the voters, it wins
in round 1; otherwise, round 2 consists of majority rule applied to the two alternatives
with highest plurality score in round 1.

* Baldwin: In each round, the alternative with lowest Borda score is dropped. The final
alternative eliminated is the winner (Baldwin, 1926).

* Nanson: In each round, drop all alternatives with below-average Borda score. The final
alternative eliminated is the winner (Nanson, 1882; Niou, 1987).
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Alternately a SWF can be defined by ranking alternatives in descending order of point totals.

Since 2010, a driver gets 25 points for each Formula One Grand Prix race they win, 18 points for each second
place, etc., and the World Championship goes to the driver with greatest point total for that season. In effect,
the races serve as voters. Related rules have been used since 1950, but in some earlier versions a driver was
awarded points for his or her top j finishes only.

The vexing matter of how to deal with ties for lowest plurality score is often ignored, perhaps because for large,
political elections uncertainties in counting (and in classifying ballots as valid or not) leave the matter moot.
One method suggested (Taylor and Pacelli, 2006) is to drop all alternatives sharing a lowest plurality score. If
each of k > 3 surviving alternatives garners the same plurality score, this method eliminates all of them, with
no alternative ever achieving majority support (unless one eliminates the stop-when-there-is-a-majority rule
and instead declares, as winners, all alternatives eliminated in the final round). The second (Conitzer et al.,
2009b) chooses at each stage one alternative to eliminate, among those achieving minimal plurality score, but
considers all possible sequences of such choices, identifying the winning alternative for each sequence, and
declaring a tie among them.
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STV is perhaps the most popular rule among electoral reform societies.*® Supporters
argue that voters do not “waste” their vote when their top choice is unpopular—instead,
it is transferred to the next choice on their ballot. Plurality run-off is a bit different
in being limited to two rounds at most, but agrees with STV for three alternatives.
Neither of these systems is a Condorcet extension.*”-*® Both Baldwin and Nanson are
Condorcet extensions, as the elimination process never discards a Condorcet winner; for
the explanation see Footnote 38, which also shows that Nanson discards any Condorcet
loser in round one.

2.5 An Informational Basis for Voting Rules: Fishburn’s
Classification

Figure 2.1 (left) depicts the pairwise majority tournament for profile P,—the complete
directed graph induced by >* (see Footnote 11). To calculate a winner, the Copeland,
Top Cycle, and Sequential Majority Comparison SCFs need only the information from
this tournament. Peter Fishburn (1977) classified such SCFs as C1 functions; loosely
speaking, such SCFs correspond to tournament solutions as studied in Chapter 3.
Borda and Simpson need the additional information in the weighted tournament—
the net preferences” of Figure 2.1 (right)—and are classified in C2. Imagine that each
voter’s ranking >; is represented as a set of ordered pairs in the usual way, and a union
(counting multiplicity) of all rankings from the profile is taken. Ordered pairs in this
multiset are sorted into bins according to which two alternatives are in the pair. Then
C2 functions rely only on the information represented by these bins; what is lost is

46 In the United Kingdom a 2011 referendum proposing a switch from plurality voting to STV lost when almost
68% voted No. In the United States the FairVote organization advocates STV (under the IRV name), and
has been successful in some locales. For example, the city of Burlington, Vermont, adopted IRV for its 2006
mayoral election and later repealed it, when in 2009 the IRV winner (Kiss) differed from the plurality winner
(Wright). One analysis argued that the Condorcet winner was a third candidate (Montroll), and that the “no
show” paradox (discussed after Proposition 2.6) had applied. See http://rangevoting.org/Burlington.html and
http://vermontdailybriefing.com/?p=1215.

Consider any profile for 4 alternatives wherein alternative a is ranked second by all voters, with each of the
other alternatives ranked first by around one third of the voters. The Condorcet winner a is eliminated in the
first round.

A version of plurality run-off is used for presidential elections in France, Austria, . . . indeed, in more countries
than use plurality (see Blais et al., 1997); voters do not submit ranked ballots, but instead return to the ballot
box if a second round is required. The method attracted international attention in the 2002 French election,
when the far-right candidate Le Pen bested the Socialist Jospin in round one, and ran against the incumbent
Chirac in round two (which Chirac won with over 82% of the vote, after having captured under 20% in round
one). Reportedly, voters with allegiance to small left-wing parties chose to vote for these parties in round
one, assuming that Jospin would survive to round two, when they would vote for him. In round one of the
2012 election Francois Bayrou came in fifth, with 11% of the vote, yet data suggests that he may have been a
Condorcet winner (van der Straeten et al., 2013); there is some uncertainty because the conclusion is sensitive
to the method used to control sample bias (private communication of the authors).

Unlike an SCF, a tournament solution takes as input only the tournament itself (rather than an underlying
profile that may have induced that tournament). Also, a tournament solution f is often assumed to satisfy the
conditions corresponding to neutrality and Condorcet extension (for the C1 SCF f* induced by f).
Alternately, for each two alternatives draw edges in both directions, labeling the x — y edge with gross
preference (absolute number of voters ranking x over y). In a fixed electorate context one knows the number
n of voters, so the information in these labels is equivalent to the net preferences.

47

48

49

5

<)


http://rangevoting.org/Burlington.html
http://vermontdailybriefing.com/?p=1215

2.6 AXIOMS II: REINFORCEMENT AND MONOTONICITY PROPERTIES 39

Figure 2.2. A basic cocycle (left) and a basic cycle (right). The —1 on edge d — c indicates
that its pre-assigned orientation opposes the cycle’s clockwise direction.

whether a given (a, b) pair came from a ranking with (b, c¢) or one with (c, b). Social
choice functions in C2 correspond (speaking as loosely as in the previous paragraph)
to weighted tournament solutions—the topic of Chapter 4.

Any SCFs notin C1 or C2 are C3. In a sense, C3 SCFs need “more” information;
the bins of atomized pairs are insufficient. But plurality is in C3, and one should balk
at a suggestion that Borda needs less information than plurality. Borda, for example,
needs all the information in the rank vector p(x) = (p1(x), p2(x), ..., pm(x)) of an
alternative x (where p;(x) denotes the number of voters who rank x in j’ " position),
while plurality does not. Thus while Fishburn’s classification is a particularly useful
approach to informational bases, it is not the only such approach.

A further refinement of C2 is based on the orthogonal decomposition approaches of
Zwicker (1991) and Saari (1995). Any weighted tournament can be viewed as a vector v
whose scalar components are the edge weights. As such, v has a unique decomposition
V = Veyele + Veoeyele With Veyere L Veoeyeie, Wherein veye is a linear combination of basic
cycles and V;oeycie 18 a linear combination of basic cocycles—see Figure 2.2 (for the
case of 4 alternatives).

We may interpret v, as the underlying tendency toward a majority cycle, while
Veoeycle cONtains exactly the same information as the list of symmetric Borda scores.”! >
Condorcet extensions use the information in both components, while the Borda count
discards V., and imposes a version of pairwise majority rule based on Ve,cycre alone.”
Whether the ranking according to PMR (the true version, based on both components)
agrees with the ranking induced by Borda score, or differs from it, or fails to be a
ranking at all, depends on the relative balance (speaking loosely) between V,cyc and

Veyele-

2.6 Axioms II: Reinforcement and Monotonicity Properties

We consider axioms that distinguish among the three classes of rules introduced in the
previous section. More than two hundred years ago Condorcet and Borda disagreed

51 This same decomposition serves as a basis for Kirchoff’s laws, where the edge weights represent flow of
electric current (rather than flow of net preference, as in our setting); a basic cocycle is a sink or source of
current (such as a battery) while a simple cycle is a “loop current.”

52 The asymmetric scores encode one additional piece of information: the number of voters.

33 The map that discards Veyele is an orthogonal projection, and coincides with the boundary map of homology
theory in the one-dimensional case. The version of PMR based on V¢ocycre alone satisfies a strong, quantitative
transitivity property.
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over the best way to aggregate preferences, and the theory sketched here suggests—to
a surprising degree—that their split in point-of-view is of fundamental importance.

Each axiom in this section concerns the way an SCF responds to profile changes,
which can be of two kinds:

¢ One or more voters modify their ballots.
¢ One or more voters are added to a profile.

The second type requires the variable electorate context, and may be formalized in
terms of voting situations: for s, t: £L(A) — Z¥, the pointwise sum s + ¢ represents
the effect of pooling disjoint electorates corresponding to s and ¢ while ks (k € N)
replaces each individual voter of s with k “clones.”*

Reinforcement (aka Consistency) requires that the common winning alternatives
chosen by two disjoint sets of voters (assuming common winners exist) be exactly
those chosen by the union of these sets; precisely, an SCF f is reinforcing if

fONfO#Fb= fls+0)= [N fQ) (2.4)

for all voting situations s and ¢. Homogeneity, a weak form, demands f(ks) = f(s)
for each k € N; intermediate forms include f(s) = f(t) = f(s+1t) = f(s) = f(1).

Scoring rules are reinforcing, for if some alternative x has highest score for s and
t both, then x’s score for s + ¢ (the sum of x’s s and ¢ scores) must also be highest.
The same argument applies to the compound scoring rules, wherein any ties resulting
from a first score vector w; may be broken by score differences arising from a second
such vector w; (e.g., use plurality score to break ties among Borda winners), with a
possible third vector used to break ties that still remain, and so on; any finite number
Jj = 1 of score vectors may be used.” In fact, reinforcement essentially characterizes
such rules:

Theorem 2.4 (Smith, 1973; Young, 1975). The anonymous, neutral, and reinforcing
SCFs are exactly the compound scoring rules.”

Proposition 2.5. All Condorcet extension SCFs for three or more alternatives violate
reinforcement.

Proof. If there are 3 alternatives,’’ consider the voting situations s and ¢:

2 2 2 2 1
a ¢ b b a
b a c a b
c b a c c

3% Formally, (s + )(7) = () + () and (ks)(Z) = k(s(Z)).

35 On a domain that is restricted by fixing an upper bound on the number of voters, every such compound rule is
equivalent to some simple scoring rule.

Moreover, the class of “simple” (non-compound) scoring rules may be characterized by adding one more
axiom, continuity (aka the Archimedean property), which asserts that for all voting situations s and ¢ with
f(t) = {x}, there exist a k € N such that f(s + jt) = {x} forall j > k.

If we additionally assume the Pareto property, extending this proof to the case of 4 or more alternatives is
straightforward. Without Pareto, the proof for m > 4 is more complicated.
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Let f be any Condorcet extension, and assume for the moment thatb € f(s). Asbist’s
Condorcet winner, f(¢) = {b}. Reinforcement would demand f(s +t) = f(s) N {b}
whence b € f(s +1t), but f(s +¢t) = {a}, as a is s 4+ ¢’s Condorcet winner. A similar
contradiction results from assuming a € f(s) (or ¢ € f(s)), using a suitably permuted
version of 7. O

A function f from the real numbers to the real numbers is monotonically increasing
ifx > y= f(x) = f(y). In voting, a monotonicity property similarly asserts that a
change in the input of an SCF and the corresponding output change “point in the same
direction.”

We first consider a particular type of change to a ballot: if one preference ranking
>’ is obtained from another 7~ by moving alternative x from under one or more
alternatives (in 27) to over them (in =), without changing the relative order of any
pair of alternatives that exclude x, then we say that 7~ is obtained from 2~ by lifting x
simply (and 7~ is obtained from 7= by dropping x simply). Among various monotonicity
properties considered in the literature, the earliest, most widely studied is usually known
simply as monotonicity (Fishburn, 1982):

Definition 2.10. A resolute SCF f satisfies monotonicity (aka weak monotonicity) if
whenever a profile P is modified to P’ by having one voter i switch 2Z; to 2/ by lifting
the winning alternative x = f(P) simply, f(P’) = f(P).
If we apply Definition 2.10 to an irresolute f, it only “bites” for profiles lacking ties.”®
Given an SCF f based on maximizing some form of score, suppose we know that
lifting x simply never lowers x’s score or raises y’s score for y # x. Then f must be
monotonic (and remains so if we use any fixed ordering of alternatives to break ties).
It follows that Copeland, Simpson, and all proper scoring rules are monotonic.”’
Smith (1980) shows that every scoring run-off rule violates monotonicity. We show

this result for plurality run-off and STV, with the help of the following example:
6 4 5 2 6 4 5 2

a b ¢ b a b ¢ a
b ¢ a a b ¢ a b
c a b ¢ c a b ¢

When either of these rules is applied to the profile Ps above, c is eliminated in the first
round, whereupon a achieves a strict majority, and is sole winner. Let Py be obtained
from Ps by having one of the two b > a > ¢ voters lift a simply (over b) and P; be
obtained from Ps by having the remaining b > a > c voter do the same. When either

38 Tt follows that this “resolute” version of monotonicity can be satisfied vacuously by any SCF that has been
modified by adding a tied alternative to the outcome for each profile. This suggests a need to find an appropriate
“irresolute” version—one that cannot be so easily fooled. Peleg (1981) suggested the following: after any simple
lift of a winning alternative x, x remains a winning alternative and no new winning alternatives are added.
Other authors propose irresolute versions that omit the italicized part of Peleg’s requirement—see Footnote 61
in this connection. Sanver and Zwicker (2012) argue for Peleg’s version based on a general methodology for
handling irresoluteness. Note also that by allowing the set of winners to change, Peleg’s version addresses a
possible critique of the resolute version—a requirement that the winning alternative not change at all seems
contrary to the spirit of our generic “corresponding output change” language.

%9 Similarly, they satisfy the more stringent version due to Peleg (Footnote 58), as do SMC and Top Cycle.
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procedure is now run on P;, alternative b is eliminated first, whereupon ¢ displaces a
as the new majority winner, with 9 of the 17 ballots.

If we used an alternative definition of monotonicity allowing several voters to
simultaneously lift the winning alternative, then monotonicity would fail as Ps — P;
(in one step). For our version we observe that no matter what set X of winners results®’
from Pg, there must be a failure of monotonicity in the first step {a} — X (as Ps > Pg)
or in the second X > {c} (as Ps > P;).°!

Now suppose the last two voters of P; truly prefer a > b > c. They will be disap-
pointed under STV when the winner turns out to be c. They would do better by casting
b > a > c, and achieving a win for their most preferred alternative a. Indeed, any
failure of monotonicity for a resolute SCF f represents an opportunity for a voter to
manipulate f in a particular way: via a simple drop or simple lift.®> Thus monotonicity
is a weak form of strategyproofness. The same holds for the following monotonicity
properties (except for participation):

Definition 2.11. A resolute SCF f satisfies:

* Strategyproofness if whenever a profile P is modified to P’ by having one voter i switch
Zito i f(P) i f(P).S

* Maskin monotonicity (aka strong monotonicity) if whenever a profile P is modified to
P’ by having one voter i switch 77; to a ballot 7} satisfying for all y f(P) Z; y =
f(P)zZiy, f(P") = f(P); see Maskin (1977), Maskin (1999).

* Down monotonicity if whenever a profile P is modified to P’ by having one voter i
switch Z; to 2Z; by dropping a losing alternative b # f(P) simply, f(P’) = f(P).

* One-way monotonicity if whenever a profile P is modified to P’ by having one voter i
switch 5 to 720, f(P) 7 f(P')or f(P') = f(P).

* Half-way monotonicity if whenever a profile P is modified to P’ by having one voter i
switch Z; to 21, f(P) i f(P').
(Here '*” denotes the reverse of 7-: z =~ w < w =™ z.)

* Participation (the absence of no show paradoxes) if whenever a profile P is modified to

P’ by adding one voter i with ballot =; to the electorate, f(P’) =; f(P).
Proposition 2.6. For resolute social choice functions,

1. Strategyproofness = Maskin monotonicity <> Down monotonicity = Monotonicity
2. Strategyproofness = One-way monotonicity = Half-way monotonicity
3. Participation = Half-way monotonicity

Proof. For the first arrow of item 1 of Proposition 2.6 reason as in Footnote 62. For
the second arrow in the left direction, show that repeated changes to ?J,- of the kind
allowed by down monotonicity can be used to effect any change allowed by Maskin

60 To resolve how STV or plurality run-off behave when handed Ps would require addressing the issue raised in

Footnote 45.
This is clear if X is a singleton. If not, then either of the two “irresolute” versions of monotonicity discussed
in Footnote 58 imply such a failure.
Suppose >;—> > via a simple lift of the winning alternative a, which makes a lose and b win.

If b >; a, then a voter with sincere preference >; would gain by casting the insincere ballot >; if a >; b,
then a voter with sincere preference > would gain by casting the insincere ballot >;.
In the resolute context this agrees with our earlier Definition 2.3 of single voter strategyproofness.
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monotonicity. The second arrow to the right and the third arrow are straightforward, as
is item 2. For item 3, see Sanver and Zwicker (2009). I

Down monotonicity, perhaps surprisingly, is much stronger than monotonicity—it
is the form of strategyproofness used in our proof (in Section 2.8) of the Gibbard-
Satterthwaite Theorem. Participation originated in the work of Brams and Fishburn
(2007), who observed that some voting rules are susceptible to the no show paradox,
wherein a voter does better by choosing to not participate in the election than by casting
a sincere ballot. Such a voter can manipulate the outcome by abstaining. Speaking
loosely, then, participation is a form of strategyproofness.

Speaking precisely, however, participation is a property of variable-electorate SCFs,
and so cannot follow from strategyproofness, which is defined here (as is typical)
for fixed-electorate SCFs.®* Thus in the following theorem, part 1 (Moulin, 1988b)
cannot be compared directly to the Gibbard-Satterthwaite Theorem. Part 2 (Sanver and
Zwicker, 2009), however, is a different story; any failure of half-way monotonicity
is indeed a violation of strategyproofness, of a rather drastic kind (see the earlier
discussion in Section 2.2).

Theorem 2.7. Let f be any resolute Condorcet extension for four or more alternatives.
Then

65

1. f violates participation (if f is a variable-electorate SCF)* and

2. f violates half-way monotonicity (if f is a fixed-electorate SCF for sufficiently large n).

Proper scoring rules behave quite differently—they satisfy participation and one-way
monotonicity (hence half-way monotonicity) even after being rendered resolute by
breaking ties via a fixed ordering of alternatives (Moulin, 1988a; Sanver and Zwicker,
2012). That tie-breaker destroys anonymity, but for values of m and n not ruled out
by Proposition 2.1, an alternative method renders certain scoring rules resolute while
preserving anonymity, neutrality, monotonicity, and one-way monotonicity.® Keep
these examples in mind when interpreting the next result:

Corollary 2.8. Let [ be a resolute SCF for four or more alternatives and sufficiently
large odd n. If f is neutral and anonymous on Dcongorcers then either f fails to be
strategyproof on Dcondorcer, OF f violates half-way monotonicity.®’

Proof. On Dcynaorcer, pairwise majority rule is the unique resolute, anonymous, neutral
and strategyproof SCF for odd n (Theorem 2.3). So if f is strategyproof on Dcondorcer
then f is a Condorcet extension, and Theorem 2.7, part 2 applies. O

Corollary 2.8 is a version of the Gibbard-Satterthwaite Theorem, with stronger hypothe-
ses that reveal additional information about the split between Condorcet extensions and
scoring rules in terms of vulnerability to strategic manipulation.

%4 Any rule using different voters as dictator, depending on the number of voters, will be strategyproof yet violate
participation.

95 Some irresolute tournament solutions satisfy versions of participation (see Chapter 3).

% See Egeciouglu and Giritligil (2014) and Dogan (2015).

67 In place of anonymity and neutrality, it suffices to assume nondictatoriality and nonimposition; use the stronger
version of Theorem 2.3 actually proved in Campbell and Kelly (2003)—see Footnote 35.
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How seriously should we take it when a voting rule fails to satisfy one of the
axioms in this section? Should STV and plurality run-off be dismissed out of hand
for violating monotonicity? Some would say “yes,” either because the failure itself
is offensive, or because the nature of the violation demonstrates a behavior of the
sequential elimination mechanism that is not at all what we expected, suggesting
an unpredictable and untrustworthy process. To the extent that STV’s initial appeal
rested on an intuitive feeling about sequential elimination that made it seem fair, the
monotonicity failure hits STV at its core, showing that intuition to have been poorly
grounded. However, even some who agree with this critique seem willing to live with
STV’s flaws, if it means dethroning plurality.®®

The failure of Condorcet extensions to be reinforcing is not commonly advanced
as a critique. Some see reinforcement as a natural mathematical principle with an
important role in classification theorems, but one that lacks the normative heft of
monotonicity, for example.® Failures of participation or half-way monotonicity seem
somewhat more serious, however, so what does Theorem 2.7 say about the viability
of “Condorcet’s Principle”? Opinions differ. The theorem only states that Condorcet
extensions behave badly after all ties are broken by some mechanism, so one might
argue that the tie-breaking mechanism, not the original rule, is guilty of the violation.
Nonetheless, the Copeland and Simpson rules both violate participation (as well as
half-way monotonicity), in their original, irresolute form.”"

2.7 Voting Rules II: Kemeny and Dodgson

Although no social choice function is both reinforcing and a Condorcet extension
(Proposition 2.5), John Kemeny (1959) defined a neutral, anonymous, and reinforcing
Condorcet extension that escapes this limitation via a change in context: his rule is a
social preference function—meaning that the outcome of an election is a set of one or
more rankings—rather than a social choice function.

The Kendall tau metric dg (Kendall and Smith, 1939; Kendall, 1962) measures the
distance between two linear orderings >, >* by counting pairs of alternatives on which

68 In the rump session of the 2010 VPP Workshop Assessing Alternative Voting Procedures (July—August 2010),
22 of the 23 participants used approval voting (see Section 2.10) to vote on “What is the best voting rule that
the city council of your town should use to elect the mayor?” The 17 options included all rules discussed here
(except for Baldwin) as well as others, such as range voting and majority judgement, that do not fit the SCF
context. Approval voting received the most votes (68.18% approval) followed by STV(45.45%), Copeland
(40.91%), and Kemeny (36.36%). Plurality received no approvals, inspiring the title of the article (Laslier,
2012) analyzing the poll. Although STV approvals were presumably cast by two participants from the Electoral
Reform Society (which advocates for STV), without them STV would still have done no worse than a tie for
fourth.

Ashley Piggins has pointed out that reinforcement gains some normative force when one interprets it as
a coalitional form of the Pareto principle, and Wulf Gaertner notes that a failure would allow strategic
manipulation by splitting or merging the electorate (private communications).

Top Cycle satisfies these monotonicities, but is particularly prone to ties and is not Pareto. Is there a theorem
showing that all half-way monotonic Condorcet extensions are highly irresolute? If so, it might determine
the correct interpretation of Theorem 2.7, much as the Duggan-Schwarz Theorem (see the “limitations” part
of Section 2.8) suggests that the Gibbard-Satterthwaite Theorem is less compromised by its resoluteness
hypothesis than might first appear.
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they disagree:
dx(>,>*) =|{(a,b) € A>|a > band b >* a}|.

Equivalently, dx gives the minimum number of sequential inversions (reversals of pairs
of alternatives that are adjacent when a linear ordering is listed vertically) needed to
convert > to >*. We extend any metric d on ballots to one on profiles by summing:
d(P,P')=3Y"_,d(>;, >}), and for each > define the unanimous profile U~ by U; =
> for all i. For any profile P, the Kemeny Rule returns the ranking(s) > minimizing
dg (P, U”™).If a were a Condorcet winner for the profile P and > did not rank a on top,
then lifting a simply to >’s top would strictly decrease dx (P, U™). Thus all rankings
in the Kemeny outcome place a on top and in this sense Kemeny is a Condorcet
extension.”!

Kemeny is not a scoring rule in the sense of Definition 2.9, but suppose we make a
modification:

Definition 2.12. A ranking score function W: L(A) x L(A) — R assigns a real num-
ber scoring weight W(>*, >) to each pair of rankings. Any such function induces a
ranking scoring rule, in which a voter with ranking >; awards W(>;, >) points to each
ranking > € L£(A). All points awarded to a given ranking are summed, and the winner
is the ranking(s) with greatest sum.

This expands the class of scoring rules strictly’” to include Kemeny—set the points
awarded to >* by a ballot of > equal to the number of pairs of agreement: W -
dg (>, >*). Reinforcement now follows for Kemeny (just as it did in Section 2.5 for
ordinary scoring rules) but one needs to interpret the reinforcement equation f(s) N
f@®)#£D= f(s+1t)= f(s)N f(t) with care—f(s), f(t), and f(s + ¢) now denote
sets of rankings, and this substantially weakens the reinforcement requirement.73

The preceding paragraphs establish the easy part of the following theorem, but it is
the uniqueness that impresses:

Theorem 2.9 (Young and Levenglick, 1978). Among social preference functions
Kemeny’s rule is the unique neutral and reinforcing Condorcet extension.

A second rule based on counting inversions was proposed by Charles Dodgson
(1876) (aka Lewis Carroll), and is often compared to Kemeny’s rule: for any profile
P the Dodgson rule returns the Condorcet winner(s) for the profile(s) P’ € Dcondorcer
minimizing dg (P, P’) among all P’ € Dcondorcer- Dodgson’s rule is interesting from a

71 Also, if majority preference >* is transitive and complete, it is the unique Kemeny outcome. The Slater rule
chooses the linear order > minimizing the number of pairs of alternatives for which ># and > disagree; unlike
Kemeny, it ignores the sizes of the majorities determining >*.

Every (standard) scoring rule is a ranking scoring rule (if interpreted as a social preference function), but not
conversely: Conitzer et al. (2009b) and Zwicker (2008). Other generalizations of scoring rules can be found in
Myerson (1991), Zwicker (2008), Xia (2013), and Dietrich (2014).

For example, consider the profiles s, t, and s + ¢ from the proof of Proposition 2.5. Every standard scoring rule
f has f(s) = {a, b, c} and f(t) = {b} (or {a, b} for antiplurality) so that reinforcement applies, forcing f(s +
t) = {a} or {a, b} (which shows f is not a Condorcet extension). But for the Kemeny rule, fx.n(s) = {a >
b>c,c>a>b,b>c>a}and fgem(t) ={b > a > c},sothat fxem(s) N frxem(t) = ¥ and reinforcement
fails to apply at all. In a political setting, an outcome similar to fx ¢, (s) might be worrisome—it is difficult to
imagine the reaction of voters who have not studied voting theory.
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computational point of view (see Hemaspaandra et al., 1997a; Chapter 5), differs from
Kemeny (Ratliff, 2001), and has some severe drawbacks as a voting method (Brandt,
2009c), failing even to be homogeneous (Fishburn, 1977).

Both Kemeny and Dodgson may be interpreted as minimizing a distance to “‘consen-
sus.” They use the same metric on rankings, but different notions of consensus: unanim-
ity for Kemeny versus membership in Dcongorcer fOr Dodgson.74 It is not difficult to see
that every preference function that can be defined by minimizing distance to unanimity
is a ranking scoring rule,’”> hence is reinforcing in the preference function sense. We
can convert a preference function into an SCF by selecting all top-ranked alternatives
from winning rankings, but this may transform a reinforcing preference function into
an nonreinforcing SCF—as happens for Kemeny. The conversion preserves homogene-
ity, however, so every distance-from-unanimity minimizer is homogeneous as a social
choice function. In this light, the inhomogeneity of Dodgson argues an advantage for
unanimity over Deondorcer @S @ CcONsensus notion.

In fact a large variety of voting rules are “distance rationalizable”—they fit the
minimize distance from consensus scheme. Chapter 8 is devoted to this topic, and
includes an extensive selection of references.

2.8 Strategyproofness: Impossibilities

Our immediate goal is to show that every resolute, nonimposed, and nondictatorial
SCF for three or more alternatives is manipulable, by way of the following theorem,
due (independently) to Allan Gibbard (1973) and Mark Satterthwaite (1975):

Theorem 2.10 (Gibbard-Satterthwaite Theorem). Any resolute, nonimposed, and
strategyproof SCF for three or more alternatives must be a dictatorship.

Of course, a dictatorship is resolute, strategyproof, and nonimposed, so we could restate
the theorem as an if and only if. Over the years, a variety of interesting and distinct
proofs have emerged (e.g., see Barbera and Peleg, 1990). The version here follows
Taylor (2005). It relies on the following key definition, and on a sequence of lemmas,
which appear after the proof of Theorem 2.10 itself.

Definition 2.13. Let f be a resolute social choice function for m > 3 alternatives,
a,b € A be two distinct alternatives and X C N be a set of voters. Then we say that
X can use a to block b, notated X, if for every profile P wherein each voter in X
ranks a over b, f(P) # b; X is a dictating set if X -, holds for every choice z # w of
distinct alternatives.

Proof (Gibbard-Satterthwaite Theorem). First, we will show that each resolute, down
monotonic, and Pareto f has a dictator j in the form of a singleton dictating set
X ={j}. As f is Pareto, the set N of all voters is a finite dictating set. The Splitting
Lemma 2.17 shows that when a dictating set X = Y U Z is split into disjoint subsets

74 Chapter 5 discusses a rule due to Peyton Young, using membership in Dcondorcer @5 cOnsensus notion, but a
different metric. It shares some complexity properties with Dodgson.
75 Assuming that some metric on rankings is extended to profiles via summation, as described earlier.



2.8 STRATEGYPROOFNESS: IMPOSSIBILITIES 47

Y and Z, either Y is a dictating set, or Z is. Hence repeated application of the Splitting
Lemma (first to X = N, then to the half of N that is a dictating set, etc.) will terminate,
yielding the desired singleton dictating set.

Next, the Adjustment Lemma 2.18 establishes that the Pareto assumption can be
relaxed to nonimposition (when f is resolute and down monotonic). By Proposition 2.6
the down monotonicity assumption can be strengthened to strategyproofness, and this
completes the proof. 0

A well known variant reformulates Theorem 2.10 in terms of monotonicity:

Theorem 2.11 (Muller and Satterthwaite, 1977). Any resolute, nonimposed, and
Maskin monotonic SCF for three or more alternatives must be a dictatorship.

Proof. By Proposition 2.6 a resolute, Maskin monotonic SCF f is down monotonic.
If f is also nonimposed, then it is dictatorial by our proof of Theorem 2.10. O

Lemma 2.12 (Push-Down Lemma). Leta, b, ¢y, ca, ..., Cpu—a enumerate the m > 3
alternatives in A, f be a resolute and down monotonic SCF for A, and P be any profile
with f(P) = a. Then there exists a profile P* with f(P*) = a such that:

* Foreachvoteriwitha =; b, ~f=a>b>c > - >cu
* Foreachvoteri withb >=; a, >f=b>a >c| > -+ > Cp_2.

Proof. Have P’s voters, one-at-a-time, drop c; simply to the bottom of their ranking.
Then have them all drop c¢; to the bottom, then c3, . ... The final version P* of P has
exactly the ballots bulleted earlier, and by down monotonicity f(P*) = a. O

Lemma 2.13. Let f be a resolute and down monotonic SCFE. If there exists a profile
P for which every voter in X has a over b, every voter in N \ X has b over a, and
f(P) =a, then X,~p.

Proof. Assume we have such a profile P, yet X, fails. Choose a second profile P’
for which each voter in X has a over b and f(P’) = b. If any P’ voters in N \ X have
a over b let them one-at-a-time drop a simply below b. By down monotonicity the
resulting profile P” satisfies f(P") = b.

Apply the Push-Down Lemma (2.12) to P to obtain profile P* with f(P*) =a,
and apply it again to P” to obtain profile P”* with f(P"*) = b. But the Lemma 2.12
properties of P* force P* = P”*, a contradiction. O

Lemma 2.14. Let f be a resolute, Pareto, and down monotonic SCF for three or more
alternatives. Assume X,~p, with X = Y U Z split into disjoint subsets Y and Z. Let ¢
be any alternative distinct from a and b. Then Y. or Z ..

Proof. Consider the profile Ps. As f is Pareto, f(Pg) € {a, b, c}, but we know X,-p,
so f(Ps) # b. Lemma 2.13 now applies to show that if f(Pg) = a then Y,-., and if
f(Pg)=c then Z..p. ]
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All votersin Y  All votersin Z All voters in N \ X

a c b
b a c
c b a

Lemma 2.15. Let f be a resolute, Pareto, and down monotonic SCF for three or more
alternatives. Assume X ,-p. Let ¢ be any alternative distinct from a and b.
Then (i) X4-c and (i) Xcsp.

Proof. Nothing in the Lemma 2.14 proof rules out X or Y being empty, and Pareto
implies that @,., is impossible. Applying Lemma 2.14 with ¥ = X, Z = yields
Xa=c, and applying it with Y =@ Z = X yields X,-p. O

Lemma 2.16. Let f be a resolute, Pareto, and down monotonic SCF for three or more
alternatives. Assume X ,~p. Then X is a dictating set.

Proof. Lety € A. We will show X, holds for all z # y.
Case1 Assume y = a. Lemma 2.15 (i) immediately implies X, for all z # a.

Case2 Assume y ¢ {a, b}. Lemma 2.15 (ii), with y replacing c, yields X~ .
Now restate Lemma 2.15, as follows: “Assume X .. Then (i) X,.. and ...
so X, forall z # y.

Case3 Assume y = b. By Lemma 2.15 (i), X,-.. Restate Lemma 2.15 as follows:
“Assume X,... Then ... (ii) Xp-..” Restating Lemma 2.15 yet again shows X, for
all z # b. ]

Lemma 2.17 (Splitting Lemma). Let f be a resolute, Pareto, and down monotonic
SCF for three or more alternatives. If a dictating set X = Y U Z is split into disjoint
subsets Y and Z, then either Y is a dictating set, or Z is.

Proof. Let a, b, and c¢ be three distinct alternatives. Split the dictating set X =Y U
Z into disjoint subsets Y and Z. As X,.,, by Lemma 2.14 either Y,.. or Z..p.
Lemma 2.16 now implies Y is a dictating set (if Y,-.) or Z is (if Z.>j). I

Lemma 2.18 (Adjustment Lemma). Let f be any resolute, nonimposed SCF (but no
longer assume f is Pareto). If f is down monotonic then it is Pareto.

Proof. If not, choose a profile P in which every voter ranks b over a, yet f(P) = a.
Use nonimposition to choose a second profile P’ with f(P’) = b. Now we proceed as
in the proof of Lemma 2.13. If any P’ voters have a over b let them one-at-a-time drop
a simply below b. By down monotonicity the resulting profile P” satisfies f(P") = b.
Apply the Push-Down (Lemma 2.12) to P to obtain a profile P* with f(P*) = a, and
apply it again to P” to obtain the profile P”* with f(P”*) = b. But the Lemma 2.12
properties of P* force P* = P’™, a contradiction. O
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Limitations of the Gibbard-Satterthwaite Theorem: Resoluteness

This completes our proof of the Gibbard-Satterthwaite Theorem—a central result in
the theory of voting. But what is its real significance . .. does the theorem tell us that
voting rules are all manipulable in practice?

One issue is that several conditions seem to be required for a single voter i to be
certain she can achieve such a single voter manipulation:

1. She needs to know the intended ballot of each of the other voters.

2. She needs to be sure that no other voter will similarly engage in strategic vote-switching.

3. She needs the computational resources to predict whether some switch in her ballot can
change the outcome into one she prefers.

In many real voting settings conditions (1) and (2) are unlikely to obtain, and so there is a
body of work that considers manipulation in a less restrictive context.”® Computational
barriers to manipulation are explored in Chapter 6.

Another limitation is that the theorem applies only to the social choice function con-
text, with its associated form of ballot—ordinal rankings of the alternatives—and of
election outcome. For example, there is a spirited debate as to whether certain other vot-
ing rules gain an advantage, with respect to manipulability, by using, as inputs, ballots
that are quite different.”” Social Decision Schemes escape the Gibbard-Satterthwaite
context at the other end—the output—by declaring a probability distribution as the
election outcome.

The most immediately apparent limitation of the Gibbard-Satterthwaite Theorem,
however, might be that it applies only to resolute SCFs, while Proposition 2.1 tells us
that, in the case of a neutral and anonymous SCF f, ties are often inevitable, suggesting
that the theorem might say little about the rules that are of greatest interest. Of course,
we can use some tie-breaking mechanism M to break all ties for f, and the resulting
resolute rule is then manipulable, but the fault might then lie with M rather than with
the original irresolute f.

The following question, then, would seem to be important: How many tied outcomes

must we be willing to live with, in order to achieve strategyproofness? Several gener-
alizations of Gibbard-Satterthwaite to irresolute SCFs suggest an answer:
a lot of ties. This points to a certain robustness in the theorem. We state one such
generalization as follows, without proof: the Duggan-Schwartz Theorem.”® First, we
need some preliminaries. For Z C A let max,,[Z] denote i’s top ranked alternative in
Z, with min, ,[Z] defined similarly.

Definition 2.14. Let f be an SCF, possibly irresolute. We say f is manipulable by
optimists (respectively manipulable by pessimists) if for some pair P, P’ of profiles
and voter i with i’j = forall j # i, max, ,[f(P)] >; max.,[f(P)] (respectively,
ming, [ f(P")] >; ming,.[f(P)]). A voter k is a nominator for f if for every profile

76 See Peleg (1975), Dutta and Pattanaik (1978), Favardin and Lepelley (2006), and Slinko and White (2008), for
example.

77 Examples are mentioned in Footnote 3. Each context requires its own definition of manipulation, making
cross-contextual comparisons problematic. In this regard, see Section 2.10 for the case of approval voting.

78 Taylor (2005) proves Duggan-Schwartz using the same machinery as in his Gibbard-Satterthwaite proof (as
given here).
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P, k’s top-ranked alternative is a member of f(P). The Omninominator SCF returns,
for each profile P, the set OmNom(P) of all alternatives that have been top-ranked by
at least one voter.

The intuition here is that some outside agency will ultimately choose a single winning
alternative from the set f(P). An “optimist” assumes that the chosen x will always be
his favorite alternative from f(P), hence preferring one set Z of winners to another Z’
when max,,[Z] >; max,,[Z']. A nominator is a sort of weak dictator. It is easy to
check that the Omninominator rule is not manipulable by optimists or by pessimists.
This rule is notably irresolute, but it seems that every other example is even worse:

Theorem 2.19 (Duggan and Schwartz, 2000). If a nonimposed SCF f for three or
more alternatives is not manipulable by optimists and is not manipulable by pessimists,
then f must have a nominator.

Thus, if f is anonymous, every voter must be a nominator, whence:

Corollary 2.20 (Corollary to Theorem 2.19). If an anonymous, nonimposed SCF f
for three or more alternatives is not manipulable by optimists and is not manipulable
by pessimists, then f(P) 2 OmNom(P) for every profile P.

Thus, for an anonymous SCF to be strategyproof (in the Theorem 2.19 sense) it must
have at least as many ties as Omninominator. Moreover, Duggan and Schwartz also
show that by requiring f to be minimally more resolute than Omninominator the
conclusion of Theorem 2.19 can be strengthened to “ f must have a dictator.”

Back to Pairwise Majority Rule on the Condorcet Domain

We return to the postponed part of our proof of Theorem 2.3, Section 2.4, showing that
for functions restricted to the Condorcet domain, no SCF other than Pairwise Majority
Rule is resolute, anonymous, neutral, and strategyproof.

Proof. Let f: Dcondorcer — A be resolute, anonymous, neutral and strategyproof,
hence down monotonic. If f % PMR, choose a profile P € Dcongorcer With Condorcet
winner b such that f(P) = a # b. Apply the Push-Down (Lemma 2.12) (noting that
the changing profile remains within Dcpndorcer) to Obtain a profile P* with f(P*) = a
such that

*

e foreachvoteri witha >; b, Y= a>b>cy > - - > ¢y, and

e foreachvoteri withb >;a, >f=b>a>cy > - > cp_2.

We now proceed as in the May’s Theorem proof. More P* voters have b > a than have
a >} b. One ballot at a time, drop b simply below a on enough ballots to reverse those
numbers. As n is odd, the evolving profile remains within D¢ypiorcer- MoOnotonicity

implies a still wins, but neutrality + anonymity say b wins. O
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2.9 Strategyproofness: Possibilities

Suppose that five old friends meet annually for a hike in the country, but some are more
fit than others. Each friend i has an “ideal” hike length d; with

di =i d >;d’ foralld,d" suchthatd; >d >d" ord; <d <d’. (2.5)

Such preferences are said to be single peaked.” Ali suggests using the mean (average)
of the announced ideal lengths as the actual length L for the hike, but she is known to
be the most ambitious hiker, and has a good idea of the others’ d;s. Dieter, concerned
that Ali will declare an artificially high d; in order to raise the mean to her actual ideal,
suggests the median M be used instead of the mean.*’

Why consider the median? With an odd number of voters, more than half the
voters prefer the median M to any value e > M (namely, those voters i withd; < M),
and to any e < M (similarly), so M is the Condorcet winner, and the hikers’ profile
is contained in Dcopgorcer-. It follows by Proposition 2.3 that the median rule is
strategyproof (but take a moment to think about a direct argument that the median
is strategyproof in this context). The argument can be iterated,"” showing that pairwise
majority preference >* is a linear ordering (in particular, it is transitive) over hike-
lengths. Of course, we are not limited to taking hikes:

Definition 2.15. A ballot 7; is single peaked with respect to >, a linear order on
the set A of alternatives, if it satisfies Condition 2.5 (with d; denoting ~~;’s maximal
alternative or ideal point, and for all alternatives d’, d”). A profile P is single peaked if
there exists a common linear order > on A such that every ballot of P is single-peaked
with respect to >. The single-peaked domain is the set of all such profiles (for a given
A and N), and the median rule is the restricted domain SCF that selects the median of

voters’ ideal points, for each profile in this domain.

The ordering > might represent a left-right political spectrum, with a voter’s ideal point
located at his own position, and more preferred candidates having positions closer to
his own. Our informal reasoning about the median can easily be turned into a proof of
the following theorem of Duncan Black (1958).

Theorem 2.21 (Black’s Theorem). Every single-peaked profile P yields a transitive
pairwise majority preference relation 2". In particular, if n is odd then P € Dcongorcer
and the median of the ideal points coincides with P’s Condorcet winner. For odd n,
the median rule is strategyproof on the single-peaked domain.®

79
80

Think of a graph with horizontal axis as hike-length, and vertical as i’s degree-of-preference.

Assume negative ballots are disallowed. Using the mean, if it is common knowledge that ail hikers will vote
strategically, and that they know each others’ ideal lengths, then the Nash equilibrium will have four hikers
declaring O as their ideal lengths, and Ali declaring five times her true d;.

With n even, there can be two medians M < M,, which are the two weak Condorcet winners: at least half the
voters prefer M; to any e # M;.

Remove the median from the set of available alternatives, assume each voter’s preferences for remaining
alternatives stay the same, and take the median again, etc.

Strategyproofness holds for even n if one extends the strategyproofness definition to account for the particularly
simple ties that arise in this context (see Footnote 81).

81

82

83
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A word here on the nature of domain restrictions—single peakedness (with respect to
a specified >) is actually a restriction on individual rankings. Voters are free to choose
any ballot they wish from the set P.. of rankings single peaked for that >, without regard
to other voters’ choices, and the result will be a single peaked profile. Equivalently,
the single peaked domain for a particular > is the n-fold Cartesian product P-". Our
earlier restriction to Dcynaorcer Was quite different, corresponding to no restricted set of
ballots from which voters could choose freely.

The phrase “domain restriction” is sometimes used to refer exclusively to such
restrictions on rankings—which sets S of ballots have the property that every profile
built from members of S has a transitive >*? Amartya Sen (1966) observed that:

* For preferences single-peaked with respect to >, and any three alternatives a, b, c,
whichever of the three falls between the other two (according to >) will never be ranked
third among the three.

¢ This condition alone guarantees transitivity of >#, for n odd.

* Excluding any of the three relative positions (never ranked second, or first) similarly
ensures transitivity, but not single peakedness.

* The excluded position need not be the same for each triple a, b, c.

Definition 2.16. A set S C L(A) of rankings satisfies value restriction if for every set
X C A of three alternatives there exists an x € X such that no ranking in S ranks x
third among members of X, or none ranks x second, or none ranks x first.

Theorem 2.22 (Sen’s Possibility Theorem). Let S C L(A) be a set of rankings of A.
Then S is value restricted if and only if >" is transitive for every profile of ballots
from S having an odd number of voters.

Proof. (=) Assume profile P has an odd number n of voters casting ballots from
the value restricted set S. It suffices to show for an arbitrary set X = {a, b, ¢} of
three alternatives that the restriction >#|x of the pairwise majority preference to X
is transitive. By value restriction, one of the three—let’s say a, w.l.o.g.—is excluded
from one of the three positions.

Now >H#|x is clearly transitive if a >* b and a >" ¢ both hold, or if b >* a and
¢ >" a both hold. So w.l.o.g. assume ¢ >* a >" b. If a is excluded from first among
members of X, then each voter i in the majority having a >; b agrees thatc >; a >; b
and so >*|x coincides with >;|x, and is transitive. If a is excluded from last among
members of X, then each voter i in the majority having ¢ >; a agrees thatc >; a >; b
and so >"|x is again transitive. Finally, with ¢ >* a >* b it is impossible to exclude
a from the middle position among X’s members, because the majorities with ¢ >; a
and with a >; b must have a voter in common.

(<) If S is not value restricted, choose a set X = {a, b, ¢} C A such that for each
x € X there are elements >, =2, and =3 of S whose restrictions to X rank x first,
second, and third respectively. A table can be used to show that S’s restrictions to X are
forced to include all three from the set Cy ={a >b >c, c>a > b, b > ¢ > a} or
all three from C, = {a > ¢ > b, b > a > ¢, ¢ > b > a}. Any profile of three rankings
from S having C; (or C3) as their restrictions yields a majority cycle. O
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That single-peakedness and value restriction constitute restrictions on individual
rankings is a strength, but also a weakness: if even one voter (of many) violates
the restriction, Theorems 2.21 and 2.22 no longer apply; thus, the value-restricted
profiles exclude many profiles with transitive >*. The decomposition approach (end of
Section 2.5) provides various alternative conditions guaranteeing transitivity of >*.

2.10 Approval Voting

The approval voting rule is striking for its combination of simplicity and relatively
recent discovery, its potential as a real voting reform in the political context, and its
nature—it is not a social choice function . . . or is it? An approval ballot is a subset X of
the set A of alternatives; the idea is that voter i “approves” of exactly those alternatives
x € X;. Given a profile of such ballots, the approval score of an alternative x is the
number of voters who approve of x, and approval voting declares the winner(s) to be
the alternative(s) with highest approval score. Equivalently, a voter may vote for as
many alternatives as she wishes, and whoever gets the most votes wins. In their book
Approval Voting, Brams and Fishburn (2007) attribute the idea to five different groups,
acting independently in the 1970s. The more recent edited collection by Laslier and
Sanver (2010) is also a good source.

Arguments made on behalf of approval voting (primarily, as an improvement on
plurality voting in a political context) include the following:

1. Simplicity: the ballot is barely more complicated than a plurality ballot, and the aggre-
gation rule is conceptually transparent (hence an easier sell to the public).

2. Itaddresses the most egregious flaw of plurality voting: a single candidate at the minority
end of a political spectrum can defeat several candidates at the majority end, who split
that majority. For example, Holtzmann (see Footnote 10) would have won the 1980
senatorial election for New York had even a small percentage of Javits voters chosen to
approve her as well as Javits.

3. It improves the odds that the winner is supported by a majority of the electorate, making
it easier to claim a “mandate” that allows her or him to govern effectively.

4. It eliminates the “wasted vote” problem, allowing minor-party candidates to achieve
returns that more accurately reflect the true level of support for their ideas.

5. Itis likely to elect the Condorcet winner, when one exists.**

6. It is relatively resistant to strategic manipulation.

Criticisms of approval voting have included the following:

1. There is an ambiguity at its heart, with little agreement on or understanding of what it
means to “approve” of an alternative.®

84 See Beaujard et al. (2014), who also argue that approval voting favors “consensual” candidates located near
the middle in a multidimensional issue space, generalizing advantage 2.

85 Balinski and Laraki (2010) see this as a fatal flaw. Laslier (private communication) reports that voters see the
flexibility as a solution to the dilemma they face with a plurality ballot: “Do I vote for the one I think best, or
for the best among those who have a chance?”
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2. It overly restricts expressivity by obligating voters to compress their ranking into two
levels, forcing them to declare certain pairs of alternatives equivalent when that violates
their true feelings.

3. It violates “one person, one vote.”

4. It is unfair, giving more influence to voters who approve of more alternatives.

5. Some arguments on its behalf (e.g., resistance to manipulation) are rigged by the choice
of methodology in comparing preference ballots with approval ballots.

We will make a few observations, without commenting on each preceding advan-
tage. Critique 4 has no basis—one might equally claim that the voter who indicates
more nonapproved alternatives gains the advantage®®*—and critique 3 seems more
an argument of convenience than one of conviction. With regard to the meaning
of “approval” there appears to be a fundamental split among points-of-view. Some
presume that each voter actually has an underlying ranking (possibly weak) of the
alternatives, and in choosing an approved ballot must somehow compress several dis-
tinct levels of approval into exactly two levels. Others view the dichotomous ballot
as a direct reflection of a dichotomous primitive: each voter either likes or dislikes
each alternative, and is indifferent among those within either group. A third view pre-
sumes that a voter has a ranking together with a line dividing those alternatives she
likes from those she dislikes; we will refer to such a line as a true zero. An assign-
ment of cardinal utilities might underlie the first view, or the third (if utilities can be
negative).®’

A strategic analysis of approval voting cannot easily be disentangled from this
more philosophical matter of what it means to approve an alternative. If approval is a
primitive, then each voter has only one sincere ballot, but lacks any incentive to vote
insincerely. For a voter with an underlying ranking, it is clearly never strategically
advantageous to approve an alternative without also approving all others that you like
as well or better, so deciding on an approval ballot amounts to choosing “where to
draw the line.” If that line has no intrinsic meaning, there is no basis on which to
discriminate between a sincere ballot and an insincere one; one might argue that all
ballots are strategic, or that none are. If a voter has both a ranking and a line with
intrinsic meaning as a true zero, then any ballot drawing the line somewhere else might
be classified as insincere—and such a voter might have a strategic incentive to cast
such a ballot.®®

86 Tt is easy to recast approval voting in terms that are symmetric in approval and nonapproval.

87 The authors of Approval Voting take two views, referring sometimes to an underlying ranking and at other
times speaking of the approved alternatives as those “acceptable” to the voter. The third view appears in Brams
and Sanver (2009), which proposes voting rules that use a ballot consisting of a ranking and a dividing line
both, and in Sanver (2010); see also the related Bucklin voting, fallback voting, and majoritarian compromise
discussed in Hoag and Hallett (1926) and Brams (2008).

Marking a voter’s true zero is not the only way to ascribe intrinsic meaning to the location of “the line.” For a
voter who assigns a cardinal utility to each alternative, the mean utility value serves as a sort of relative zero
(quite possibly different from that voter’s “true” zero, if she has one) and arguments have been made (in Brams
and Fishburn, 2007) for drawing the line there. Duddy et al. (2013) show that drawing the line at the mean
maximizes a measure of total separation between the approved and unapproved groups. Laslier (2009) argues
that it is strategically advantageous to draw the line near the utility (to the individual voter) of the expected
winner, and that voters tend to behave this way.

88
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Approval = Borda = Condorcet

To bridge the gap between approval voting and the SCF context we might translate each
approval ballot X; into the weak ranking ~; for whicha 7—; biffa € X; orb ¢ X;. This
identifies approval voting with a certain SCF, for which the domain is restricted to the
class R, of dichotomous preferences; ballots in ‘R, are weak rankings having exactly
two (nonempty) indifference classes, one ranked over the other. (Here, an indifference
class is an equivalence class under the indifference relation ~;, defined on the set A of
alternatives by x ~; y if both x 7Z; yand y =; x.)

We can now ask, “Among the SCFs we have considered, which become identical
to approval voting after R, is imposed?” The answer depends, of course, on how
these SCFs are extended to handle indifferences in the ballots. Approval voting is
identical to the Borda count under the R, restriction, provided that we apply, directly
to profiles of weak rankings, the earlier Equations 2.1 for net preference Netp(a > b)
and 2.3 for symmetric Borda score (without any modification to these equations); the
result is equivalent to using the averaging method for modifying scoring weights in
the presence of indifferences.*”*”" Whether scoring rules other than Borda reduce to
approval voting depends on the convention used to adapt their scoring weights in the
presence of indifferences.”!

The fate of Condorcet extensions under R, depends on how one defines the pairwise
majority relation x >* y in the presence of individual indifferences. Suppose we apply
the earlier definition of x >* y as Netp(x > y) > 0, directly and without modification
to weak order ballots. Then x >*# y is equivalent to “the number of voters i withx >; y
is strictly greater than the number with y >; x.””> Moreover, under R, this version of
x >" y is equivalent to “more voters approve x than approve y.” Thus under R, every
profile has a Condorcet winner (and a transitive >*) and approval voting is identical
to every Condorcet extension under R,.”> One can argue, then, that approval voting
reconciles de Borda and Condorcet.”*

89 This is a bit surprising, in that the total number of points awarded by a single dichotomous ballot (via
Equation 2.3 for symmetric Borda score) varies depending on the number of approved alternatives. However,
the difference between any single ballot’s award to an approved and a disapproved alternative does not vary,
and only these differences matter in determining the winner. That Borda reduces to approval under suitable
ballot restrictions has been noted, for example, in Endriss et al. (2009)

Applying Equations 2.1 and 2.3 is equivalent to applying, to any vector of scoring weights that are equally
spaced—hence, serve as Borda weights—the following method for modifying scoring weights to account for
indifference expressed in a weak order ballot: choose an arbitrary linear extension of the ballot, and then award,
to each alternative in an indifference class of the ballot, the average scoring weight awarded to the members
of that class by the extension.

For such rules, scoring weights are unequally spaced, and applying the averaging method of Footnote 90 will
typically not yield approval voting under the R, restriction (because the differences discussed in Footnote 89
will vary depending on the number of approved alternatives). For each proper scoring rule there exists some
adaptation of weights to dichotomous preferences that yields approval voting, but in some cases (k-approval,
for example) the adaptation method seems artificial.

However, with weak rankings this version of x >/ y is no longer equivalent to “more than half of the voters
rank x over y.” This latter version seems problematic when there are many indifferences.

Of course, if each approval ballot is derived by compressing a ranking, then the Condorcet winner for the
uncompressed rankings might differ from that for the compressed versions.

This is less surprising when one considers the fate, under the R, restriction, of the orthogonal decomposition
discussed at the end of Section 2.5. The difference between Borda and Condorcet resides entirely in the cyclic
component of the weighted tournament, which is always 0 under R.
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2.11 The Future

Where is the theory of voting headed? One view holds that the results of Arrow, Gibbard,
and Satterthwaite killed the field, with subsequent work amounting to picking the bones
of the carcass. But such opinions were being expressed well before the birth of new,
unsuspected, and vital cognate fields such as computational social choice or judgment
aggregation. These opinions reflect, in our view, a naiveté as to the nature of voting. If
voting is one thing, then perhaps one might interpret the famous impossibility results
as saying, “give up—a perfect rule is impossible.”

But voting for a mayor in a political context is quite different, for example, from
voting on a panel of petroleum geologists ranking land tracts, to advise an oil company
bidding for drilling rights. Resistance to manipulation might be irrelevant for the
geologists, but quite important when deciding how to elect a mayor.

An alternative view of the future, then, is that it will bring a better understanding of
the broad spectrum of contexts for voting, together with a guide to as to which, among
a variety of properties and axioms, are more relevant for each context. Certainly, we
are still a long way from this level of mastery today.

Under this latter view, impossibility results do not kill the subject of voting, but
rather fertilize it by leading us to consider a more diverse set of axioms and voting
rules appropriate to these varied contexts. Just how large, then, is the universe of
interesting axioms and voting rules? On this matter, there is a similar split in point
of view. Some see this universe as largely mapped. We suspect that unexplored and
unsuspected regions may dwarf what is known.
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CHAPTER 3

Tournament Solutions

Felix Brandt, Markus Brill, and Paul Harrenstein

3.1 Introduction

Perhaps one of the most natural ways to aggregate binary preferences from individual
agents to a group of agents is simple majority rule, which prescribes that one alternative
is socially preferred to another whenever a majority of agents prefers the former to
the latter. Majority rule intuitively appeals to democratic principles, is easy to under-
stand and—most importantly—satisfies some attractive formal properties. As seen in
Chapter 2, May’s Theorem shows that a number of rather weak and intuitively accept-
able principles completely characterize majority rule in settings with two alterna-
tives (May, 1952). Moreover, almost all common voting rules satisfy May’s axioms
and thus coincide with majority rule in the two-alternative case. It would therefore
seem that the existence of a majority of individuals preferring alternative a to alter-
native b signifies something fundamental and generic about the group’s preferences
over a and b. We will say that alternative a dominates alternative b in such a case.

As is well known from Condorcet’s paradox (see Chapter 2), the dominance rela-
tion may contain cycles. This implies that the dominance relation may not admit a
maximal element and the concept of maximality as such is rendered untenable. On the
other hand, Arrow writes that “one of the consequences of the assumptions of rational
choice is that the choice in any environment can be determined by a knowledge of
the choices in two-element environments” (Arrow, 1951, p. 16). Thus, one way to
get around this problem—the one pursued in this chapter—is to take the dominance
relation as given and define alternative concepts to take over the role of maximal-
ity. More precisely, we will be concerned with social choice functions (SCFs) that
are based on the dominance relation only, that is, those SCFs that Fishburn (1977)
called C1 functions. Topics to be covered in this chapter include McGarvey’s Theo-
rem, various tournament solutions (such as Copeland’s rule, the uncovered set, the top
cycle, or the tournament equilibrium set), strategyproofness, implementation via binary
agendas, and extensions of tournament solutions to weak tournaments. Particular atten-
tion will be paid to the issue of whether and how tournament solutions can be computed
efficiently.
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58 3 TOURNAMENT SOLUTIONS

In this chapter, we will view tournament solutions as C 1 SCFs. However, for varying
interpretations of the dominance relation, tournament solutions and variants thereof can
be applied to numerous other settings such as multicriteria decision analysis (Arrow
and Raynaud, 1986; Bouyssou et al., 2006), zero-sum games (Fisher and Ryan, 1995;
Laffond et al., 1993a; Duggan and Le Breton, 1996), and coalitional games (Brandt
and Harrenstein, 2010).

3.2 Preliminaries

We first introduce and review some basic concepts and notations used in this chapter.
Let N = {1, ..., n}beasetof voters, A a set of m alternatives,and R = (%21, ..., Zu)
a vector of linear orders over A. ~; is the preference relation of voter i and R is
called a preference profile. The majority relation - for R is defined such that for all
alternatives a and b,

arzb ifandonlyif |ieN:az;b}|>|{i e N:bZ;a}l

See Figure 3.1 for an example preference profile and the corresponding majority
relation. A Condorcet winner is a (unique) alternative a such that there is no other
alternative b with b 7~ a (or in other words, an alternative a such that a > b for all
b € A\ {a}, where > is the asymmetric part of 7). By definition, the majority relation
is complete, i.e., a 77 b or b 77 a for all alternatives a and b. Apart from completeness,
the majority relation has no further structural properties, that is, every complete relation
over a set of alternatives can be obtained as the majority relation for some preference
profile. This result is known as McGarvey’s Theorem.

Theorem 3.1 (McGarvey, 1953). Let A be a set of m alternatives and > a complete
relation over A. Then, there is a preference profile R = (71, ..., 7,) over A with
n < m(m — 1) such that > = .

Proof. Denote the asymmetric part of > by >. For every pair (a, b) of alternatives
with a > b, introduce two voters, i, and j,p, that is, N = {isp, ju : @ > b}. Define
the preference profile R such that for all a, b € A,

a>i, b>i, x1 =iy -+ =i, Xm— and
Xm=2 > juy = >y X1 >y @ >, b,

where xi, ..., Xx,,_p is an arbitrary enumeration of A \ {a, b}. It is easy to check that
the majority relation - for R coincides with >. By asymmetry of >, moreover, we
have a > b for at most %m(m — 1) pairs (a, b) and thus n = |[N| < m(m — 1). ]

The minimal number of voters required to obtain any majority relation has sub-
sequently been improved by Stearns (1959) and Erdds and Moser (1964), who have
eventually shown that this number is of order @(@). This implies that for any fixed
number of voters, there are tournaments which are not induced by any preference pro-
file. Only little is known about the classes of majority relations that can be induced by
preference profiles with small fixed numbers of voters (see Bachmeier et al., 2014).
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Figure 3.1. A tournament T = ({a, b, ¢, d, e}, >), which depicts the asymmetric part of the
majority relation of the three-voter preference profile on the right.

3.2.1 Tournaments

If the number of voters is odd, there can be no majority ties and the majority relation
is antisymmetric. In this case, the asymmetric part > of the majority relation 7 is
connex and irreflexive and will be referred to as the dominance relation." A dominance
relation can be conveniently represented by an oriented complete graph, a tournament
(see Figure 3.1).

Formally, a tournament T is a pair (A, >) where A is a set of vertices and >
is an asymmetric and connex relation over the vertices. Tournaments have a rich
mathematical theory and many results for C1 SCFs have a particularly nice form if
the dominance relation constitutes a tournament. Moreover, many C1 functions have
only been defined for tournaments and possess a variety of possible generalizations to
majority graphs that are not tournaments. None of these generalizations can be seen as
the unequivocal extension of the original function. We therefore assume the dominance
relation to be antisymmetric and discuss generalizations of functions in Section 3.5.”

The dominance relation can be raised to sets of alternatives and we write A > B to
signify thata > b foralla € A and all b € B. Using this notation, a Condorcet winner
can be defined as an alternative a such that {a} > A \ {a}. For a subset of alternatives
B C A, we will sometimes consider the restriction >z= {(a,b) € B X B : a > b} of
the dominance relation > to B. (B, >p) is then called a subtournament of (A, >).

For a tournament (A, >) and an alternative a € A, we denote by D(a) the dominion
of a, that is,

D@)={beA:a>b},
and by D(a) the dominators of a, that is,
D@ ={beA:b>a).

The order |T| of a tournament 7 = (A, >) refers to the cardinality of A.

! A relation > is connex if a > b or b > a for all distinct alternatives a and b. In the absence of majority ties, >
and 77 are identical except that 7~ is reflexive while > is not.

2 The preference profile constructed in the proof of Theorem 3.1 involves an even number of voters. It is easily
seen, however, that no single additional voter, no matter what his preferences are, will affect the dominance
relation > and we may assume that every tournament is also induced by a preference profile with an odd number
of voters. Likewise, the result by Erdés and Moser (1964) also holds for tournaments (Moon, 1968, Chapter 19,
Example 1 (d)).
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Figure 3.2. The tournament T from Figure 3.1 with its adjacency matrix M(T) and its skew-
adjacency matrix G(T). Here, for instance, D(a) = {b, e} and D(b) = {a, d}.

The elements of the adjacency matrix M(T) = (mgp)4 pea Of a tournament 7" are 1
whenever a > b and 0 otherwise. The skew-adjacency matrix G(T) of the correspond-
ing tournament graph is skew-symmetric and defined as the difference of the adjacency
matrix and its transpose, that is, G(T) = M(T) — M(T)" (see Figure 3.2).

An important structural notion in the context of tournaments is that of a component.
A component is anonempty subset of alternatives B C A that bear the same relationship
to any alternative not in the set, that is, for all a € A \ B, either B > {a} or {a} > B.
A decomposition of T is a partition of A into components.

For a given tournament 7', a new tournament 7' can be constructed by replacing each
alternative with a component. Let By, ..., By be pairwise disjoint sets of alternatives
and consider tournaments 7y = (By, >1),...,Te = (B, =¢),and T = ({1, ..., k}, S).
The product of Ty, ..., T, with respect to T, denoted by (T, Ty,...,Tp), is the
tournament (A, >) such that A = Uf;l B; and for all b, € B;, b, € Bj,

by > b, ifandonlyif i=jandb; >; by,ori # jandi = j.

Here, T is called the summary of T with respect to the preceding decomposition. In the
tournament depicted in Figure 3.2, for example, {a, b, c}, {d}, and {e} are components
and {{a, b, c}, {d}, {e}} is a decomposition. The tournament can therefore be seen as the
product of a 3-cycle and two singleton tournaments with respect to a 3-cycle summary.
Importantly, every tournament admits a unique decomposition that is minimal in a
well-defined sense (Laslier, 1997, pp. 15-23).

3.2.2 Tournament Solutions

A tournament solution is a function S that maps each tournament 7 = (A, >) to a
nonempty subset S(7') of its alternatives A called the choice set. The formal definition
further requires that a tournament solution does not distinguish between isomorphic
tournaments, that is,if : A — A’is an isomorphism between two tournaments (A, >)
and (A, >'), then

S(A, > ={h(a) :a € S(A, »)}.

As defined in Chapter 2, an SCF is a C'1 function if its output only depends on the dom-
inance relation. Because the dominance relation is invariant under renaming voters,
C1 SCFs are anonymous by definition. Moreover, due to the invariance of tourna-
ment solutions under isomorphisms, tournament solutions are equivalent to neutral
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C1 functions. In contrast to Laslier (1997), we do not require tournament solutions to
be Condorcet-consistent, that is, to uniquely select a Condorcet winner whenever one
exists.

For a tournament 7 = (A, >) and a subset B C A, we write S(B) for the more
cumbersome S(B, >p). For two tournament solutions S and §’, we write S’ C S, and
say that S’ is a refinement of S and S a coarsening of S, if S'(T) C S(T) for all
tournaments 7.

The literature on rational choice theory and social choice theory has identified a
number of desirable properties for (social) choice functions, also referred to as axioms,
which can be readily applied to tournament solutions. In this section, we review three of
the most important properties in this context—monotonicity, stability, and composition-
consistency. As we will see in Section 3.3.2, another important property of SCFs—
FPareto-optimality—is intimately connected to a particular tournament solution, the
uncovered set.

A tournament solution is monotonic if a chosen alternative remains in the choice set
when its dominion is enlarged, while leaving everything else unchanged.

Definition 3.1. A tournament solution S is monotonic if for all T = (A, >), T' =
(A, >"), a € A such that > 4\;q} = >"4\(q) and for all b € A\ {a}, a >' b whenever
a>b,

a € S(T) implies a € S(T').

Monotonicity of a tournament solution immediately implies monotonicity of the
corresponding C1 SCF. Note that this notion of monotonicity for irresolute SCFs is
one of the weakest one could think of.

While monotonicity relates choices from tournaments of the same order to each
other, the next property relates choices from different subtournaments of the same
tournament to each other. Informally, stability (or self-stability) requires that a set is
chosen from two different sets of alternatives if and only if it is chosen from the union
of these sets.

Definition 3.2. A tournament solution S is stable if for all tournaments 7 = (A, >)
and for all nonempty subsets B, C, X € A with X € BN C,

X = S(B) = S(C) ifandonlyif X = S(BUC).

In comparison to monotonicity, stability appears to be much more demanding. It can
be factorized into two conditions, & and . Condition 7 corresponds to the implication
from left to right whereas @ is the implication from right to left (Brandt and Harrenstein,
2011). @ is also known as Chernoff’s postulate 5* (Chernoff, 1954), the strong superset
property (Bordes, 1979), outcast (Aizerman and Aleskerov, 1995), and the attention
filter axiom (Masatlioglu et al., 2012).” @ implies idempotency,* that is,

S(S(T)) =S(T)forall T.

3 We refer to Monjardet (2008) for a more thorough discussion of the origins of this condition.

4 Tournament solutions that fail to satisfy idempotency (such as the uncovered set) can be made idempotent by
iteratively applying the tournament solution to the resulting choice sets until no further refinement is possible.
The corresponding tournament solutions, however, often violate monotonicity.
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Finally, we consider a structural invariance property that is based on components
and strengthens common cloning-consistency conditions. A tournament solution is
composition-consistent if it chooses the “best” alternatives from the “best” components.

Definition 3.3. A tournament solution S is composition-consistent if for all tourna-
ments 7, T4, ..., Ti, and T such that T = ]_[(T, Ti, ..., Ty),

sy = | sa.

ieS(T)

Consider again the tournament given in Figure 3.2. Nonemptiness and neutrality
imply that every tournament solution has to select all alternatives in a 3-cycle. It
follows that every composition-consistent tournament solution has to select all five
alternatives in this tournament.

Besides its normative appeal, composition-consistency can be exploited to speed
up the computation of tournament solutions. Brandt et al. (2011) introduced the
decomposition degree of a tournament as a parameter that reflects its decomposability
and showed that computing any composition-consistent tournament solution is fixed-
parameter tractable with respect to the decomposition degree. Because computing the
minimal decomposition requires only linear time, decomposing a tournament never
hurts, and often helps.’

A weaker notion of composition-consistency, called weak composition-consistency,
requires that for every pair of tournaments 7 = (A, >) and 7’ = (A, >') that only
differ with respect to the dominance relation on some component Y of 7', both

(i) S(TY\ Y = S(T')\ ¥, and
(ii) S(TYNY # @if and only if S(T)NY # @.

3.3 Common Tournament Solutions

In this section we review some of the most common tournament solutions. On top of
the axiomatic properties defined in the previous section, particular attention will be
paid to whether and how a tournament solution can be computed efficiently. Whenever
a tournament solution is computationally intractable, we state NP-hardness of the
decision problem of whether a given alternative belongs to the choice set of a given
tournament. This implies hardness of computing the choice set. By virtue of the
construction in the proof of Theorem 3.1, it is irrelevant whether the input for this
problem is a tournament or a preference profile.

Let us start with two extremely simple tournament solutions. The trivial tournament
solution TRIV always selects all alternatives from any given tournament. While 7RIV
does not discriminate between alternatives at all and as such is unsuitable as a
tournament solution, it is easily verified that it satisfies monotonicity, stability, and

3 Because the representation of a tournament of order m has size ©(m?), the asymptotic running time of a linear
time algorithm is in O(m?).
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Figure 3.3. Tournament T with MA(T) = SL(T) = {a}, CO(T) = {a, b}, UC(T) = {a, b, d}, and
TRIV(T) = CNL(T) = TC(T) = {a, b, ¢, d}. All other tournament solutions considered in this
chapter coincide with UC. All omitted edges are assumed to point rightward, that is, a > b,
a>c, b>c b>d andc>d.

composition-consistency, and, of course, can be “computed” eﬁ‘iciently.6 One of the
largest nontrivial tournament solutions is the set of Condorcet non-losers (CNL). A
Condorcet loser is a (unique) alternative a such that A \ {a} > {a}. In tournaments of
order two or more, CNL selects all alternatives except Condorcet losers. CNL is barely
more discriminating than 7RIV, yet already fails to satisfy stability and composition-
consistency (monotonicity is satisfied).

All tournament solutions defined in the following generalize the concept of a Con-
dorcet winner in one way or another.

3.3.1 Solutions Based on Scores

In this section, we introduce four tournament solutions that are defined via various
methods of assigning scores to alternatives: the Copeland set, the Slater set, the Markov
set, and the bipartisan set.

Copeland Set

The Copeland set is perhaps the first idea that comes to mind when thinking about tour-
nament solutions. While a Condorcet winner is an alternative that dominates all other
alternatives, Copeland’s rule selects those alternatives that dominate the most alterna-
tives (see, e.g., Copeland, 1951). Formally, the Copeland set CO(T) of a tournament T
consists of all alternatives whose dominion is of maximal size, that is,

CO(T) = arg maj( |D(a)|.
ae

| D(a)| is also called the Copeland score of a. In graph-theoretic terms, |D(a)| is the
outdegree of vertex a.

In the example tournament given in Figure 3.3, CO(T) = {a, b}, because both a
and b have a Copeland score of 2, whereas the Copeland score of both ¢ and d is 1.

It is straightforward to check that CO satisfies monotonicity. On the other hand,
stability and composition-consistency do not hold. This can be seen by again examin-
ing the tournament in Figure 3.3. Because CO(CO(T)) = {a} # {a, b} = CO(T), CO
violates idempotency and thus stability. Moreover, as {{a}, {b, c}, {d}} is a decompo-
sition of 7', composition-consistency would require that d € CO(T), which is not the
case. A similar example shows that CO even violates weak composition-consistency.
An axiomatic characterization of CO was provided by Henriet (1985).

6 Many axiomatizations of tournament solutions only require inclusive properties (i.e., properties which demand
that alternatives ought to be included in the choice set under certain circumstances) and inclusion-minimality
(see, e.g., Brandtet al., 2013a, pp. 224-226).
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CO can be easily computed in linear time by determining all Copeland scores and
choosing the alternatives with maximum Copeland score.’

Theorem 3.2. The Copeland set can be computed in linear time.

It is possible to define “second-order” Copeland scores by adding the Copeland
scores of all alternatives within the dominion of a given alternative. The process
of iteratively computing these scores is guaranteed to converge (due to the Perron-
Frobenius Theorem) and leads to a tournament solution, which is sometimes referred
to as the Kendall-Wei method (see, e.g., Moon, 1968, Chapter 15; Laslier, 1997, pp. 54—
56). Kendall-Wei scores can be computed in polynomial time by finding the eigenvector
associated with the largest positive eigenvalue of the adjacency matrix.

Slater Set

Although the dominance relation > of a tournament may fail to be a strict linear order,
it can be linearized by inverting edges in the tournament graph. The intuition behind
Slater’s rule is to select from a tournament (A, >) those alternatives that are maximal
elements (i.e., Condorcet winners) in those strict linear orders that can be obtained
from > by inverting as few edges as possible, that is, in those strict linear orders that
have as many edges in common with > as possible (Slater, 1961).% Thus, Slater’s rule
can be seen as the unweighted analogue of Kemeny’s social preference function (see
Chapter 2 and Chapter 4).

Denote the maximal element of A according to a strict linear order > by max(>).
The Slater score of a strict linear order > over the alternatives in A with respect to
tournament 7 = (A, >) is | > N >|. A strict linear order is a Slater order if it has
maximal Slater score. Then, the Slater set SL is defined as

SL(T) = {max(>) : > is a Slater order for T'}.

In the example in Figure 3.3, SL(T) = {a} because a > b > ¢ > d is the only Slater
order. SL satisfies monotonicity, but violates stability and composition-consistency.

Finding Slater orders is equivalent to solving an instance of the minimum feedback
arc set problem, which is known to be NP-hard, even in tournaments.” Therefore,
checking membership in SL is NP-hard as well.

Theorem 3.3 (Alon, 2006; Charbit et al., 2007; Conitzer, 2006). Deciding whether
an alternative is contained in the Slater set is NP-hard.

It is unknown whether the membership problem is contained in NP. The best
known upper bound for this problem is the complexity class ©2, and Hudry (2010)

;N

Brandt et al. (2009) have shown that deciding whether an alternative is contained in CO(T) is TC®-complete
and therefore not expressible in first-order logic.

‘When inverting as few edges as possible in order to obtain a Condorcet winner (rather than a strict linear order),
we get the Copeland set.

Whether the minimum feedback arc set problem is NP-hard in tournaments was a long-standing open problem
that was solved independently by Alon (2006), Charbit et al. (2007), and Conitzer (2006). The minimum
feedback arc set problem is APX-hard (Kann, 1992) and thus does not admit a polynomial-time approximation
scheme (PTAS) unless P = NP. For tournaments, however, there exists a PTAS (Kenyon-Mathieu and Schudy,
2007).

o

©
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conjectured that the problem is complete for this class. For a more detailed discussion
of the computational complexity of Slater’s solution, see Hudry (2010) and Charon and
Hudry (2006, 2010). Bachmeier et al. (2014) have shown that deciding membership in
the Slater set remains NP-hard even when there are only 13 voters.

Although SL is not composition-consistent, it satisfies weak composition-
consistency. Interestingly, decompositions of the tournament can be exploited to iden-
tify a subset of the Slater orders (see Laslier, 1997, p. 66; Conitzer, 2000).

Markov Set

Based on ideas that date back at least to Daniels (1969) and Moon and Pullman (1970),
Laslier (1997) defines a tournament solution via a Markov chain. The intuition given
by Laslier is that of a table tennis tournament in which the alternatives are players
who compete in a series of pairwise comparisons. If a player wins, he will stay at
the table and compete in the next match. If he loses, he will be replaced with a new
random player. The goal is to identify those players who, in expectation, will win most
matches.

The states of the Markov chain are the alternatives and the transition probabilities
are determined by the dominance relation: in every step, stay in the current state a
with probability :? l(f)ll , and move to state b with probability \T\;—l for all b € D(a). The
Markov set consists of those alternatives that have maximum probability in the chain’s
unique stationary distribution. Formally, the transition matrix of the Markov chain is
defined as

1
T -1

Q - (M(T) + diag(CO)),

where M(T) is the adjacency matrix and diag(CO) is the diagonal matrix of the
Copeland scores. Let A(A) be the set of all probability distributions over A. The
Markov set MA(T) of a tournament 7 is then given by

MA(T) = arg maj( {p@): p e A(A)and Qp = p}.

MA tends to select significantly smaller choice sets than most other tournament solu-
tions. In the example in Figure 3.3, MA(T) = {a} because the stationary distribution
is f—oa + %b + %c + %d. The Markov solution is also closely related to Google’s
PageRank algorithm for ranking websites (see Brandt and Fischer, 2007). It satisfies
monotonicity, but violates stability and weak composition-consistency.

Computing p as the eigenvector of Q associated with the eigenvalue 1 is straight-
forward. Accordingly, deciding whether an alternative is in MA can be achieved in
polynomial time.

Theorem 3.4. The Markov set can be computed in polynomial time.

Moreover, Hudry (2009) has pointed out that computing MA has the same asymptotic
complexity as matrix multiplication, for which the fastest known algorithm to date runs
in O(m?3%).
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Bipartisan Set

The last tournament solution considered in this section generalizes the notion of a
Condorcet winner to lotteries over alternatives. Laffond et al. (1993a) and Fisher and
Ryan (1995) have shown independently that every tournament 7 admits a unique
maximal lottery,'” that is, a probability distribution p € A(A) such that for G(T) =

(gah)a,beAs

>~ pla)g(b)gas = 0 forall g € A(A).
a,beA

Let pr denote the unique maximal lottery for a tournament 7. Laffond et al. (1993a)
define the bipartisan set BP(T) of T as the support of pr, that is,

BP(T)={a € A : pr(a) > 0}.

For the tournament in Figure 3.4, we have pr = %a + %b + %d and thus BP(T) =
{a, b, d}. It is important to realize that the probabilities do not necessarily represent the
strengths of alternatives and, that, in contrast to other score-based tournament solutions,
just selecting those alternatives with maximal probabilities results in a tournament
solution that violates monotonicity (see Laslier, 1997, pp. 145-146).

To appreciate this definition, it might be illustrative to interpret the skew-adjacency
matrix G(T') of T as a symmetric zero-sum game in which there are two players, one
choosing rows and the other choosing columns, and in which the matrix entries are
the payoffs of the row player. Then, if the players respectively randomize over rows
and columns according to pr this corresponds to the unique mixed Nash equilibrium
of this game. An axiomatization of BP and an interpretation of mixed strategies in the
context of electoral competition were provided by Laslier (1997, pp. 151-153) and
Laslier (2000), respectively.

BP satisfies monotonicity, stability, and composition-consistency. Moreover, BP can
be computed in polynomial time by solving a linear feasibility problem (Brandt and
Fischer, 2008a).

Theorem 3.5. The bipartisan set can be computed in polynomial time.

In weak tournaments—that is, generalizations of tournaments where the dominance
relation is not required to be antisymmetric (see Section 3.5)—deciding whether an
alternative is contained in the bipartisan set is P-complete (Brandt and Fischer, 2008a).
Whether P-hardness also holds for tournaments is open.

3.3.2 Uncovered Set and Banks Set

If dominance relations were transitive in general, every tournament (and all of its
subtournaments) would admit a Condorcet winner. The uncovered set and the Banks
set address the lack of transitivity in two different but equally natural ways.

The uncovered set takes into account a particular transitive subrelation of the domi-
nance relation, called the covering relation, and selects the maximal alternatives thereof,

10 Maximal lotteries were first considered by Kreweras (1965) and studied in detail by Fishburn (1984). The
existence of maximal lotteries follows from the Minimax Theorem.
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a b ¢ d e
o 1 1-1 1
-1 0 1 1 -1
-1 -1 0 1 1
1-1-1 0 1
-1 1 -1-1 0

agens

Lo oL

Figure 3.4. Tournament T and its skew-adjacency matrix G(T). CO(T) = SLT)
MA(T) = {a}, BP = {a, b, d}, UC(T) = BA(T) = {a, b, ¢, d}, and TRIV(T) = CNL(T) = TC(T) =
{a, b, c,d, e}. All other tournament solutions considered in this chapter coincide with BP.
Omitted edges point rightward.

whereas the Banks set consists of maximal alternatives of inclusion-maximal transitive
subtournaments.'!

Uncovered Set

An alternative a is said to cover alternative b whenever every alternative dominated
by b is also dominated by a. Formally, given a tournament 7' = (A, >), the covering
relation C is defined as a binary relation over A such that for all distinct a, b € A,

aCb ifandonlyif D(b)C D(a).

Observe that a C b implies that ¢ > b and is equivalent to D(a) € D(b). It is easily
verified that the covering relation C is transitive and irreflexive, but not necessarily
connex. The uncovered set UC(T) of a tournament T = (A, >) is then given by the set
of maximal elements of the covering relation, that is,

UC(T)={ae A:bCafornob e A}

UC was independently proposed by Fishburn (1977) and Miller (1980) and goes back
to a game-theoretic notion used by Gillies (1959).

In the example in Figure 3.4, a covers e, as D(e) = {b} and D(a) = {b, c, e}. As
this is not the case for any other two alternatives, UC(T) = {a, b, c, d}. UC satisfies
monotonicity and composition-consistency, but violates stability. In fact, it does not
even satisfy idempotency. An appealing axiomatic characterization of UC was given
by Moulin (1986).

Interestingly, UC consists precisely of those alternatives that reach every other
alternative on a domination path of length at most two (Shepsle and Weingast, 1984).'?
This equivalence can be easily seen by realizing that

a € UC(T) if and only if there isno b € A such thatb C a
if and only if for all b € D(a) there is some ¢ € D(a) such that ¢ > b
if and only if a reaches all b € A \ {a} in at most two steps.
11 As Brandt (2011a) notes, the uncovered set contains exactly those alternatives that are Condorcet winners in
inclusion-maximal subtournaments that admit a Condorcet winner.

12 In graph theory, these alternatives are called the kings of a tournament, and they constitute the center of the
tournament graph.
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@ z D(x) TC(D(x))
a A{ce} {c}
@P b {af) e
¢ {bg} {o}
d {a,b,c} {a,b,c}
C? e A{be,d,gt {b}
f Aa,ce,dye}  {c}
g AHabd f} {a}

Figure 3.5. Tournament T and its dominator sets. BA(T) = {a, b, ¢}, UC(T) = {a, b, ¢, d}, and
TRIV(T) = CNL(T) = TC(T) = {a, b, ¢, d, e, f, g}. All other tournament solutions considered in
this chapter coincide with BA. Omitted edges point rightward.

This characterization can be leveraged to compute UC via matrix multiplication
because

a € UC(T) if and only if (M(T)* + M(T) + Do #Oforallb € A,

where [ is the n x n identity matrix (Hudry, 2009). Hence, the asymptotic running
time is O(n>3%).13

Theorem 3.6. The uncovered set can be computed in polynomial time.

As mentioned in Chapter 2, an alternative is Pareto-optimal if there exists no other
alternative such that all voters prefer the latter to the former. A tournament solution is
Pareto-optimal if its associated SCF only returns Pareto-optimal alternatives. Brandt
etal. (2015a) have shown that UC is the coarsest Pareto-optimal tournament solution. As
a consequence, a tournament solution is Pareto-optimal if and only if it is a refinement
of UC.

Banks Set

The Banks set selects the maximal elements of all maximal transitive subtournaments.
Formally, a transitive subtournament (B, >pg) of tournament 7 is said to be maximal
if there is no other transitive subtournament (C, >¢) of T with B C C. The Banks set
BA(T) of a tournament is then defined as

BA(T) = {max(>3p) : (B, >p) is a maximal transitive subtournament of 7'}.

The tournament in Figure 3.5 has six maximal transitive subtournaments, induced
by the following subsets of A: {a,b.d, g}, {a.d, f, g}, {b,c,d,e}, {b,d,g,e},
{c,a,d, f}, and {c, d, e, f}. Hence, BA(T) = {a, b, c}. Like UC, BA satisfies mono-
tonicity and composition-consistency, but violates stability. BA was originally defined
as the set of sophisticated outcomes under the amendment agenda (Banks, 1985). For

13 Brandt and Fischer (2008a) proved that the problem of computing UC is contained in the complexity class
ACP by exploiting that computing the covering relation can be highly parallelized. This is interesting insofar
as deciding whether an alternative lies within UC is computationally easier (in AC®) than checking whether
it is contained in CO (TC%-complete), despite the fact that the fastest known algorithm for computing UC is
asymptotically slower than the fastest algorithm for CO.
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g

Figure 3.6. Tournament T, for the 3CNFformulag = (mpVvsv g A(pVvsVvr)A(pv gV —r).
Omitted edges point downward.

more details see Section 3.4. An alternative axiomatization of the Banks set was given
by Brandt (2011a).
BA cannot be computed in polynomial time unless P equals NP.

Theorem 3.7 (Woeginger, 2003). Deciding whether an alternative is contained in the
Banks set is NP-complete.

Proof. Membership in NP is straightforward. Given a tournament 7 = (A, >) and an
alternative a € A, simply guess a subset B of A and verify that (B, >p) is a transitive
subtournament of 7' with @ = max(>pg). Then, check (B, >p) for maximality.

For NP-hardness, we give the reduction from 3SAT by Brandtet al. (2010c). Let ¢ =
(xlvax?vaxl) A A(x) vx2 vxl) be a propositional formula in 3-conjunctive
normal form (3CNF). For literals x we have x = —p if x = p,and X = p if x = —p,
where p is a propositional variable. We may assume that x and ¥ do not occur in the
same clause.

We now construct a tournament 7, = (A, >) with

A={cy,...,com}U{d}U U U---UUy,_1,
where for 1 <k 5 2m — 1, the set Uy, is defined as follows. If k is odd, leti = k;” and
define U, = {x } If k is even, let Uy, = {uk}
The domlnance relatlon is defined such that x > x2 P x3 - x . Moreover, for
W) W ¢ _ =t

literals xl and xj (1=<¢,¢ <3) withi < j we have X; =X, unless x; =X;,in

] b
which case xf > xf. For the dominance relation on the remaining alternatives the
reader is referred to Figure 3.6.

Observe that for every maximal transitive subtournament (B, >p) of T, with

max(>pg) = d it holds that:

(i) B contains an alternative from each Uy with 1 < k <2m — 1, and
(i) for no literal x, the set B contains both x and x.
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For (i), assume that B N Uy = {J. Because max(>p) =d and ¢; > d forall 1 < j <
2m — 1, we have B N{cy, ..., cou—1} = . It follows that (B U {ck}, > puic,}) is tran-
sitive (c¢; > b for all b € B), contradicting maximality of (B, >p). For (ii), assume
both x, X € B. By a previous assumption then x € Uy and X € Uy for odd k and &’
with k # k’. Without loss of generality assume that k < k’. By (i), ux+1 € B. Then,
however, x > u;,1 > X > x, contradicting transitivity of (B, >p).

We now prove that

@ is satisfiable if and only if d € BA(T,).

First assume that d € BA(T,), that is, d = max(> ) for some maximal transitive sub-
tournament (B, > p) of T,,. Define assignment v such that it sets propositional variable p
to true if p € B and to false if —p € B. By virtue of (ii), assignment v is well-defined
and with (i) it follows that v satisfies ¢.

For the opposite direction, assume that ¢ is satisfiable. Then, there are an assign-

ment v and literals xi, ..., x,, from the clauses (x} V x? Vv x7),..., (x} v x2 v x2),
respectively, such that v satisfies each of x, ..., x,,. Define
B = {d} U {)C], ...,xm} U {uz,u4, ey MQm,Q}.

It is easily seen that (B, >p) is transitive and that max(>p) = d. Observe that B
contains an alternative u; from each U, with 1 < k < 2m — 1. Hence, foreach ¢, € C,
we have ¢, > d > uy > ¢ and, thus, (B U {ct}, >pujc) is not transitive. It follows
that d = max(> /) for some maximal transitive subtournament (B’, >p/) with B C B’,
that is, d € BA(T,). O

By modifying the construction only slightly and using a variant of 3SAT, Bach-
meier et al. (2014) have shown that this problem remains NP-complete even when
there are only 5 voters. Interestingly, finding some alternative in BA(A, >) can be
achieved in linear time using the following simple procedure (Hudry, 2004). Label
the alternatives in A as ay, ..., a, and initialize X as the empty set. Then, starting
with k£ = 1, successively add alternative a; to X if and only if a; dominates all alter-
natives in X. After m steps, this process terminates and the last alternative added to X
can easily be seen to be a member of the Banks set. The difficulty of computing the
whole Banks set is rooted in the potentially exponential number of maximal transitive
subtournaments.

3.3.3 Solutions Based on Stability

Generalizing an idea by Dutta (1988), Brandt (201 1a) proposed a method for refining
any tournament solution S by defining minimal sets that satisfy a natural stability
criterion with respect to S. Given a tournament solution S and a tournament 7', a subset
of alternatives B C A is called S-stable in T if, foralla € A\ B,

a ¢ S(BU{a)).

An S-stable set B is said to be minimal if there is no other S-stable set C in T such
that C C B. Because the set of all alternatives is finite and trivially S-stable, minimal
S-stable sets are guaranteed to exist. Now for each tournament solution S, there is a
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new tournament solution § which returns the union of all minimal S-stable sets in a
tournament 7 = (A, >), that is,

§(T) = U{B C A : Bis aminimal S-stable setin T'}.

A crucial issue in this context is whether S admits a unique minimal stable set in every
tournament because this is necessary for Sto satisfy stability (Brandt et al., 2014e).

In the following, we will define three tournament solutions using the notion of stable
sets: the top cycle, the minimal covering set, and the minimal extending set.

Top Cycle

The top cycle TC can be defined as the unique minimal stable set with respect to CNL,
the set of Condorcet nonlosers, that is,

TC = CNL.

Alternatively, TC can be defined via the notion of a dominant set. A nonempty subset
of alternatives B C A is called dominant in tournament 7 = (A, >) if B > A\ B,
that is, if each alternative in B dominates all alternatives not in B. Dominant sets are
linearly ordered via set inclusion and 7C returns the unique smallest dominant set. In
yet another equivalent definition, 7C is defined as the set of maximal elements of the
transitive and reflexive closure of the dominance relation >. TC is a very elementary
tournament solution and, in a slightly more general context (see Section 3.5), is also
known as weak closure maximality, GETCHA, or the Smith set (Good, 1971; Smith,
1973; Schwartz, 1986). An appealing axiomatic characterization of the top cycle was
given by Bordes (1976).

TC tends to select rather large choice sets and may even contain Pareto-dominated
alternatives. In the example tournaments given in Figures 3.3, 3.4, and 3.5, TC selects
the set of all alternatives because it is the only dominant set. 7C satisfies monotonic-
ity, stability, and weak composition-consistency, but violates the stronger notion of
composition-consistency (see, e.g., Figure 3.3).

Because each alternative outside 7C only dominates alternatives that are also out-
side TC and every alternative in 7C dominates all alternatives outside 7C, it can easily
be appreciated that each alternative in 7C has a strictly greater Copeland score than
each alternative outside 7C. Hence, CO C TC.

Exploiting this insight, TC(T") can be computed in linear time by starting with CO(T)
and then iteratively adding alternatives that are not dominated by the current set.
Alternatively, one can employ an algorithm, for example, the Kosaraju-Sharir algorithm
or Tarjan’s algorithm, for finding the strongly connected components of T and then
output the unique strongly connected component that dominates all other strongly
connected components.'*

Theorem 3.8. The top cycle can be computed in linear time.

14 Brandt et al. (2009) have shown that the problem of deciding whether an alternative is contained in the top
cycle of a tournament is in the complexity class ACC.
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Minimal Covering Set

A subset B of alternatives is called a covering set if it is UC-stable, that is, if every
a € A\ B is covered in the subtournament (B U {a}, > pua}). The minimal covering
set MC is defined as

MC = UC.

Dutta (1988) has shown that every tournament admits a unique minimal UC-stable
set and that MC C UC. In the example in Figure 3.4, MC(T) = {a, b, d}, and hence
MC is a strict refinement of UC. Observe that, for instance, {a, b, ¢} is not UC-
stable, as d € UC({a, b, c, d}). MC satisfies monotonicity, stability, and composition-
consistency. Dutta also provided an axiomatic characterization of MC, which was later
improved by Laslier (1997, pp. 117-120).

Laffond et al. (1993a) have shown that BP € MC. By virtue of Theorem 3.5, we
can therefore efficiently compute a nonempty subset of MC. This fact can be used to
compute MC by leveraging the following lemma.

Lemma 3.9. Let T = (A, >) be a tournament and B C MC(A). Define C = {a €
A\ B :a € UC(B U{a})}. Then, MC(C) € MC(A).

MC(T) can then be computed by first computing the bipartisan set BP(T) and then
iteratively adding a specific subset of alternatives that lie outside the current set but do
belong to MC(T'). Lemma 3.9 tells us how this subset can be found at each stage (see
Algorithm 1).1

Algorithm 1 Minimal covering set
procedure MC(A, >)
B < BP(A)
loop
C<«{aeA\B:aeUCBU/{a}}
if C = ¢ then return B end if
B <~ BUBP(C)
end loop

Theorem 3.10 (Brandt and Fischer, 2008a). The minimal covering set can be com-
puted in polynomial time.

Minimal Extending Set

A subset of alternatives is called an extending set if it is BA-stable. Brandt (2011a)
defined the minimal extending set ME(T) as the union of all minimal extending sets of
a tournament 7', that is,

ME = BA.

15 Lemma 3.9 can also be used to construct a recursive algorithm for computing MC without making reference
to BP. However, such an algorithm has exponential worst-case running time.
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In the tournament in Figure 3.4, we find that ME(T') = {a, b, d}. Brandt et al. (2014c)
showed that ME C BA and that computing ME is computationally intractable by using
a construction similar to that of the proof of Theorem 3.7.

Theorem 3.11 (Brandt et al., 2014c). Deciding whether an alternative is contained
in a minimal extending set is NP-hard.

The best known upper bound for this decision problem is the complexity class Ef .
Bachmeier et al. (2014) have shown that the problem remains NP-hard even when
there are only 7 voters. A relation-algebraic specification of minimal extending
sets, which can be used to compute ME on small instances, was proposed by
Berghammer (2014).

Brandt (201 1a) proved that ME satisfies composition-consistency, and conjectured
that every tournament contains a unique minimal extending set. Even though this
conjecture was later disproved, which implies that ME violates monotonicity and
stability, it is unclear whether this seriously impairs the usefulness of ME (Brandt
et al., 2013b, 2014c). The counterexample found by Brandt et al. consists of about
10'% alternatives and concrete tournaments for which ME violates any of these
properties have never been encountered (even when resorting to extensive computer
experiments).

3.3.4 Solutions Based on Retentiveness

Finally, we consider an operator on tournament solutions which bears some resem-
blance to the notion of minimal stable sets as introduced in the previous section. The
underlying idea of retentiveness was first proposed by Schwartz (1990) and studied
more generally by Brandt et al. (2014d).

For a given tournament solution S, we say that an alternative a is S-dominated by
alternative b if b is chosen among a’s dominators by S. Similarly, a nonempty set
of alternatives is called S-retentive if none of its elements is S-dominated by some
alternative outside the set. Formally, for a tournament solution § and a tournament
T = (A, >), a nonempty subset B C A is S-retentive in T if for all b € B such that
D(b) # 0,

S(D(b)) < B.

An S-retentive set B in T is said to be minimal if there is no other S-retentive
set C in T with C C B. As in the case of S-stable sets, minimal S-retentive sets are
guaranteed to exist because the set of all alternatives is trivially S-retentive. Thus we
can define $ as the tournament solution yielding the union of minimal S-retentive sets,
that is, for all tournaments 7 = (A, >),

3‘(T) = U{B C A : B is a minimal S-retentive set in 7'}.

As with minimal stable sets, it is important for the axiomatic properties of S whether
S admits a unique minimal retentive set in every tournament. It is easily veri-
fied that there always exists a unique minimal 7RIV-retentive set, and that in fact
TRIV = TC.
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The Minimal TC-Retentive Set

Brandt et al. (2014d) have shown that § inherits several desirable properties from S—
including monotonicity and stability—whenever a unique minimal S-retentive set is
guaranteed to exist. They went on to show that every tournament admits a unique
TC-retentive set. As a consequence, the tournament solution TC—which can also be

written as TRIV—is monotonic and stable. Also, 7C inherits efficient computability
from TC and satisfies weak composition-consistency.

Theorem 3.12 (Brandt et al., 2014d). The minimal TC-retentive set can be computed
in polynomial time.

In the tournament in Figure 3.5, the set {a, b, c} and each of its supersets is TC-
retentive. Therefore, TC(T) = {a, b, c}.

Tournament Equilibrium Set

Schwartz (1990) defined the tournament equilibrium set (TEQ) recursively as the union
of all minimal TEQ-retentive sets,

TEQ = TEQ.

This recursion is well-defined because the order of the dominator set of any alternative
is strictly smaller than the order of the original tournament. In the example in Figure 3.5,
TEQ(T) = 7C (T) = {a, b, c}, because TEQ and TC coincide on all dominator sets.

TEQ is the only tournament solution defined via retentiveness that satisfies
composition-consistency. Schwartz conjectured that every tournament contains a
unique minimal TEQ-retentive set. As was shown by Laffond et al. (1993b) and Houy
(2009b,a), TEQ satisfies any one of a number of important properties including mono-
tonicity and stability if and only if Schwartz’s conjecture holds. Brandt et al. (2013b)
showed that Schwartz’s conjecture does not hold by nonconstructively disproving a
related weaker conjecture surrounding ME.'® As a consequence, TEQ violates mono-
tonicity and stability. However, counterexamples to Schwartz’s conjecture appear to be
extremely rare and it may be argued that TEQ satisfies the properties for all practical
purposes.

Using a construction similar to that of the proof of Theorem 3.7, it can be shown
that computing TEQ is intractable.'”

Theorem 3.13 (Brandt et al., 2010c). Deciding whether an alternative is contained
in the tournament equilibrium set is NP-hard.

There is no obvious reason why checking membership in TEQ should be in NP. The
best known upper bound for this problem is the complexity class PSPACE. Bachmeier

16 A significantly smaller counterexample for Schwartz’s conjecture, consisting of only 24 alternatives, was found
by Brandt and Seedig (2013). However, this smaller counterexample does not disprove the corresponding
conjecture for ME.

17 The proof of Theorem 3.13 actually shows that the membership decision problem for any tournament solution
that is sandwiched between BA and TEQ, that is, computing any tournament solution S with TEQ € S C BA,
is NP-hard.
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Table 3.1. Axiomatic and computational properties of tournament solutions

Composition-

Monotonicity Stability Consistency Computational Complexity
co + - - in P
SL + - weak NP-hard, in ©}
MA + - - in P
BP + + + in P
uc + + in P
BA + - + NP-complete
C + + weak in P
MC + + + in P
ME - - + NP-hard, in £7
7C + + weak in P
TEQ - - + NP-hard, in PSPACE

Note: All hardness results hold even for a constant number of voters. Computing UC and TC has been shown to
be in AC?, whereas computing CO is TC?-complete.

et al. (2014) have shown that this problem remains NP-hard even when there are
only 7 voters. Brandt et al. (2010c, 2011) devised practical algorithms for TEQ that run
reasonably well on moderately sized instances, even though their worst-case complexity
is, of course, still exponential.

3.3.5 Summary

Table 3.1 summarizes the axiomatic as well as computational properties of the consid-
ered tournament solutions. There are linear-time algorithms for CO and TC. Moreover,
a single element of BA can be found in linear time. Computing BA, TEQ, and SL is
intractable unless P equals NP. Apparently, MC and BP fare particularly well in terms
of axiomatic properties as well as efficient computability.'®

Figure 3.7 provides a graphical overview of the set-theoretic relationships between
tournament solutions. It is known that BA and MC (and by the known inclusions also
UC and TC) almost always select all alternatives when tournaments are drawn uni-
formly at random (Fey, 2008; Scott and Fey, 2012). Experimental results suggest that
the same is true for TEQ. Interestingly, despite satisfying strong inclusive axiomatic
properties such as stability and composition-consistency, BP is much more discrimi-
native: For every integer m > 1, the average number of alternatives that BP selects in a
labeled tournament of order m is % (Fisher and Reeves, 1995; Scott and Fey, 2012)."”
Analytic results concerning the uniform distribution stand in sharp contrast to empirical
observations that Condorcet winners are likely to exist in real-world settings, which

18 Berghammer et al. (2013) have formalized the definitions of most of the considered tournament solutions
using a computer algebra system, which can then be used to compute and visualize these functions. These
general-purpose algorithms are, however, outperformed by tailor-made algorithms using matrix multiplication,
linear programming, or eigenvalue decomposition (see, e.g., Seedig, 2014).

19 Brandt et al. (2014e) have shown that there is no more discriminative stable tournament solution than BP. In
particular, there is no stable refinement of BP.
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Figure 3.7. The set-theoretic relationships between tournament solutions are depicted in this
Venn-like diagram. If the ellipses of two tournament solutions S and S’ intersect, then S(T) N
S'(T) # @ for all tournaments T. If the ellipses for S an S’ are disjoint, however, this signifies
that S(T) N S’(T) = ¥ for some tournament T. Thus, BA and MC are not included in each other,
but they always have a nonempty intersection (see, e.g., Laslier, 1997). CO, MA, and SL are
contained in UC but may be disjoint from MC and BA. The exact location of BP in this diagram
is unknown, but it intersects with TEQ in all known instances and is contained in MC. TEQ and
ME are contained in BA, but their inclusion in MC is uncertain. Hence, the ellipses for TEQ,

ME, and BP are dashed. TC is omitted in this figure because very little is known apart from the
inclusion in TC (see Brandt et al., 2015b, for more details).

implies that tournament solutions are much more discriminative than these analytical
results suggest (Brandt and Seedig, 2015).

3.4 Strategyproofness and Agenda Implementation

It is well-known from the Gibbard-Satterthwaite Theorem (see Chapter 2) that only
trivial resolute SCFs are strategyproof, that is, immune against the strategic misrepre-
sentation of preferences. Tournament solutions are irresolute by definition (think of a
3-cycle) and therefore the Gibbard-Satterthwaite Theorem does not apply directly.”’
There are two ways to obtain weak forms of strategyproofness that are partic-
ularly well-suited for tournament solutions. The first one concerns the traditional
notion of strategyproofness with respect to weakly dominant strategies, but incom-
plete preference relations over sets of alternatives, and the second one deals with the
implementation of tournament solutions by means of sequential binary agendas and
subgame-perfect Nash equilibrium. Each of these methods allows for rather positive
results, but also comes at a cost: the first one requires a high degree of uncertainty

20 However, the Gibbard-Satterthwaite Theorem does imply that no resolute refinement of any of the tournament
solutions discussed in this chapter—except TRIV—is strategyproof. There are important extensions of the
Gibbard-Satterthwaite Theorem to irresolute SCFs such as the Duggan-Schwartz Theorem (see Chapter 2).
We will focus on more positive results for tournament solutions in this chapter.
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among the voters as to how ties are broken, whereas the second one requires common
knowledge of all preferences and may result in impractical voting procedures.

3.4.1 Strategyproofness

A proper definition of strategyproofness for irresolute SCFs requires the specification
of preferences over sets of alternatives. One way to obtain such preferences is to
extend the preferences that voters have over individual alternatives to (not necessarily
complete) preference relations over sets. A function that yields a preference relation
over subsets of alternatives when given a preference relation over single alternatives is
called a set extension. Of course, there are various set extensions, each of which leads
to a different class of strategyproof SCFs (see, e.g., Girdenfors, 1979; Barbera et al.,
2004; Taylor, 2005, Brandt, 2015; Brandt and Brill, 2011).

Here, we will concentrate on two natural and well-studied set extensions due to
Kelly (1977) and Fishburn (1972), respectively.”! Let =; be the preference relation of
voter i and let B and C be two nonempty sets of alternatives. Then, Kelly’s extension
is defined by letting

B =K C ifandonlyif b’ cforallbe Bandc e C.

One interpretation of this extension is that voters are completely unaware of the
tiebreaking mechanism (e.g., a lottery) that will be used to pick the winning alter-
native.

Fishburn’s extension is defined by letting

B =!I C ifandonlyif b7 cforallbe Bandc e C\ Band
bicforallbe B\ Candc e C.

One interpretation of this extension is that ties are broken according to some unknown
linear order (e.g., the preferences of a chairman). It is easily seen that B 2K C implies
Bzl C.

Each set extension induces a corresponding notion of strategyproofness. An SCF f
is Kelly-strategyproof if there is no voter i and no pair of preference profiles R and R’
with 77 ;=27 for all j # i such that f(R') >~K f(R). If such profiles exist, we say that
voter i can manipulate f. Fishburn-strategyproofness is defined analogously. Note that
in this definition of strategyproofness, set extensions are interpreted as fully specified
preference relations according to which many choice sets are incomparable (and chang-
ing the outcome to an incomparable choice set does not constitute a manipulation).
Clearly, because B X C implies B I C, Fishburn-strategyproofness is stronger
than Kelly-strategyproofness.

Kelly-strategyproofness may seem like an extremely weak notion of strategyproof-
ness as only few pairs of sets can actually be compared. Nevertheless, almost all
common SCFs fail to satisfy Kelly-strategyproofness because they can already be
manipulated on profiles where these functions are resolute (Taylor, 2005, pp. 44-51).

21 Girdenfors (1979) attributed the second extension to Fishburn because it is the coarsest extension that satisfies
a certain set of axioms proposed by Fishburn (1972).



78 3 TOURNAMENT SOLUTIONS

Brandt (2015) has shown that stability and monotonicity are sufficient for Kelly-
strategyproofness. Virtually all SCFs of interest that satisfy these conditions are tour-
nament solutions (or weighted tournament solutions). We therefore only state the result
for tournament solutions rather than for SCFs.

Theorem 3.14 (Brandt, 2015). Every monotonic and stable tournament solution
is Kelly-strategyproof. Moreover, every Condorcet-consistent coarsening of a Kelly-
strategyproof tournament solution is Kelly-strategyproof.

As a consequence, BP, each of its Condorcet-consistent coarsenings (such as MC,
UC, and TC), and TC are Kelly-strategyproof.”” On the other hand, it can be shown that
every Condorcet-consistent tournament solution that may return a single alternative in
the absence of a Condorcet winner is Kelly-manipulable. It follows that CO, SL, and
MA fail to be Kelly-strategyproof. More involved arguments can be used to show that
ME and TEQ are not Kelly-strategyproof.

The results for Fishburn-strategyproofness are less encouraging. While it is known
that 7C is Fishburn-strategyproof (Brandt and Brill, 2011; Sanver and Zwicker, 2012),
a computer-aided proof has shown that no refinement of UC is Fishburn-strategyproof.
Because UC is the coarsest Pareto-optimal tournament solution, we have the following
theorem.

Theorem 3.15 (Brandt and Geist, 2014). There is no Pareto-optimal Fishburn-
strategyproof tournament solution.

As a consequence of this theorem, the set-theoretic relationships depicted in
Figure 3.7, and other observations (Brandt and Brill, 2011), TC is the finest Fishburn-
strategyproof tournament solution considered in this chapter.

3.4.2 Agenda Implementation

An important question—which has enjoyed considerable attention from social choice
theorists and political scientists since the work of Black (1958) and Farquharson
(1969)—is whether simple procedures exists that implement a particular tournament
solution. This in particular concerns procedures that are based on a series of binary
choices and eventually lead to the election of a single alternative. The binary choices
may depend on one another and need not exclusively be between two alternatives. Such
procedures are in wide use by actual committees and institutions at various levels of
democratic decision making. The most prominent among these are the simple agenda
(or successive procedure) and the amendment procedure, both of which were initially
studied in their own right by political scientists. The former is prevalent in civil law or
Euro-Latin legal systems, whereas the latter is more firmly entrenched in the common
law or Anglo-American legal tradition (see, e.g., Apesteguia et al., 2014).

With the simple agenda, the alternatives are ordered in a sequence ay, ..., @, and
subsequently successively being voted up or down by majority voting: First alterna-
tive a; is brought up for consideration; if a; is carried by a majority, it is accepted as

22 n fact, the proof even shows that these functions are group-strategyproof with respect to Kelly’s extension.
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a? ai or as?
a not a ay a
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as? a1 or ag? as or az?
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Simple agenda Amendment agenda

Figure 3.8. The simple agenda and the amendment agenda for four alternatives ordered as
ar, da, as, as.

the final decision; otherwise, a; is rejected and a, is brought up for consideration, and
SO on.

With the amendment agenda, the alternatives are again ordered in a sequence
ai, ..., a, and voting then takes place in m — 1 rounds. In the first round, a majority
comparison is made between aj, the status quo, and a,, the amendment. The winner
then goes through to the next round as the new status quo and is put in a majority
contest with as, and so on. Figure 3.8 illustrates how these procedures can be depicted
as binary trees, the leaves of which are associated with alternatives.

More generally, every binary tree with alternatives at its leaves could be seen as
defining a multistage voting procedure. Formally, an agenda of order m is defined
as a binary tree whose leaves are labeled by an index set /. A seeding of a set of
alternatives A of size |/| is a bijection from A to I.

For the analysis of voting procedures defined by such agendas and seedings, voters
can either be sincere or sophisticated. Sincere voters myopically and nonstrategically
vote “directly according to their preferences” whenever the agenda calls for a binary
decision. If these choices are invariably between two alternatives, as in the amend-
ment procedure, sincere voting simply comes down to voting for the more preferred
alternative at each stage. We refer to Chapter 19 on knockout tournaments for this
setting.

By contrast, sophisticated voters are forward looking and vote strategically. Hence, a
more game-theoretic approach and “backward inductive” reasoning is appropriate. For
the remainder of this section, we assume voters to adopt sophisticated voting strategies,
meaning that the binary tree can be “solved” by successively propagating the majority
winner among two siblings to their parent, starting at the leaves and going upward.
Multistage sophisticated voting yields the same outcome as the one obtained by solving
the extensive-form game as defined by the agenda using backward induction (McKelvey
and Niemi, 1978), in an important sense leveraging the strategyproofness of majority
rule in settings with more than two alternatives. Similarly, the sophisticated outcome
is the alternative that survives iterated elimination of weakly dominated strategies in
the strategic form game induced by the agenda (Farquharson, 1969; Moulin, 1979).

In order to define agenda-implementability, one defines a class of agendas (one
for each order m) and considers all possible seedings for each agenda. A tournament
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solution S is then said to be agenda-implementable if there exists a class of agendas
such that for every tournament 7, a € S(T) if and only if there is a seeding for the
agenda of size |T'| such that its sophisticated outcome is a.

Early results on agenda implementation demonstrated that the class of simple agen-
das implements 7'C and the class of amendment agendas implements BA (Miller, 1977,
1980; Banks, 1985; Moulin, 1986). Moulin (1986), moreover, showed that agenda-
implementable tournament solutions have to be weakly composition-consistent refine-
ments of 7C. As a consequence, CO and MA are not agenda-implementable. A com-
plete characterization of agenda-implementable tournament solutions, however, had
long remained elusive before Horan (2013) obtained sufficient conditions for agenda-
implementability that cover a wide range of tournament solutions and almost match
Moulin’s necessary conditions.”’

Theorem 3.16 (Horan, 2013). Every weakly composition-consistent tournament
solutions that chooses from among the top cycle of every component is agenda-
implementable.

As a corollary to this result it follows that—besides TC and BA—also SL, UC,
MC, ME, BP, and TEQ are agenda-implementable. It should be observed, however,
that the agendas actually implementing these tournament solutions may be extremely
large. The size of the amendment agenda, for instance, is already exponential in
the number of alternatives.”* Moreover, Horan’s proof is nonconstructive and no
concrete classes of agendas that implement any of the tournament solutions con-
sidered in this chapter—except the simple agenda and the amendment agenda—are
known.

The fact that CO fails to be agenda-implementable has sparked some research on
approximating Copeland winners via binary agendas. Fischer et al. (2011) showed
that agenda-implementability is unachievable for any tournament solution that, from
tournaments of order m, only chooses alternatives with a Copeland score at least as
high as ?—1 + 0(%) of the maximum Copeland score. Horan (2013) demonstrated the
existence of agenda-implementable tournament solutions that only select alternatives
whose Copeland score is at least % of the maximum Copeland score, improving previous
results by Fischer et al. (2011).

3.4.3 Summary

Table 3.2 summarizes which of the considered tournament solutions are Kelly-
strategyproof, Fishburn-strategyproof, and agenda-implementable, respectively. Again,
it turns out that BP represents a decent compromise between discriminative power and
attractive axiomatic properties.

23 A weaker version of Theorem 3.16 simply states that every composition-consistent refinement of 7C is agenda-
implementable.

24 As an extreme case consider the agendas that Coughlan and Le Breton (1999) introduced to implement a
refinement of the iterated Banks set (see also Laslier, 1997). The corresponding agenda of order 6 has already
2720' _ 1 nodes!
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Table 3.2. Strategic properties of tournament solutions

Kelly- Fishburn- Agenda-
Strategyproofness Strategyproofness Implementability

co - - -

SL - - +

MA - - -

BP + - +

uc + - +

BA ? + (amendment)
TC + + + (simple)
Mc + - +

ME - - +

7C + - ?

TEQ - - +

Note: 1t is unknown whether BA is Kelly-strategyproof and whether TC is agenda-implementable.
Interestingly, TC falls exactly between the necessary and sufficient conditions given by Moulin
(1986) and Horan (2013).

3.5 Generalizations to Weak Tournaments

So far, we assumed the majority relation to be antisymmetric, which can be justified,
for instance, by assuming that there is an odd number of voters. In general, however,
there may be majority ties. These can be accounted for by considering weak tourna-
ments (A, 77), that is, directed graphs that represent the complete, but not necessarily
antisymmetric, majority relation.”

For most of the tournament solutions defined in Section 3.3, generalizations or
extensions to weak tournaments have been proposed. Often, it turns out that there are
several sensible ways to generalize a tournament solution and it is unclear whether
there exists a unique “correct” generalization. A natural criterion for evaluating the
different proposals is whether the extension satisfies (appropriate generalizations of)
the axiomatic properties that the original tournament solution satisfies.

3.5.1 The Conservative Extension

A generic way to generalize any given tournament solution S to weak tournaments
is by selecting all alternatives that are chosen by S in some orientation of the weak
tournament. Formally, a tournament 7 = (A, >) is an orientation of a weak tournament
W = (A, ) if a > b implies a 72’ b for all a, b € A. The conservative extension of
S, denoted [S], is defined such that, for every weak tournament W,

[siwy= | s,

Te[W]

25 Alternatively, one can consider the strict part of the majority relation >, which is asymmetric, but not necessarily
connex.
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where [W] denotes the set of all orientations of W. Brandt et al. (2014a) have shown
that [S] inherits several natural properties from S, including monotonicity, stability,
and composition-consistency.

An alternative interpretation of weak tournaments is in terms of a partial information
setting, where the symmetric and irreflexive part of the dominance relation represents
unknown comparisons rather than actual ties (see Chapter 10). In this setting, the set
of winners according to the conservative extension exactly corresponds to the set of
possible winners of the partially specified tournament. The computational complexity
of possible and necessary winners of partially specified tournaments has been studied
by Aziz et al. (2012b), who showed that for a number of tractable tournament solutions
(suchas CO, UC, and TC), possible winners—and thus the conservative extension—can
be computed efficiently.

3.5.2 Extensions of Common Tournament Solutions

For many tournament solutions, ad hoc extensions have been proposed in the literature.
In this section, we give an overview of these extensions and compare them to the
conservative extension.

The Copeland set CO gives rise to a whole class of extensions that is parameterized
by a number « between 0 and 1. The solution CO” selects all alternatives that maximize
the variant of the Copeland score in which each tie contributes « points to an alterna-
tive’s score (see, e.g., Faliszewski et al. (2009¢)). Henriet (1985) axiomatically charac-
terized C 0%, arguably the most natural variant in this class. The conservative extension
[CO] does not coincide with any of these solutions. Furthermore, [CO] € CO“ for all
a € [0, 1]and CO* € [CO] if and only if 5 <o < 1.

When moving from tournaments to weak tournaments, maximal lotteries are no
longer unique. Dutta and Laslier (1999) have shown that the appropriate generalization
of the bipartisan set BP is the essential set ES, which is given by the set of all alternatives
that are contained in the support of some maximal lottery. The essential set coincides
with the support of any quasi-strict Nash equilibrium of the game defined by the
skew-adjacency matrix. It is easy to construct tournaments where ES is strictly smaller
than [BP], and there are also weak tournaments in which [BP] is strictly contained
in ES.

Duggan (2013) surveyed several extensions of the covering relation to weak tour-
naments. Any such relation induces a generalization of the uncovered set UC. The
so-called deep covering and McKelvey covering relations are particularly interesting
extensions. Duggan showed that for all other generalizations of the covering relation
he considered, the corresponding uncovered set is a refinement of the deep uncovered
set UCp. Another interesting property of UCp is that it coincides with the conservative
extension of UC. It follows that all other UC generalizations considered by Duggan
are refinements of [UC].

Banks and Bordes (1988) discussed four different generalizations of the Banks set BA
to weak tournaments. Each of these generalizations is a refinement of the conservative
extension [BA].

For the fop cycle TC, Schwartz (1972; 1986) defined two different generalizations
(see also Sen, 1986). GETCHA (or the Smith set) contains the maximal elements of the



3.6 FURTHER READING 83

transitive closure of 7, whereas GOCHA (or the Schwartz set) contains the maximal
elements of the transitive closure of >. GOCHA is always contained in GETCHA,
and the latter coincides with [TC]. A game-theoretical interpretation of TC gives
rise to a further generalization. Duggan and Le Breton (2001) observed that the top
cycle of a tournament T coincides with the unique mixed saddle MS(T) of the game
G(T), and showed that the mixed saddle is still unique for games corresponding to
weak tournaments. The solution MS is nested between GOCHA and GETCHA. The
computational complexity of GETCHA and GOCHA was analyzed by Brandt et al.
(2009), and the complexity of mixed saddles was studied by Brandt and Brill (2012).

Generalizations of the minimal covering set MC using the McKelvey covering
relation and the deep covering relation are known to satisfy stability. There exist
weak tournaments in which [MC] is strictly contained in both the McKelvey minimal
covering set MCy; and the deep minimal covering set MCp. There are also weak
tournaments in which MCy, is strictly contained in [MC]. Computational aspects of
generalized minimal covering sets have been analyzed by Brandt and Fischer (2008a)
and Baumeister et al. (2013a).

Schwartz (1990) suggested six ways to extend the fournament equilibrium set TEQ—
and the notion of retentiveness in general—to weak tournaments. However, all of those
variants can easily be shown to lead to disjoint minimal retentive sets even in very
small tournaments, and none of the variants coincides with [TEQ)].

It is noteworthy that, in contrast to the conservative extension, some of the exten-
sions discussed earlier fail to inherit properties from their corresponding tournament
solutions. For instance, GOCHA violates stability.

A further generalization of tournaments (and weak tournaments) are weighted tour-
naments, which take the size of pairwise majorities into account. Weighted tournament
solutions are studied in detail in Chapter 4. Dutta and Laslier (1999) have generalized
several common tournament solutions to weighted tournaments.

3.6 Further Reading

The monograph by Moon (1968) provides an excellent, but slightly outdated, overview
of mathematical results about tournaments, which is nicely complemented by more
recent book chapters on tournament graphs (Reid and Beineke, 1978; Reid, 2004).

The formal study of tournament solutions in the context of social choice was initiated
by Moulin (1986) and sparked a large number of research papers, culminating in
the definitive monograph by Laslier (1997). More recent overviews of tournament
solutions, which also focus on their computational properties, were given by Brandt
(2009b) and Hudry (2009). There are also comprehensive studies that exclusively deal
with tournament solutions based on covering (Duggan, 2013), stability (Brandt, 201 1a;
Brandt and Harrenstein, 2011; Brandt et al., 2014e), and retentiveness (Brandt et al.,
20144d), respectively. For some tournament solutions, continuous generalizations to the
general spatial model are available (see, e.g., Banks et al., 2006; Duggan, 2013).

For a more extensive introduction to the vast literature on agenda-implementability,
the reader is referred to Moulin (1988a, Chapter 9), Laslier (1997, Chapter 8),
Austen-Smith and Banks (2005, Chapter 4), and Horan (2013). For an overview of



84 3 TOURNAMENT SOLUTIONS

the literature on and a discussion of simple and amendment procedures, see, e.g.,
Apesteguia et al. (2014).

This chapter focusses on choosing from a tournament. For the related—but
different—problem of ranking alternatives in a tournament, finding a ranking that
agrees with as many pairwise comparisons as possible (i.e., Slater’s rule) has enjoyed
widespread acceptance (see, e.g., Charon and Hudry, 2010). Clearly, score-based tour-
nament solutions such as CO and MA can easily be turned into ranking functions.
Bouyssou (2004) has studied ranking functions that are defined via the successive
application of tournament solutions and found that monotonic and stable tournament
solutions yield particularly attractive ranking functions.
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CHAPTER 4

Weighted Tournament Solutions

Felix Fischer, Olivier Hudry, and Rolf Niedermeier

An obvious way to move beyond tournament solutions as studied in Chapter 3 is to take
into account not only the direction of the majority preference between a pair of alterna-
tives, but also its strength in terms of the margin by which one alternative is preferred.
We focus in this chapter on social choice functions that are called C2 functions by
Fishburn (1977) and could also be referred to as weighted tournament solutions: social
choice functions that depend only on pairwise majority margins but are not tournament
solutions.

Consider a set A = {1, ..., m} of alternatives and a set N = {1, ..., n} of voters
with preferences >;€ L(A) for all i € N. Here, we denote by L£(X) the set of all linear
orders on a finite set X, that is, the set of all binary relations on X that are complete,
transitive, and asymmetric. For a given preference profile R = (>, ..., >,) € L(A)",
the majority margin mg(x, y) of x over y is defined as the difference between the
number of voters who prefer x to y and the number of voters who prefer y to x, that is,

mex,y)=[{i € N:x > y}| = [{i € N:y>;x}|.

We will routinely omit the subscript when R is clear from the context. The pairwise
majority margins arising from a preference profile R can be conveniently represented
by a weighted tournament (A, Mg), where My is the antisymmetric m X m matrix
with (Mg)x = 0 for x € A and (Mg)y, = mg(x,y) for x,y € A with x # y." An
example of a weighted tournament and a corresponding preference profile is shown in
Figure 4.1. Because C2 functions only depend on majority margins, they can be viewed
as functions mapping weighted tournaments to sets of alternatives, or to linear orders
of the alternatives.

Clearly all majority margins will be even if the number of voters is even, and odd if
the number of voters is odd. The following result, similarly to McGarvey’s Theorem

! Note that antisymmetry of Mg only implies asymmetry and not antisymmetry of the relation {(x,y) €
A x A :m(x,y) > m(y, x)}. Therefore, unlike tournaments, weighted tournaments allow for ties in pairwise
comparisons.

85
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2
@ b-d-a>=e>c x3
6 6 d=a>c>e>b x3
6 b>c>e-d>a x4

a-e-c>d>=b x4
@)\ /@ a>-b>=c=e-d x1
4 4 e-c>=d=a>>b x 1

Figure 4.1. Example of a weighted tournament and a corresponding preference profile. The
illustration on the left shows a weighted tournament for A = {a, b, ¢, d, e}, where x € A and
y € A are connected by an arc with weight m(x, y) if and only if m(x, y) > 0. The weighted
tournament is induced by a preference profile for 16 voters with preferences and multiplicities
as shown on the right.

for tournaments (McGarvey, 1953), establishes that this condition in fact characterizes
the set of weighted tournaments induced by preference profiles.’

Theorem 4.1 (Debord, 1987). Let (A, M) be a weighted tournament. Then M = Mg
for some profile R of preferences over A if and only if all off-diagonal elements of M
have the same parity.

For a given preference profile, the induced weighted tournament can be computed in
time O(nm?). Unlike tournaments, weighted tournaments can be exponentially more
succinct than the smallest preference profiles that induce them, but this turns out to be
inconsequential: all computational hardness results in this chapter hold even when the
input is given as a preference profile, whereas all tractable C2 functions we consider
can be computed in time polynomial in the size of the weighted tournament.

We begin our investigation with Kemeny’s rule. Section 4.1 introduces the rule
and studies some of its properties, Section 4.2 then surveys computational hardness
results and different types of algorithms. Section 4.3 provides a more general treatment
of median orders and associated computational results, Section 4.4 a brief overview
of applications in rank aggregation. In Section 4.5 we finally study properties and
computational aspects of various other C2 functions—including Borda’s rule, Black’s
rule, Nanson’s rule, maximin rule, Schulze’s method, the ranked pairs method, and the
essential set.

4.1 Kemeny’s Rule

Kemeny (1959) proposed to aggregate a preference profile R = (>, ..., >,) into a
linear order > € L(A) that maximizes the number of agreements with the preferences
in R, that is, one for which

E|>iﬂ>|:maxg|>iﬂ>’|.
‘ ~'€L(A)
ieN ieN

2 The example in Figure 4.1 provides some intuition why this result is true. We do not prove it here, but note that
a short proof was given by Le Breton (2005). A proof of McGarvey’s Theorem can be found in Section 3.2.



4.1 KEMENY’S RULE 87

Orders with this property are an example of so-called median orders (Barthelemy and
Monjardet, 1981; Charon and Hudry, 2007), which will be discussed more generally
in Section 4.3. The social preference function that selects all such orders is the only
neutral and consistent Condorcet extension (Young and Levenglick, 1978) and has
also been characterized as the maximum likelihood estimator for a simple probabilistic
model in which individual preferences are noisy estimates of an underlying “true”
ranking (Young, 1988, 19952).> We will see momentarily that Kemeny’s rule is very
interesting also from a computational perspective, and will devote a significant part of
this chapter to its study.

In the literature, Kemeny’s rule is often defined by minimization of disagreement
rather than maximization of agreement. To this end, define the (Kemeny) score of a

ranking > with respect to a preference profile R = (>, ..., >,) as
Y 1, ),
ieN

where

T =) = Y dyy (=i >)

{x,y}CA
with

1 ifx>;yandy > x,ory >; xandx > y
dx,y(>ia >) = .
0 otherwise

is Kendall’s tau distance (Kendall, 1938). In other words, the score of > measures
the sum of distances to the individual preference orders >; in terms of the number of
inversions. Kemeny’s rule then chooses rankings with minimum score.* Because

S cn ) = Yl € Ny ) = 3O

ieN x,yeEA x,yeEA
x>y x>y

Kemeny’s rule is a C2 function. This characterization also emphasizes the close rela-
tionship between Kemeny’s rule and Slater’s rule (Chapter 3), which only takes the sign
of each majority margin into account when computing scores and ignores its absolute
value.

We leave it to the reader to verify that in the example of Figure 4.1 alternative a is
the unique Kemeny winner, that is, the unique alternative at the top of a ranking with
minimum score.

3 Quite surprisingly, the alternative most likely to be the best may not simply be the alternative at the top of the
ranking with the highest likelihood. In fact Borda’s rule, which we discuss in Section 4.5.1, may provide a better
estimate in this case (Young, 1988).

4 There can in fact be up to m! such rankings. It is also worth noting that other social choice functions can be
obtained by maximizing score over a set of rankings other than linear orders, see Section 4.3 for details.



88 4 WEIGHTED TOURNAMENT SOLUTIONS
4.2 Computing Kemeny Winners and Kemeny Rankings
We consider three decision problems and one optimization problem related to Kemeny’s

rule.

KEMENY SCORE
Input: A preference profile R and a nonnegative integer k.
Question: Is there a linear order that has score at most k with respect to R?

KEMENY WINNER

Input: A preference profile R and an alternative x € A.
Question: Is there a linear order that has minimum score with respect to R and ranks x
first?

KEMENY RANKING

Input: A preference profile R and two alternatives x, y € A.
Question: Is there a linear order that has minimum score with respect to R and ranks
x above y?

KEMENY RANK AGGREGATION
Input: A preference profile R.
Task: Find a linear order that has minimum score with respect to R.

We will see that the first decision problem is NP-complete, whereas the other two
seem computationally even harder: they are complete for the class @f of problems
solvable via parallel access to NP.’ From a practical point of view, KEMENY RANK
AGGREGATION is perhaps most interesting.

We begin with a discussion of the classical completeness results mentioned above,
and then we explore two approaches that attempt to address the computational
intractability these completeness results imply: exponential-time parameterized algo-
rithms, and polynomial-time approximation algorithms for KEMENY RANK AGGRE-
GATION. Finally we discuss additional approaches—exact, approximate, or purely
heuristic—that are relevant in practice.

4.2.1 Computational Hardness

If there are only two voters, the preference order of either of them has minimum
Kemeny score. By contrast, it was known since the late 1980s that KEMENY SCORE
is NP-complete when the number n of voters is unbounded (Bartholdi et al., 1989a;
Hudry, 1989). This result was later shown to hold already for n = 4, and in fact for
any even n 2> 4. Quite intriguingly, the case for any odd n > 3 remains open.

Theorem 4.2 (Bartholdi et al., 1989b; Hudry, 1989; Dwork et al., 2001; Biedl
et al., 2009). KEMENY ScORE is NP-complete for even n > 4, and for odd n when n is
unbounded.

3 A detailed discussion of this complexity class, and related results for Dodgson’s and Young’s rules, can be
found in Chapter 5.
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Proof sketch. The Kemeny score of a given linear order can easily be computed and
compared to k in polynomial time, so KEMENY SCORE is in NP.

Hardness for the two cases can be shown by two polynomial-time reductions from
the NP-complete feedback arc set problem on directed graphs (e.g., Garey and Johnson,
1979), here we sketch the reduction for even n > 4.

FEEDBACK ARC SET

Input: A directed graph G = (V, E) and an integer k > 0.

Question: s there a set F C E with |F| < k such that graph G’ = (V, E \ F) does
not have any directed cycles?

Consider a directed graph G = (V, E) with V = {vy, ..., v,} and an integer k > 0,
and let m = |E|. The goal is to find in polynomial time a preference profile R and an
integer k' such that there exist a linear order that has Kemeny score at most k£’ with
respect to R if and only if G has a feedback arc set of size at most k. To this end,
let A =V U E.Foreachv € V,letout(v) and in(v) respectively denote arbitrary linear
orders of the incoming and outgoing arcs of v. For any linear order >, let > denote the
reverse order. Now define R as the set of the following four linear orders, where we
slightly abuse notation and compose linear orders from linear orders on subsets of the
alternatives:

vy >1 out(vy) >1 va >1 out(vy) >1 ... >1 v, > out(v,),
v, > out(v,) =2 U, =2 out(v,_q) >3 ... >2 vy >, out(vy),
in(vy) >3 vy >3 in(vy) >3 vV >3 ... >3 in(v,) >3 v,,

in(vy,) >4 v, >4 I0(V,_1) >4 V1 >4 ... >4 10(V]) >4 V1.

Setting k' = 2(5) +2(’5) + 2m(n — 1) + 2k completes the construction.

For a rigorous proof of correctness, the reader is referred to the article of Biedl et al.
(2009). It is not hard to show, however, that independently of the structure of graph G
any linear order of A must have score at least k" — 2k with respect to R. Given a
feedback arc set F of size k, a linear order on A \ F that has score k" — 2k with respect
to the restriction of R to A \ F can be obtained by starting from a topological ordering
of the acyclic graph (V, E \ F) and inserting each arc (4, v) € E \ F between u and v.
Inserting each arc (1, v) € F immediately after u, as in > and >, increases the score
by 2k due to >3 and >4, for an overall score of k'

The result can easily be generalized to any even number n > 6 of voters by adding
(n —4)/2 voters with an arbitrary preference order and (n — 4)/2 voters with the
reverse preference order. O

While NP-hardness of KEMENY WINNER and KEMENY RANKING follow from The-
orem 4.2 and were thus known since 1989, the exact complexity of these problems
remained open until they were finally shown complete for the class @5 of problems
that can be decided by parallel access to an oracle for NP. Membership in ©F is
straightforward. The proof of hardness follows the same general idea as the proof of
Bartholdi et al. (1989b) for NP-hardness of KEMENY SCORE, but starts from a ®§ -
complete variant of FEEDBACK ARC SET, referred to as FEEDBACK ARC SET MEMBER,
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and reduces this problem in polynomial time to both KEMENY WINNER and KEMENY
RANKING.

Theorem 4.3 (Hemaspaandra et al., 2005). KEMENY WINNER and KEMENY RANK-
ING are @f -complete.

The usual interpretation of the above results is that general efficient algorithms for
Kemeny’s rule are unlikely to exist, where efficiency is associated with running times
that are polynomial in the size of the problem instance. We proceed to discuss different
algorithmic approaches by which this difficulty can be and has been addressed. We
focus mainly on KEMENY RANK AGGREGATION, but note that most of the techniques
can easily be adapted to the three decision problems.

4.2.2 Polynomial-Time Approximation Algorithms

A common approach to computationally difficult problems sacrifices solution quality to
achieve a polynomial running time, while trying to guarantee that the solution remains
close to optimal. To this end, call an algorithm a polynomial-time «-approximation
algorithm for KEMENY RANK AGGREGATION if it has polynomial running time and for
each preference profile produces a linear order with Kemeny score at most « times the
minimum Kemeny score.

Ordering the alternatives by increasing Borda score provides a 5-approximation to
KEMENY RANK AGGREGATION (Coppersmith et al., 2010). Because t is a metric and
in particular satisfies the triangle inequality, the preference order of a voter selected
uniformly at random in fact yields a 2-approximation in expectation, and this argument
can easily be de-randomized to obtain a deterministic polynomial-time algorithm with
the same approximation factor (e.g., Ailon et al., 2008). Spearman’s footrule distance,
that is, the sum of the absolute values of the difference between ranks, provides
another polynomial-time 2-approximation algorithm (Diaconis and Graham, 1977,
Dwork et al., 2001), and it turns out that the approximation factor can be improved
further.

Theorem 4.4 (Ailon et al., 2008; van Zuylen and Williamson, 2009). The following
polynomial-time algorithms exist for KEMENY RANK AGGREGATION:

* a4/3-approximation algorithm based on linear programming;
* a combinatorial 11/7-approximation algorithm.

The 11/7-approximation algorithm selects the better of two linear orders: the pref-
erence order of a voter chosen uniformly at random and the order obtained by an
algorithm similar to quicksort, which chooses a pivot alternative and recursively orders
the alternatives above and below that alternative (Ailon et al., 2008). The approxima-
tion guarantee can be improved to 4/3 if the pivot element is chosen randomly based
on the solution of a linear program (Ailon et al., 2008), and this algorithm can be de-
randomized while preserving the approximation factor (van Zuylen and Williamson,
2009).

Whereas all of the above algorithms are reasonably efficient also in practice, the
following result is of purely theoretical interest.
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Theorem 4.5 (Kenyon-Mathieu and Schudy, 2007). KEMENY RANK AGGREGATION
has an efficient polynomial-time approximation scheme.

An efficient polynomial-time approximation scheme computes an (1 + €)-
approximation in polynomial time for any € > 0, where the degree of the polynomial
is independent of € but the running time can otherwise depend on € in an arbitrary
way. The running time of the algorithm underlying Theorem 4.5 is doubly exponential
in 1 /e, which is too large for most practical purposes. Theorem 4.5 does imply, how-
ever, that no constant lower bound greater than one exists on possible approximation
factors for KEMENY RANK AGGREGATION, so there is hope that Theorem 4.4 can be
improved upon by algorithms that are efficient in practice.

4.2.3 Parameterized Algorithms

Parameterized algorithms provide a different approach to computationally difficult
problems, by attempting to limit any super-polynomial growth of the running time to
certain parameters of the problem at hand. If the attempt is successful the problem
is fixed-parameter tractable, that is, it can be solved efficiently for small parameter
values (e.g., Downey and Fellows, 2013; Niedermeier, 2000).

Perhaps the most obvious candidate parameters in our setting are the number n
of voters and the number m of alternatives. Whereas a restriction of n makes little
sense given the NP-completeness of KEMENY SCORE for n = 4, the situation looks
more promising for m. Indeed, an exhaustive search through all possible linear orders
for one with minimum score requires O(m!nm logm) time, where O(nmlogm) is
the time needed to compute the score of a single linear order. While this algo-
rithm could be used to solve instances with around ten alternatives, the excessive
growth of m! limits its usefulness. Dynamic programming enables a reduction of this
factor to 2.

Theorem 4.6 (Betzler et al., 2009; Raman and Saurabh, 2007). KEMENY RANK
AGGREGATION can be solved in O(2"m?’n) time.

Proof sketch. Consider a preference profile R on a set A of alternatives. We inductively
compute a Kemeny ranking for the restriction of R to every nonempty subset of A.
For subsets of size one, computation of a Kemeny ranking is trivial. For A’ C A with
|A’| > 1, we exploit the fact that the exclusion of the alternative at the top of a Kemeny
ranking does not change the relative ranking of the other alternatives (e.g., Young,
1988). A Kemeny ranking for A’ can thus be found by considering all linear orders that
begin with some alternative @ € A’ and continue with a Kemeny ranking for A"\ {a}.
There are |A’| < m such rankings, and the score of each such ranking can be computed
from that of a Kemeny ranking for A’ \ {a} in O(nm) time. Because the algorithm
considers each nonempty subset of A, its running time is O(2"m?n). O

Another obvious class of parameters includes the Kemeny score of the instance at
hand, which we denote by & in the following, the average distance 7,,, between pref-
erence orders, and the average distance between the preference orders and a Kemeny
ranking, which is equal to k /n. Simjour (2009) observed thatk /(n — 1) < Tayg < 4k/n,
which makes k/n a stronger parameter than t,,, in the sense that it takes smaller
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values (Komusiewicz and Niedermeier, 2012). The advantage of 7, is that it can
easily be computed for a given preference profile. In the following we state results
in terms of k/n, but they clearly hold for ,,, and any other upper bound on k/n as
well.

The main theoretical result for this type of parameterization is a sub-exponential
algorithm that makes use of a standard reduction from KEMENY SCORE to WEIGHTED
FEEDBACK ARC SET in tournaments and a dynamic programming algorithm for the
latter.

Theorem 4.7 (Karpinski and Schudy, 2010). KEMENY RANK AGGREGATION can be
solved in 2°V%™ 1 (n + m)°D time.

Fomin et al. (2010) gave a sub-exponential algorithm for a local search variant of
KEMENY RANK AGGREGATION. Mahajan et al. (2009) showed that KEMENY SCORE
remains fixed-parameter tractable if instead of k it is parameterized by the difference
between k and a certain lower bound on the Kemeny score that can be shown to hold
for a given preference profile.

Parameterization in terms of k and related parameters also enables a more detailed
analysis of preprocessing techniques. Even when the existence of polynomial-time
algorithms for a certain problem is unlikely, we may still hope for polynomial-time
data reduction rules that provably reduce the size of the input instance (Guo and
Niedermeier, 2007). Knowledge of k can for example be used to reduce the number
of voters to at most 2k, by distinguishing instances where at most k and more than k
voters have the same preference order. In the former case, any instance with more than
2k voters would have Kemeny score greater than k. In the latter case, the preference
order shared by more than k voters is the only one that can have score k or less and
must thus be a Kemeny ranking.

Two additional data reduction rules can be obtained from an extension of the Con-
dorcet criterion (Truchon, 1998). A linear order > € L(A) satisfies the extended Con-
dorcet criterion with respect to a preference profile R on A if the following holds: if
there exists A” C A such that mg(x, y) > Oforallx € A’and y € A\ A, thenx > y
forallx € A’andy € A\ A'.

Lemma 4.8 (Truchon, 1998). Any Kemeny ranking satisfies the extended Condorcet
criterion.

This lemma implies, for example, that an alternative that is ranked in the same
way by all voters relative to all other alternatives must appear in a fixed position in
every Kemeny ranking. More interestingly, the lemma suggests a recursive way of
computing a Kemeny ranking that can be applied whenever some set A’ C A satisfies
the condition of the extended Condorcet criterion. In this case the elements of A" must
be ranked above the elements of A \ A’, and the restrictions of the Kemeny ranking to
A’ and A \ A’ must be Kemeny rankings of the respective restrictions of the preference
profile.

These insights can be combined with an exhaustive search for Kemeny rankings of
at most 2/¢ alternatives, for some € > 0, and with a connection to a weighted version
of FEEDBACK ARC SET, to obtain the following result.
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Theorem 4.9 (Simjour, 2013). For any € > 0, a given preference profile can be
transformed in polynomial time into a preference profile with at most (2 + €)k/n
alternatives that is equivalent with regard to KEMENY RANK AGGREGATION.

Other parameters that have been considered in the literature include the positions
each alternative takes in the preferences of individual voters, and the distance to single-
peaked or single-crossing preferences.

For a given preference profile, define the range of an alternative as one plus the
difference between the highest and the lowest rank this alternative takes in the prefer-
ence order of any voter. Let ry,, denote the maximum range of any alternative and r,yg
the average range of the alternatives. It is now not difficult to see that KEMENY RANK
AGGREGATION remains NP-hard even for preference profiles with r,,, = 2. For this,
consider an arbitrary preference profile and add m? new alternatives that are ranked
below the original alternatives and in the same relative order in all preference orders.
Then, any Kemeny ranking with respect to the new preference profile ranks the orig-
inal alternatives above the new ones, and its restriction to the original alternatives is
a Kemeny ranking with respect to the original preference profile. Moreover, the new
profile has an average range of at most 2. By contrast, KEMENY RANK AGGREGATION
can be solved in O (32" (12 + Fypaxm?)) time using dynamic programming (Betzler
et al., 2009).

Cornaz et al. (2013) obtained a characterization in terms of the single-peaked or
single-crossing width of a preference profile, which respectively measure its distance to
a single-peaked or single-crossing profile. Here, a preference profile is single-peaked if
there exists a linear order of the alternatives such that each voter prefers alternatives less
if they are further away in this order from its most preferred alternative. A preference
profile is single-crossing if there exists a linear order of the voters such that for any
two alternatives x and y the voters preferring x over y are ranked above the voters
preferring y over x, or vice versa.

4.2.4 Practical Algorithms

All of the algorithms we have discussed so far come with some kind of formal guarantee
regarding their running time or the quality of solutions they produce. These guarantees
hold in the worst case over all preference profiles or over a restricted set of profiles with
certain parameters. It is, however, not obvious that the algorithms with the strongest
worst-case guarantees are the best algorithms in practice. A fair amount of work has
therefore been done to validate them empirically, and potentially identify algorithms
that perform better on realistic problem instances. We provide a brief overview, and
refer the interested reader to the individual articles and to the survey of Charon and
Hudry (2010) for details.

In discussing the empirical work, it again makes sense to distinguish two classes of
algorithms: exact algorithms that are guaranteed to produce an optimal ranking, and
where the goal is to reduce the running time to a reasonable level; and suboptimal
algorithms that provide a trade-off between solution quality and running time and that
may come with or without formal guarantees for either of these two characteristics.
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Both classes of algorithms may use heuristics designed to reduce running time or
improve solution quality in practice.

Members of the former class that have been evaluated include algorithms based on
integer linear programming, branch and cut, and branch and bound (Davenport and
Kalagnanam, 2004; Conitzer et al., 2006; Charon and Hudry, 2006; Schalekamp and
van Zuylen, 2009; Ali and Meila, 2012). In addition, effectiveness of the data reduction
rules of Section 4.2.3 has been confirmed empirically (Betzler et al., 2014). While the
dynamic programming algorithm underlying Theorem 4.6 is competitive only for very
small numbers of alternatives, a combination of integer programming with polynomial-
time data reduction and other techniques for reducing the running time leads to the
fastest known algorithms in all other cases.

The second class of algorithms provides an even wider range of options. Here,
Schalekamp and van Zuylen (2009) recommend a heuristic based on Borda scores
when the goal is to obtain reasonably good results very quickly, and an algorithm
based on Copeland’s method for higher solution quality and slightly larger running
time. At the cost of a further increase in running time, an initial solution may be
improved further using local search. The analysis of Schalekamp and van Zuylen
was extended by Ali and Meild (2012), who investigated how the structure of pref-
erence profiles affects the complexity of finding a Kemeny ranking, and how this
information can be used to select an appropriate algorithm. This approach is similar
to parameterized complexity analysis in that it tries to identify certain structures in the
problem input that enable faster algorithms, but at the same time abandons exactness
of solutions and worst-case bounds on the running time in favor of improved practical
performance.

It is finally worth mentioning that a rich set of metaheuristics has been applied to
Kemeny’s rule, including simulated annealing, tabu search, and genetic algorithms.
The interested reader is again referred to the survey of Charon and Hudry (2010).

4.3 Further Median Orders

Kemeny’s rule is defined in terms of linear orders that maximize the number of agree-
ments with a given set of linear orders. The central role of linear orders in social choice
theory notwithstanding, one may also more generally consider the problem of finding
a binary relation from a set M that maximizes the number of agreements with a set
of binary relations taken from a set V. We focus here on sets M and V obtained
by relaxing some of the properties that characterize linear orders—completeness,
transitivity, and asymmetry—and refer to the literature for additional properties
(Barthelemy and Monjardet, 1981; Fishburn, 1985; Bouyssou et al., 2006; Caspard
et al., 2012) and complexity results (Wakabayashi, 1998; Hudry, 2008; Charon and
Hudry, 2010).

For a set A of alternatives, let B(A) denote the set of (binary) relations, 7 (A) the
set of complete and asymmetric relations, and /R(A) the set of complete and tran-
sitive relations on A. Obviously, T(A) is the set of tournaments on A. Relations
in R(A), which are also called weak orders, can model indifferences or incomparabil-
ities among alternatives, but not both. Note also that for any A, L(A) € T(A) € B(A)
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and L(A) € R(A) € B(A). We now consider the following decision problem for
M,V e{BR,T,L}S

(V, M)-Score
Input: An element of V(A)" and a nonnegative integer k.
Question: s there an element of M(A) with score at most k?

By Theorem 4.2 (L, £)-ScoRE, or KEMENY SCORE, is NP-complete for any even
number of voters greater than or equal to four and for an unbounded odd number of
voters.” It is easy to see that membership in NP holds for all of the preceding choices
of M and V. Because NP-hardness is established by identifying certain elements of VV
for which the existence of an element of M(A) with score at most k is hard to decide,
it continues to hold if elements are added to V. This means in particular that (), £)-
ScorE is NP-complete for any V D L. Taking V to be a strict superset of £ could of
course render the problem more difficult, and indeed (7, £)-ScoORE is hard even for a
single voter.

Theorem 4.10 (Alon, 2006; Charbit et al., 2007; Conitzer, 2006). (7, £)-SCORE is
NP-complete, even whenn = 1.

The attentive reader may have recognized the single-voter variant as a subproblem
in the computation of the Slater set of Chapter 3, and Theorem 3.3 is in fact a corollary
of Theorem 4.10.

The dependence of the complexity of (), M)-SCORE on M is less obvious, but we
will see that hardness can in many cases be attributed to transitivity. Wakabayashi (1986,
1998) studied (B, M)-Scork for various choices of M, and identified transitivity of
the relations in M as a source of hardness. NP-completeness for M = £ can be
obtained as a corollary of Theorem 4.2, but the problem remains NP-complete when
completeness, asymmetry, or both are relaxed. If we instead relax transitivity and keep
completeness, asymmetry, or both, the problem can be solved in polynomial time.

Theorem 4.11 (Wakabayashi, 1986, 1998). (B, R)-ScOrE is NP-complete. (B, T )-
SCORE can be solved in polynomial time.

Theorems 4.2 and 4.10 can respectively be extended to (£, R)-ScorE and (7, R)-
Scorg, which by earlier arguments also strengthens the first part of Theorem 4.11.

Theorem 4.12 (Hudry, 2012). (£, R)-ScoRE is NP-complete for every even n = 4.
(T, R)-SCORE is NP-complete, even when n = 1.

[=

In the context of this problem the term complete preorders has sometimes been used incorrectly for all elements
of R and not just those that satisfy reflexivity. It is, however, easy to see that the addition of reflexivity or
irreflexivity to )V or M does not affect the relative sizes of scores or the complexity of (V, M)-SCORE, so that
all statements concerning R in what follows hold also for complete pre-orders. Also in what follows, statements
concerning linear orders remain true, sometimes nontrivially, if linearity is replaced by acyclicity. We leave it
to the interested reader to verify that this is indeed the case.

Kemeny (1959) in fact followed Arrow (1951) in requiring only completeness and transitivity, and considered
(R, R)-Score. We will obtain a hardness result concerning (R, R)-SCORE toward the end of this section.

N
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Ignoring the dependence on the number of voters, and denoting by A(A) the set of
acyclic relations on A, sufficient conditions for NP-completeness can be summarized
as follows.

Theorem 4.13. (V, M)-ScorE is NP-complete if V 2 L and M € {A, R, L}.

4.4 Applications in Rank Aggregation

The enormous interest in Kemeny’s rule and other median orders across various dis-
ciplines can to a certain extent be attributed to its importance in rank aggregation,
with applications that extend far beyond the realm of social choice. Rank aggregation
problems arise for instance in the context of planning in multiagent systems (e.g.,
Ephrati and Rosenschein, 1993), in the design of metasearch engines and in spam
detection (e.g., Cohen et al., 1999; Dwork et al., 2001), in collaborative filtering
and recommender systems (e.g., Pennock et al., 2000a), in computational biology
(e.g., Jackson et al., 2008), and in winner determination for sports competitions (e.g.,
Betzler et al., 2014). Here we briefly describe an application to similarity search and
classification for high-dimensional data (Fagin et al., 2003).

Assume we are given a set of n data points and an additional query point, both from
a Euclidean space, and are interested in finding data points that are similar to the query
point. This problem can be reduced to a rank aggregation problem by associating each
data point with an alternative, and each dimension with a voter who ranks alternatives in
increasing distance from the query point in that dimension. What makes this approach
particularly attractive in the context of databases is that it does not require complex data
structures or a large amount of additional storage and mostly avoids random access to
the data. It of course relies on an efficient algorithm for rank aggregation, and Fagin
et al. (2003) specifically propose an approximate solution using the footrule distance.

4.5 Other C2 Functions

Whereas a large part of the computational work on C2 functions has focused on
Kemeny’s rule and other median orders, classical social choice theory has studied
various other C2 functions, mostly with regard to their relationships and axiomatic
properties.

4.5.1 Variations of Borda’s Rule

The first class of functions we consider are variations of a well-known choice rule
due to Borda (1781). Borda’s rule is commonly defined as the scoring rule with score
vectors = (m — 1,m — 2, ..., 0). Under a scoring rule, an alternative receives score s
whenever some voter ranks it in position j. These scores are then added up for all voters,
and the alternatives with maximum cumulative score are selected (also see Section 2.4).
Borda’s rule in particular can be viewed as selecting the alternatives with the highest
average rank in the individual preferences. Interestingly, the Borda score of alternative
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X is equal to

ZH)’GA:X>iy}|=Z|{i€N:x>,~y}|=Zw

, 2
ieN yeA yeA

and thus only depends on the majority margins. Borda’s rule fails the Condorcet
criterion,® but this is easily fixed. Black’s rule selects a Condorcet winner if it exists,
and the alternatives with maximum Borda score otherwise (Black, 1958). Nanson’s rule
successively excludes the alternatives whose Borda scores are below the average until
all remaining alternatives have the same Borda score (Nanson, 1882). It is a Condorcet
extension because the Borda score of a Condorcet winner is always at least the average
Borda score. In the example of Figure 4.1, the unique alternative selected by each of
these C2 functions is alternative a.

It is easy to see that the complexity of Borda’s, Black’s, and Nanson’s rules is
dominated by that of the Borda scores, which can be computed from the majority
margins in time O(m?). The same is true for the choice rule obtained by successive
exclusion of all alternatives with minimum Borda score, which is sometimes attributed
to Nanson but differs from Nanson’s rule (see Niou, 1987).

4.5.2 Maximin Rule and Schulze’s Method

Maximin rule (Young, 1977), also known as Condorcet’s rule or the Simpson-Kramer
method, selects alternatives for which the minimum pairwise majority margin is max-
imized, that is, alternatives x for which

rzne1f1‘1 m(x,z) = r;}ealic rzrél? m(y, z).
Such an alternative is desirable in the sense that it minimizes the number of overruled
voters, and can be computed from the majority margins in time O(m?). A drawback
of maximin rule is that it violates a number of desirable properties, most notably
the Condorcet loser criterion. A Condorcet loser for a given preference profile is an
alternative to which every other alternative is preferred by a majority of the voters, and
the Condorcet loser criterion requires that a Condorcet loser can never be selected.”
Another C2 function, closer to Borda’s rule but still violating the criterion, can be
obtained by selecting alternatives that maximize the sum rather than the minimum of
their majority margins with negative sign (Tideman, 2006, p. 199). This function will
be discussed in a different context in Section 5.6.2.

=)

Borda’s rule does, however, maximize the probability of selecting a Condorcet winner among all scoring rules
for a preference profile chosen uniformly at random from the set of all preference profiles, in the limit as the
number of voters goes to infinity (Gehrlein and Fishburn, 1978). While Borda’s rule and Kemeny’s rule may
produce very different outcomes, both rules agree in the relative ranking of their respective best and worst
alternatives (Saari and Merlin, 2000): for any Kemeny ranking, the top alternative has a higher Borda score
than the bottom alternative; conversely, Kemeny’s rule ranks an alternative with maximum Borda score above
an alternative with minimum Borda score.

In the example of Figure 4.1, maximin rule selects an alternative not preferred to any other alternative by a
majority of the voters. It is easy to extend this example to a violation of the Condorcet loser criterion, showing
that most other social choice functions satisfy the criterion is a more substantial exercise.
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Schulze (2011) proposed a C2 function that addresses the shortcomings of maximin
rule and can still be computed in polynomial time. It is currently used for internal
elections by the Wikimedia Foundation, Pirate Parties in various countries, and several
other organizations. The idea behind Schulze’s method is to minimize opposition
along paths in the weighted tournament rather than single arcs. Let S(x, y) be the
maximum majority margin of any path from x to y, where the majority margin of a
path (x = z1, 22, . .., Zk—1, 2k = y) is equal to the minimum majority margin of any of
its arcs, that is,

S(x,y) =max,, G1€A g =x. =y N ok M(Zj, Zj+1)-

Schulze’s method then selects all alternatives x € A such that S(x, y) > S(y, x) for all
y € A\ {x}."Y In the example of Figure 4.1, the unique alternative with this property
is alternative d.

The problem of computing S(y, x) is known as the widest path problem or bottleneck
shortest path problem and can for example be solved using a variant of the Floyd-

Warshall algorithm. To this end, order the alternatives such that A = {a,, ..., a,} and
let S(x, y, i) be the maximum majority margin of any path from x to y in which all
intermediate alternatives are from {ay, ..., a;}, that is,

S(X, y7 l) = maxzz,...,que{al ..... a;},z1=x,2k=y min1<j<k m(Zj, Zj+])'
Then S(x, y) = S(x, y, n), with

S(x,y,0)=m(x,y), and
S(-x7 Y, l) = maX{S(-x’ y5l - 1)7 min{S(x’ ai;, l - 1)’ S(Cl,‘, Y, l - 1)}} fOI‘i > 1

This is true because S(x, y) does not change if we restrict the definition to simple
paths. Now, for i > 1, the values S(x, y, i) for all x, y € A can be computed from the
values S(x, y,i — 1) in time O(m?). We can thus compute S(x, y) for all x, y € A in
time O(m?), and it is easy to see that the overall running time of Schulze’s method is
O(m?) as well. Asymptotically faster algorithms can be obtained from fast algorithms
for matrix multiplication.

4.5.3 The Ranked Pairs Method

The ranked pairs method, originally proposed by Tideman (1987) to achieve clone
independence,'! yields a C2 function with similar properties as Schulze’s rule. The
method creates a ranking > of the alternatives by starting from the empty relation and
successively adding pairs of alternatives according to a “priority” ranking unless doing
so would violate transitivity of >. Priority is given to pairs with larger absolute majority
margin, and a tie-breaking rule is used in cases where two or more pairs of alternatives

10 Schulze actually defined a family of choice rules by allowing measures of support other than the majority
margin, but this family contains only a single element when individual preferences are linear.

1" Clone independence requires that the addition of alternatives that are very similar to an existing alternative
does not harm the latter. It is violated by many social choice functions, including those of Kemeny, Borda,
Black, and Nanson, but satisfied by that of Schulze.
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have the same majority margin. The ranked pairs method can thus be viewed as a
greedy heuristic for finding Kemeny rankings.

Consider a particular tie-breaking rule T € L(A x A), and construct a priority
ordering of the set of unordered pairs of alternatives by ordering all such pairs by
their majority margins and using T to break ties: {x, y} has priority over {x’, y'}
if m(x,y) > m(x',y"), or if m(x,y) =m(x’,y") and (x,y) T (x’,y")."” Now let
>7 € L(A) be the ranking of alternatives obtained by means of the following iter-
ative procedure:

1. Let > = 0.

2. If all pairs of alternatives have been considered, then return >. Otherwise consider the
pair {x, y} with highest priority according to 7 among those not considered so far.

3. If m(x, y) # 0, then let a, b € {x, y} such that m(a, b) > 0. Otherwise leta, b € {x, y}
such that (a, b) T (b, a).

4. If the relation > U {(a, b)} is acyclic, then add (a, b) to >. Otherwise add (b, a) to >.
Goto 2.

It is easily verified that this procedure terminates and returns a complete, transitive,
and asymmetric relation when it does. Now, call ranking > € L(A) a ranked pairs
ranking if it results from the procedure for some tie-breaking rule 7', and call x € A
a ranked pairs winner if there exists a ranked pairs ranking > such that x > y for all
y € A\ {x}. The C2 function proposed by Tideman selects all ranked pairs winners.
In the example of Figure 4.1 it selects a unique alternative, alternative d.

To find some ranked pairs ranking or winner, we can simply fix a tie-breaking
rule T and construct >7 as earlier. This involves repeated checks whether > violates
transitivity and can be done efficiently (Brill and Fischer, 2012). Indeed, violation
of transitivity can be recognized in constant time given the transitive closure of the
current relation >, that is, a matrix M € {0, 1}"*" such that m,, = 1 if and only if
there exists a sequence of alternatives zy, ..., zx With z; = x, zx = y, and z; > z;41
fori =1,...,k — 1. Upon addition of a new pair (x, y) € A x A, this matrix can be
updated by setting, for every z € A \ {y} withm_, = 1 and m;, = O and every 7’ € A,
m;y =1if m,, = 1. Ibaraki and Katoh (1983) have shown that this requires only
O(m?) operations no matter how many pairs are added, which implies that a ranked
pairs ranking or winner can be found in O (m?) time.

The problem of deciding whether a given ranking > is a ranked pairs ranking can
also be solved efficiently, using an alternative characterization of ranked pairs rankings
due to Zavist and Tideman (1989). Given a ranking > € L£(A) and two alternatives
x,y € A, we say that x attains y through > if there exists a sequence of distinct
alternatives zi, 22, - . ., Zx, where k > 2, such that z; = x, 7z = y, and z; > z;4+; and
m(z;, zi+1) = m(y, x) for all i with 1 < i < k. A ranking > is then called a stack if for
any pair of alternatives x, y € A, x > y implies that x attains y through >.

Lemma 4.14 (Zavist and Tideman, 1989). A ranking is a ranked pairs ranking if and
only if it is a stack.

12 Here we assume without loss of generality that the pairs (x, y) and (x’, y’) are ordered in such a way that
(e, T (y,x)and (¢, y) T (', x").
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Figure 4.2. Construction used in the proof of Theorem 4.15, for the Boolean formula ¢ = (v; v
V2) A (Vi Vvp) A (V1 V vy). The relation >2 is represented by arcs, the relation ~* by double-
shafted arcs. For all pairs (x, y) that are not connected by an arc, we have m(x, y) = m(y, x) = 0.

To decide whether a given ranking > is a ranked pairs ranking, it therefore suffices
to check whether > is a stack. This in turn reduces to checking, for every pair of
alternatives x, y € A with x > y, whether x attains y through >. The latter can be
achieved in time O (m?) for all pairs by solving the widest path problem subject to the
additional constraint that paths must follow the relation >.

Whether a given alternative is a ranked pairs winner intuitively seems harder to
recognize, because this property could be witnessed by any of an exponential number
of different rankings. Indeed, this problem turns out to be NP-complete.

Theorem 4.15 (Brill and Fischer, 2012). Deciding whether a given alternative is a
ranked pairs winner is NP-complete.

Proof sketch. Membership in NP holds because ranked pairs rankings can be recog-
nized in polynomial time.

For hardness we provide a polynomial-time reduction from SAT, the NP-complete
satisfiability problem for Boolean formulae in conjunctive normal form (e.g., Garey
and Johnson, 1979). Consider a formula ¢ = Cy A --- A Cy, where C; for 1 < j <k
is a disjunction of literals, that is, of negated and nonnegated variables from a set
V ={vi,..., vy,}. Our goal is to construct a preference profile R, over a set A, of
alternatives such that a particular alternative d € A, is a ranked pairs winner for R,
if and only if ¢ is satisfiable. Instead of constructing R, explicitly, we specify a
majority margin m(x, y) for each pair (x, y) € A, x A,, all with even parity, and then
apply Theorem 4.1. In doing so, we write x >" y to denote that m(x, y) = w and
m(y, x) = —w.

Let us first define the set A, of alternatives. For each variable v; € V, 1 <i < m,
there are four alternatives v;, ;, vlf, and 1‘){. For each clause Cj, 1 < j < k, there is
one alternative y;. Finally, there is one alternative d for which we want to decide
whether it is a ranked pairs winner for R,. Now, for each variable v; € V, 1 <i < m,
letv; =* 9] =% 9; =* v/ =2 v;. For each clause C;, 1 < j < k, letv; =2 y; if variable
v; € V appears in clause C; as a positive literal, and 9; =2 y; if variable v; appears
in clause C; as a negative literal. Finally let y; > d for 1 < j < k and d >* v} and
d =2 v; for 1 < i < m. For all pairs (x, y) for which m(x, y) has not been specified so
far, let m(x, y) = m(y, x) = 0. An example is shown in Figure 4.2.
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The proof now proceeds by showing that alternative d is a ranked pairs winner for
R, if and only if formula ¢ is satisfiable, and that R, can be constructed from the
majority margins in polynomial time. The intuition for the former is that the majority
relation contains cycles on the four alternatives for each variable, and that each way
in which the ranked pairs method can break ties among pairs of alternatives with the
same majority margin leads to an assignment of truth values to these variables. 0

The preceding results reveal an interesting trade-oft: whereas Tideman’s original
choice rule is NP-hard to compute, tractable variants can be obtained by using a
fixed tie-breaking rule. Such variants necessarily violate neutrality, which requires
that permuting the alternatives in the preference profile permutes the set of chosen
alternatives or rankings in the exact same way. It is worth noting that neutrality and
computational tractability can be achieved simultaneously by breaking ties according to
the preferences of a particular voter. However, the resulting choice rule would not be a
C2 function and more specifically would violate anonymity, which requires invariance
of the result when the elements of the preference profile are permuted.

4.5.4 Generalizations of C1 Functions

What distinguishes C1 functions from C2 functions is that they ignore the absolute
values of the majority margins and only take their signs into account. The rules of
Slater and Kemeny and those of Copeland and Borda provide obvious examples of this
relationship, but it turns out that several other C1 functions discussed in Chapter 3 can
be generalized in a natural way to use information about the absolute values.'*

Laffond et al. (1993a) defined the bipartisan set as the support of the unique equi-
librium of the tournament game (also see Section 3.3.1), which in our notation can
be written as the symmetric two-player zero-sum game with action set A and payoff
function p: A x A — {—1, 0, 1}, where

1 ifm(x,y) >0,
px,y)={ -1 ifm(x,y) <0,and
0 otherwise.

This definition can be generalized to equilibria of the weighted tournament game,
where instead p(x, y) = m(x, y). Equilibria in this more general class of games need
no longer be unique, but we can define the essential set (Dutta and Laslier, 1999) as the
union of all equilibrium supports. Because the set of equilibria of any zero-sum game
is convex, the essential set is itself the support of an equilibrium, and in fact the unique
support of a quasi-strict equilibrium. The latter can be found efficiently by solving a
linear feasibility problem (Brandt and Fischer, 2008b).

Another notion that can be generalized to weighted tournaments is that of covering
among alternatives, where now alternative x € A covers alternative y € Aifm(x, y) >

13 It is tempting to think that these generalizations should be able to discriminate better among alternatives
because they have more information than the corresponding C1 functions. This is not generally the case, and
the right way to generalize a C1 function is often not obvious (Laffond et al., 1994; De Donder et al., 2000).
For generalizations of C1 functions to weak tournaments, that is, relations that are transitive and complete but
not necessarily asymmetric, see Section 3.5.
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0 and for all z € A, m(x, z) = m(y, z). This immediately leads to generalizations of
the uncovered set and the minimal covering set (Dutta and Laslier, 1999). These
generalizations can be computed efficiently using essentially the same algorithms as
the corresponding C1 functions (Brandt and Brill, 2012). In the special case where all
majority margins are nonzero, these generalizations and an analogous generalization
of the top cycle can alternatively be understood in terms of various game-theoretic
solution concepts applied to the weighted tournament game (De Donder et al., 2000).

Acknowledgments
We thank Felix Brandt, Robert Bredereck, loannis Caragiannis, Jérome Lang, Michel

Le Breton, and Vincent Merlin for their detailed and constructive comments on a draft
of this chapter.



CHAPTER 5

Dodgson’s Rule and Young’s
Rule

Ioannis Caragiannis, Edith Hemaspaandra, and
Lane A. Hemaspaandra

5.1 Overview

Dodgson’s and Young’s election systems, dating from 1876 and 1977, are beautiful,
historically resonant election systems. Surprisingly, both of these systems turn out to
have highly intractable winner-determination problems: The winner problems of these
systems are complete for parallel access to NP. This chapter discusses both the com-
plexity of these winner-determination problems and approaches—through heuristic
algorithms, fixed-parameter algorithms, and approximation algorithms—to circum-
venting that complexity.

5.2 Introduction, Election-System Definitions, and
Results Overview

Charles Lutwidge Dodgson, better known under his pen name of Lewis Carroll, was
a mathematics tutor at Oxford. In his 1876 pamphlet, “A Method of Taking Votes on
More than Two Issues” (Dodgson, 1876), printed by the Clarendon Press, Oxford and
headed “not yet published,” he defined an election system that is compellingly beautiful
in many ways, and yet that also turned out to be so subtle and complex, also in many
ways, that it has in recent decades been much studied by computational social choice
researchers.

Dodgson’s election system is very simply defined. An election will consist of a finite
number of voters, each voting by casting a linear order over (the same) finite set of
candidates. (Recall that linear orders are inherently antisymmetric, i.e., are “tie-free.”)
A Condorcet winner (respectively, weak Condorcet winner) is a candidate @ who, for
each other candidate b, is preferred to b by strictly more than half (respectively, by at
least half) of the voters. It is natural to want election systems to be Condorcet-consistent,
that is, to have the property that if there is a Condorcet winner, he or she is the one and
only winner under the election system. Dodgson’s system is Condorcet-consistent. In
fact, the system is defined based on each candidate’s closeness to being a Condorcet
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winner. Dodgson’s view was that whichever candidate (or candidates if there is a tie
for closest) was “closest” to being Condorcet winners should be the winner(s), and his
system is a realization of that view.

In particular, the Dodgson score of a candidate, a, is the smallest number of
sequential exchanges of adjacent candidates in preference orders such that after those
exchanges a is a Condorcet winner. All candidates having the smallest Dodgson score
among the candidates are the winner(s) in Dodgson’s system.

For example, suppose our election is over the candidates a, b, and ¢, and there are
two voters, one voting a > b > ¢ and the other also voting a > b > c¢. (Throughout
this paper, when writing out a particular vote we use the strict linear order > associated
with the voter’s linear order ,%J; as noted in Chapter 2, these are related by: x > y <=
(x Z y A=(y 7 x).) The Dodgson score of ¢ is four, since to make ¢ a Condorcet
winner we have to adjacently exchange ¢ with b in the first voter, forming the vote
a > ¢ > b and then, after that, we have to adjacently exchange ¢ with a in the first
vote, and then we need to do the same two exchanges in the second vote. The Dodgson
scores of a and b are zero and two. In this example, there is one Dodgson winner,
namely, a. However, if the votes had instead been a > b > ¢ and b > a > c, then the
Dodgson scores of a, b, and ¢ would be one, one, and four, and a and b would be the
Dodgson winners.

The system just described is what Dodgson himself defined. (This chapter is designed
to be self-contained. However, we mention that Chapter 2 provides to all interested
readers an excellent treatment of the basics of voting theory, including such notions as
Dodgson’s election system, Condorcet winners, and so on.) However, some researchers
have studied the following variant, sometimes still calling it Dodgson elections and not
mentioning that it differs from Dodgson’s notion. The election system WeakDodgson
is defined exactly as above, except in terms of WeakDodgson scores, which are the
number of sequential exchanges of adjacent candidates needed to make the given
candidate become a weak Condorcet winner. The WeakDodgson scores of a, b, and ¢
in the first example above are zero, one, and two, and in the second example above are
zero, zero, and two. The WeakDodgson winners are the same as the Dodgson winners
in the above examples. However, it is easy to construct examples where Dodgson and
WeakDodgson produce different winner sets.

Dodgson’s system is measuring each candidate’s adjacent-exchange distance from
being a Condorcet winner, and is electing the candidate(s) with the shortest such
distance. Among the many beauties of Dodgson’s system is that it is based on finding
the minimum edit distance between the initial votes and a certain region in the space
of all votes, under a certain basis of operations, in particular sequential adjacent-
exchanges. The notion of edit distance is essential in a large number of fields, and is
central in many area of algorithmics. Dodgson’s use of this notion is a natural, lovely,
and quite early example. The coverage of distance rationalizability in Chapter 8 will
make clear that a distance-based framework can be used to capture and study a wide
range of important voting systems.

H. Peyton Young (1977) defined his election system, now known as Young elections,
in terms of a different type of distance. The Young score of a candidate, a, is defined to be
the smallest number n such that there is a set of n voters such that a is a weak Condorcet
winner when those n voters are removed from the election. All candidates having the



5.2 INTRODUCTION, ELECTION-SYSTEM DEFINITIONS 105

lowest Young score in a given election are its Young winner(s). The analogous system
based on the number of deletions needed to make a given candidate a Condorcet winner
will be called Strong Young, and has also been studied, sometimes in papers still calling
it Young elections and not mentioning that it differs from Young’s notion. If a given
candidate cannot be made a Condorcet winner by any number of deletions, we will
say that its StrongYoung score is infinite. So, for example, in a zero-voter election, all
candidates tie under the Young system, each with Young score zero, and all candidates
tie under the Strong Young system, each with Strong Young score infinity. Strong Young
is clearly a Condorcet-consistent system.

Let us look at an election example and find its Young scores and its Young winner(s).
Consider the election in which the candidates are a, b, ¢, and d, and the following six
votes are cast:

a>b>c>d,
a>b>c>d,
a>b>d>c,
c>a>d>b,
.d>b>a>c,and
6.d>b>c>a.

N

Candidate a—who actually is already a Condorcet winner—is certainly a weak Con-
dorcet winner, and so has Young score zero. Candidate b is losing to a four to two
among the six voters, and ties or beats each of ¢ and d. Due to b’s four to two loss
against a, clearly the Young score of b is at least two, since deleting one vote closes
the amount by which b trails a by at most one. If one deletes the votes numbered 1 and
2 above, b will tie with a two to two, but—horrors!—now loses to d one to three. So
the fact that deleting 1 and 2 removes b’s weakness with regard to a does not suffice
to establish that the Young score of b is at most two. However, happily, it is easy to
see that deleting the votes numbered 1 and 4 above indeed makes b become a weak
Condorcet winner, and so b’s Young score is at most two. Thus b’s Young score is
exactly two. It is also easy to see that d’s Young score is exactly two, and the reader
may wish to verify that as practice. ¢ is a more interesting case than d is. Initially, ¢
ties d three to three, loses to b five to one, and loses to a four to two. Due to the five
to one loss to b, clearly ¢’s Young score is at least four. However, ¢ also trails a, and it
is possible that removing some four votes that catch ¢ up to b might not catch ¢ up to
a, or might even leave c losing to d. This observation, and the twist we ran into above
related to computing b’s Young score, are related to why computing Young scores
turns out to be, as further mentioned later in this chapter, computationally difficult:
The number of vote collections to be considered for potential deletion can be com-
binatorially explosive, and deleting a given vote can affect a given candidate in some
helpful and some harmful ways at the same time. However, in this particular example,
deleting votes 1, 2, 3, and 5 leaves ¢ a weak Condorcet winner, and thus ¢’s Young
score is at most four. So ¢’s Young score in fact is exactly four. Overall, candidate a is
the one and only Young winner in this example—which of course follows immediately
from the fact, mentioned near the start of this paragraph, that a is a Condorcet winner
here.
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As noted earlier, Dodgson in effect means StrongDodgson, but Young in effect means
WeakYoung. This is simply due to the history of how these notions were defined by their
creators. Throughout this chapter, we will use the terms Dodgson and StrongYoung
for the versions based on Condorcet winners and will use the terms WeakDodgson and
Young for the versions based on weak Condorcet winners.

Dodgson’s and Young’s election systems have followed paths of whipsaw twists
and turns in terms of their computational properties, and this chapter is mostly
focused on providing an overview of those paths, with a particular stress on Dodgson’s
system.

Briefly summarized, in the late 1800s Dodgson defined his system, and it was
natural, compelling, and lovely—so much so that it was included in McLean and
Urken’s (1995) collection of the key papers in the multi-thousand-year history of
social choice. However, as we will discuss in Section 5.3, in the late 1900s Bartholdi
et al. (1989b) proved that the winner problem of this lovely system was NP-hard,
and so under current standard assumptions in computer science is computationally
intractable. Hemaspaandra et al. (1997a) then obtained a tight classification of the
problem’s computational complexity, and it became the first truly real-world-natural
problem to be “complete” for the class of problems solvable through parallel access to
NP—a very high level of complexity. That result was good news for complexity theory,
as it populated that complexity class with a problem that clearly was highly nonartificial,
since the election system had been defined in the 1800s, long before complexity theory
even existed. However, the late 1900s results were grim news indeed regarding the
computational difficulty of Dodgson elections.

Yet hardness results often are not the last word on a problem. Rather, they can
serve as an invitation to researchers to find ways to sidestep the problem’s hardness.
That is exactly what happened in the case of Dodgson elections, in work done in the
2000s. It is known that, unless the polynomial hierarchy collapses, no heuristic algo-
rithm for any NP-hard problem can have a subexponential error rate (see Hemaspaan-
dra and Williams, 2012). So heuristic algorithms for the Dodgson election problem
are limited in what they can hope to achieve. Nonetheless, it has been shown that
there are quite good heuristic algorithms for the class of instances where the num-
ber of candidates is superquadratic in the number of voters. Section 5.4 presents
such heuristic results. Section 5.5 discusses another approach to bypassing hardness
results—parameterized algorithms. The results covered there show, for example, that
the Dodgson winner problem is fixed-parameter tractable with respect to the number
of candidates. That is, there is a uniform algorithm whose running time is the prod-
uct of a polynomial in the instance’s size and some (admittedly very large) function
of the number of candidates. Finally, Section 5.6 studies a third approach to deal-
ing with hardness, namely, approximation algorithms. That section presents results
about approximating the Dodgson score and using approximation algorithms them-
selves as voting rules that achieve some social-choice properties that Dodgson’s system
lacks.

Young elections have been less extensively studied than Dodgson elections. But as
this chapter will discuss, Young’s system walked a twisty results road quite similar to
the one Dodgson’s system walked. Like Dodgson, Young is a natural election system;
like Dodgson, long after Young’s system was defined it was proven that even telling
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who won is computationally intractable; and like Dodgson, for Young elections one
can obtain fixed-parameter tractability results.

5.3 Winner-Problem Complexity

This section discusses the complexity of the winner problems of Dodgson,
WeakDodgson, Strong Young, and Young elections.

5.3.1 Basics and Background

To understand the complexity of the winner problems of Dodgson, WeakDodgson,
StrongYoung, and Young elections, we will need to define and discuss an important
level of the polynomial hierarchy that is far less well-known than the polynomial
hierarchy’s famous lowest levels, P and NP. This less well-known complexity class is
the ®F level of the polynomial hierarchy, which captures the power of (polynomial-
time) parallel access to NP.

Let us now define this class. We will assume that the reader is familiar with the
definition of NP and has at least a general idea of what a Turing machine is. A set
is in coNP exactly if its complement is in NP. We will not define the polynomial
hierarchy in this chapter. However, we mention that it is widely believed that the
polynomial hierarchy does not collapse. Thus any assumption that would imply that
the polynomial hierarchy collapses is, in the eyes of modern computer science, viewed
as highly unlikely to be true.

A Turing machine operating with parallel access to a set A is a standard Turing
machine enhanced with an extra tape, called the query tape. On an arbitrary input x,
the machine is allowed, after some computation, to write on the tape a sequence of
binary strings (say yi, - - ., yx), €ach separated by the special character #. The machine
then can, at most once on each input, enter a special state, known as the query state,
Gask_query- After it does, the machine is by the definition of this model immediately (i.e.,
in one time step) placed into the state gguery_answered> and the query tape’s content is
replaced with a k-bit vector containing the answers to the k questions “y; € A?”,...,
“yr € A?’ After some additional computation the machine may halt and accept or halt
and reject. Here, k need not be a constant; on different inputs, k might differ, and there
might be no global bound on k.

For any string x, let |x| denote the length of x, for example, |[01111] = 5. A set B
is said to belong to @g exactly if there exists a Turing machine, M, and an NP set
A, such that (7) there exists a polynomial p such that, for each input x, M operating
with parallel access to A, on input x, halts and accepts or halts and rejects within time
p(|x]), and (ii) the set of all strings accepted by M operating with parallel access to A
is B.

Informally put, ®} is capturing the power of what one can do with a machine that
on input x can, in time polynomial in |x|, generate some list of queries to an NP set,
and then, in light of the input and a magically delivered answer for each of those
queries as to whether the queried string is in the NP set, can with at most polynomially
long additional computation determine whether x is in the given set. Simply put, this
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class is capturing the power of (polynomial-time) parallel access to NP. Although, as
mentioned above, there is no a priori limit on the number of queries that can be asked
in the (one) question string, the fact that the machine has only polynomial time to write
the string ensures that there are at most polynomially many queries in the question
string.

@} is sometimes alternatively denoted PTP or PN’ the || denotes parallel access and
the ¢ stands for truth-table, which is the type of reduction on which the above definition
of ®Y is based. For those familiar with the polynomial hierarchy and its classes, the
location of ®% within the polynomial hierarchy is £{ UTI{ € 5 € A} € =7 n11%,
or to state that without the jargon, NP U coNP C PFP < PN? < NPNP N coNPNP Tt is
well-known that unless NP is a strict subset of ©%, the polynomial hierarchy collapses
to NP.

Let us give a brief example showing membership in ®5. Consider the set of all
(undirected, nonempty) graphs in which the largest clique in the graph has an odd
number of nodes, that is, the problem odd-max-clique. This problem is clearly in ©.
Why? The standard clique problem is the set of all (G, £), with G a graph and ¢ a
natural number, such that there is a clique in G of size at least £. So our machine to
show that odd-max-clique is in ®5 will, given a graph G having n nodes, write on the
query tape the string (G, D#(G, 2)# - - - #(G, n) and enter the state gust_guery, and then
from the state g uery_answered Will look at the answer vector, which will be, for some j,
Jj ones followed by n — j zeros, and from the number of ones will easily be able to tell
whether the largest clique is odd or even. For example, if the answer vector is 111000,
we know the graph has cliques of size 1, 2, and 3, but not 4, 5, or 6, so the largest clique
is of size 3, which is odd, so the machine in this case will enter an accepting state and
halt.

Our oracle model allowed only a single question string, although that question
string itself could be encoding polynomially many different simultaneous queries to
the oracle. That is why this class is said to capture parallel access to NP. However, ©F is
also known to exactly capture the set of languages accepted if, in our above polynomial-
time model, one can query the oracle O(logn) times, except now with each question
string containing a single query rather than asking many queries combined. That is,
informally, polynomial-time unbounded parallel access to NP has the same power as
polynomial-time logarithmic-query sequential access to NP. Indeed, the class was first
studied in the sequential version (Papadimitriou and Zachos, 1983), and only later was
the connection to the parallel notion established (Hemachandra, 1989).

In complexity theory, reductions provide a tool to help classify complexity. We say
a set B polynomial-time many-one reduces to a set D if there is a polynomial-time
computable function f such that, foreach x, x € Bifand onlyif f(x) € D.Informally,
there is a simple to compute, membership-preserving mapping from B to D. It certainly
follows that if D is easy to compute, then so is B.

For any complexity class C, we say a set D is C-hard if for every set B € C it
holds that B polynomial-time many-one reduces to D. Since NP € ©F, every ©4-hard
problem is NP-hard. For any complexity class C, we say a set D is C-complete exactly
if (a) D € C and (b) D is C-hard. The complete sets for a class are in some sense the
quintessence of the class’s power. They are members of the class, yet are so powerful
that each other set in the class can be polynomial-time many-one reduced to them.
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®} itself has an interesting, unusual history. It is natural to worry, when one throws
a party, whether anyone will come. In complexity theory, the analogous worry is that
one will define a complexity class that seems intuitively natural, and yet the class will
somehow not turn out to capture the complexity of important real-world problems.

The complexity of Dodgson elections helped ®5 avoid being a dull party. In partic-
ular, by the mid-1990s, it was clear that ®) was important in complexity theory. For
example, Kadin (1989) had proven that if NP has a “sparse Turing-complete set” then
the polynomial hierarchy collapses to ®5; ®F was known to have a large number of
different yet equivalent definitions (Wagner, 1990); and @5 was known to be closely
connected to time-bounded Kolmogorov complexity theory (Hemachandra and Wech-
sung, 1991). Yet those were all results that would warm only the heart of a complexity
theorist. ®5 was known to have complete problems (see Wagner, 1987). But they were
artificial or mathematical problems of a sort that might be interesting to theoretical
computer scientists or logicians, yet that did not have the natural appeal of problems
coming from compellingly important “real world” settings and challenges.

To this uneasily quiet party came the Dodgson winner problem, with party favors
and noisemakers. The Dodgson winner problem turned out to be complete for ®%,
and was unarguably natural, coming as it did from a question raised a hundred years
earlier. And the party was soon humming, as many other problems, including such
additional election-winner problems as Strong Young elections and Kemeny elections,
were shown to also be @5 -complete (Rothe et al., 2003; Hemaspaandra et al., 2005).

5.3.2 The Complexity of the Dodgson and Young Winner Problems

In 1989, Bartholdi et al. (1989b) proved that the Dodgson winner problem was NP-
hard and left as an open issue whether it was NP-complete. In 1997, Hemaspaandra
et al. (1997a) proved that the Dodgson winner problem was in fact ®)-complete.
This implies that, unless NP = coNP, the problem is not NP-complete. Intuitively, the
problem is too hard to be NP-complete.

It is natural to wonder why one should even bother to exactly classify a problem
that is known to be NP-hard. After all, NP-hardness is already a powerful indicator of
hardness. There are a number of answers to this question. The nerdy, technical answer
that a complexity theorist might give is that improving a problem’s complexity from
NP-hardness to @é’ -completeness tells us more about how unlikely the problem is to
be solvable with certain other approaches to computation (see Hemaspaandra et al.,
1997b, for a discussion of this). However, the truly compelling answer harks back to
our earlier comment about complete sets capturing the core nature of their classes. By
proving a set complete for a class, we learn much about the fundamental nature of
the set—whether it is capturing, as NP-complete sets do, the power of polynomially
bounded existential quantification connected to polynomial-time predicates, or whether
it is capturing, as ®5-complete sets do, the power of parallel access to NP.

Formally, the Dodgson winner problem is a set, namely, the set of all triples
(A, R, p)—where A is the set of candidates, R is the list of cast votes (each being
a linear order over A), and p € A—such that p is a winner of the given election,
when conducted under Dodgson’s election system. The following theorem pinpoints
the complexity of the Dodgson winner problem.
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Theorem 5.1 (Hemaspaandra et al., 1997a). The Dodgson winner problem is @g -
complete.

We do not have the space to give a proof of the above theorem. However, it will be
important and interesting to sketch the philosophy behind and structure of the proof,
as they are at first quite counterintuitive.

What is counterintuitive is that one proves the Dodgson winner problem to be
©5-hard through doing extensive work to prove that many properties of the Dodgson
winner problem are computationally easy to handle. Those (three) easy properties
regard trapping the potential scores of the winner to two adjacent values within the
image of an NP-hardness reduction (we will refer back to this later as L1), creating in
polynomial time a “double exposure” that merges two elections in a way that preserves
key information from each (we will refer back to this later as L2), and providing (with
some twists) a polynomial-time function that given a list of elections and a candidate
of interest in each creates a single election such that the sum of the scores of each
election’s interesting candidate in its election is the score of a particular designated
candidate in the single election. For concreteness, the last of those can be formally
stated as the following “sum of the scores equals the score of the ‘sum’” claim.

Lemma 5.2 (Hemaspaandra et al., 1997a). There is a polynomial-time func-
tion, dodgsonsum, such that, for all k and for all (A, Ry, p1),...(Ax, Rk, pr)
that are election triples (i.e., p; € A;, and the R; are each a collection of lin-
ear orders over the candidates in A;), each having an odd number of voters,
dodgsonsum((A1, Ry, p1), ..., (Ar, R, pi)) is an election triple (A, R, p) having an
odd number of voters and it holds that the Dodgson score of p in the election (A, R)
is exactly the sum over all j of the Dodgson score of p; in election (Aj, R;).

The natural question to ask is: Why on earth would one prove lots of things easy about
Dodgson elections in order to prove that the Dodgson winner problem is extremely
hard? The answer to this question is that, despite the “hardness” in its name, ©5-
hardness is not just about hardness (and neither are other hardnesses, such as NP-
hardness). Let us explain why, using NP-hardness for our example. Suppose for each
string in {0, 1}* we independently flip an unbiased coin, and put the string in or out of
a set A based on the outcome. With probability one, the obtained set A is so extraordi-
narily hard as to not even be computable. Yet under standard beliefs about NP (namely,
that NP is not a subset of bounded probabilistic polynomial time), with probability
one the set A we obtained is not NP-hard (see Ambos-Spies, 1986). Intuitively, the
issue here is that NP-hardness is not just about hardness. To be NP-hard, a set indeed
must have enough power to be usable to handle all NP sets. But that power must be so
well-organized and accessible that polynomial-time many-one reductions can harness
that power. Our random set A is simply chaos, and so provides no such organized
power. Every time we prove something NP-hard, by a reduction, we are exploiting the
organization of the set being mapped to. With NP, we usually do not think much about
that. In contrast, ©%-hardness proofs are so demanding, and the amount of structure
exploitation needed to establish @g -hardness is so great, that this issue comes out from
the shadows.
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We need a lens to focus the structure provided by Lemma 5.2 and the two other
“in polynomial time we can do many things regarding Dodgson elections” claims that
we alluded to just before that result (though neither of those is stated formally in this
chapter), and to use that structure to establish a ®}-hardness result for the Dodgson
winner problem. For ®f-hardness proofs, the lens of choice is the following powerful
technical lemma proven in the 1980s by the great German complexity theorist Klaus
W. Wagner. x4 denotes the characteristic function of A, thatis, ya(y) =1if ye A
and x4(y) =0if y & A.

Lemma 5.3 (Wagner, 1987). Let A be any NP-complete set and let B be any set. Then
B is @g -hard if there is a polynomial-time function f such that, for all k > 1 and all
X1, ..., X0 satisfying xa(x1) = - -+ = xa(xax), it holds that

I{i | xi € A{ll=1 (mod2) <= f(xi,...,x%) € B.

This can be used, for example, to show that odd-max-clique is ®5-hard (Wagner,
1987). Thus in light of our earlier example odd-max-clique in fact is ©}-complete.

Briefly put, the broad structure of the ®)-hardness proof for the Dodgson winner
problem is as follows. The result we alluded to earlier as L1 basically seeks to show
that the Dodgson winner problem is NP-hard through a reduction that achieves a num-
ber of additional properties. The original Bartholdi et al. (1989b) reduction showing
NP-hardness for the Dodgson winner problem reduced from the exact cover by three-
sets problem. However, that reduction does not have the properties needed to work
in concert with Lemma 5.3. Nonetheless, L1 holds, because one can, by a reduction
from a different NP-complete problem, three-dimensional matching, obtain the desired
properties. Then using L1 and Lemma 5.2 together with Lemma 5.3, one can argue that
the problem of telling whether candidate p;’s Dodgson score in an election (A, R;) is
less than or equal to candidate p,’s score in an election (A;, R;), with both || R;|| and
|R>2|| odd, is @g -hard. Finally, using that result and the result we referred to earlier
as L2 (a “merging” lemma), one can prove that Dodgson winner itself is ©5-hard.
Thus rather extensive groundwork about the simplicity of many issues about Dodg-
son elections, used together with Wagner’s Lemma, is what establishes ®f-hardness
here.

Completeness for a class requires not just hardness for the class but also membership
in the class. Yet we still have not argued that the Dodgson winner problem is in ©5.
Happily, that is a very easy result to show. Given an election, a distinguished candidate
p, and a natural number £, it clearly is an NP problem—called DodgsonScore in the
literature—to determine whether the Dodgson score of p in that election is at most
k. The way we see that this is in NP is that one can simply seek to guess a sequence
of k sequential exchanges of adjacent candidates, making p a Condorcet winner. (In
fact, this DodgsonScore is even NP-complete, as was established in the seminal paper
of Bartholdi et al. (1989b).) Now, given an election instance, (A, R), and a candidate
p € A, we wish to determine within ®} whether p is a Dodgson winner. What we do
is that we ask, in parallel, to the NP problem DodgsonScore every reasonable score
question for every candidate. Note that even if a candidate p’ is at the bottom of every
vote, with (]| A|| — 1)||R|| sequential exchanges of adjacent candidates it can be moved
to the top of every vote, at which point it easily is a Condorcet winner. So for each
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candidate p’ € A, and each natural number i, 1 < i < (J|A]| — 1| R||, we ask whether
the Dodgson score of p’ is at most i. That is a single parallel round of || A[|(|A]| — DI R]|
queries. From the answers, we immediately know the Dodgson score of each candidate,
and so we can easily tell whether p is a Dodgson winner. Since this scheme meets the
definition of ®), we have established that the Dodgson winner problem is in ®%. In
light of the already discussed ©%-hardness, we may conclude that the Dodgson winner
problem is ®f-complete.

Is this ®F-completeness result just a trick of the particular model of Dodgson
elections, or does it hold even for natural variants? Research has shown that ©-
completeness holds even for many natural variants of the Dodgson winner problem.
The WeakDodgson winner problem is ®)-complete (Brandt et al., 2010a, 2010b),
asking whether p is the one and only Dodgson winner (i.e., is a so-called unique
winner) is ®§ -complete (Hemaspaandra et al., 2009), and asking whether p is the
one and only WeakDodgson winner is ®5-complete (Brandt et al., 2010b). Even
comparing two Dodgson scores in the same election is ®5-complete (Hemaspaandra
etal., 1997a).

Still, there are limits to how much one can vary the problem and remain hard. For
example, if one considers elections in which the electorate has so-called single-peaked
preferences (Black, 1948)—an extremely important notion in political science—the
complexity of the winner problem for Dodgson and WeakDodgson elections falls to
polynomial time (Brandt et al., 2010a).

Although we have so far been discussing the Dodgson winner problem, the key
results mentioned above also hold for the Young winner problem. In 2003, the com-
plexity of the StrongYoung winner problem was pinpointed by Rothe et al. (2003) as
being ®} -complete. ®F -completeness also holds for the Young winner problem (Brandt
et al., 2010a, 2010b):

Theorem 5.4. The Young winner problem is ©5 -complete.

©5-completeness also holds for case of asking whether p is the one and only
StrongYoung winner (Hemaspaandra et al., 2009), and for the case of asking whether
p is the one and only Young winner (Brandt et al., 2010b).

Similarly to the Dodgson case, if one considers elections in which the electorate
has single-peaked preferences, the complexity of the winner problem for Young and
Strong Young elections falls to polynomial time (Brandt et al., 2010a).

Dodgson and Young are not the only election systems whose winner problem turns
out to be hard. For example, the lovely election system known as Kemeny elec-
tions (Kemeny, 1959; Kemeny and Snell, 1960) (see Chapters 2 and 4 for more
on Kemeny elections) also has a ®)-complete winner (and unique winner) prob-
lem (Hemaspaandra et al., 2005, 2009).

Although an understandable first reaction to a ®5-hardness result might be despair
and resignation, it surely is better to be positive and make the best of the situation. For
example, we mentioned above that for a restricted-domain setting, called single-peaked
electorates, the complexity of the Dodgson winner problem vanishes. In the coming
sections, we will look at three other approaches to living with intractability results:
heuristic algorithms, parameterized algorithms, and approximation algorithms.
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5.4 Heuristic Algorithms

Suppose we are faced with a problem for which getting an efficient deterministic
algorithm that is correct on all inputs seems unlikely, for example due to the problem
being NP-hard or ©}-hard. A natural next step is to seek an algorithm that is correct a
very high portion of the time.

There are severe complexity-theoretic barriers to even that goal. As mentioned ear-
lier, it is known that, unless the polynomial hierarchy collapses, no NP-hard problem
(and thus no ®%-hard problem) has (deterministic) heuristic algorithms whose asymp-
totic error rate is subexponential (see Hemaspaandra and Williams, 2012). Still, even a
heuristic algorithm whose asymptotic error rate is not subexponential can be valuable.
In fact, despite the above result, heuristic algorithms are a valuable tool when faced
with complex problems.

Even better than heuristic algorithms that often are correct would be heuristic
algorithms that often are self-knowingly correct. A heuristic algorithm for a total
function f is said to be self-knowingly correct if, on each input x, the function (i) outputs
a claim as to the value of f(x), and also outputs either “definitely” or “maybe,” and
(if) whenever the function outputs (y, “definitely”) it holds that f(x) = y. When the
second output component is “maybe,” the first output component might, or might not,
equal f(x). Of course, the goal is to build self-knowingly correct algorithms that very
often have “definitely” as their second output component.

Since we will now often be speaking of drawing random elections, for the rest of
this section we assume that in m-candidate elections the candidate names are always
1, ..., m, and so in drawing a random election all that is at issue will be the votes. So
in Theorem 5.5 below, the “election” will refer just to R, and both the function and the
GreedyWinner algorithm we will discuss in the next paragraph will take R and p as
their input.

Consider the function that on input (R, p)—where R is a list of votes (each a linear
order) that for some j are all over the candidates 1,2,...,j and p e {1,..., j}—
equals Yes if p is a Dodgson winner of that election and equals No otherwise, that
is, the function in effect computes the characteristic function of the Dodgson winner
problem (j is not fixed; it may differ on different inputs). It turns out that there is a fre-
quently self-knowingly correct polynomial-time heuristic algorithm, called Greedy-
Winner, for the function just described, and so, in effect, for the Dodgson winner
problem.

Theorem 5.5 (Homan and Hemaspaandra, 2009).

1. For each (election, candidate) pair it holds that if GreedyWinner outputs “definitely”
as its second output component, then its first output component correctly answers the
question, “Is the input candidate a Dodgson winner of the input election?”

2. For each m € {1,2,3,...} and n € {1,2,3, ...}, the probability that an election E
selected uniformly at random from all elections having m candidates and n votes
(i.e., all (m!)" elections having m candidates and n votes have the same likelihood of
being selected) has the property that there exists at least one candidate p' such that
GreedyWinner on input (E, p') outputs “maybe” as its second output component is
less than 2(m? — m)eﬁ.
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What this says is that the portion of m-candidate, n-voter elections that Greedy-
Winner is self-knowingly correct on is at least 1 — 2(m? — m)es:Tnz. For example, if
one looks at the asymptotics as m goes to infinity, and with n being some superquadratic
polynomial of m, for example, n = m?>%%%!  the error rate will go to zero exponentially
fast.

How does the GreedyWinner algorithm work? It is almost alarmingly simple. In
fact, the reason one can get such an explicit bound, rather than just being able to draw
plots from experiments as so many papers do, is in large part due to the algorithm’s
simplicity. The simplicity of the algorithm makes it possible, in this case, to well-
analyze its performance. That is why, in the GreedyScore algorithm below, we tie
our hands by making at most one exchange per vote; it suffices to get the desired result
and it simplifies the analysis.

GreedyWinner is built on top of a heuristic algorithm called GreedyScore,
which given an election and a candidate p’, seeks to, in a frequently self-knowingly
correct way, compute the Dodgson score of p’ in the election. What GreedyScore
does is simply this: It goes through the votes one at a time, and in each it looks at what
one candidate (if any), ¢, is immediately preferred (i.e., adjacently preferred) to p’ in
that vote, and if at that moment p’ is not yet strictly beating ¢ in terms of how many
voters prefer one to the other, then GreedyScore exchanges p’ and c in that vote. If
at the end of this process, p’ is a Condorcet winner, then the algorithm outputs as its
first component the number of exchanges it made, and outputs as its second component
“definitely.” It does so because an obvious lower bound for the number of adjacent
exchanges needed to make p’ a Condorcet winner is the sum, over all candidates, of
how many voters must change from preferring ¢ to p’ to instead preferring p’ to ¢. But
if we made p’ become a Condorcet winner only by exchanging it with things that were
initially upside-adjacent to it in the given vote, and we only did such exchanges if p’
was at the moment of exchange still behind the candidate it was being exchanged with
in their head-on-head contest, then our algorithm clearly uses no more exchanges than
that lower bound. And so our algorithm has truly found the Dodgson score of p’.

Intuitively, if the number of voters is sufficiently large relative to the number of
candidates, then it is highly likely that the above GreedyScore procedure will self-
knowingly succeed, that is, that we can make up all the deficits that p’ has simply by
exchanging it with rivals that are immediately adjacent to it. (After all, for any two
candidates ¢ and d, it is easy to see that for 1/m of the possible vote choices ¢ will
adjacently beat d within that vote. So the expected value of the number of votes in which
c will adjacently beat d is n/m.) The claim about frequent success can be made more
precise. In particular, if one fixes a candidate, say candidate 1, and draws uniformly at
random an m-candidate, n-voter election, the probability that GreedyScore’s second
component is “maybe” is less than 2(m — l)eﬁ.

The GreedyWinner algorithm, on input (R, p), is simply to first run
GreedyScore on (R, p). If “maybe” is the second component, we ourselves out-
put “maybe” as our second component (and the first component does not matter).
Otherwise, we run the GreedyScore algorithm on (R, p’) for each candidate p’ # p.
If each of those runs results in a score that is not less than what we computed for
p and each has a second component “definitely,” then we output (as to whether p is
a Dodgson winner) Yes (in fact, in this case, our algorithm self-knowingly correctly
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knows all the Dodgson scores and thus the complete set of Dodgson winners, and p is
one of them), with second component “definitely,” and otherwise if all second compo-
nents were “definitely” we output No (in this case, our algorithm now self-knowingly
correctly knows all the Dodgson scores and thus the complete set of Dodgson winners,
and p is not one of them), with second component “definitely,” and otherwise we output
second component “maybe” (and the first component does not matter). By probability
arguments (using the union theorem and a variant of Chernoff’s Theorem), we can for-
mally establish the claim made in the previous paragraph about GreedyScore, and
Theorem 5.5’s claim about the (in)frequency with which the self-knowingly correct
algorithm GreedyWinner outputs “maybe.”

This section has been speaking about Dodgson elections, and is based on the results
of Homan and Hemaspaandra (2009). Independent work of McCabe-Dansted et al.
(2008) studies essentially these issues for the case of WeakDodgson elections, and
using the same general approach obtains related results for that case; see the discussion
in Section 5.7.

5.5 The Parameterized Lens

Another approach that aims to cope with the inherent computational difficulty of
Dodgson’s and Young’s election systems is the design of fixed-parameter tractable
algorithms. The algorithmic challenge is the following: Is there an algorithm that
computes the Dodgson (or Strong Young) score, whose running time is polynomial for
each fixed value of some important parameter of the problem, such as the number
of candidates? The question falls within the research agenda of the area known as
parameterized computational complexity (Downey and Fellows, 1999; Niedermeier,
2006). In general, that area’s goal is to identify whether the computational explosion
occurring in algorithms for NP-hard problems can be attributed solely to a certain
parameter of the problem. In applications where that parameter typically takes on only
small values, an algorithm with a running time that depends superpolynomially on only
that parameter might be hoped to be of practical use.

In our case, attractive parameters include the number, m, of candidates; the number,
n, of votes; and the number, k, of editing operations. For the Dodgson score, k denotes
the number of sequential exchanges of adjacent candidates in the votes, while for the
StrongYoung score, k denotes the number of votes deleted from the electorate. As a
simple, initial example, fixed-parameter tractability with respect to the parameter n is
clear in StrongYoung elections. Namely, one can conduct an exhaustive search over
the 2" different subsets of votes of the original profile and find (if one exists) a subset
of maximum size in which the desired candidate is the Condorcet winner. The number
of votes in this subset is the StrongYoung score of the preferred candidate p; if no
such subset exists, we will output co as p’s StrongYoung score. So it is clear that the
StrongYoung score is fixed-parameter tractable with respect to the number of voters.

The Dodgson score and the StrongYoung score are fixed-parameter tractable for
the parameter m. This follows by a seminal result of Lenstra, Jr. (1983) that implies
that a problem is fixed-parameter tractable when it can be solved by an integer linear
program (ILP) in which the number of variables is upper-bounded by a function solely
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depending on the parameter. In particular, the seminal work of Bartholdi et al. (1989b)
handles Dodgson score by integer linear programming in a way that, as has often
been noted, tacitly establishes that the Dodgson score is fixed-parameter tractable with
respect to the number of candidates. ILPs can also be used to compute the Young and
the StrongYoung scores (see Young, 1977).

Furthermore, the Dodgson score has been proved to be fixed-parameter tractable
for the parameter k using dynamic programming, a standard tool for designing fixed-
parameter tractable algorithms. The key idea is to solve the problem by solving sub-
problems and combining overlapping solutions in order to compute the overall solution.
Dynamic programming avoids multiple computation of the same (sub)solution by stor-
ing it in a so-called dynamic-programming table and by accessing its value from the
table when needed.

We will now present the main ideas behind the way Betzler et al. (2010) have,
using dynamic programming, upper-bounded the parameterized complexity of check-
ing whether a candidate’s Dodgson score is at most a given value. Let us be given a
profile R with n votes (each specified as a linear order). We will now explore how
to efficiently compute the Dodgson score of a particular candidate in that profile, say
candidate a. We will denote by deficit(a, y, R) the deficit of candidate a with respect to
candidate y in profile R, that is, the (minimum) number of voters who have to change
their preference so that a beats y in their pairwise election. For example, if there are ten
voters and eight initially prefer y to a, so a loses to y eight to two, deficit(a, y, R) = 4
since with the right four changed votes a will squeak past y to win by six to four. P
will denote the set of candidates with respect to whom a has a positive deficit under
our profile R.

The idea is to build a table whose entries store information about how candidate a
can be pushed upward in the votes so that the deficit with respect to each candidate of P
is eventually decreased to 0. This requires storing intermediate information concerning
subsets of votes and partial decreases of the deficit in the table entries. The table for
this has n 4+ 1 rows. Row i will contain information about the first i votes of the profile.
Each column of the table will be labeled by a vector d, and that vector will have an entry
for each candidate of P, with d(y) being an integer between 0 and deficit(a, y, R).
Entry T'(i, d) of the table stores the minimum number of total upward pushes of a in
the first i votes of R that will suffice to decrease a’s initial deficit with respect to each
y € P byatleastd(y). (By a “push,” we mean a single exchange of adjacent candidates
in a preference order.) We place oo in the table’s 7'(i, d) entry if even pushing a to the
top of the first i votes is not enough to achieve the improvements demanded by the
vector d. Using d to denote the vector with c7(y) = deficit(a, y, R) for each candidate
y of P, itis clear that the entry T (n, 57) will contain the Dodgson score.

The entries of the table are initialized to be 7(0,d) =0 if d = (0,0, ...,0) and
T(0, d) = oo otherwise. The entries of the ith row (doing this first for the i = 1 row,
then the i = 2 row, and so on) can then be computed from the information stored in the
entries of the (i — 1)st row. Before presenting the formal definition of this computation,
let us give a small example. Let us focus on the first i votes of a profile R, for which we
want to compute the Dodgson score of candidate a. Furthermore, let us suppose that
the ith vote is d > b > ¢ > a. Let us as our example seek to complete the least costly
way to promote a (i.e., the minimum number of exchanges) in the first i votes in such
a way (if any exists using pushes among just those votes) as to decrease the deficit of a
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Table 5.1. Profile and table example for computing the Dodgson score

(b) The dynamic-programming table, T', for computing the Dodgson score of

(a) A profile. candidate a.

1 2 3 0, 0) ©, 1) ©0,2) (1,0) 1,1 (1,2)
d d c 0 0 o0 00 00 o0 00
b a d
c b a 1 0 3 00 1 3 00
a c b

2 0 1 4 1 2 4

3 0 1 2 1 2 3

Note: The table at the right is used to compute the Dodgson score of candidate a in the profile at the left. In both
the profile here and in Table 5.2, our tabular vote displays are arranged “top down,” for example, the leftmost
column of this profile indicates that the vote of the first voter is d > b > ¢ > a. The “1 2 3” on the top row
of profiles, both here and in Table 5.2, indicates the voters, for example, the column headed by a “3” is about
voter 3. In the profile given in part (a), the deficits of a with respect to the candidates b, ¢, and d are 0, 1, and
2. So P = {c, d} and each column label refers to a’s deficits against ¢ and d. The Dodgson score is the value,
3, that is computed for the entry 7'(3, (1, 2)), and it is achieved by pushing a one position upward in the second
vote and two positions upward in the third vote.

with respect to candidates ¢ and d by one and two, respectively. This can be computed
by considering several different alternatives. One possibility is to use the least costly
way to decrease the deficit of a with respect to d in the firsti — 1 votes by one and then
push a three positions upward in the ith vote to cut by an additional one the deficits
with respect to each of ¢ and d. Another possibility is to use the least costly way to
decrease the deficit of a with respect to d by two in the firsti — 1 votes and push a one
position upward in the ith vote, to shrink by one its deficit with respect to c. A third
possibility is to just use the least costly way to decrease the deficits by 1 and 2 in the
firsti — 1 votes and leave the ith vote unaltered. The entry of the table corresponding to
the ith row and the column corresponding to the deficit decrease vector (1, 2) will store
the best among all the possibilities, including those mentioned above. This example
shows how an entry in row i can be relatively easily computed if we already have in
hand all the entries of row i — 1.

We are now ready to formally present the computation of entry 7'(i, d) based on the
entries inrow i — 1. We use L{ (d) for the set of all vectors of decreases of deficits such
that if those decreases are satisfied over the first i — 1 votes of R then that will ensure
that the decreases specified in d are satisfied over the first i voters of R when candidate
a is pushed j positions upward in the ith vote. We use i’ to denote the number of
candidates that voter i prefers to a. Then T (i, d) will be assigned the value stated by
the right-hand side below:

T(i,dy= min min {T(G —1,d)+ j}.
0<j<h! areLl (@)
A completed table for an example with three votes and four candidates is provided as
Table 5.1.

Using the approach sketched above and additional technical arguments, Betzler et al.
(2010) prove that testing whether the Dodgson score of a given candidate is at most k
is fixed-parameter tractable with respect to the parameter k.

It is important to mention that negative statements are also known. For example,
the Dodgson score problem is not fixed-parameter tractable with respect to param-
eter n (the number of votes) unless a complexity-theoretic statement known as the
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exponential-time hypothesis is false. This follows from the fact that the problem is
WT[1]-hard (Fellows et al., 2010); W[1]-hardness is a central hardness notion in param-
eterized complexity. Young elections are also intractable with respect to the score
parameter, k. In particular, Betzler et al. (2010) prove that the StrongYoung score
problem is complete for the parameterized complexity class W[2].

5.6 Approximation Algorithms

We now focus specifically on Dodgson elections. Since Dodgson scores are hard
to compute exactly in general, an alternative approach is to view the Dodgson score
computation as a combinatorial optimization problem and exploit the rich and beautiful
theory of approximation algorithms (e.g., see Vazirani, 2001) in order to approximate
the Dodgson score. Briefly, the challenge is to obtain efficient (i.e., polynomial-time)
algorithms that return scores that are provably close to the Dodgson score. Furthermore,
such an approximation algorithm can be used as an alternative voting rule to Dodgson’s
rule under some circumstances. We discuss these issues below.

We consider algorithms that receive as input a candidate p from an m-candidate set
A and an n-voter election profile R over A, and return a score for p. We denote the
score returned by an algorithm ¥ when applied on such an input by scy(p, R). Also,
scp(p, R) will denote the Dodgson score. An algorithm Y is said to be a Dodgson
approximation if scy(x, R) > scp(x, R) for every candidate x € A and every profile
R. Also, Y is said to have an approximation ratioof p > lifscy(x, R) < p - scp(x, R),
for every candidate x and every profile R over A.

Letus give a trivial example. Again, denote by deficit(x, y, R) the deficit of candidate
x with respect to candidate y in profile R, that is, the minimum number of voters
who have to change their preference so that x beats y in their pairwise election.
Consider the algorithm Y that, given a candidate x and a preference profile R, returns
ascore of scy(x, R)=(m — 1) - Z},eAf{x} deficit(x, y, R). It is easy to show that this
algorithm is a Dodgson approximation and, furthermore, has approximation ratio at
most m — 1. In particular, it is possible to make x beat y in a pairwise election by
pushing x to the top of the preferences of deficit(x, y, R) voters, and clearly this
requires at most (m — 1) - deficit(x, y, R) sequential exchanges of adjacent candidates.
By summing over all y € A — {x}, we obtain an upper bound of scy(x, R) on the
Dodgson score of x. On the other hand, given x € A, forevery y € A — {x} we require
deficit(x, y, R) sequential adjacent-exchanges that push x above y in the preferences
of some voter in order for x to beat y in a pairwise election. Moreover, these sequential
adjacent-exchanges do not decrease the deficit with respect to any other candidate.
Therefore, Z},E A—qy) deficit(x, y, R) < scp(x, R), and by multiplying by m — 1 we
get that scy(x, R) < (m — 1) - scp(x, R).

5.6.1 Achieving Logarithmic Approximation Ratios

In this section we present two Dodgson approximations with approximation ratios
logarithmic in the number of candidates. One is a combinatorial, greedy algorithm and
the other is an algorithm based on linear programming.
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Table 5.2. An example of the execution of Section 5.6.1’s greedy algorithm
(to compute the score of candidate p) on an election with 3 votes and 11

candidates

(a) Initial profile. (b) After step 1. (c) After step 2. (d) After step 3.
1 2 3 1 2 3 1 2 3 1 2 3
b b c b b c b 4 c b p c

We present the greedy algorithm first. This is a far more numerically driven greedy
algorithm than the ones mentioned in Section 5.4. Given a profile R and a special
candidate p € A, those candidates a € A — {p} with deficit(p, a, R) > 0 are said to
be alive. Candidates that are not alive, that is, those with deficit(p, a, R) = 0, are said
to be dead. In each step, the algorithm selects an optimally cost-effective push (i.e., a
least cost-ineffective push) of candidate p in the preference of some voter. The cost-
ineffectiveness of pushing p in the preference of a voter i is defined as the ratio between
the total number of positions p is moved upward in the preference of i compared with
the original profile R, and the number of currently live candidates relative to which
p gains as a result of this push. Note that the optimally cost-effective push (i.e., the
push with the lowest cost-ineffectiveness) at each step may not be unique; in this case,
tie-breaking has to be used in order to select one of the optimally cost-effective pushes.

After selecting an optimally cost-effective push, the algorithm decreases the deficit
of p by one for each live candidate a relative to which p gains by that push. Candidates
with respect to whom p has zero deficit become dead. The algorithm terminates when
no live candidates remain; its output is the total number of positions that candidate p
is pushed upward in the preferences of all voters.

An example of the execution of the algorithm is depicted in Table 5.2. In
the initial profile R of this example, candidate p has deficits deficit(p, b, R) = 2,
deficit(p, ¢, R) = 1, and deficit(p, d;, R) = 0 for 1 < i < 8. So candidates b and ¢
are alive and candidates di, ..., ds are dead. At the first step of the algorithm, there
are several different ways of pushing candidate p upward in order to gain relative to
one or both of the live candidates » and c. Among them, the one with the smallest
cost-ineffectiveness is to push p upward in the first vote. In this way, p moves two
positions upward and gains relative to the live candidate ¢ for a cost-ineffectiveness of
2. Any other push of p in the initial profile has cost-ineffectiveness at least 2.5 since
p has to be pushed at least three positions upward in order to gain relative to one live
candidate and at least five positions upward in order to gain relative to both b and c.
After step 1, candidate c is dead. Then, in step 2, there are three ways to push candidate
p upward so that it gains relative to the live candidate b: either pushing it to the top of
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the first vote (this has cost-ineffectiveness 5 because p would have moved five posi-
tions in total compared to the initial first vote), or pushing it to the top of the second
vote (with cost-ineffectiveness 3), or pushing it four positions upward in the third vote
(with cost-ineffectiveness 4). The algorithm picks the second option. Then, in step 3,
the algorithm can either push candidate p to the top of the first vote or push it four
positions upward in the third vote. The former has a cost-ineffectiveness of 5 (recall
that cost-ineffectiveness is defined using the total number of positions p would move
compared to its position at the initial profile), while the latter has a cost-ineffectiveness
of 4 and is the push the algorithm picks. After step 3, all candidates are dead and the
algorithm terminates by returning the total number of positions p is pushed upward,
that is, 9.

Since the algorithm terminates when all candidates in A — {p} are dead, it is clear
that p becomes a Condorcet winner. The analysis of this greedy algorithm uses a linear
programming relaxation of the Dodgson score. Given the profile R with a set of voters
N and a set of m candidates A, denote by r' the rank of candidate p in the preference of
voter i. For every voteri € N, denote by S I the subcollection that consists of the sets S,i
fork =1,...,r" — 1, where the set S; contains the live candidates that appear in posi-
tions 7' — k to r’ — 1 in the preference of voter i. We denote by S the (multiset) union
of the subcollections S’ for i € N. The problem of computing the Dodgson score of
candidate p on profile R is equivalent to selecting sets from S of minimum total size so
that at most one set is selected among the ones in S’ for each voter i and each candidate
a € A — {p} appears in at least deficit(p, a, R) selected sets. This can be expressed by
an integer linear program using a binary variable x(S) to denote whether the set S € S
has been selected. We present the relaxation of this LP below, where the integrality
constraint for the variables has been relaxed to fractional values between 0 and 1:

r'—1
Minimize » > k- x(S})

ieN k=1
subjectto Ya € A—{p}, Y Y x(S)> deficit(p, a, R)
ieN SeSi:aes
VieN, > x(5<1

Sesi
VS esS, 0<x(S) <.

Clearly, the Dodgson score of candidate p is an upper bound on the optimal objective
value of this LP.

The analysis uses a technique that is known as dual fitting and is similar to the
analysis of a greedy algorithm for the related constrained set multicover problem; see
Rajagopalan and Vazirani (1999) and Vazirani (2001, pp. 112-116). The idea is to
use the decisions taken by the algorithm and construct a feasible solution for the dual
(maximization) LP that has value at most the score returned by the algorithm divided
by H,,—1, where H, = 1 + % 4+ 4 % denotes the kth harmonic number. By a simple
duality argument, this implies that the score returned by the algorithm is at most H,,_
times the optimal objective value of the above LP and, consequently, at most H,,_
times the Dodgson score of p.
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This suggests a different algorithm, in particular, an LP-based algorithm for approx-
imating the Dodgson score of a candidate p without explicitly providing a way of
pushing p upward in the preferences of some voters in a way making p become the
Condorcet winner. This algorithm just uses the LP relaxation above, computes its opti-
mal objective value, and returns this value multiplied by H,,_ as a score for candidate
p- Then the approximation ratio of H,,_; is obvious. The algorithm is also a Dodgson
approximation, since the score returned by this section’s greedy algorithm (which is
an upper bound for the Dodgson score of p) is not higher than the score returned by
the LP-based algorithm. The following statement summarizes our discussion.

Theorem 5.6 (Caragiannis et al., 2012b). This section’s greedy algorithm and LP-
based algorithm are Dodgson approximations, each with approximation ratio H,,_,.

5.6.2 Approximation Algorithms as Alternative Voting Rules?

A Dodgson approximation naturally induces a voting rule by electing the candidate(s)
with minimum score. Arguably, such a voting rule maintains some echo of the basic
philosophy behind Dodgson’s election system—more strongly so if it is a very good
approximation. But can it really be used as a voting rule? Trying to support a yes answer
to this question requires us to discuss an issue that we have not yet touched on. One
can argue that for a voting rule to be attractive, it should not only be easy to compute,
but also, ideally, should have certain properties that are considered desirable from a
social-choice point of view. Several such properties are not satisfied by Dodgson’s
rule, and this is the main reason why the rule has been criticized in the social-choice
literature, see, for example, Brandt (2009a) and the references therein.

We will see that Dodgson approximations, in return for their core disadvantage of
merely being an approximation to Dodgson’s rule, can satisfy desirable social-choice
properties, even while also providing polynomial-time algorithms. Before going on
to the three social-choice properties we will discuss, it is important to make clear
just how greatly Dodgson approximations can distort Dodgson’s rule, especially since
we commented above that Dodgson approximations in some way echo the flavor and
philosophy of Dodgson. The best Dodgson approximation we consider in this section
has an approximation ratio of 2. Consider a three-candidate election for which the
actual Dodgson scores of the candidates are 10, 11, and 12. A Dodgson approximation
having ratio 2 could give for these candidates, respectively, scores of 18, 16, and 14.
That is, the ordering of even an excellent Dodgson approximation can be a complete
inversion of the actual Dodgson ordering, and the worst Dodgson loser can be named
the unique winner. Clearly, the fact that even a 1.000001 approximation-ratio algorithm
can completely invert the entire ranking of the candidates is a troubling (but not far
from unavoidable—see the discussion at the end of Section 5.6.3) feature of using
approximations as voting rules.

In the following, when we say that a Dodgson approximation satisfies a social-choice
property we are referring to the voting rule induced by the algorithm. As a warm up,
observe that the voting rule induced by any Dodgson approximation (regardless of its
approximation ratio) is Condorcet-consistent, basically because anything times zero
is zero. So every Dodgson approximation, regardless of how bad its ratio is, must
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assign score of 0 to any Condorcet winner. But since Dodgson approximations never
underestimate scores, any candidate who is not a Condorcet winner will be assigned a
score of at least 1. So any Condorcet winner will be the one and only winner under any
Dodgson approximation. (Thank goodness Dodgson did not add a one in the definition
of his scores. That would destroy the above claim, which is deeply dependent on the
special nature of zero.) Of course, Dodgson’s system itself also is Condorcet-consistent.

We will now move on to discuss two other socially desirable properties: monotonicity
and homogeneity. We will see that these properties can be achieved by good Dodgson
approximations that run in polynomial time.

A voting rule is said to be monotonic if a winning candidate always remains winning
after it is pushed upward in the preferences of some of the voters. Dodgson’s rule is
known to be monotonic when there are at most three candidates and to be nonmonotonic
for each number of candidates greater than or equal to four (Fishburn, 1982, p. 132).
The intuition for the latter is that if a voter ranks x directly above y and y above z,
exchanging x and y may not help y if it already beats x, but may help z defeat x. The
two approximation algorithms presented in Section 5.6.1 are also nonmonotonic.

In contrast, the Dodgson approximation that returns (m—1)-3 .
deficit(x, y, R) as the score of candidate x is monotonic as a voting rule. Indeed,
consider a preference profile R and a winning candidate x. Pushing x upward in
the preferences of some of the voters can neither increase its score (since its deficit
with respect to each other candidate does not increase) nor decrease the score of any
other candidate y € A — {x} (since the deficit of y with respect to each candidate in
A — {x, y} remains unchanged and its deficit with respect to x does not decrease). So
we already have a monotonic Dodgson approximation with approximation ratiom — 1.
In the following we present much stronger results.

A natural “monotonization” of Dodgson’s voting rule yields a monotonic Dodg-
son approximation with approximation ratio of 2. The main idea is to define the
winning set of candidates for a given profile first and then assign the same score to
the candidates in the winning set and a higher score to the nonwinning candidates.
Roughly speaking, the winning set is defined so that it contains the Dodgson win-
ners for the given profile as well as the Dodgson winners of other profiles that are
necessary so that monotonicity is satisfied. More formally put, we say that an n-vote
election profile R’ is a y-improvement of profile R for some candidate y € A if R’ is
obtained by starting from R and pushing y upward in the preferences of zero or more
voters.

Monotonization proceeds as follows. Let M denote the new voting rule we are
constructing. Denote by W (R) the set of winners of M (or the winning set) for profile R;
we will soon specify which candidates belong to W(R). Let A = max ewr) scp(y, R).
The voting rule M assigns a score of scy(y, R) = A to each candidate y € W(R) and
a score of

scy (v, R) = max{A + 1, scp(y, R)}

to each candidate y ¢ W(R). All that remains is to define the winning set W(R). This
is done as follows: For each profile R* and each Dodgson winner y* of R*, include y*
in the winning set W(R’) of each profile R’ that is a y*-improvement of R*.
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Theorem 5.7 (Caragiannis et al., 2014b). M is a monotonic Dodgson approximation
with an approximation ratio of 2.

That M is monotonic and is a Dodgson approximation follow immediately from
the definitions of the winning set W(R) and the scores returned by M. The proof of
the approximation ratio bound is based on the following technical property: Pushing a
candidate y upward does not increase his or her Dodgson score and does not decrease
the Dodgson score of any other candidate by a factor larger than 2. The upper bound
provided by Theorem 5.7 is the best possible: No monotonic Dodgson approximation
can have an approximation ratio smaller than 2. This negative statement does not use any
complexity-theoretic assumptions and actually holds for exponential-time algorithms
as well. Actually, monotonization (in the rather naive approach described above) yields
an exponential-time algorithm.

So from the computational point of view, the above algorithm is not at all satisfactory.
Fortunately, a polynomial-time implementation of monotonization is possible, although
it involves an unavoidable (see Section 5.6.3) logarithmic loss in the approximation
ratio. There are two main obstacles that one has to overcome in order to implement
monotonization in polynomial time. First, as discussed in Section 5.3, computing
the Dodgson score and deciding whether a given candidate is a Dodgson winner
are computationally hard problems. This obstacle can be overcome using the score
returned by the polynomial-time LP-based Dodgson approximation that we presented
in Section 5.6.1 instead of using the Dodgson score itself. Even in this case, given
a profile R, we still need to be able to detect when a candidate y is the winner
according to the LP-based voting rule in some profile R’ of which the current one is
a y-improvement; if this is the case, y has to be included in the winning set W(R)
of profile R. This means that exponentially many profiles may have to be checked in
order to determine the winning set of the current profile. This obstacle is overcome
by Caragiannis et al. (2014b) using the notion of pessimistic estimators. These are
quantities defined in terms of the current profile only and are used to identify the
winning set in polynomial time. The next statement follows using these two high-level
ideas and additional technical arguments.

Theorem 5.8 (Caragiannis et al., 2014b). There exists a monotonic polynomial-time
Dodgson approximation with an approximation ratio of 2H,,_.

Let us now turn to homogeneity. A voting rule is said to be homogeneous if, for
every integer k > 2, its outcome does not change when replacing each vote in the
preference profile with k identical copies of the vote. Fishburn (1977) observed that
Dodgson’s rule is not homogeneous. The intuition behind this is that if candidates x
and y are tied in a pairwise election the deficit of x with respect to y does not increase
by duplicating the profile, but if x strictly loses to y in a pairwise election then the
deficit scales with the number of copies.

Tideman (2006, pp. 199-201) presents the following simplified version of Dodgson’s
rule and proves that it is both homogeneous and monotonic. A Condorcet winner—if
one exists—in an election profile R is the sole winner according to Tideman’s rule.
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Otherwise, the rule assigns a score of

serg(r, R)= Y max{0,n—Q2-[{i € N:x = y}|)}
yeA—{x}

to each candidate x, and the candidate(s) with the minimum score win. In the above
equation, the notation x >; y indicates that voter i prefers candidate x to candidate y.
Unfortunately, this score definition does not provide a Dodgson approximation. For
example, a candidate who is tied with some candidates and beats the rest has a score
of 0, yet 0 is lower than its Dodgson score. However, we in fact can give a different
scoring framework, Td', that is a Dodgson approximation and that will elect exactly
the same winners as does Tideman’s simplified variant of Dodgson’s rule (and thus
will be monotonic and homogeneous). Td' is defined as follows. If a candidate x is a
Condorcet winner, then it has score scrg(x, R) = 0. Otherwise, Td “scales” the score
of x as follows:

scrg (X, R) = m - scrq(x, R) +m(1 + logm).
Clearly, sctg(x, R) can be computed in time polynomial in # and m.

Theorem 5.9 (Caragiannis et al., 2014b). Td’ is a monotonic, homogeneous,
polynomial-time Dodgson approximation with an approximation ratio of O(m log m).

This approximation ratio is the best possible; a matching Q2(m log m) lower bound
holds for any algorithm that is homogeneous (Caragiannis et al., 2014b).

5.6.3 Hardness of Approximation

The best polynomial-time Dodgson approximations presented in Section 5.6.1
achieve—keeping in mind that H,, = Inn + ®(1)—asymptotic approximation ratios
of O(logm). Under standard assumptions about NP, all polynomial-time Dodgson
approximations have approximation ratios that are Q2(logm), so the above-mentioned
approximations from the previous section have ratios that are optimal within a constant,
and in fact that constant can be kept down to 2. This claim is implicit in McCabe-Dansted
(2006). Later, Caragiannis et al. (2012b) explicitly obtained and stated the following
result, using a reduction from minimum set cover and well-known inapproximability
thresholds of Feige (1998) and Raz and Safra (1997).

Theorem 5.10 (Caragiannis et al., 2012b). There exists a constant B > 0 such that
it is NP-hard to approximate the Dodgson score of a given candidate in an election
with m candidates to within a factor of Blnm. Furthermore, for any € > 0, there
is no polynomial-time (% - e) In m-approximation for the Dodgson score of a given
candidate unless all problems in NP have algorithms running in time k©1°¢1°20 ywhere

k is the input size.

One might wonder why our particular notion of approximation has been used.
For example, a natural alternative approach would be to approximate some notion
of Dodgson ranking. Unfortunately, the following statement shows that this is an
impossible goal: Efficient approximation algorithms for Dodgson ranking are unlikely
to exist. For the purpose of the theorem below, a Dodgson ranking of an election
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instance is an ordering of the candidates such that if i < j then the ith candidate in the
ordering has Dodgson score no greater than the jth candidate in the ordering.

Theorem 5.11 (Caragiannis et al., 2012b). Given a profile with m candidates and a
special candidate p, it is NP-hard to decide whether p is a Dodgson winner or has
rank at least m — 6./m in any Dodgson ranking.

5.7 Bibliography and Further Reading

Dodgson’s election system first appeared in Dodgson’s 1876 pamphlet (Dodgson,
1876). The computational complexity of the winner problem for Dodgson’s system
was shown NP-hard in the seminal paper of Bartholdi et al. (1989b), and was shown
©5-complete by Hemaspaandra et al. (1997a), see also Brandt et al. (2010b, p. 54).
Young’s election system was defined by him in 1977 (Young, 1977), and the complexity
of StrongYoung was pinpointed as being ®5-complete by Rothe et al. (2003). See
Brandt (20092) and the references therein for perspectives on why Dodgson proposed
his system and discussions of Dodgson’s system in terms of not satisfying certain
properties.

A number of other papers discuss the complexity of Dodgson and Young elections
or variants of those elections (Hemaspaandra et al., 2009; Brandt et al., 2010a, 2010b,
2015b). Readers interested in the complexity of these election systems may be interested
in the work showing that Kemeny’s election system (Kemeny, 1959; Kemeny and Snell,
1960)—see also Chapter 4—has a ®}-complete winner problem (Hemaspaandra
et al., 2005) and a ®%-complete unique winner problem (Hemaspaandra et al., 2009).
Complexity has also been broadly used as a tool with which to block attacks on
elections, such as manipulation (Bartholdi et al., 1989a), bribery (Faliszewski et al.,
2009b), and control (Bartholdi et al., 1992); see Chapters 6 and 7, and see also the
surveys by Faliszewski et al. (2009d, 2010).

@5, in its “logarithmic number of sequential queries to NP” definition, was first
studied in the early 1980s, by Papadimitriou and Zachos (1983). Hemachandra (1989)
showed that that definition yields the same class of sets as the unbounded-parallel
definition. ®%-completeness can also apply to a range of problems quite different
from the election problems discussed in this chapter. For example, determining when
greedy algorithms well-approximate maximum independent sets is known to be ©-
complete (Hemaspaandra and Rothe, 1998). The most important tool for proving ©-
completeness is Lemma 5.3, due to Wagner (1987). Readers more generally interested
in complexity will find an excellent, accessible introduction in the textbook of Bovet
and Crescenzi (1993), and a more advanced and technique-based tour is provided by
Hemaspaandra and Ogihara (2002).

The material presented in our heuristics section (Section 5.4) is based on the work
of Homan and Hemaspaandra (2009) about using greedy heuristics for Dodgson elec-
tions. The independent work of McCabe-Dansted et al. (2008) studies the use of
greedy heuristics for WeakDodgson elections. The two papers are based on the same
central insight and obtain related results. However, there are some nontrivial differ-
ences between the two papers and their claims; these differences are discussed in detail
in Section 1 of Homan and Hemaspaandra (2009).
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Readers interested in the theory of parameterized computational complexity can
find a systematic treatment in textbooks such as the ones by Downey and Fellows
(1999) and Niedermeier (2006). Betzler et al. (2012) survey the progress in that field in
relation to voting and cover both winner determination and other problems, for several
voting rules.

The first approximation algorithms for voting rules (e.g., Kemeny) are implicit in
the papers of Ailon et al. (2005), Coppersmith et al. (2006), and Kenyon-Mathieu and
Schudy (2007). The material presented in Section 5.6 is from Caragiannis et al. (2012b,
2014b). Several interesting results have not been covered. For example, as an alterna-
tive to Tideman’s simplified Dodgson rule, the maximin voting rule yields a Dodgson
approximation with approximation ratio m? (Faliszewski et al., 2011b). Caragiannis
et al. (2014b) discuss additional social-choice properties that are more difficult than
monotonicity to achieve by good Dodgson approximations. Finally, observe that Sec-
tion 5.6 does not contain any results related to Young’s rule. Unfortunately, such good
(polynomial-time) approximations are unlikely to exist. For example, unless P = NP,
the StrongYoung score is not approximable within any factor by polynomial-time
algorithms (Caragiannis et al., 2012b).
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CHAPTER 6

Barriers to Manipulation
in Voting

Vincent Conitzer and Toby Walsh

6.1 Introduction

In many situations, voters may vote strategically. That is, they may declare preferences
that are not their true ones, with the aim of obtaining a better outcome for themselves.
The following example illustrates this.

Example 6.1. Consider an election with three alternatives, a, b, and ¢, and three voters,
1, 2, and 3. Suppose the rule used is plurality—an alternative gets a point each time
it is ranked first by a voter, and the alternative with the most points wins—with ties
broken toward alternatives earlier in the alphabet. Suppose voter 3 knows (or strongly
suspects) that voter 1 will rank a first in her vote, and that voter 2 will rank b first.
Voter 3’s true preferences are ¢ > b > a. If she votes truthfully, this will result in a
three-way tie, broken in favor of a which is 3’s least preferred alternative. If, instead,
voter 3 ranks b first, then b will win instead. Hence, voter 3 has an incentive to cast a
vote that does not reflect her true preferences.

This is often referred to as manipulation or strategic voting; we will use “manip-
ulation” throughout.! Voting rules that are never manipulable are also referred to as
strategyproof. We start by reviewing the Gibbard-Satterthwaite impossibility result
(discussed also in Chapter 2), which states that with unrestricted preferences over three
or more alternatives, only very unnatural rules are strategyproof. The main focus of the
chapter is on exploring whether computational complexity can be an effective barrier
to manipulation. That is, we may not be concerned about manipulation of a voting rule
if it is computationally hard to discover how to manipulate it.

I Of course, one may disagree, at least in some circumstances, that strategic voting is really “manipulative” in
the common sense of the word. We simply use “manipulation” as a technical term equivalent to strategically
reporting one’s preferences incorrectly. Nevertheless, we will give some reasons why it can be undesirable in
what follows.

127
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6.2 Gibbard-Satterthwaite and Its Implications

An important axiomatic result about the properties of voting rules is the Gibbard-
Satterthwaite Theorem:

Theorem 6.2 (Gibbard, 1973; Satterthwaite, 1975). Consider a (resolute)’ voting
rule that is defined for some number m of alternatives with m > 3, with no restrictions
on the preference domain. Then, this rule must be at least one of the following:

1. dictatorial: there exists a single fixed voter whose most-preferred alternative is chosen
for every profile;

2. imposing: there is at least one alternative that does not win under any profile;

3. manipulable (i.e., not strategyproof).

Properties 1 and 2 are not acceptable in most voting settings. Hence, under the
conditions of the theorem, we are stuck with property 3: there will exist profiles such
that at least one of the voters has an incentive to misreport her preferences.

Before discussing how we might address this, we should first discuss why manipu-
lability is a significant problem. It may not seem so. For example, consider a plurality
election with three alternatives. If one of the candidates’ is considered to have a poor
chance of winning the election (consider, for example, a third party in the United
States), then everyone might vote for one of the other two candidates, in order to avoid
wasting their votes. Is this a significant problem? Will it not simply result in the same
winner that plurality-with-runoff (or STV)* would have chosen (if everyone had voted
truthfully), and is that so bad? Additionally, there are those who argue that democrats
should not be worried about manipulation (Dowding and Hees, 2008). There are,
however, several potential downsides to such manipulation, including the following.
(Formalizing all these downsides would go beyond the scope of this chapter, so we
present them informally; we hope the reader would be able to formalize these concepts
if needed.)

* Bad equilibria. In the above example, it is not at all clear that the resulting winner will
be the same as the true plurality-with-runoff winner. All that is required is that voters
expect the third alternative to have poor chances. It is possible that this alternative is
actually very much liked across the electorate, but nobody is aware of this. Even more
strikingly, it is possible that everyone is aware of this, and yet the alternative is expected
to perform poorly—for example, because nobody is aware that others are aware of the
alternative’s popularity. Hence, an alternative that is very much liked, and perhaps would
have won under just about any reasonable rule had everyone voted truthfully, may not
win.

2 Recall that a voting rule is resolute if it returns only a single alternative for every profile.

3 We use “alternatives” and “candidates” interchangeably.

4 Recall that under the plurality-with-runoff rule, the alternatives with the top two plurality scores proceed to
a runoff round, and the one that is preferred to the other by more voters wins. Under STV (also known as
Instant Runoff Voting), only the alternative with the lowest plurality score is eliminated in each round; it is then
removed from all the votes, so that votes that ranked it first now rank another alternative first. This procedure
is repeated until only one alternative—the winner—remains. (For an axiomatization of this rule, see Freeman
et al. (2014).)



6.3 NONCOMPUTATIONAL AVENUES 129

* Lack of information. Even if the bad equilibria described above are in fact avoided, we
cannot be sure that this is the case, because we will never know exactly how popular
that third alternative really was. This also interferes with the process of identifying more
desirable alternatives in the next election.

* Disenfranchisement of unsophisticated voters. Voters who are less well informed may
end up casting less effective votes than those who are well informed (for example,
votes for the third alternative). Knowledge is power—but in many elections, this is not
considered desirable.

* Wasted effort. Even if all agents manipulate to the same extent, still much effort, whether
of the computational, information gathering, or communicational variety, is expended
in figuring out how to manipulate well, and presumably this effort could have been more
productively spent elsewhere. This can be seen as a type of tragedy of the commons;
everyone would be better off if nobody spent effort on manipulation, but individually
voters are still better off manipulating.

In the theory of mechanism design—which applies not only to the design of voting
rules but also to that of auctions, matching mechanisms, and any other setting where
a decision must be made based on the preferences of multiple strategic agents—there
is generally a focus on designing mechanisms in which agents have no incentive
to misreport their preferences. This is justified by a result known as the revelation
principle. Stating it formally here would take us too far afield, but roughly speaking,
it says that for any mechanism that results in a good equilibrium (in a game-theoretic
sense), there exists another mechanism that results in the same outcomes, but in which
agents report their preferences directly and they have no incentive to misreport them.’
That is, at some level, we should be able to get incentives to report truthfully (i.e.,
use a truthful mechanism) for free. The revelation principle has been criticized on the
basis that it implicitly assumes agents to be computationally unbounded, and indeed it
has been shown that in some cases there exist mechanisms (that are not truthful) that
will perform at least as well as any truthful mechanism, and strictly better if agents are
unable to compute their strategically optimal actions (Conitzer and Sandholm, 2004).

Taken together, there seem to be several arguments for attempting to erect barriers to
manipulation. However, the Gibbard-Satterthwaite Theorem poses a fundamental limit
to such barriers. How can we get around it? We will first discuss some avenues that
are not computational in nature. Then, we devote most of the chapter to computational
avenues.

6.3 Noncomputational Avenues around Gibbard-Satterthwaite

One way of sidestepping the Gibbard-Satterthwaite Theorem is to restrict the domain
of preferences. Probably the best-known such restriction is that of single-peaked

5 Tt should be noted that the notion of not having any incentive to misreport here is weaker than strategyproofness.
Rather, it is Bayes-Nash equilibrium, which means that an agent is best off telling the truth in expectation over
a prior distribution over the other agents’ preferences—but the agent might be better off misreporting for a
particular realization of the reports. There is a version of the revelation principle that results in a strategyproof
mechanism, but this requires the original mechanism to have dominant strategies for all agents.
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preferences. Here, the assumption is that there exists an ordering < of the alternatives—
for example, political candidates may be ordered on the left-to-right political spectrum,
or the alternatives may be tax rates, locations along a single road, and so on. More-
over, the following assumption is made: if voter i’s most-preferred alternative is a,
anda <b <corc<b<a,then b >; ¢ (i prefers b to c). In this case (assuming,
for simplicity, an odd number of voters) consider the median voter rule: order the vot-
ers by their most-preferred alternatives, and choose the median voter’s most-preferred
alternative. (Note that this rule does not require voters to specify preferences beyond
their top choice.) This rule is strategyproof and always elects a Condorcet winner®. Of
course, the usefulness of this result is limited by the fact that we cannot simply make
the voters’ preferences single-peaked when they are not. We could declare any vote that
is not single-peaked invalid, but this just comes down to forcing voters to manipulate.
For more discussion of single-peaked preferences, see Chapter 2.

Another possible avenue is to use randomized rules, which map every profile of
votes to a probability distribution over the alternatives. For example, if we break the
ties of a voting rule randomly, then we have a randomized voting rule. However, there
are many other ways to obtain a randomized voting rule. The Gibbard-Satterthwaite
Theorem above applies to deterministic rules only, so one might hope that randomized
rules are not subject to such an impossibility. Unfortunately, as it turns out, there is
a subsequent result by Gibbard that generalizes the Gibbard-Satterthwaite Theorem
to randomized rules. To present this result, we first need to define strategyproofness
in the context of randomized rules, and for that, we need to define preferences over
lotteries over alternatives. For example, if a voter’s preferences are a > b > ¢, should
the voter prefer b, or a 50-50 lottery over a and c¢? Both could be reasonable. For
example, if the voter has utilities 3, 2, and O for the alternatives respectively, b would
give higher expected utility (2 > 1.5), but if the voter has utilities 3, 1, and 0, then the
50-50 lottery over a and c¢ gives higher utility (1.5 > 1). Therefore, in this context,
a quite conservative definition of strategyproofness is often used: a randomized rule
is strategyproof if and only if for every utility function over the alternatives that is
consistent with the voter’s preferences over the (pure) alternatives, the voter maximizes
her utility by reporting these true preferences (regardless of how the others vote).” We
can now present Gibbard’s result:

Theorem 6.3 (Gibbard, 1977). If there are no restrictions on the preference domain,
any strategyproof randomized rule is a randomization over a collection of the following
types of rules:

* unilateral rules, under which at most one voter’s vote affects the outcome;
¢ duple rules, under which there are at most two alternatives that have a possibility of
winning (i.e., that win under some profile).

The result makes it clear that randomization is not the answer to all our problems. A
coin flip results in the discarding of all but one of the votes, or in the discarding of all

6 Recall that an alternative a is a Condorcet winner if it wins all its pairwise contests. That is, for every other
alternative b, more voters prefer a to b than vice versa.

7 For studies of other ways of extending strategyproofness to randomized voting rules, see Aziz et al. (2013d)
and Aziz et al. (2014c¢).
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but two of the alternatives. In many situations, these rules will not be acceptable. Still,
the result allows for some randomized rules that are perhaps not entirely unreasonable.
For example, we can randomly choose a dictator (the theorem implies that, with
three or more alternatives, this is in fact the only way to guarantee a Pareto-optimal
outcome), or randomly choose two alternatives and have a majority election between
them. Barbera (1979) gives some characterizations of randomized strategyproof rules
as well; these are consistent with Gibbard’s result above, but seem to cast the rules
in a more positive light. More recently, Procaccia (2010) studied the extent to which
strategyproof randomized rules can achieve formal approximations to the scores from
common voting rules.

A final possible avenue is to use irresolute rules, which return a set of alternatives
(possibly larger than one) and leave it at that. Can such a rule be strategyproof (and
simultaneously reasonable)? To make sense of this question, we first need to say
something about what an agent’s preferences over sets of alternatives can be. Building
on earlier results, Brandt (2011b) and Brandt and Brill (2011) have recently provided
results that show that various irresolute rules are in fact strategyproof with respect to
various extensions of preferences to sets of alternatives.® While these positive results
are encouraging, they do face a major limitation. In many voting settings, in the end, we
require a single winning alternative. If we add any procedure for going from the winning
set of alternatives to a single one—for example, choosing the lexicographically first
alternative in the set—then the combination of the irresolute rule and the subsequent
procedure is a resolute rule, and we run right back into the Gibbard-Satterthwaite
impossibility result. Similarly, if we randomly choose from the winning set, we run
into the impossibility results for randomized rules. Thus, for these positive results to
apply, the procedure for going from the selected set of alternatives to a single alternative
fundamentally needs to remain unspecified, and moreover the voters need to respond
to this lack of information in a particular way. For more detail, see Chapter 3.

6.4 Computational Hardness as a Barrier to Manipulation

Another potential barrier to manipulation is computational hardness. Even if we cannot
prevent a voting rule from being manipulable in principle, this may not be a significant
concern as long as determining how to manipulate it is computationally prohibitive.

The argument that the complexity of computing a manipulation might be a barrier to
strategic voting was first put forward in an influential paper by Bartholdi et al. (1989a).
A whole subfield of social choice has since grown from this proposal, studying the
computational complexity of manipulating different voting rules under several different
assumptions (e.g., Conitzer et al., 2007). For two recent surveys, see Faliszewski et al.
(2010) and Faliszewski and Procaccia (2010); Brandt et al. (2013a) also discuss the
topic at some length. In the remainder of this section, we discuss this line of work in
more detail.

8 Other extensions lead to negative results (Duggan and Schwartz, 2000). For more on strategyproofness and
other notions of monotonicity in this context, see Sanver and Zwicker (2012) and the references cited in that
work.
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6.4.1 The Basic Variant

The original paper (Bartholdi et al., 1989a) defined a basic model which has since been
investigated extensively. We suppose all but one voter, the manipulator, have voted and
that these votes and the rule to be used are known to the manipulator. We ask whether
it is possible for the manipulator to ensure that a given alternative wins. More formally,
we can define the following decision problem.

Manipulation Problem

Given. A profile of votes IT cast by everyone but the manipulator, and a preferred alternative a.
Question. Is there a vote that the manipulator can cast so that a wins?

This problem is typically in NP as a simple witness is a vote that ensures a wins.
Supposing that the voting rule is polynomial to execute,’ this witness can be checked
in polynomial time. There is also a destructive variant of this question, where we
ask if it is possible for the manipulator to cast a vote so that a given alternative does
not win. Note that these problems correspond exactly to the predicament of voter 3
in Example 6.1, with the exception that the question is now whether she can make
a particular alternative win. One may wonder if a more natural problem would be
to determine the best (according to her own true preferences) alternative that she can
make win. This problem is effectively equivalent; to answer it, it is sufficient to evaluate
for each of the alternatives in turn whether she can make it win (and, conversely, it
is necessary to at least evaluate whether she can make her most-preferred alternative
win).

Of course, when the rule is plurality, this problem is computationally trivial: to see if
you can make alternative a win, it suffices to see what would happen if you submitted
a vote that ranks a first. Indeed, for many rules, the problem is in P. Bartholdi et al.
(1989a) provided an algorithm that solves the problem in polynomial time for many
voting rules.

Definition 6.1. Say that a voting rule satisfies the BTT conditions if

1. it can be run in polynomial time,

2. for every profile IT and every alternative a, the rule assigns a score S(I1, a) to a,

3. for every profile I, the alternative with the maximum score wins,'"

4. the following monotonicity condition holds: for any IT, IT’, for any alternative a, if for
each voter i we have that {b : a >; b} C {b :a >} b}, then S(I1, a) < S(IT', a). (That
is, if we modify a vote in a way that does not rank anyone ahead of a that was previously
ranked behind a, then a’s score cannot have decreased.)

and

Theorem 6.4 (Bartholdi et al., 1989a). The manipulation problem can be solved in
polynomial time for any rule satisfying the BTT conditions.

The algorithm for constructing a manipulator vote that successfully makes alterna-

tive a win (if any such vote exists) is quite straightforward. Rank a first. For the next

9 See earlier chapters in the book for discussion of rules for which this is not the case.
10° Assume, say, a fixed tie-breaking order.
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position in the vote, find some remaining alternative b that can be ranked there so that
a still wins. (To check this, complete the rest of the vote arbitrarily, and calculate b’s
score; by the monotonicity condition above, a and b’s scores will not depend on how
the rest of the vote is completed. This is because if we change the relative ordering
of the remaining alternatives, this is a modification that satisfies the condition, and so
cannot decrease a or b’s score; it can also not increase these scores, because then the
reverse modification would decrease it.) If no such alternative can be found, declare
failure; if the vote is completed, declare success; otherwise, repeat for the next position.
This algorithm applies not only to positional scoring rules such as plurality and Borda,
but also to rules such as Copeland and maximin.''

Bartholdi et al. (1989a) were also the first to show that the problem is NP-hard for
some rules. Specifically, they showed NP-hardness for manipulating the second-order
Copeland rule, under which an alternative’s score is the sum of the Copeland scores of
the alternatives that it defeats. (Note that this way of scoring violates the third condition
above: if in some vote, we change the relative ordering of the alternatives ranked (say)
behind a only, this can affect those alternatives’ Copeland scores, and thereby a’s
second-order Copeland score.) They also showed NP-hardness of manipulation for the
(first-order) Copeland rule when ties are broken by the second-order Copeland rule; we
will say more about the importance of the tie-breaking procedure later in this chapter.
Shortly after, Bartholdi and Orlin (1991) proved that the better-known STV rule is
NP-hard to manipulate in this sense. The problem has been shown to be NP-hard for
several other rules more recently, including ranked pairs (Xia et al., 2009), and Nanson
and Baldwin’s rules (Narodytska et al., 2011). The ranked pairs rule orders the pairwise
outcomes by the size of the victory. It then constructs a total ordering over alternatives by
taking these pairs in order and fixing the order unless this contradicts previous decisions.
The top of the order constructed in this way is the overall winner. Nanson and Baldwin’s
rules are elimination versions of Borda voting. Nanson’s rule repeatedly eliminates all
alternatives with less than the average Borda score. Baldwin’s rule, on the other hand,
successively eliminates the alternative with the lowest Borda score. Table 6.1 gives a
representative sample of complexity results for this manipulation problem, as well as
for some related manipulation problems discussed in the next subsections.

6.4.2 Coalitions of Manipulators

So far, we have considered the computational complexity of just one voter trying to
manipulate the election. In practice, multiple voters may collude to manipulate the
result. Indeed, it is often the case that we need a coalition of manipulators to be able to
change the result.

! Recall that the Borda rule gives an alternative m — 1 points each time it is ranked first, m — 2 points each
time it is ranked second, . . ., and O points each time it is ranked last. More generally, a positional scoring rule
associates a score with each rank, and the alternative with the highest score wins. Under the Copeland rule, an
alternative a gets a point for each other alternative b such that more votes rank a ahead of b than vice versa
(and some fraction of a point if the number of votes ranking a ahead of b is the same as vice versa). Finally,
under the maximin rule, we find, for each alternative a, the alternative b that minimizes the number of votes
that rank a ahead of b (the worst pairwise outcome for a); this number is a’s score, and the alternative with the
maximum score wins.
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Table 6.1. Computational complexity of deciding the manipulation problem with a small
number of voters (unweighted votes) or a coalition of voters (weighted votes), for various
voting rules

unweighted votes weighted votes
constructive manipulation constructive destructive
# alternatives 2 3 4 =25 2 3 =>4
# manipulators 1 >2
plurality P P P P P P P P P
plurality with runoff P P P NP-c NP-c NP-c P NP-c NP-c
veto P P P NP-c NP-c NP-c P P P
cup P P P P P P P P P
Copeland P P P P NP-c NP-c P P P
Borda P NP-c P NP-c NP-c NP-c P P P
Nanson NP-c NP-c P P NP-c NP-c P P NP-c
Baldwin  NP-c NP-c P NP-c NP-c NP-c P NP-c NP-c
Black P NP-c P NP-c NP-c NP-c P P P
STV NP-c NP-c P NP-c NP-c NP-c P NP-c NP-c
maximin P NP-c P P NP-c  NP-c P P P
Bucklin P P P NP-c NP-c NP-c P P P
fallback P P P P P P P P P
ranked pairs NP-c NP-c P P P NP-c P P ?
Schulze P P P P P P P P P

Note: P means that the problem is polynomial, NP-c that the problem is NP-complete. For example, constructive
manipulation of the veto rule is polynomial for unweighted votes or for weighted votes with a coalition of 2
manipulators, but NP-hard for 3 or more manipulators. On the other hand, destructive manipulation of the veto
rule is polynomial for weighted votes with a coalition of 2 or more manipulators. We consider the variant of
Copeland where an alternative gets 1 point if it defeats an opponent, 0.5 points for a draw, and 0 if it loses.
“?” indicates that the computational complexity is open at the time of writing this chapter. For references, see:
Faliszewski et al. (2008) and Conitzer et al. (2007) for Copeland; Davies et al. (2011), Conitzer et al. (2007),
and Betzler et al. (2011) for Borda; Narodytska et al. (2011) and Davies et al. (2014) for Nanson and Baldwin;
Narodytska and Walsh (2013) for Black; Xia et al. (2009) for maximin; Xia et al. (2009) and Faliszewski et al.
(2014) for Bucklin; Faliszewski et al. (2014) for fallback; Xia et al. (2009) and Hemaspaandra et al. (2014c) for
ranked pairs; Parkes and Xia (2012) and Gaspers et al. (2013) for Schulze; and Conitzer et al. (2007) for other
results or references to them.

Coalitional Manipulation Problem

Given. A profile of votes IT cast by everyone but the manipulators, a number of manipulators, and
a preferred alternative a.
Question. Is there a way for the manipulators to cast their votes so that a wins?

Again, it can be debated if this should be called “manipulation” because the manip-
ulators might not have to vote strategically to ensure their preferred alternative wins.
However, as has become common in the literature, we will refer to this problem as
coalitional manipulation. Coordinating even a small coalition of voters introduces fresh
computational challenges. For example, with the Borda rule, a simple greedy procedure
will compute an optimal strategic vote for one voter, but it is NP-hard to compute how
two voters together can manipulate the result (Davies et al., 2011; Betzler et al., 2011).
Similar results hold for Copeland voting (the first rule for which it was shown that the
problem is easy with one manipulator but hard with two) (Faliszewski et al., 2008),
other scoring rules (Xia et al., 2010b), maximin (Xia et al., 2009), and Black’s rule
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(Narodytska and Walsh, 2013). Intriguingly, in all these cases, it requires only two
manipulators to make manipulation hard. Black’s rule is the voting rule that elects the
Condorcet winner if it exists, and otherwise the Borda winner.

One criticism that can be made about the complexity results considered so far is that
they require the number of alternatives to grow in an unbounded fashion. If the number
of alternatives is held constant, then a single manipulator would have only a constant
number (m!) of votes to consider. Even for a coalition of n’ manipulators, if the rule is
anonymous, then the total number of joint votes for the coalition is the number of ways
n’ indistinguishable balls (voters) can be placed into m! urns (possible votes), which
is (”;f"_'l_l) which is polynomial in n’. Hence, as long as there is a polynomial-time
algorithm for executing the rule, a manipulation (if one exists) can be computed in
polynomial time when the number of alternatives is constant. However, this argument
fundamentally relies on the voters being indistinguishable, which is not the case when
voters have weights.

6.4.3 Weighted Votes

Weighted votes occur in a number of real-world settings (e.g., shareholder elections and
various parliaments). Weights are typically integers and a vote of weight k can be seen
as k identical and unweighted votes. It turns out that with weighted votes, we encounter
complexity in manipulation problems even with a small number of alternatives. We
consider the following decision problem for weighted votes.

Coalitional Weighted Manipulation Problem

Given. A profile of weighted votes IT cast by everyone but a coalition of manipulators, a weight
for each of the manipulators, and a preferred alternative a.
Question. Is there a way for the manipulators to cast their votes so that a wins?

There is again a destructive variant of this problem where the coalition wants a given
alternative not to win.

With two alternatives, most common voting rules degenerate to majority voting. In
addition, by May’s Theorem, this is the only voting rule over two alternatives that is
anonymous, neutral, and positively responsive. With majority voting, the manipulators’
best action even when their votes are weighted is always to vote for the alternative that
they wish to win. With three or more alternatives, however, computing a manipulation
can be computationally hard, provided we have a coalition of manipulators (whose size
is allowed to increase) and votes that are weighted. For example, computing how to
manipulate the veto (aka. antiplurality) rule'” is polynomial with unweighted votes but
NP-complete with weighted votes and just 3 alternatives (Conitzer et al., 2007). Some
intuition for this result is as follows. The manipulators could find themselves in the
situation where, after counting the nonmanipulators’ votes, two alternatives (b and c)

12 Recall that under the veto rule, the winner is the alternative that is ranked last in the fewest votes. Equivalently,
it is the positional scoring rule in which the bottom rank receives 0 points and all other ranks receive 1 point.
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are tied for the lead (i.e., they have been vetoed the least), but the third alternative (a)
is the one that the manipulators want to win. Clearly the manipulators do not want to
veto a. To make a win, however, they may need to divide their total veto weight very
evenly between b and ¢, so that a comes out just barely ahead of each of them. Thus,
the manipulators face the problem of partitioning a set of integers (their weights) into
two subsets (vetoing b or vetoing c) so that each subset has the same weight—and this
is an NP-complete problem. This intuition can be turned into a formal NP-hardness
reduction as follows.

Theorem 6.5. The coalitional weighted manipulation problem is NP-complete under
the veto rule, even with only three alternatives.

Proof. The problem is in NP because a profile of votes for the manipulators will
serve as a certificate (because the veto rule is computationally easy to execute). To
prove NP-hardness, we reduce from the PARTITION problem, in which we are given
a set of integers wy, ..., w, with 27:1 w; = W (where W is even) and are asked
whether there exists a subset S C {1, ..., n’} such that ZieS w; = W/2. We reduce
this problem to the coalitional weighted manipulation problem under the veto rule
with three alternatives, as follows. Let a, b, and ¢ be the alternatives, where a is the
alternative that the manipulators would like to win. Create one nonmanipulator vote
with weight W — 1 that ranks a last. Furthermore, for each i € {1, ..., n’}, create a
manipulator (the ith manipulator) with weight 2w;.

We now show that the manipulators can succeed in this instance if and only if the
original partition instance has a solution. If the partition instance has a solution S, then
let the manipulators in S rank b last, and let the ones outside S rank c last. Then, a wins,
appearing in last place only for W — 1 of the weight, whereas b and ¢ each appear in
last place for ) ;¢ 2w; = 2W/2 = W of the weight.

Now suppose that the partition instance has no solution. This implies that for each
subset S C {1,...,n'},either ), qw; < W/2—lor Zi¢s w; < W/2 — 1 (due to the
integrality of the w; and W /2). Then, for any profile of votes for the manipulators, let S
be the set of manipulators that rank b last. Then, we have either ) _; es2w KW -2<
W — 1, so that b ranks ahead of a, or Zi¢s 2w; <K W -2 < W —1, so that ¢ ranks
ahead of a. So the manipulators cannot make a win. O

Note that the reduction is set up in such a way that a cannot end up tied for the win,
so it does not matter how ties are handled. On the other hand, note that this is only
a weak NP-hardness result because the reduction is from PARTITION. Indeed, we
can compute a manipulation for a coalition of voters using dynamic programming in
pseudopolynomial time—that is, in polynomial time when the weights are represented
in unary (or equivalently, when the weights are small). Similar (though often more
involved) reductions can be given for many other rules. In fact, a dichotomy result
holds for positional scoring rules in general: every scoring rule that is not isomorphic
to plurality is NP-hard to manipulate with three or more alternatives and weighted
votes (Hemaspaandra and Hemaspaandra, 2007; Procaccia and Rosenschein, 2007b;
Conitzer et al., 2007).
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6.4.4 Tie-Breaking

For complexity-of-manipulation results like these, it is important to specify precisely
how ties are broken. This perhaps should not be surprising, because a single manipulator
can only change the result if the election is close to being tied. A common assumption
is that we break ties in favor of the manipulator. That is, we suppose that the preferred
alternative wins if it is among the set of co-winners. This is usually justified on the
grounds that if ties are broken, say, at random, then this corresponds to increasing
the probability that the given alternative wins. However, the choice of the tie-breaking
procedure is not a minor detail. It can actually change the computational complexity
of computing a manipulation. We can get different results if we break ties against the
manipulator (that is, we suppose that the manipulator’s preferred alternative wins only
if it is the unique winner).

The importance of tie-breaking can be seen in the earliest literature on computa-
tional social choice. Recall that Bartholdi et al. (1989a) proved that a single agent
can manipulate the result of a Copeland election (with “straightforward” tie-breaking
schemes) in polynomial time using their greedy algorithm, but when the second-order
tie-breaking rule is added manipulation becomes NP-hard.

Faliszewski et al. (2008) proved that for Copeland voting, changing the way that
pairwise ties (two alternatives that are each ranked above the other equally often) are
handled can change the computational complexity of manipulation. For example, with
weighted votes and three alternatives, if ties result in a score of 0, then it is NP-hard
for a coalition to compute a manipulation that makes a given alternative the unique
winner of the election, but this problem becomes solvable in polynomial time if ties
are given any other score. (Note that this is an “internal” form of tie-breaking, rather
than tie-breaking between multiple winners at the end of applying an irresolute rule.)
Also, if instead the manipulators seek to make that alternative just one of the winners,
then the problem is solvable in polynomial time when a tie results in a score of 1, but
NP-hard if ties are given any other score.

To study tie-breaking at random in more detail, Obraztsova et al. (2011) set up a
model where the manipulators have utilities over the alternatives and the goal is to
increase the expected utility of the result. All scoring rules, as well as Bucklin and
plurality with runoff, can be manipulated in polynomial time in such a situation. On
the other hand, Copeland, maximin, STV and ranked pairs are NP-hard to manipulate
in this case (Obraztsova and Elkind, 2011).

Another method to deal with ties is to select a vote at random and select the highest-
ranked of the tied alternatives from this vote (Tideman, 1987)."% Aziz et al. (2013f)
show that, in general, there is no connection between the complexity of computing a
manipulating vote when tie-breaking with a random alternative or with a random vote.
However, for common rules like k-approval, Borda, and Bucklin, the computational
complexity increases from polynomial to NP-hard when tie-breaking with a random
vote rather than at random among the co-winners. For other rules like plurality, veto, and
plurality with runoff, it remains possible to compute a manipulating vote in polynomial

13 For more on tiebreaking schemes in computational social choice, see Freeman et al. (2015).
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time. Finally, for rules like STV, computing a manipulation is NP-hard irrespective of
the tie-breaking method as it is possible to prove NP-hardness with a class of elections
in which there are never any ties.

6.4.5 Incomplete Information

So far, we have assumed that the manipulator has complete knowledge of the other
votes. This is a strong assumption that, extreme circumstances aside, is at best a rough
approximation of the truth. It is often defended on the grounds that if it is NP-hard to
compute a manipulation with complete information then it must remain so when we
have probabilistic information about the nonmanipulators’ votes (Conitzer et al., 2007).
There has, however, been some work relaxing this assumption. For example, Conitzer
et al. (2011a) consider the complexity of computing manipulations given only partial
information about the nonmanipulators’ votes. Given such partial information, they
consider whether the manipulator has a dominating nontruthful vote that makes the
winner always at least as preferable as, and sometimes more preferable than, the
alternative that would win if the manipulator voted sincerely. This was further studied
by Reijngoud and Endriss (2012).

6.4.6 Building in Hardness

Once we accept hardness of manipulation as a desirable property of voting rules, it
becomes an interesting question whether we can engineer voting rules to be more
computationally complex to manipulate. One general construction is to “hybridize”
together two or more existing voting rules. For example, we might add one elimination
pre-round to the election, in which alternatives are paired off and only the one preferred
by more voters goes through (Conitzer and Sandholm, 2003). This generates a new
voting rule that is often computationally hard to manipulate. In fact, the problem
of computing a manipulation can now move to complexity classes higher than NP
depending on when the schedule of the pre-round is announced. Such hybrid voting
rules also inherit some (but not all) of the properties of the voting rules from which they
are constructed. For example, if the initial rule is Condorcet consistent, then adding a
pre-round preserves Condorcet consistency.

Other types of voting rules can be hybridized together. For example, we can construct
a hybrid of the Borda and Copeland rules in which we run two rounds of Borda,
eliminating the lowest-scoring alternative each time, and then apply the Copeland rule
to the remaining alternatives. Such hybrids are often resistant to manipulation. For
example, many hybrids of STV and of Borda are NP-hard to manipulate (Elkind and
Lipmaa, 2005). More generally, voting rules that have multiple stages successively
eliminating alternatives tend to be more computationally difficult to manipulate than
one-stage rules (Coleman and Teague, 2007; Narodytska et al., 2011; Davies et al.,
2012; Walsh and Xia, 2012).

Another way to combine together two or more voting rules is to use some aspect
of the particular election (the votes, or the names of the alternatives) to pick which
voting rule is used to compute the winner. For example, suppose we have a list of k
different voting rules. If all the alternatives’ names (viewed as natural numbers) are
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congruent, modulo k&, to i then we use the ith voting rule, otherwise we use the default
last rule. Such a form of hybridization gives elections which are often computationally
difficult to manipulate (Hemaspaandra et al., 2009). Another possibility is to just leave
it ambiguous which of the voting rules will be used; Elkind and Erdélyi (2012) have
studied how hard it is for the manipulators to select their votes so that they succeed for
any of a given set of rules. Finally, another possibility is that we have a runoff between
the winners of two voting rules. This also often makes manipulations more difficult to
compute (Narodytska et al., 2012).

6.5 Can Manipulation Be Hard Most of the Time?

NP-hardness is a worst-case notion. For NP-hard manipulation problems, supposing
P £ NP, any manipulation algorithm will face some families of instances on which it
does not scale polynomially. But it is not at all clear that these are the instances that
manipulators would need to solve in practice. They may be pathological. Hence, it is
possible that these NP-hardness results lull us into a false sense of security regarding
the manipulability of our voting rules. A much better type of result would be that the
manipulation problem is usually hard. Is such a result feasible, and what exactly does
“usually” mean here? To investigate this, it is helpful to first consider some actual
manipulation algorithms for voting rules that are NP-hard to manipulate.

6.5.1 Some Algorithms for NP-Hard Manipulation Problems

Assuming P # NP, a manipulation algorithm for a voting rule that is NP-hard to
manipulate can only hope to either (1) succeed on all instances and require more than
polynomial time in the worst case, but still scale “reasonably,” particularly on “typical”
instances; or (2) run in polynomial time and succeed on many, but not all, instances.

For instance, under the STV rule, Coleman and Teague (2007) give a simple enu-
merative method for a coalition of k unweighted voters to compute a manipulation,
which runs in O(m!(n 4+ mk)) time (where n is the number of voters voting and m is
the number of alternatives). For a single manipulator, Conitzer et al. (2007) give an
0O(n1.62™) time recursive algorithm to compute the set of alternatives that can win an
STV election.

Such algorithms have been shown to perform well in practice. For example, Coleman
and Teague (2007) showed experimentally that only a small coalition is needed to
change the elimination order of the STV rule in many cases. As a second example,
Walsh (2010) showed that the Conitzer et al. (2007) algorithm could often quickly
compute manipulations of the STV rule even with hundreds of alternatives. Walsh
(2009, 2011b) also empirically studied the computational cost of manipulating the veto
rule by a coalition of weighted voters. Except in rather artificial and “hung” elections,
it was easy to find manipulations or prove that none exist.

An algorithm designed for the manipulation of one specific rule, however effective
it may be, may just be exploiting an idiosyncratic property of that particular rule. It
may well be the case that other desirable rules do not have this property and are, in fact,
“usually” hard to manipulate. One approach to addressing this criticism is to design
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manipulation algorithms that are not specific to one voting rule. Such algorithms, to
the extent that they avoid exhaustive search, are heuristic in nature and do not always
succeed. This category of algorithms includes some of the earliest work providing
technical results that cast doubt on whether worst-case hardness of manipulation has
any significant implications for the “typical” case. Procaccia and Rosenschein (2007b)
provide a greedy algorithm for rules based on a score, in which the manipulators
create their votes in sequence, at each point ranking their preferred alternative first
and the remaining alternatives in increasing order of their current score. Conitzer and
Sandholm (2006) provide an algorithm that attempts to find two possible winners,
by first choosing an arbitrary vote profile for the manipulators to find one possible
winner aj, and then, for every remaining alternative a, choosing a vote profile for the
manipulators where everyone ranks a first and a) last. It is argued (and supported by
simulations) that usually, if the manipulators are pivotal (have a possibility of changing
the outcome of the election) at all, then they can only make two alternatives win. For
instances where this is so, and where the voting rule satisfies a weak monotonicity
property, the algorithm can be proved to find all alternatives that the manipulators can
make win.

All these empirical results suggest that we need to treat results about the NP-hardness
of manipulation with some care. Voters may still be able to compute a manipulation
successfully using rather simple and direct methods. The theoretically inclined reader,
however, may feel dissatisfied with these types of results. Beyond getting intuition from
simulations, can we actually prove that voting rules remain vulnerable to manipulation
in the typical case? In what follows we discuss some of the approaches that researchers
have taken to answer this question in the affirmative.

6.5.2 Approximation Methods

For almost all voting rules, we can easily make any alternative win provided we
have enough manipulators; the hardness results are merely due to a limited supply
of manipulators. With this in mind, we can consider manipulation as an optimization
problem, where we try to minimize the number of manipulators required to achieve a
given outcome. One option is to use approximation methods to tackle such optimization
problems.'*

For example, Zuckerman et al. (2009) consider a variant of the algorithm by Pro-
caccia and Rosenschein (2007b) (presented above) to compute manipulations of the
Borda rule. Again, the algorithm constructs the vote of each manipulator in turn. The
alternative that the manipulators wish to win is put in first place, and the remaining
alternatives are placed in the manipulator’s vote in increasing order of their current
Borda scores. The method continues constructing manipulating votes until the desired
alternative wins. A rather long and intricate argument shows that this method requires
at most one additional manipulator relative to the optimal solution. Based on a con-
nection to a scheduling problem, Xia et al. (2010b) provide an algorithm that works

14" Another notion of approximation in manipulation problems is to approximately maximize an alternative’s
increase in score, given a fixed set of manipulators (Brelsford et al., 2008). Theorem 4 in that paper relates that
notion of approximability to the one discussed here.
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for all positional scoring rules, though it may require as many as m — 2 additional
manipulators.

6.5.3 Frequency of Manipulability

Again, whether the manipulators can achieve the result they want depends in large part
on their number. We may then wonder whether, given an instance of the coalitional
manipulation problem, we can quickly eyeball whether the manipulators are likely
to be successful, purely based on the size of their coalition relative to the size of the
electorate. It turns out that this is indeed the case. Building on earlier work by Procaccia
and Rosenschein (2007a),"> Xia and Conitzer (20082a) showed that for an extremely
large class'® of voting rules called generalized scoring rules, under some assumptions
on the distribution of votes, if the number of manipulators is O(n?) for p < 1/2, the
probability that a random profile is manipulable goes to zero; whereas if it is Q2(n?) for
p > 1/2, it goes to one. This leaves the knife-edge case of p = 1/2, which has been
studied both experimentally (Walsh, 2009) and analytically (Mossel et al., 2013).

Another line of research along these lines proves quantitative versions of the
Gibbard-Satterthwaite impossibility result. Here, the idea is not to be satisfied with
a statement that says that somewhere in the space of all possible profiles, there exists a
manipulable one; rather, these results state that, under Gibbard-Satterthwaite-like con-
ditions, a randomly chosen profile has a significant probability of being manipulable.
After a sequence of earlier partial results along this line (Friedgut et al., 2008; Dobzin-
ski and Procaccia, 2008; Xia and Conitzer, 2008b; Isaksson et al., 2012), Mossel and
Récz (2012) seem to have achieved the gold standard. They prove that under a voting
rule with 3 or more alternatives that is e-far away from the set of nonmanipulable
rules,'” a randomly chosen profile has a probability of being manipulable that is at
least inverse polynomial in n, m, and 1/€.

6.5.4 Restricted Preferences

Finally, it is important to realize that it is unrealistic to assume that profiles of votes
are drawn uniformly at random; generally, the voters’ preferences over the alternatives
are quite structured. For example, the profile may be single-peaked. How does this
affect the complexity of the manipulation problem? Several papers have addressed this
question, showing that this restriction often, but not always, makes the manipulation
problem easier (Walsh, 2007; Faliszewski et al., 2009e; Brandt et al., 2010a). While it
may seem odd in this context to focus on single-peaked preferences—for which, after
all, a desirable strategyproof voting rule is available in the form of the median voter
rule'® —these results nevertheless provide important insight into how restricting the
space of profiles can cause complexity barriers to manipulation to fall apart.

15 See also Slinko (2004) and Pritchard and Wilson (2009).

16 Xia and Conitzer (2009) characterize this class as those rules that are anonymous and finitely locally consistent.

17 Here, the distance between two rules is the fraction of inputs on which they differ.

18 Moreover, under some assumptions on strategic behavior by the voters and/or candidates, even rules such as
plurality and STV end up returning the same winner as the median voter rule when preferences are single-peaked
(Brill and Conitzer, 2015).
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6.6 Fully Game-Theoretic Models

The computational problems studied in this chapter so far all make some major sim-
plifying assumptions. In most cases it is assumed that the votes of the other voters are
known exactly; even when this is not assumed, the other voters are not modeled as
strategic agents. If we do model them this way, this leads us into fully game-theoretic
models, and indeed these have received some attention in the computational social
choice community.

To make sense of this, a first issue that needs to be addressed is the staggering
multiplicity of equilibria in most voting scenarios.'” Often, most profiles will not allow
any single individual to change the outcome, and all of these profiles are Nash equilibria
as an immediate consequence. Many of these profiles will have voters vote in ways
that make no sense with respect to their true preferences. Based on this observation, we
may be able to rule out many of these equilibria—for example, we might require voters
not to play weakly dominated strategies.”’ However, other issues are more difficult to
address. For example, in a plurality election, any two of the alternatives might be cast
in a “front-runner” role, resulting in an equilibrium where everyone votes for one of
these two, because to do otherwise would be to waste one’s vote. This also illustrates
that there will be many alternatives that win in some equilibrium.”!

As it turns out, these issues are avoided when the voters, instead of voting simul-
taneously, vote in sequence, so that each voter has full knowledge of all the previous
votes. If we additionally assume that all the preferences are common knowledge (as
well as the order in which the voters vote, and the voting rule used), and all prefer-
ences are strict, then there is a unique alternative that wins in subgame-perfect Nash
equilibrium.””> This can be proved by induction on the number of voters, roughly as
follows. Suppose it is true for n — 1 voters. Then, in the case of n voters, consider the
first voter. For every vote that she might cast, she can, by the induction assumption,
determine the alternative that will win in equilibrium from that point on. From all these
options, she will then choose the one that ranks highest in her own preferences. (There
may be multiple votes for the first voter that achieve this, so the equilibrium votes
are not unique.) This raises several interesting questions. First of all, will this result
in good outcomes? Of course, it is tricky to give a general definition of what “good”
means in this context. As it turns out, though, for many rules, there exist profiles of
preferences that, in equilibrium, result in outcomes that are quite unambiguously bad.
Specifically, Xia and Conitzer (2010c) show that this is the case for rules with a low
domination index, which indicates how many more than half of the voters are needed

Recall that, given the voters’ true preferences, a Nash equilibrium consists of a profile of votes such that
no individual voter can obtain an outcome she prefers to the current one by unilaterally changing her
vote.

Recall that one strategy weakly dominates another if the former always delivers at least as good a result for the
agent, and in some cases a strictly better one.

A recent article investigates what game structures can emerge when multiple voters are considering strategically
changing their votes (Elkind et al., 2014b).

Recall that in a subgame-perfect Nash equilibrium, the strategies constitute a Nash equilibrium in every
subgame. In our case, when a subset of the voters has cast specific votes, the remainder of the voting game
constitutes a subgame.
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to force the outcome.”’ Some counterintuitive examples for the plurality rule are also
given by Desmedt and Elkind (2010).

Another question is whether these equilibria can be efficiently computed. A natural
approach is to use a dynamic programming algorithm corresponding to the backward
induction process in game theory, as follows. First compute what the last voter would
do for every situation in which she might be placed; then compute what the second-
to-last voter would do for every situation in which she might be placed (which is now
possible because it is known at this point how the last voter would respond to any
vote that the second-to-last voter might cast); and so on. This algorithm is correct,
but its runtime depends on the number of possible “situations.” What is a “situation,”
anyway? One might interpret this as the entire partial profile of votes cast so far (i.e.,
the node in the extensive form of the game), but this will scale very poorly. It is also
overkill: for example, for a positional scoring rule, all that is needed is the total scores
of the alternatives so far, not the precise votes that led to this score. More generally,
the amount of information necessary to summarize the votes of a subelectorate is
known as the compilation complexity of a voting rule (Chevaleyre et al., 2009; Xia
and Conitzer, 2010b). Xia and Conitzer (2010c) exploit the connection to this concept
to obtain algorithms for solving the game that, while still exponential, scale much
better than the naive approach. (Desmedt and Elkind (2010) give a similar algorithm
for plurality.) Intriguingly, from simulations performed by Xia and Conitzer (2010c),
the game-theoretic outcomes on random profiles do not look as bad as the worst-case
results above might suggest. The exact complexity of the computational problem is not
known; it may be PSPACE-complete.

Still, is there nothing substantial that we can say about the equilibria of voting
games in which voters vote simultaneously? In fact, we can, if we are willing to make
some further assumptions about voters’ preferences in voting. One natural assumption
is that voters are truth-biased (Meir et al., 2010). This can be interpreted as follows:
voters derive most of their utility from the outcome of the election, but they also
derive a small amount of utility from voting truthfully. Hence, if it makes no difference
to the outcome, voters slightly prefer to tell the truth. Thompson et al. (2013) show
experimentally that for the plurality rule this dramatically reduces the set of equilibria.
(They also study Bayes-Nash equilibria of games in which voters are not sure about
each other’s preferences.) Obraztsova et al. (2013) study this model from a theoretical
perspective, again under the plurality rule.>* Another direction is to substitute the slight
preference for voting truthfully with a slight preference for abstaining (Desmedt and
Elkind, 2010). Yet another direction is to add dynamics where voters start at some
initial profile and iteratively update their vote to make themselves better off, until this
process converges (Meir et al., 2010; Lev and Rosenschein, 2012; Reyhani and Wilson,
2012; Rabinovich et al., 2014).

23 A similar negative result is given by Xia et al. (2011a) in a different context, where multiple related binary
decisions must be made and these issues are voted on in sequence (but with all the voters voting at the same
time on each issue). For more on voting in such combinatorial domains, please see Chapter 9.

24 They also consider strong Nash equilibria, in which no subset of the agents can deviate in a way that makes
them all better off, and draw a connection to Condorcet winners. More about the relationship between strong
equilibrium and Condorcet winners can be found in papers by Sertel and Sanver (2004), Messner and Polborn
(2007), and Brill and Conitzer (2015).
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The above approaches all rely on noncooperative game theory. However, as we have
already seen, it is natural to think about coalitions of voters coordinating their actions.
Doing so in a game-theoretic framework is tricky, because the voters in a coalition may
not all have the same preferences. This leads us to cooperative (or coalitional) game
theory. A common solution concept there is that of the core, which is the set of all
outcomes such that no coalition of agents could break off in a way that would make all
of its members happier. In the context of elections, when a group of agents deviates,
how happy this makes them depends on how the agents outside of the coalition end
up voting. For example, will the agents outside the coalition be able to react to the
votes of the coalition, or vice versa? These modeling choices correspond to the notions
of the a-core and the S-core. The computational complexity of these concepts in the
context of elections is studied by Zuckerman et al. (2011). Bachrach et al. (2011) study
the complexity of problems in cooperative game theory models of manipulation where
payments are possible.

6.6.1 Other Topics

So far, we have supposed that the manipulating coalition can communicate and coordi-
nate perfectly. In practice, this may be optimistic. For example, if the coalition is large,
then it may be difficult for the coalition to communicate, as well as to ensure everyone
votes appropriately. To address this, Slinko and White (2008) propose a more restricted
model of strategic voting in which a single coalition member broadcasts a strategic
vote and every member of the coalition either casts this vote or votes sincerely. In such
a situation, a safe strategic vote is a broadcast vote that never results in an undesirable
outcome, however many or few of the coalition follow it. The Gibbard-Satterthwaite
Theorem extends to this notion of manipulation. Polynomial-time algorithms for com-
puting a safe strategic vote have been given for k-approval, Bucklin, and Borda (Hazon
and Elkind, 2010; Ianovski et al., 2011).

Another type of manipulation is for a single agent to vote more than once. This is
often a concern in elections run in highly anonymous environments, such as Internet
voting. A rule is said to be false-name-proof (Yokoo et al., 2004) if there is never an
incentive for a voter to cast more than one vote. Conitzer (2008) gives a characterization
of false-name-proof rules similar in spirit to the characterization of strategyproof rules
by Gibbard (1977) that, perhaps unsurprisingly, is even more negative. Unlike in
the case of strategyproofness, under the constraint of false-name-proofness, even the
restriction of single-peaked preferences does not allow very appealing rules (Todo
etal., 2011).

6.7 Conclusions

Besides being of interest in their own right, the computational manipulation problems
discussed in this chapter are also important because of their implications for other,
closely related problems in computational social choice. For example, the constructive
manipulation problem is a special case of the possible winner problem, which asks,
given a profile of partial votes and a given alternative, whether it is possible to complete
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the profile in such a way that that alternative wins. Similarly, the destructive manipula-
tion problem is a special case of the necessary winner problem. For detailed analysis of
the complexity of these problems, see, for example, Konczak and Lang (2005), Walsh
(2007), Betzler and Dorn (2010), Xia and Conitzer (201 1a), and Baumeister and Rothe
(2012). The necessary winner problem, in turn, is important in settings in which we
incrementally elicit voters’ rankings rather than collecting them all at once. In this
problem, we would like to be able to compute when we have elicited enough informa-
tion to announce the winner (Conitzer and Sandholm, 2002). For further discussion of
all of this, see also Chapter 10. There are also relations to control and bribery problems,
which will be discussed in Chapter 7.
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CHAPTER 7

Control and Bribery in Voting

Piotr Faliszewski and Jorg Rothe

7.1 Introduction

In this chapter we study control and bribery, two families of problems modeling various
ways of manipulating elections. Briefly put, control problems model situations where
some entity, usually referred to as the chair or the election organizer, has some ability
to affect the election structure. For example, the chair might be able to encourage new
candidates to join the election, or might be able to prevent some voters from casting their
votes. On the other hand, bribery models situations where the structure of the election
stays intact (we have the same candidates and the same voters), but some outside agent
pays the voters to change their votes. Naturally, such manipulative actions, dishonestly
skewing election results, are undesirable. Thus it is interesting to know if there are so-
called complexity shields against these attacks (see also Chapter 6 on manipulation and,
relatedly, Section 4.3.3 in the book chapter by Baumeister and Rothe (2015)). That is,
it is interesting to know the computational complexity of recognizing whether various
forms of such attacks are possible or not. However, there are also other interpretations
of control and bribery, many of them quite positive.

In this chapter we survey results on the complexity of control and bribery in elec-
tions, providing an overview of the specific problems studied, sketching sample proofs,
and reviewing some approaches to dealing with the computational hardness of these
control and bribery problems (see also Sections 4.3.4 and 4.3.5 in the book chapter
by Baumeister and Rothe (2015)). Seeking ways of dealing with the computational
hardness of control and bribery may seem surprising at first. However, on one hand,
if we interpret control and bribery as modeling attacks on elections, then we would
like to know the limitations of our complexity shields. On the other hand, if we take
other interpretations of control and bribery, then we simply would like to know how to
solve these problems. We survey some classical results on control in Section 7.3,
on bribery in Section 7.4, and then briefly discuss their various applications in
Section 7.5.

146
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Table 7.1. Three types of preference profiles required by different voting rules

(a) A Borda election (b) An approval election (c) A fallback election

points: 5 4 3 2 1 O a b ¢ d e f leve: 1 2 3 4
voterl: a ¢ b f e d voter1: (1, O, O, O, O, 0) voterl: a
voter2: b a f ¢ e d voter2: (1, 1, 0, 0, 0, 0) voter2: b a
voter3: ¢ d b a f e voter3: (1, 1, 1, 1, O, 0) voter3: ¢ d b a
voterd: e d b f ¢ a voter4d: (0, 0, O, 1, 1, 0) voterd: e d
voter5: e d ¢ b f a voter5: (0, O, O, O, 1, 0) voter5: e
winner: b with score 16 AVscore: 3 2 1 2 2 O winner: a on level 4

7.2 Preliminaries

We start by recalling various voting rules, including preference-based voting rules
and (variants of) approval voting. For the former, an election (A, R) is given by a set
A of m alternatives (or candidates) and a preference profile R = (>1, ..., >,) over
A that collects n votes, each expressing a linear preference order over A. That is,
letting N = {1, ..., n} be the set of voters, >; gives voter i’s preference order of the
alternatives. For example, the ranking a >; b > ¢ says that voter 1 (strictly) prefers
alternative a to alternative b, and b to c. From now on we omit stating “>;” explicitly
and simply rank the alternatives in a vote from left (most preferred) to right (least
preferred). That is, instead of, say, a > b > ¢ we simply write a b c. Also, for (A, R)
an election and A’ C A, we write (A’, R) to denote the election with alternatives
A’ and the votes in R restricted to A’. For example, if (A, R) is the election from
Table 7.1(a) consisting of five voters who rank six alternatives and A’ = {b, ¢, d}, then
(A',R)=(b,c,d},(cbd, bcd, cdb, dbc, dchbh)).

We briefly recall some voting rules, see Chapter 2 for more details. Positional scoring
rules are defined by an m-alternative scoring vector ¢ = (01, 03, . . ., 0,,), where the o;
are nonnegative integers withoy > o, > - - - > o0,,. Each alternative scores o; points for
each vote where it is ranked in the i th position, and whoever scores the most points wins.
Examples are plurality voting with scoring vector (1, O, . . ., 0), veto (aka antiplurality)
with (1,...,1,0), k-approval with (1, ...,1,0,...,0) having a 1 in each of the first
k < m positions (note that 1-approval is plurality), k-veto, which is the same as (m — k)-
approval (note that 1-veto is veto), and Borda count with (im — 1,m — 2, ..., 0). For
example, in the election given in Table 7.1(a), e wins under plurality; d under 2-
approval; b under 3-approval; b, ¢, and f under veto; and b under Borda (with a
Borda score of 16, whereas a, c, d, e, and f score, respectively, 11, 15, 12, 12, and 9
points).

Under approval voting (or AV), proposed by Brams and Fishburn (1978, 2007),
instead of using preference orders the voters specify sets of alternatives they approve
of. Typically, such votes are represented as m-dimensional 0/1-vectors, where each
position corresponds to an alternative and 1-entries mean approval of respective alter-
natives. All alternatives with the most approvals win. For example, for the approval
vectors given in Table 7.1(b), a is the approval winner with a score of 3. A version
of approval voting (dubbed sincere-strategy preference-based approval voting (or SP-
AV) by Erdélyi et al. (2009)) combines approval information with preference-order
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information (the voters rank the candidates that they approve of). The rule was intro-
duced by Brams and Sanver (2006) and, in essence, is the same as approval, but the
additional preference-order information is used to deduce voter behavior when the
candidate set changes (we omit detailed discussion and point the reader to the original
papers and to the survey of Baumeister et al. (2010)).

Range voting (or RV) works just as approval voting, except that entries of the vectors
under k-range voting come from the set {0, 1, ..., k} rather than from the set {0, 1}.
Normalized range voting (or NRV) is a variant of RV that alters the votes so that the
potential impact of each vote is maximized (see, e.g., the work of Menton, 2013).

Let us now move back to rules based on preference orders and, in particular, to
those rules that are based on pairwise comparisons of alternatives. A Condorcet win-
ner is an alternative that is preferred to every other alternative by a strict majority of
votes. For example, in the election from Table 7.1(a), c¢ is preferred to every other
alternative by three of the five voters and thus is the Condorcet winner. It is easy to
see that there is at most one Condorcet winner in an election, but it is possible that
there is none.! A voting rule is Condorcet-consistent if it elects the Condorcet winner
whenever there is one. If there is no Condorcet winner in a given preference profile,
many of the known Condorcet-consistent rules elect those candidates that are closest to
being Condorcet winners, one way or another. For example, under Copeland® voting,
a € [0, 1], we organize a tournament among the candidates in the following way: Each
pair of candidates “plays” against each other and the one that is preferred by more
voters wins and receives a point (in case of a tie, both get @ points). In the end, the
candidates with the highest number of points win. If we omit voter 1 from the election
in Table 7.1(a) then d is the unique Copeland®* winner for « = 0 and o = !/2 (with a
Copeland® score of 3 if @ = 0, and of 3.5 if « = 1/2), but both ¢ and e are Copeland”
winners with a score of 5 for « = 1. Other Condorcet-consistent rules are, for exam-
ple, the maximin rule (aka Simpson’s rule), ranked pairs due to Tideman (1987), or
Schulze’s rule (a rule proposed by Schulze (2011), which satisfies many normative
properties).

Other voting rules follow yet other principles, e.g., single transferable vote (STV)
proceeds in stages and eliminates the “weakest” candidates until only the winner
remains. We omit the details and point the reader to Chapter 2 instead. Under Bucklin
voting we first seek the smallest value ¢ such that there is candidate ranked among
top £ positions by a strict majority of the voters, and then declare as winners those
candidates that have highest ¢-approval scores (or, under simplified Bucklin voting,
those candidates that are ranked among top ¢ positions by some majority of the voters).
Fallback voting, introduced by Brams and Sanver (2009), is a rule that combines
Bucklin voting with approval voting (the voters rank only the candidates they approve
of and Bucklin is used; if there are no Bucklin winners—due to the fact that voters
do not have to rank all the candidates—fallback outputs the approval winners). For
example, in the partial rankings given in Table 7.1(c), a alone reaches a strict majority

! If one requires voting rules to always have at least one winner, Condorcet voting (which elects the Condorcet
winner whenever there is one, and otherwise no one wins) would not be a voting rule. However, we take the
point of view that voting rules may have empty winner sets. Note that it has become a tradition to study (at
least) plurality, Condorcet, and approval on each new approach and each new idea regarding election control
(see, e.g., the papers of Bartholdi et al., 1992; Hemaspaandra et al., 2007; Faliszewski et al., 201 1c).
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of [5/2] + 1 = 3 votes (namely, on the fourth level) and thus is the fallback winner.
However, if the first voter approved only of f instead of only of a, then no candidate
would reach a majority and fallback would output a, b, d, and e, the approval winners
of the election.

In Sections 7.3 and 7.4, we will define a large variety of decision problems, each
related to some specific control or bribery scenario. All these problems are members
of NP, the class of problems that can be solved in nondeterministic polynomial time,
and they will be classified to be either in P or NP-complete.2 Unlike, for instance, in
the case of Kemeny, Dodgson, and Young elections (which we do not consider here,
as their winner problems are not in P—see Chapters 4 and 5), the winner(s) can be
determined efficiently for all voting systems described earlier.

7.3 Control

Every election needs to be organized, and whoever is responsible for doing so can have
some influence on the outcome of the election by changing its structure. We will refer
to this person, or authority, as the chair of the election, and to the way the election
structure is changed by the chair as control type or control action. Many types of control
that the chair might exert are conceivable. We present those that have been studied in
the literature, starting with the four most important ones.

7.3.1 Constructive Control by Adding/Deleting Candidates/Voters

Bartholdi et al. (1992) were the first to introduce electoral control and to study it
in various scenarios from a computational perspective. In particular, they defined
constructive control types, where the chair’s goal in exerting some control action is to
make a given candidate p the unique winner of the resulting election.’ It is common to
assume that the chair has complete knowledge of all votes.

One control action the chair might exert is to change the candidate set, either by
adding some new candidates from a given set of spoiler candidates (hoping to make
p’s most competitive rivals weaker relative to p), or to delete up to k candidates from
the given election (to get rid of p’s worst rivals). For the former, Bartholdi et al.
(1992) originally defined a variant that allows adding an unlimited number of spoiler
candidates. To be in sync with the other control problems (e.g., control by deleting
candidates), Hemaspaandra et al. (2009) defined a variant of this problem where a
bound k on the number of spoiler candidates that may be added is given. We will see
later that the complexity of the resulting problems can sharply differ.

2 A problem B is NP-hard if every NP problem A reduces to B, where “reduction” always refers to a polynomial-
time many-one reduction, that is, a polynomial-time function » mapping instances of A to instances of B such
that for each x, x € A <= r(x) € B. B is NP-complete if it is NP-hard and in NP.

3 As we do here, control problems have commonly, most especially in the earlier papers on control, been studied
in their unique-winner variant. Alternatively, many papers on control consider the nonunique-winner (or co-
winner, or simply winner) variant where the chair’s goal is merely to make the designated candidate a winner.
The complexity of control problems is usually the same in both models, requiring only minor adjustments to
the proofs.



150 7 CONTROL AND BRIBERY IN VOTING

Definition 7.1. Let f be a voting rule. In the CONSTRUCTIVE-CONTROL-BY-ADDING-
AN-UNLIMITED-NUMBER-OF-CANDIDATES problem for f (f-CCAUC), we are given
(a) a set A of qualified candidates, a set B of spoiler candidates, where A N B = (J,
and an election (A U B, R) and (b) a preferred candidate p € A. We ask if we can
choose a subset B’ C B of the spoiler candidates such that p is the unique f-winner
of the election (A U B’, R). The CONSTRUCTIVE-CONTROL-BY-ADDING-CANDIDATES
problem for f (f-CCAC) is defined similarly: In addition to (a) and (b) we are also
given (c) a bound k € N, and we ask if there is a subset B’ C B of spoiler candidates
such that | B’| < k and p is the unique f-winner of (A U B’, R). In the CONSTRUCTIVE-
CONTROL-BY-DELETING-CANDIDATES problem for f (f-CCDC), we are given (a) an
election (A, R), (b) a preferred candidate p € A, and (c) a bound k € N. We ask if p
can be made a unique f-winner of the election resulting from (A, R) by deleting at
most k candidates.

The issue of control by changing the candidate set is very natural and, indeed, hap-
pens in real-life political elections. For example, it is widely speculated that “adding”
Nader to the 2000 U.S. presidential election had the effect of ensuring Bush’s victory
(otherwise, Gore would have won). Similarly, there are known cases where “spoiler”
candidates were added to political elections to confuse the voters (see, e.g., the New
York Times article of Lacey (2010) for a reported example). It is also easy to imag-
ine control by deleting candidates: Some of the candidates who perform poorly in
pre-election polls may be forced (or persuaded) to withdraw.

Example 7.1. For a Borda-CCAUC instance, let (A U B, R) be the election from
Table 7.1(a), where A = {a, b, c, d} is the set of qualified candidates and B = {e, f}is
the set of spoiler candidates. Table 7.2(a) shows the restriction (A, R) of this election
to the qualified candidates, which has the Borda winner ¢ scoring 9 points, while the
Borda scores of a, b, and d, respectively, are 4, 6, and 8. Supposing that b is the chair’s
favorite candidate, we have a yes-instance of Borda-CCAUC, since adding both spoiler
candidates makes b the unique Borda winner (see Table 7.1(a)).

To turn this into a Borda-CCAC instance, we in addition need to specify an addition
limit, k. If kK = 1, we have a yes-instance of the problem: Though the chair will not
succeed by adding e (which gives the election in Table 7.2(c), still won by ¢), adding f
(giving the election in Table 7.2(b)) will make b the unique Borda winner with a score
of 13, while a, ¢, d, and e score 8, 12, 11, and 6 points.

Finally, consider again the Borda election in Table 7.1(a) with winner b, and suppose
the chair, who now wants to make ¢ win, is allowed to delete one candidate. Deleting
the current champion, b, will reach this goal. Alternatively, the chair can delete f (see
Table 7.2(c)) to turn ¢ into the unique winner with a Borda score of 12, while the Borda
scores of a, b, d, and e, respectively, are reduced to 8, 11, 9, and 10. Thus this is a
yes-instance of the problem Borda-CCDC.

The chair might also change the voter set, either by encouraging further voters to
participate (knowing that their votes will be beneficial for p), or by excluding certain
voters from the election (knowing that deleting their votes will help p). In real life,
political parties often try to influence the outcome of elections by such actions (e.g.,
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Table 7.2. CCAUC, CCAC, and CCDC for the Borda election in Table 7.1(a)

(a) Without spoilers e and f (b) Deleting e (c) Deleting f

points: 3 2 1 0 points: 4 3 2 1 O points: 4 3 2 1 0
voter1: a ¢ b d voter1: a ¢ b f d voterl1: a ¢ b e d
voter2: b a ¢ d voter2: b a f ¢ d voter2: b a ¢ e d
voter3: ¢ d b a voter3: ¢ d b a f voter3: ¢ d b a e
voter4: d b ¢ a voterd: d b f ¢ a voterd: e d b ¢ a
voter 5: c b a voter5: d ¢ b f a voter5: e d ¢ b a
winner: ¢ (score 9) winner: b (score 13) winner: ¢ (score 12)

think of targeted “get-out-the-vote” drives on one hand, and of voter suppression efforts
or even disenfranchisement of voters, on the other).

Definition 7.2. Let f be a voting rule. In the CONSTRUCTIVE-CONTROL-BY-ADDING-
Vorters problem for f (f-CCAV), we are given (a) a list R of already registered
votes, a list S of as yet unregistered votes, and an election (A, R + §), where “pro-
file addition” means concatenation of profiles, (b) a preferred candidate p € A, and
(¢) a bound k£ € N. We ask if we can choose a sublist §” C S of size at most k& such
that p is the unique f-winner of (A, R + §’). In the CONSTRUCTIVE-CONTROL-BY-
DELETING-VOTERS problem for f (f-CCDV), we are given (a) an election (A, R),
(b) a preferred candidate p € A, and (c) a bound k € N, and we ask if we can make
p aunique f-winner of the election resulting from (A, R) by deleting no more than k
votes.

Example 7.2. Look again at the Borda election in Table 7.1(a) and assume that the
chair wants to make ¢ win. If one voter may be deleted, the chair’s goal can be reached
by deleting voter 2: ¢ then is the unique Borda winner with a score of 13, while a,
b, d, e, and f score only 7, 11, 12, 11, and 6 points, so this is a yes-instance of the
problem Borda-CCDV. On the other hand, if a were the chair’s favorite choice, the
chair would not succeed even if two votes may be deleted, giving rise to a no-instance
of Borda-CCDV. As an example of a Borda-CCAYV instance, suppose voters 1 and 2
from the election in Table 7.1(a) are registered already, but 3, 4, and 5 are not. The
current winner is a. Suppose the chair wants to make ¢ win and is allowed to add two
voters. Adding any single one of the as yet unregistered voters is not enough (the best
¢ can reach, by adding voter 3, is to tie with a and b for first place, each having 11
points). Adding either {3, 4} or {4, 5} is not successful either. However, adding {3, 5}
makes ¢ the unique Borda winner with a score of 14, while a, b, d, e, and f score only
11,13, 8, 7, and 7 points.

Depending on the voting rule, it may never (for no preference profile at all) be
possible for the chair to successfully exert some control action (e.g., constructive
control by deleting voters) in the sense that p can be turned (by deleting voters) from
not being a unique winner into being one. If that is the case, we say this voting rule
is immune to this type of control. Otherwise (i.e., if there is at least one preference
profile where the chair can successfully exert this control action), we say this voting
rule is susceptible to this type of control. For a voting rule f that is susceptible to
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some type of control (e.g., to constructive control by adding voters), f is said to be
vulnerable (respectively, resistant) to this control type if the corresponding problem
(e.g., f-CCAV) is in P (respectively, NP-hard).

Immunity results appear to be very desirable. Indeed, if a voting rule is immune to a
given type of control, then it is impossible to compromise its result by a corresponding
type of malicious action. Nonetheless, as we will soon see, immunity can also bring
some undesired side effects. First, however, let us argue that immunity for candidate
control is rare. This is so due to the study of strategic candidacy of Dutta et al.
(2001) (see also recent work on strategic candidacy of Lang et al. (2013) and Brill and
Conitzer (2015)). They have considered a setting where the candidates have preferences
regarding election outcomes, and can strategically choose to join the race or not.
Dutta et al. (2001) have shown that for most typical election rules there are settings
where some candidates would prefer not to participate in the election. In effect, such
rules cannot be immune to candidate control. Nonetheless, in some rare cases (e.g.,
for Condorcet and approval voting) immunity results for candidate control hold (see
Table 7.3).

For the case of voter control, immunity is not only rare, but also is utterly undesirable.
Indeed, it is natural to expect that if we add sufficiently many voters with the same
preference order, then their most preferred candidate becomes a winner. Formally, this
is known as voting rule continuity (or, as the Archimedean property). Continuity says
that if some candidate ¢ is a winner in some election (A, R), then for every election
(A, R), there is a natural number 7 such that ¢ is a winner in an election of the form
(A, R' +tR), where t R refers to a profile of ¢ copies of profile R. See, for example,
the work of Smith (1973).

The first voting rules studied with respect to control were plurality, Condorcet, and
approval voting. The following theorem summarizes some of the results obtained for
them by Bartholdi et al. (1992) and Hemaspaandra et al. (2007).

Theorem 7.3 (Bartholdi et al., 1992; Hemaspaandra et al., 2007).

1. Condorcet and approval voting are immune and plurality is resistant to constructive
control by adding (respectively, adding an unlimited number of) candidates.

2. Condorcet and approval voting are vulnerable and plurality is resistant to constructive
control by deleting candidates.

3. Condorcet and approval voting are resistant and plurality is vulnerable to constructive
control by both adding and deleting voters.

These immunity claims generally follow from the fact that Condorcet and approval
voting satisfy the (“unique” version of the) Weak Axiom of Revealed Preference,
which states that a unique winner p in a set A of alternatives always is also a unique
winner among each subset A’ C A including p. Hemaspaandra et al. (2007) identify
many links (i.e., implications and equivalences) among the susceptibility/immunity
statements for the control types defined previously and to be defined in Section 7.3.2.
We refrain from repeating them here but point the reader to Figure 4.16 in the book by
Rothe et al. (2011) for an overview.

The vulnerability claims in Theorem 7.3 follow by simple P algorithms. For example,
that approval-CCDC is in P follows from this algorithm: On input ((A, R), p, k), if p
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already is the unique winner in (A, R) (which is easy to test), output “yes”’; otherwise,
if no more than k candidates have at least as many approvals as p, output “yes” (as p
can be made a unique winner by deleting them all), and else output “no.” By contrast,
vulnerability proofs for the partitioning cases to be defined in Section 7.3.2 are often
much more involved (and are omitted here).

The resistance claims in Theorem 7.3 typically follow by reductions from NP-
complete problems such as EXAcT-COVER-BY-3-SETS (X3C), which given a base set
B ={by,..., b3}, k > 0,and a sequence S = (51, ..., S,) of 3-element subsets of B,
asks whether B can be exactly covered by k sets chosen from S. For example, to show
that approval-CCDV is NP-hard, let (B, §) be an instance of X3C. Let £; = |{S; €
S | bj € S;}| foreach j, 1 < j < 3k. Construct from (B, S) the election (A, R) with
A = B U{p} and R consisting of the following 2n voters: (1) Foreach i, 1 <i < n,
one voter in R approves of all candidates in S; and disapproves of all other candidates;
(2) there are n voters vy, ..., v, in R such that, for each i, 1 <i < n, v; (a) approves
of p, and (b) approves of b; if and only if i < n — £;. Thus, every candidate in (A, R)
has exactly n approvals. If there is an exact cover for B, then deleting the k votes from
R corresponding to the exact cover turns p into the unique winner. Conversely, suppose
that p can be turned into a unique approval winner by deleting at most k votes from R
(where we may assume that none of them approves of p, so only votes from group (1)
have been deleted). For p to become the unique approval winner, every b; € B must
have lost at least one approval. Thus, the deleted votes correspond to an exact cover
for B.

The next system to be comprehensively studied regarding control was Copeland®.

Theorem 7.4 (FaliszewsKi et al., 2009¢). For each rational number o, 0 < a < 1,
Copeland® is resistant to all types of control from Definitions 7.1 and 7.2, except
for a € {0, 1} where Copeland® is vulnerable to constructive control by adding an
unlimited number of candidates.

The most interesting point to note in Theorem 7.4 is that Copeland®*-CCAUC is in
P for « = 0 and @ = 1, but is NP-complete for all other values of «. The vulnerability
results are proven by the following simple P algorithm: On input ((A U B, R), p),
set D; to be the set of all b € B such that the Copeland® score of p in ({b, p}, R)
is 1; initialize D to be D;; and then successively delete every b from D such that the
Copeland® score of p in (A U D, R) is no greater than that of b. Correctness of the
algorithm follows from (1) the observation that for each D C B, whenever p is the
unique Copeland®* winner in (A U D, R), then sois p in (A U (D; N D), R), and (2) a
more involved argument showing that if p is the unique winner in (A U D, R) for some
D C Dy, yet the above algorithm computes a set D’ such that p is not a unique winner
in (AU D’, R), then this leads to a contradiction. On the other hand, NP-hardness
of Copeland®-CCAUC for 0 < o < 1 follows by a reduction from the NP-complete
problem VERTEX-COVER (and is omitted here).

Unlike Copeland*-CCAUC, Copeland*-CCAC is NP-complete for all (rational)
values of « € [0, 1]. In fact, Copeland® with 0 < & < 1 (including the original system
by Copeland (1951)) is the first family of voting rules known to be fully resistant
to all types of constructive control, including those to be defined in Section 7.3.2.
Other voting rules having this property have followed: SP-AV (Erdélyi et al., 2009),
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Table 7.3. The complexity of control problems for various voting rules

CPC-TE
CPC-TP
CRPC-TE
CRPC-TP
CPV-TE
CPV-TP

S
<
)

CAC
CDC
CAV
CDV

Voting Rule
AL ALVDALVDALDALDALDALVDADLDADLDADLA

plurality R RRRRIRRRRRRRRRVYVYVV VYV YV VRR
(Bartholdi et al., 1992; Hemaspaandra et al., 2007)

Condorcet I V I VvVV I V1 VI1IVIVIIRVIRVIRVRY
(Bartholdi et al., 1992; Hemaspaandra et al., 2007)

approval I vivviIiviIliTI1TUVWVITITTITIIRVYVIERVYVIRVYVRY
(Hemaspaandra et al., 2007)

Copeland®
forae =0 V V R V
O<a<1l R V R V
a=1 VV RV RV RVRVRVRVRRIRIRIRIRTRTR
(Faliszewski et al., 2009¢)

R
R

maximin VVRVYVYV - - - - - - - — RRRWR - - - -
(Faliszewski et al., 2011b)

Borda - - RVRYV - - - - - - - — RV -V -V - -
(Russel, 2007; Elkind et al., 2011a; Loreggia et al., 2014; Chen et al., 2015)

SP-AV R RRRRRRRRRRRRRRVRVYVRVYVIRR

(Erdélyi et al., 2009)

fallback R R RRRRURRRRRRRRRVRVYVRRRR
(Erdélyi and Rothe, 2010; Erdélyi et al., 2011; see also Erdélyi et al., 2015a)

Bucklin R RRRRRRRRRRRRRRVRYVRRR RS
(Erdélyi et al., 2011; see also Erdélyi et al., 2015a)

RV I vivyvivI1iIlIT1TVWV1T1T1IU RVYVLRVYVIRVYVRY
(Menton, 2013)
NRV R RRRRIRIRRRRRRRRRVIRYVRRIRR

(Menton, 2013)

Schulze R S RSRSRVRVRVYVRVYVRVYV RV RRIRR
(Parkes and Xia, 2012; Menton and Singh, 2013)

«

Key: “I” means immunity, “S” susceptibility, “V”* vulnerability, and “R” resistance. We write “~ if a given result
is not directly available in the literature.

fallback and Bucklin voting (Erdélyi and Rothe, 2010; Erdélyi et al., 2011, 2015a),
NRV (Menton, 2013), and Schulze voting (Parkes and Xia, 2012; Menton and Singh,
2013), as shown in Table 7.3.

7.3.2 The Partitioning Cases and Destructive Control

In addition to control by adding/deleting candidates/voters, Bartholdi et al. (1992) also
introduced various types of control by partitioning either candidates or voters, modeled
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by elections proceeding in two stages. While their original definitions were a bit unclear
about what happens when more than one candidate wins some first-stage pre-election,
Hemaspaandra et al. (2007) defined two rules for how to handle such pre-election ties:
TE (“ties eliminate”) says that whenever at least two candidates are tied for winner
in a pre-election, no candidate proceeds to the final stage from it (i.e., only unique
pre-election winners move forward); TP (“ties promote”) says that all pre-election
winners, no matter how many, proceed forward.

Definition 7.3. Let f be a voting rule. In the CONSTRUCTIVE-CONTROL-BY-RUNOFF-
PARTITION-OF-CANDIDATES problem for f under TE or TP (f-CCRPC-TE or f-
CCRPC-TP), we are given (a) an election (A, R), and (b) a preferred candidate p € A.
We ask if we can partition A into A; and A, such that p is the unique f-winner of
the election (W, U W,, R), where W;,i € {1, 2}, is the set of those pre-election (A;, R)
winners that are promoted to the final stage according to the tie-handling rule (TE
or TP). The CONSTRUCTIVE-CONTROL-BY-PARTITION-OF-CANDIDATES problem for f
under TE or TP (f-CCPC-TE or f-CCPC-TP) is defined similarly, except that we ask
if p can be made a unique f-winner of the election (W; U A,, R) by partitioning A
into A; and A,, i.e., there is only one pre-election (A, R) whose winners proceed
(according to the tie-handling rule, TE or TP) to the final stage to face all of A,.

Example 7.5. Let (A, R) be the Borda election in Table 7.1(a) again, and let ¢ be the
distinguished candidate the chair wants to win. This is a yes-instance in all four cases,
for both CCRPC and CCPC, each in TE and TP, as witnessed by the partition of A
into Ay = {a, f} and A, = {b, ¢, d, e}. It does not matter whether we are in the TE
or TP model,* since both subelections have a unique winner: a alone wins (A, R),
and ¢ alone wins (A;, R) (with a score of 9, while b, d, and e score only 7, 6, and
8 points). For CCRPC, both subelection winners, ¢ and a, proceed to the final stage,
which ¢ wins. For CCPC, the winner of the first subelection, a, faces all candidates of
Aj in the final stage, and as we have seen in Table 7.2(c), the unique Borda winner of
({a, b, c,d, e}, R) is c, again as desired by the chair.

The analogues of f-CCRPC-TE/TP where not the candidates but the voters are
partitioned model a very basic kind of gerrymandering. (Note that it would not make
sense to define voter-partition analogues of f-CCPC-TE/TP, at least not for natural
voting systems f.”)

Definition 7.4. Let f be a voting rule. In the CONSTRUCTIVE-CONTROL-BY-PARTITION-
OF-VOTERS problem for f under TE or TP (f-CCPV-TE or f-CCPV-TP), we are
given (a) an election (A, R), and (b) a preferred candidate p € A. We ask if R can
be partitioned into R; and R, such that p is the unique f-winner of (W; U W;, R),

4 By contrast, partitioning A into Al ={a,b,c}and A}, = {d, e, f} would reveal a difference between the two
tie-handling models: Since b and c tie for winning (A}, R), they both proceed to the final stage in model TP
(where they face e, the winner of (A’z, R), and ¢ wins the final stage), but b and ¢ eliminate each other in model
TE (so e alone proceeds to the final stage and wins).

3 In such an analogue, given an election (A, R) and p € A, we would partition R into R; and R, just as in
Definition 7.4, but there is only one pre-election, say (A, R;), whose TE/TP-winners W; would then face all
candidates in the final stage, yet (W; U A, R) = (A, R) is just the original election.
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where W;, i € {1, 2}, is the set of those pre-election (A, R;) winners that are promoted
to the final stage according to the tie-handling rule (TE or TP).

Example 7.6. Againlooking at the Borda election (A, R)in Table 7.1(a) with preferred
candidate c, the chair will succeed (in both TE and TP) by partitioning R into R =
{1,2,4,5} and R, = {3}: b alone wins (A, R;) (with a score of 13, while a, c, d, e,
and f score only 9, 10, 8, 12, and 8 points), and ¢ alone wins (A, R;). Thus they both
proceed to the final stage where ¢ beats b by 3 to 2.

The proofs that show the complexity of control by partitioning candidates or voters
are often based on similar constructions as analogous proofs for the case of deleting
candidates or voters, but usually are more involved technically.

For each constructive control problem, there is also a destructive variant, introduced
by Hemaspaandra et al. (2007), where the chair’s goal is to preclude a given candidate
from being the unique winner of the election resulting from the chair’s control action.
We denote the destructive control problems analogously, replacing the initial “C” by a
“D,” as, for example, in DCDC for “destructive control by deleting candidates.” (In this
problem, it is forbidden to delete the designated candidate p; otherwise, the problem
would be trivial.)

7.3.3 Overview and Some Other Approaches to Control

Table 7.3 summarizes the control complexity results for some prominent voting rules.
In most cases we have full knowledge of the complexity of all the basic types of
control, but for Borda and maximin some types of control were never studied, and for
Bucklin and Schulze for some types of control there are only susceptibility results in
the literature.

We already mentioned that besides Copeland* voting, 0 < @ < 1, also SP-AV
(Erdélyi et al., 2009), fallback and Bucklin voting (Erdélyi and Rothe, 2010; Erdélyi
etal., 2011, 2015a), NRV (Menton, 2013), and Schulze voting (Parkes and Xia, 2012;
Menton and Singh, 2013) are resistant to all constructive control types. Among those,
Schulze has many vulnerabilities to destructive control types, but SP-AV is vulnerable
to only three of them (DCAV, DCDV, and DCPV-TE), and fallback, Bucklin, and
NRYV even to only two (DCAV and DCDV), where the case of Bucklin-DCPV-TP is
still open. Note that SP-AV is a somewhat unnatural system (as has been discussed by
Baumeister et al. (2010) in detail), due to a rule introduced by Erdélyi et al. (2009)
that, to cope with certain control actions, can move the voters’ approval lines after they
have cast their votes. It may be argued that NRV has a similar issue (though perhaps
to a lesser extent), since after the voters have cast their votes (namely, their range
voting vectors), the normalization process can change the points the alternatives will
score from the votes. Fallback’s drawback, on the other hand, is that it is a hybrid of
two “pure” voting rules, Bucklin and approval, and requires the voters to report both
approval vectors and rankings. All three voting systems have the disadvantage that
it is rather complicated (even though far less complicated than in Schulze voting) to
determine the winners; for example, it is hardly conceivable that many of the voters in
a real-world political election would be fully aware of the effect of normalization in
NRV. But this is the price to pay if we wish to have a (relatively) natural voting rule



7.3 CONTROL 157

with P-time winner determination that is resistant to as many control actions as these
voting rules are resistant to. On the other hand, if one is willing to accept an artificial
voting rule, Hemaspaandra et al. (2009) have shown how to combine well-known rules
to obtain ones that are resistant to all types of control. While their method produces
rules that are not attractive in practice (even though they satisfy some natural normative
properties), it suggests that indeed there might exist natural voting rules with P-time
winner determination that are resistant to all types of control considered here.

Now, let us quickly point to some related work and to other approaches to con-
trol. Meir et al. (2008) study control for multiwinner voting rules. In the multiwinner
setting, we are given an election (A, R) and an integer k, and the goal is to pick a
“committee” of k winners. Multiwinner voting rules can be used to choose parliaments
(or other collective bodies), to choose finalists in competitions, or even within recom-
mendation systems (see, e.g., the work of Lu and Boutilier (201 1a) for the application
in recommendation systems and the work of Elkind et al. (2014a) for a recent gen-
eral discussion of multiwinner voting). To study control in the multiwinner setting (and
analogous approaches apply to other manipulative scenarios), Meir et al. (2008) assume
that the election chair associates some utility value with each candidate and his or her
goal is to ensure that the sum of the utilities of the candidates in the elected committee
is as high as possible. As a side effect, this approach creates a natural unification of
the constructive and destructive cases: In the constructive case the chair would have
positive utility only for the most preferred candidate, whereas in the destructive setting
the chair would have positive, equal utilities for all the candidates except the despised
one.

Faliszewski et al. (2011b) provide a unified framework to capture “multimode
control attacks” that simultaneously combine various of the control actions considered
here. Specifically, in their setting the chair can, for example, simultaneously add some
candidates and remove some voters. One of the conclusions of this work is that,
typically, the complexity of such a multimode control attack is the same as that of
the hardest basic control type involved. In particular, if a voting rule is vulnerable to
several basic types of control, it is also vulnerable if the chair can perform these control
types simultaneously (i.e., coordinating the attacks is easy). However, this conclusion
is based on studying a number of natural voting rules and is not a general theorem
(indeed, such a general theorem does not hold).

Fitzsimmons et al. (2013) study the complexity of control in the presence of manip-
ulators, both in the case where the chair and the manipulators coordinate their actions
and in the case where they compete with each other. While all the related cooperative
problems are in NP, they show that the competitive problems can be complete for the
second and the third level of the polynomial hierarchy for suitably designed artificial
voting systems (though their complexity is much lower for many natural voting sys-
tems). Another approach to unifying different types of strategic behavior is due to Xia
(2012b), who proposes a general framework that is based on so-called vote operations
and can be used to express, for example, bribery and control by adding or deleting
voters. Xia (2012b) shows that if the votes are generated i.i.d. with respect to some
distribution, then, on the average, the number of vote operations (e.g., the number of
voters that need to be added) necessary to achieve a particular effect (e.g., ensuring
that some candidate is a winner) is either zero (the effect is already achieved), or is
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proportional to the square root of the number of original voters, or is linear with respect
to the number of original voters, or the effect is impossible to achieve.

Going in a somewhat different direction, Chen et al. (2014) consider control by
adding candidates in a combinatorial setting, where one can add whole groups of
voters at unit cost. They show that even for the plurality rule, for which standard voter
control is very easy, the combinatorial setting is challenging (indeed, combinatorial
control by adding voters is NP-hard for plurality even in the settings where the groups
of voters to add contain at most two voters each).

Hemaspaandra et al. (2014b) established the first control-related dichotomy result,
showing for which pure scoring rules CCAV is easy to solve and for which this
problem is NP-complete (however, Faliszewski et al. (2013) study voter control in
weighted elections and in the technical report version of their paper show a dichotomy
result as well). This complements similar dichotomy results of Hemaspaandra and
Hemaspaandra (2007) on manipulation and of Betzler and Dorn (2010) and Baumeister
and Rothe (2012) on the possible winner problem.

Some researchers investigate not only the classical complexity, but also the parame-
terized complexity of control problems, with respect to such parameters as the solution
size (e.g., “number of added voters”) or the election size (e.g., “number of candidates”);
for example, see the work of Liu et al. (2009) for a discussion of plurality, Condorcet,
and approval; Liu and Zhu (2010, 2013) for maximin, Copeland, Borda, Bucklin, and
approval; Betzler and Uhlmann (2009) and Faliszewski et al. (2009c¢) for Copeland®;
Erdélyi et al. (2015a) for Bucklin and fallback; and Hemaspaandra et al. (2013b) for
Schulze and ranked-pairs voting. On the other hand, Brelsford et al. (2008) study the
approximability of control, manipulation, and bribery. Faliszewski et al. (2013) discuss
approximation algorithms for voter control under k-approval.

Faliszewski et al. (2011b, 2011a) and Brandt et al. (2010a) study to what extent
complexity shields for manipulation and control disappear in elections with domain
restrictions, such as in single-peaked or nearly single-peaked electorates (see also the
book chapter by Hemaspaandra et al., 2015). Magiera and Faliszewski (2014) show
similar results for single-crossing electorates.

Hemaspaandra et al. (2013a) compare the decision problems for manipulation,
bribery, and control with their search versions and study conditions under which
search reduces to decision. They also notice that two destructive control types that
previously have been viewed as distinct are in fact identical (in both the unique-
winner and the nonunique-winner model): DCRPC-TE = DCPC-TE (and, in only the
nonunique-winner model, they additionally show equality of another pair of control
types: DCRPC-TP = DCPC-TP).

So far, almost all the research on the complexity of control has been theoretical,
establishing NP-hardness of various problems. Recently, Rothe and Schend (2012)
have initiated the experimental study of control (see also the survey by Rothe and
Schend (2013) and the work of Erdélyi et al. (2015b)), showing that NP-hard control
problems can, sometimes, be solved efficiently in practice (cf. the work of Walsh
(2011a) for such studies on manipulation).

Finally, there are a number of problems that are very closely related to control, but
that, nonetheless, are usually not classified as “standard control types.” These problems
include, for example, candidate cloning (see the brief discussion in Section 7.5), fixing
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knockout tournaments (see Chapter 19 for more details), the problem of controlling
sequential elections by choosing the order of voting on related issues (see the work
of Conitzer et al., 2009a), and online control in sequential elections (see the work
of Hemaspaandra et al., 2012a, 2012b), which is inspired by online manipulation in
sequential elections due to Hemaspaandra et al. (2014a). Ideas originating from election
control have also found applications in other settings. For example, Baumeister et al.
(2012b, 2013b) have studied control for the case of judgment aggregation (for more
details on judgment aggregation, see Chapter 17 and the book chapter by Baumeister
et al. (2015)).

7.4 Bribery

Let us now move on to the study of bribery in elections. As opposed to the case of
control, this time it is not possible to affect the structure of the election at hand (that is,
the sets of candidates or voters cannot be changed), but it is possible to change some of
the votes instead. Election bribery problems, introduced by Faliszewski et al. (2009b),
model situations where an outside agent wants a particular alternative to win and pays
some of the voters to vote as the agent likes. The problem name, bribery, suggests
settings where an outside agent is dishonestly affecting election results, but there are
other interpretations of these problems as well. For example, the formal framework
of bribery can capture scenarios such as political campaign management and election
fraud detection. We discuss such aspects of bribery (and control) in Section 7.5; for now
we focus on the algorithmic properties of bribery problems without making judgments
as to their morality.

The briber’s task has two main components. First, the briber needs to decide who to
bribe. Second, the briber has to decide how to change the chosen votes. In that sense,
election bribery combines a control-like action (picking which voters to affect) with a
manipulation-like action (deciding how to change the selected votes; see Chapter 6 and
Section 4.3.3 in the book chapter by Baumeister and Rothe (2015) for more details on
manipulation). Furthermore, it might be the case that while a voter agrees to change her
vote in some ways, she may refuse to change it in some other ways (e.g., the voter might
agree to swap the two least preferred alternatives, but not to swap the two most preferred
ones). The following definition, based on the ones given by Faliszewski et al. (2009b)
and—later—by Elkind et al. (2009¢),° tries to capture these intuitions. (A careful reader
should see that this definition is not sufficient for algorithmic applications; however, it
will be a convenient base for further refinements.)

Definition 7.5. Let f be a voting rule. In the priced bribery problem for f, we are

given (a) an election (A, R), where the set of votersis N = {1, ..., n} and R contains
a preference order >; for each i € N, (b) a preferred alternative p € A, (c) a budget
B € N, and (d) a collection of price functions I1 = (7y, ..., 7,). Foreachi, 1 <i < n,

and each preference order > over A, m;(>) is the cost of convincing the ith voter to

6 To provide historical perspective, let us mention that the paper of Faliszewski et al. (2009b) was presented in
2006 at the 21st National Conference on Artificial Intelligence (AAAI).
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cast vote > (we require that for each i, 1 < i < n, 7;(>;) = 0). We ask if there exists a
preference profile R" = (>, ..., >) such that (i) p is an f-winner of election (A, R’),
and (i) Y, mi (=) < B

Informally speaking, in condition (i) we require that the bribery is successful (p
becomes a winner) and in condition (if) we require that it is cheap enough (i.e., within
our budget B). However, it is impossible to use this definition directly in our algorithmic
analysis. The problem is that given an election (A, R), each price function should be
defined for |A|! different arguments. If we represented each price function by listing all
the | A|! argument-value pairs, the encoding of the problem would grow exponentially
and for most natural voting rules the problem could be solved by brute force (yet
without giving any real insight into the nature of election bribery). In other words, to
make the problem interesting (and practical), we have to limit our attention to families
of price functions that can be described succinctly. To this end, researchers have mostly
focused on the following families of functions (in the following description we use
the notation from Definition 7.5; we use the terms discrete and $discrete to unify the
discussion of bribery problems even though these terms did not appear in the original

papers):

1. We say that the price functions are discrete if for each m;, 1 <i < n, and for each
preference order >, it holds that 7;(>-) = 0 if > = >;, and 7;(>>) = 1 otherwise.

2. We say that the price functions are $discrete if for each m;, 1 <i < n, there is an
integer ¢; such that for each preference order >, it holds that ;(>) = 0 if > = >;, and
7;(>) = ¢; otherwise. (Each voter can have a different value c;.)

3. We say that the price functions are swap-bribery price functions if foreach m;, 1 <i < n,
and for each two alternatives x, y € A, there is a value el

i
order >, m;(>>) is the sum of the values c}x’y} such that > ranks x and y in the opposite
order than >; does.

such that for each preference

That is, discrete functions give cost one for changing a vote (irrespective of which
vote it is or how it is changed), $discrete functions give a (possibly different) cost for
changing each vote (irrespective of the nature of the change), and swap-bribery price
functions define a cost for swapping each two alternatives and, then, sum up these
costs. Clearly, functions in each of these families can be described succinctly.

From the historical perspective, the first paper on the complexity of bribery in
elections (due to Faliszewski et al., 2009b) focused largely on discrete and $discrete
functions. Swap-bribery functions were introduced first by Faliszewski et al. (2009¢)
in the context of so-called irrational votes, and were later carefully studied by Elkind
et al. (2009c¢) in the standard setting of linear preference orders. Naturally, one can also
define other families of cost functions (and some researchers—including the ones just
cited—have done so) but in this chapter we will focus on these three.

Definition 7.5 can be applied to weighted elections as well. In such a case, it is
tempting to introduce some explicit relation between the voters’ weights and the costs

7" As opposed to the case of control, research on bribery typically focuses on the nonunique-winner model; the
unique-winner model has been considered in addition in some papers on bribery (see, e.g., Faliszewski et al.,
2015).
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of changing their votes. However, doing so is not necessary and we assume that such
dependencies, if needed, are embedded in the price functions.

7.4.1 Bribery, Weighted-Bribery, $Bribery, Weighted-$Bribery, and
Swap-Bribery

We focus on the bribery problems that can be derived using discrete, $discrete, and
swap-bribery price functions. For the former two, consider the following definition.

Definition 7.6 (Faliszewski et al., 2009b). Let f be a voting rule. By f-BRIBERY we
denote the priced bribery problem with discrete price functions and by f-$BRIBERY
we denote the priced bribery problem with $discrete price functions. The problems
f-WEIGHTED-BRIBERY and f-WEIGHTED-$BRIBERY are defined in the same way, but
for weighted elections.

Example 7.7. Consider the Borda election in Table 7.1(a) and suppose that each voter
has the same unit price, and that the goal is to ensure the victory of f through bribery.
Prior to the bribery, b has 16 points and f has 9. It suffices to bribe voter 3 to cast vote
f daceb. (Afterward, b, e, and f have score 13 each, and a, c, and d have score 12
each.) This means that there is a successful bribery with cost one. On the other hand, if
voters 1 and 5 had cost one and the remaining voters had cost three each, then it would
be better to bribe voters 1 and 5 to shift f to the top positions in their votes.

For swap-bribery price functions, Elkind et al. (2009¢c) have defined the following
problem (they have not studied swap bribery for weighted elections).

Definition 7.7 (Elkind et al., 2009¢). Let f be a voting rule. By f-SwAP-BRIBERY
we denote the priced bribery problem with swap-bribery price functions.

Example 7.8. Consider the Borda election in Table 7.1(a) once again. This time, by
applying swap bribery, we want to ensure victory of candidate d. We assume that
swapping each two adjacent candidates has unit cost. Prior to the bribery, » has 16
points, ¢ has 15 points, d and e have 12 points, a has 11 points, and f has 9 points. We
perform the bribery as follows: We swap b in the preference order of voter 1 first with
f, then with e, and finally with d. This way b loses three points and d, e, and f gain
one point each. Thus b, d, and e have score 13 each, a and f score less than 13 points,
but ¢ still has 15 points. So, next we swap ¢ and d in the preference order of voter 3.
This way both ¢ and d have score 14 and they both tie as winners. This is a successful
swap bribery of cost four (and, indeed, it is the cheapest successful swap bribery for d
in this scenario).

To familiarize ourselves with bribery problems further, let us consider their com-
plexity for the plurality rule.

Theorem 7.9. For plurality voting it holds that:

1. BRIBERY, WEIGHTED-BRIBERY, and $BRIBERY are each in P, but WEIGHTED-$BRIBERY
is NP-complete (Faliszewski et al., 2009b), and
2. SwaAP-BRIBERY is in P (Elkind et al., 2009¢).

It is easy to see that plurality-BRIBERY can be solved by (repeating in a loop)
the following greedy algorithm: If the preferred alternative is not a winner already,
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then pick one of the current winners and bribe one of her voters to vote for the
preferred alternative. Unfortunately, such greedy approaches do not work for plurality-
WEIGHTED-BRIBERY. For example, consider an algorithm that works in iterations and
in each iteration bribes the heaviest voter among those that vote for one of the current
winners. Let (A, R) be an election where A = {p, a, b, c} and where we have 9 weight-
1 voters voting for a, a single weight-5 voter voting for b, and a single weight-5 voter
voting for c. Clearly, it suffices to bribe the two weight-5 voters, but the heuristic would
bribe five voters with weight 1 each. On the other hand, bribing the heaviest voter
first does not always work either (Faliszewski et al. (2009d) give a counterexample
with A = {p, a, b}, p receiving no votes at first, a receiving three weight-2 votes
and one weight-1 vote, and b receiving two weight-3 votes; to make p a winner it
suffices to bribe one weight-2 vote and one weight-3 vote, but the heuristic bribes three
votes). Nonetheless, a combination of these two heuristics does yield a polynomial-time
algorithm for plurality-WEIGHTED-BRIBERY.

Let us consider some weighted plurality election and let us say that somehow we
know that after an optimal bribery, our preferred alternative p has at least 7' points.
Naturally, all the other alternatives have to end up with at most T points (and we can
assume that at least one of them will get exactly T points). Thus for each alternative a
that has more than 7 points, we should keep bribing its heaviest voters until its score
decreases to at most 7 (this corresponds to running the bribe the current winner’s
heaviest voter heuristic). If, after bringing each alternative to at most 7' points, the
preferred alternative still does not have T points, we bribe the globally heaviest voters
to vote for the preferred alternative. We do so until the preferred alternative reaches
at least T points (this corresponds to running the bribe the heaviest voter heuristic).
If we chose the value of T correctly, by this point we would have found an optimal
bribery strategy. But how do we choose T? If the weights were encoded in unary, we
could try all possible values, but doing so for binary-encoded weights would give an
exponential-time algorithm. Fortunately, we can make the following observation: For
each alternative a, we bribe a’s voters in the order of their nonincreasing weights.
Thus, after executing the above-described strategy for some optimal value 7', a’s score
is in the set {a’s original score, a’s score without its heaviest voter, a’s score without
its two heaviest voters, . . .}. Thus it suffices to consider values T of this form only (for
each candidate) and to pick one that leads to a cheapest bribery.

It is an easy exercise for the reader to adapt the plurality-WEIGHTED-BRIBERY
algorithm to the case of plurality-$BRIBERY. On the other hand, solving plurality-
SwAP-BRIBERY requires a somewhat different approach. The reason is that under
SwAP-BRIBERY it might not always be optimal to push our preferred candidate to the
top of the votes, but sometimes it may be cheaper and more effective to replace some
high-scoring alternatives with other, low-scoring ones. To account for such strategies,
Elkind et al. (2009c) compute, for each vote v, the lowest cost of replacing v’s current
top-alternative with each other one, and then run a flow-based algorithm of Faliszewski
(2008) to find the bribing strategy. We omit the details here.

For plurality-WEIGHTED-$BRIBERY, it is easy to see that the problem is in NP and
so we only show NP-hardness. We give a reduction from the PARTITION problem
to plurality-WEIGHTED-$BRIBERY. Recall that in the PARTITION problem the input
consists of a sequence of positive integers that sum up to some value S, and we ask
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Table 7.4. The complexity of f-BRIBERY for various voting rules

f f-BRIBERY reference

plurality P Faliszewski et al. (2009b)
veto P Faliszewski et al. (2009b)
2-approval P Lin (2012)

k-veto, k € {2, 3} P Lin (2012)

k-approval, k > 3 NP-complete Lin (2012)

k-veto, k > 4 NP-complete Lin (2012)

Borda NP-complete Brelsford et al. (2008)
STV NP-complete Xia (2012a)

Bucklin NP-complete Faliszewski et al. (2015)
fallback NP-complete Faliszewski et al. (2015)
maximin NP-complete Faliszewski et al. (2011b)
Copeland NP-complete Faliszewski et al. (2009¢)
Schulze NP-complete Parkes and Xia (2012)
ranked pairs NP-complete Xia (2012a)

approval NP-complete Faliszewski et al. (2009b)
range voting NP-complete follows from the approval result

if it is possible to partition this sequence into two subsequences that both sum up to
S/> (naturally, for that S needs to be even). Let (sq, ..., s,) be the input sequence and
let $ =)"7_, s;. We form an election (A, R), with A = {p, d} and with R containing
n voters voting for d; for each i, 1 < i < n, the ith voter has weight s; and her price
function is “it costs s; to change the vote.” The budget B is S/2. In effect, any bribery
of cost at most B can give p a score of at most S/2. The only such briberies that would
ensure that p is among the winners must give p score exactly S/2, by solving the original
PARTITION instance. This result is particularly useful because its proof easily adapts
to most other typical voting rules, showing that WEIGHTED-$BRIBERY is NP-complete
for them as well.

Theorem 7.9 suggests that, perhaps, for various voting rules f,notonlyis f-BRIBERY
easy but so are even its more involved variants, f-$BRIBERY and f-WEIGHTED-
BriBERY. However, in-depth study of f-BRIBERY has shown that the problem is
NP-complete for most natural voting rules f. We survey these results in Table 7.4.
Naturally, the hardness results for BRIBERY immediately transfer to $BRIBERY and
WEIGHTED-BRIBERY.

Theorem 7.10 (Faliszewski et al., 2009b). For each voting rule f, f-BRIBERY reduces
to f-$BRIBERY and to f-WEIGHTED-BRIBERY.

Furthermore, for the case of $BRIBERY we can inherit multiple hardness results from
the coalitional manipulation problem, through a simple reduction.

Definition 7.8 (Conitzer et al., 2007). Let f be a voting rule. In the (constructive,
coalitional) f-MANIPULATION problem we are given (a) an election (A, R), (b) a
preferred alternative p € A, and (c) a collection R’ of voters with unspecified preference
orders. We ask if it is possible to ensure that p is an f-winner of election (A, R + R’)
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by setting the preference orders of the voters in R’. The (constructive, coalitional) f-
WEIGHTED-MANIPULATION problem is defined analogously, but for weighted elections,
where the manipulators’ weights are given.

Theorem 7.11 (Faliszewski et al., 2009b). For each voting rule f, f-MANIPULA-
TION reduces to f-$BRIBERY, and f-WEIGHTED-MANIPULATION reduces to f-
WEIGHTED-$BRIBERY.

For the case of SWAP-BRIBERY, hardness results are even more abundant. Elkind
etal. (2009¢) have shown that the problem is NP-complete for k-approval (for k > 2)°
and for Borda, Copeland, and maximin (for the latter three systems, NP-hardness holds
even for SHIFT-BRIBERY, a special case of SwWAP-BRIBERY where the swaps have to
involve the preferred candidate). Furthermore, the SWAP-BRIBERY problem generalizes
the POSSIBLE-WINNER problem, which itself generalizes the MANIPULATION problem.

Definition 7.9 (Konczak and Lang, 2005). Let f be a voting rule. In the f-POSSIBLE-
WINNER problem we are given (a) an election (A, R), where the voters in R are
represented through (possibly) partial orders, and (b) an alternative p € A. We ask if
it is possible to extend the partial orders in R to linear orders in such a way that p is an
f-winner of the resulting election.

Theorem 7.12 (Elkind et al., 2009¢). For each voting rule f, f-POSSIBLE-WINNER
reduces to f-SWAP-BRIBERY.

Xia and Conitzer (201 1a) have shown hardness of POSSIBLE-WINNER for a number
of voting rules (including STV, ranked pairs, Borda, Copeland, maximin, and many
other rules); Betzler and Dorn (2010) together with Baumeister and Rothe (2012) show
a dichotomy result regarding the complexity of POSSIBLE-WINNER for pure scoring
rules, obtaining hardness for almost all of them (see Chapter 10 and Section 4.3.2 in
the book chapter by Baumeister and Rothe (2015) for more details on the POSSIBLE-
WINNER problem and on related issues). By Theorem 7.12, these hardness results
immediately translate to hardness results for SWAP-BRIBERY and the same voting rules.

Such an overwhelming number of hardness results (either shown directly or implied
by Theorems 7.11 and 7.12) suggests that, perhaps, SWAP-BRIBERY is too general
a problem. That is why Elkind et al. (2009¢) defined SHIFT-BRIBERY, a variant of
SwaAP-BRIBERY where, as mentioned earlier, the only legal briberies shift the preferred
candidate up in the voters’ preference orders. While this problem turned out to typi-
cally be NP-complete as well, Elkind et al. (2009¢), Elkind and Faliszewski (2010), and
Schlotter et al. (2011) have found some interesting polynomial-time algorithms, exact
and approximate, and Bredereck et al. (2014b) have studied the parameterized com-
plexity of SHIFT-BRIBERY (see Section 7.5 for more motivating discussions regarding
SHIFT-BRIBERY).

We now show that (the optimization variant of) Borda-SHIFT-BRIBERY can be effi-
ciently approximated within a factor of 2.

Theorem 7.13 (Elkind et al., 2009¢). There is a polynomial-time 2-approximation
algorithm for the cost of a cheapest shift bribery under Borda voting.

8 The result for k = 2 follows from the work of Betzler and Dorn (2010); for k = 1 the problem is in P; for
k = m/2, where m is the number of alternatives, Elkind et al. (2009¢) have shown hardness even for the case of
a single voter.
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Proof sketch. Consider an instance of our problem where the goal is to ensure candidate
p’s victory. By definition, the only possible actions are shifting p forward in (some of)
the votes (costs are specified through swap-bribery price functions where swaps that
do not involve p have infinite cost and we can think of shifting p forward in terms of
its swaps with other candidates).

We start with two observations. First, there is a polynomial-time algorithm that
given an instance of the optimization variant of Borda-SHIFT-BRIBERY computes the
cost of a cheapest shift bribery that gives p a given number of points (the algorithm
uses standard dynamic programming). Second, if there is a successful shift bribery that
increases the score of p by K points, then every shift bribery that increases p’s score
by 2K points is successful (the best imaginable shift bribery gets K points for p in
such a way that in each swap it increases the score of p and decreases the score of
its strongest competitor; we achieve the same—or better—effect by getting 2K points
for p).

Now the algorithm proceeds as follows: First, we guess the number K of points
that p gets in the optimal solution. Then, we guess a number K', K’ < K. (Because
we are dealing with Borda elections, both guesses boil down to trying polynomially
many computation paths.) We compute a cheapest shift bribery S; that gives K points
to p. Then, we compute a cheapest shift bribery S, that gives K’ additional points to
p (we apply S, after we have applied S;). We claim that S; + S, (that is, the two shift
briberies taken together) form a 2-approximate solution.

Why is this so? Consider some optimal shift bribery O that ensures that p wins.
By assumption, this shift bribery obtains K points for p. Now imagine the following
situation: We start with the original election and perform only those swaps that are
included in both O and S;. In effect, p gains some K” points. If we continued with
the optimal solution, p would obtain additional K — K" points and would become a
winner of the election. By our second observation, this means that if after performing
the swaps that occur both in O and in S; we obtain additional 2(K — K”) points for
p, p certainly wins. We obtain the first of these K — K” points by simply performing
the remaining swaps from S;. For the second K — K” points, we can assume that we
guessed K’ = K — K”. In effect, performing the swaps from S, ensures p’s victory.
Furthermore, by definition of S| we know that its cost is no higher than that of O. On
the other hand, the cost of S, also has to be at most as high as that of O because, by
definition, the cost of S; cannot be higher than the cost of the shift bribery that contains
exactly the swaps that are in O but not in S;. 0

So far, there has been relatively little research on how to cope with the hardness of
bribery problems (except for results regarding special cases such as SHIFT-BRIBERY, as
seen in the preceding theorem). For example, many parameterized-complexity results
boil down to polynomial-time algorithms for the case where the number of candi-
dates is constant. In this case, bribery problems can either be solved by an appro-
priate brute-force search, or by solving a linear integer program using the algorithm
of Lenstra, Jr. (1983); see the papers of Faliszewski et al. (2009b, 2011b), Elkind
et al. (2009¢), Dorn and Schlotter (2012), and Hemaspaandra et al. (2013b) for exam-
ples. These approaches, however, do not work for weighted elections and, indeed, for
weighted elections bribery problems are typically NP-hard (see, e.g., the dichotomy
results of Faliszewski et al. (2009b)). On the other hand, there are several detailed
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studies of parameterized complexity of SWAP-BRIBERY (due to Dorn and Schliotter,
2012), SupPORT-BRIBERY (Schlotter et al. (2011); we omit the discussion of SUPPORT-
BRrIBERY), and SHIFT-BRIBERY (Bredereck et al., 2014b).

Another natural way of coping with the hardness of bribery problems would be to
design approximation algorithms. Brelsford et al. (2008) have made some attempts
in this direction (though, using a rather involved goal function instead of approxi-
mating the cost of a successful bribery), Faliszewski (2008) gave a fully polynomial-
time approximation scheme for plurality-WEIGHTED-$BRIBERY, and Xia (2012a) gave
several approximation algorithms for destructive bribery problems (where the goal
is to ensure, through buying votes, that some candidate does not win the election).
There are also approximation results regarding SHIFT-BRIBERY (due to Elkind and
Faliszewski, 2010; Bredereck et al., 2014b). While surprising at first, this limited
enthusiasm for studying approximation algorithms for bribery problems can, to some
extent, be understood. Theorems 7.11 and 7.12 show how to reduce the MANIPULATION
and PosSIBLE-WINNER problems to appropriate $BRIBERY and SWAP-BRIBERY prob-
lems, and they do so via showing that a given MANIPULATION (POSSIBLE-WINNER)
instance is a “yes” instance if and only if there is a zero-cost bribery. This means
that, unless P = NP, those $BRIBERY and SwAP-BRIBERY problems whose hardness
can be shown via Theorems 7.11 and 7.12 do not have constant-factor polynomial-
time approximation algorithms (for finding the cheapest successful bribery). Nonethe-
less, it is interesting to study the approximability of f-BRIBERY for various voting
rules f.

It would also be interesting to study the complexity of bribery in elections with
restricted domains, for example, in single-peaked elections. While this direction has
been pursued successfully for the case of control, we are aware of only a single paper
that attempted it for bribery (Brandt et al., 2010a), showing that, indeed, for single-
peaked elections bribery problems often become easy (see also Section 5.4 in the book
chapter by Hemaspaandra et al. (2015)).

7.4.2 Other Bribery Problems

So far, we have focused on the most standard election model, where voter preferences
are represented by total orders over the set of alternatives. Naturally, there are numerous
other settings in which bribery was studied, and in what follows we give several (though
certainly not all) examples of such settings.

Mattei et al. (2012a) have considered bribery in combinatorial domains, where
the voters express their preferences over bundles of alternatives in a certain compact
way. This compact representation can lead to quite interesting results. The particular
language used to express preferences in the work of Mattei et al. (2012a) (CP-nets)
does not allow one to express certain preference orders and, as a result, BRIBERY for
k-approval becomes easy in this model (see Chapter 9 for more details on voting in
combinatorial domains). If there are no direct interrelations between the bundles of
items, it may be more reasonable to model bribery as the lobbying problem (studied by
Christian et al. (2007) and later on by Bredereck et al. (2014a) and Binkele-Raible et al.
(2014)): We are given a collection of yes/no votes over all items independently, where
an item is accepted with a simple majority of yes votes, and is rejected otherwise. The



7.5 A POSITIVE LOOK 167

lobby’s goal is to change the outcome to its liking by bribing certain voters without
exceeding its budget.

Examples of bribery problems in other settings include, for example, the work of
Baumeister et al. (2011) on bribery in judgment aggregation (see Chapter 17 and the
book chapter by Baumeister et al. (2015) for more details on judgment aggregation), the
work of Rey and Rothe (2011) and Marple et al. (2014) on bribery in path-disruption
games, and the work of Mattei et al. (2012b) on bribery in tournaments.

7.5 A Positive Look

There are a number of settings where control and bribery (and similar problems) have
positive interpretations (from particular points of view). In the following we very briefly
list a few examples of such settings.

Election control problems deal with affecting their structure in order to change the
winner. Instead of viewing this as someone manipulating the result, we can think of it
as predicting the winners given how the election’s structure may change. For example,
this research direction was pursued by Chevaleyre et al. (2012) and Baumeister et al.
(2012c). Specifically, Chevaleyre et al. (2012) have studied a situation where we have
already elicited voters’ preferences regarding some set of candidates, but afterward
some new candidates appeared, of whom we have no knowledge whatsoever. Naturally,
possibly each new candidate can be better than each old one, so each of them, possibly,
might win the election. However, can we decide which of the original candidates still
have chances of winning? This problem of predicting possible winners is very close in
spirit to control by adding candidates (and to cloning; see later), though—formally—it
is a special case of the POSSIBLE-WINNER problem (and, as such, it is a special case of
the SWAP-BRIBERY problem).

Another way of predicting election winners was suggested by Wojtas and Fal-
iszewski (2012), who have used counting variants of election control problems. In
particular, they considered the following setting: We know the preference orders of the
voters, but we do not know which of them will eventually cast votes. Having some prior
distribution on the number of voters that do cast votes (and assuming that if k voters
participate in the election, then each size-k subset of voters is equally likely to vote),
what is the probability that a given candidate wins? Formally, this problem reduces to
counting the number of ways of adding (deleting) voters to (from) an election to ensure
a given candidate’s victory.

Quite interestingly, many of the problems that model attacks on elections have
direct applications in protecting them. For example, in the margin-of-victory problem
(see, e.g., the work of Cary (2011), Magrino et al. (2011), Xia (2012a), and Reisch
et al. (2014)) we ask how many voters need to cast different votes to change the
result of an election. If this number is high then it is unlikely that the election was
tampered with. However, if this number is low, it means that it would have been easy to
manipulate the result in some way and thus we should carefully check the election. The
margin-of-victory problem is, in some sense, simply a destructive bribery problem.
Similarly, Birrell and Pass (2011) have used bribery-related problems in the context of
approximate strategyproofness of voting rules. Yet another application of a control-like
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problem to protect elections was given by Elkind et al. (2012a). They have considered
the problem of candidate cloning, where some candidate c is replaced by a number of
clones, ci, ..., ¢;, that—from the point of view of the voters—are indistinguishable
(consider, for example, a party submitting several candidates for a given position and
the voters forming their preference orders based on party membership only). If an
election is single-peaked and we clone a candidate, it is likely that this election ceases
to be single-peaked. Motivated by this observation, Elkind et al. (2012a) have given
an algorithm that finds an optimal “decloning” of the candidates, so that the resulting
election is single-peaked (similar results, though in a different context, were later
given by Cornaz et al. (2012, 2013); we also mention that cloning, originally defined
by Tideman (1987) and by Zavist and Tideman (1989), resembles control by adding
candidates; its computational analysis is due to Elkind et al. (201 1a)).

Finally, let us mention some positive interpretations of bribery problems. In political
elections, prior to casting the votes, the candidates run their campaigns and wish to
convince the voters to rank them as highly as possible. Naturally, running a campaign
has cost (both in terms of money and in terms of invested time) and it is important for the
candidates to decide which voters they should try to convince. However, deciding how
much effort to spend on each voter (or, group of voters) is just the bribery problem (see
the work of Hazon et al. (2013) for a different twist on this idea). With the campaign
management interpretation in mind, it is natural to study various special cases of the
bribery problems. Indeed, SHIFT-BRIBERY of Elkind et al. (2009¢), where we can only
convince the voters to rank the preferred candidate higher and we cannot affect the
relative order of the other candidates, models campaign management in a natural way.
While the SHIFT-BRIBERY problem is NP-hard for many voting rules, Elkind et al.
(2009¢) have given a 2-approximation algorithm for this problem with Borda’s rule
(see Theorem 7.13 here), Elkind and Faliszewski (2010) have extended this result to all
scoring rules (and provided weaker approximations for Copeland and maximin), and
Schlotter et al. (201 1) have shown that SHIFT-BRIBERY is in P for Bucklin and fallback
voting. These results for Bucklin and fallback voting were recently complemented
by Faliszewski et al. (2015) who studied various bribery problems for these rules,
including so-called EXTENSION-BRIBERY, introduced by Baumeister et al. (2012a) in
the context of campaign management in the presence of truncated ballots.

7.6 Summary

We surveyed the known results on control and bribery. While often studied in the
context of attacking elections, these problems also have many other applications and
interpretations, often very positive ones. Many NP-hardness results have been obtained,
yet recent work focuses on solving these problems effectively, either by approximation
or fixed-parameter tractable algorithms, or efficient heuristics. We strongly encourage
the readers to study control and bribery and to add their own contributions to the field.



CHAPTER 8

Rationalizations of Voting Rules

Edith Elkind and Arkadii Slinko

8.1 Introduction

From antiquity to these days, voting has been an important tool for making collective
decisions that accommodate the preferences of all participants. Historically, a remark-
ably diverse set of voting rules have been used (see, e.g., Brams and Fishburn, 2002),
with several new voting rules proposed in the last three decades (Tideman, 1987;
Schulze, 2003; Balinski and Laraki, 2010). Thus, when decision-makers need to select
a voting rule, they have plenty of choice: should they aggregate their opinions using
something as basic as Plurality voting or something as sophisticated as Ranked Pairs?
Or should they perhaps design a new voting rule to capture the specific features of their
setting?

Perhaps the best known way to answer this question is to use the axiomatic approach,
that is, identify desirable properties of a voting rule and then choose (or construct) a rule
that has all of these properties. This line of work was initiated by Arrow (1951) and led to
a great number of impossibility theorems, as it turned out that some desirable properties
of voting systems are incompatible. By relaxing these properties, researchers obtained
axiomatic characterizations of a number of classical voting rules, such as Majority
(May, 1952), Borda (Young, 1975), and Kemeny (Young and Levenglick, 1978); see
the survey by Chebotarev and Shamis (1998) as well as Chapter 2.

However, early applications of voting suggest a different perspective on this question.
It is fair to say that in the Middle Ages voting was most often used by religious
organizations (Uckelman and Uckelman, 2010). The predominant view in ecclesiastical
elections was that God’s cause needed the most consecrated talent that could be found
for leadership in the church. Moreover, it was believed that God knew who the best
candidate was, so the purpose of elections was to reveal God’s will. It is therefore not
surprising that when the Marquis de Condorcet (1785) undertook the first attempt at
systematization of voting rules, he was influenced by the philosophy of church elections.
His view was that the aim of voting is to determine the “best” decision for the society
when voters are prone to making mistakes. This approach assumes that there is an
objectively correct choice, but voters have different opinions due to errors of judgment;
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absent these errors, they would all agree on the most suitable alternative. Thus, one
should aim to design a voting rule that maximizes the probability of identifying the
best choice. Depending on the model of “noise” or “mistakes” in voters’ judgment, we
get different voting rules. In statistics, this approach is known as maximum likelihood
estimation (MLE): it tries to estimate the state of the world (which is hidden) that is
most likely to produce the observed noisy data.

A somewhat different, but related approach, which takes its roots in ideas of Charles
Dodgson (1876), can be called consensus-based. The society agrees on a notion of
a consensus (for example, we could say that there is a consensus if all voters agree
which alternative is the best, or if there exists a Condorcet winner), and the result of
each election is viewed as an imperfect approximation to a consensus. Specifically, if a
preference profile R is a consensus, then we pick the consensus winner, and otherwise
we output the winners of consensus profiles R’ that are as close to R as possible.
Alternatively, we may say that the society looks for a minimal change to the given
preference profile that turns it into a profile with an indisputable winner. At the heart
of this approach is the agreement as to (1) which preference profiles should be viewed
as consensual and (2) what is the appropriate notion of closeness among preference
profiles. It turns out that many common voting rules can be explained and classified by
different choices of these parameters.

In this chapter we will survey the MLE framework and the consensus-based frame-
work, starting with the latter. We demonstrate that both frameworks can be used to
rationalize many common voting rules, with the consensus-based framework being
somewhat more versatile. We also establish some connections between the two frame-
works. We remark that these two frameworks are not the only alternatives to the
axiomatic analysis. For instance, Camps et al. (2014) put forward an approach that
is based on propositional logic. Furthermore, in economic literature the term “ratio-
nalization” usually refers to explaining the behavior of an agent or a group of agents
via an acyclic (or transitive) preference relation, and there is a large body of literature
that investigates which voting rules are rationalizable in this sense (see Bossert and
Suzumura, 2010, for a survey). In this chapter, we focus on the MLE framework and
the consensus-based framework because these two methods for rationalizing voting
rules are interesting from a computational perspective: as we will see, explaining a
voting rule via a consensus and a “good” measure of closeness implies upper bounds
on its algorithmic complexity, whereas MLE-based voting rules are desirable for many
applications, such as crowdsourcing, and therefore implementing them efficiently is of
paramount importance.

In what follows, we assume that the set of alternatives is A and |A| = m; we use the
terms alternatives and candidates interchangeably. Also, unless specified otherwise,
voters’ preferences and ballots are assumed to be linear orders over A.

8.2 Consensus-Based Rules
The goal of the consensus-based approach is to reach a compromise among all voters,

that is, to arrive at a situation where there is agreement in society as to which outcome
is the best. This may require persuading some voters to modify their opinions in minor
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ways, and, as a result, to make small changes to their ballots. Obviously it is desirable
to minimize the number and magnitude of these changes. Thus, the best alternatives
are the ones for which the agreement can be reached at the smallest cost (measured
by the total amount of changes). In other words, given an arbitrary preference profile,
we proceed by identifying the consensual profiles that are most similar to it and
outputting their winners. The result then depends on how we define consensual profiles
and how we measure the magnitude of change in votes. The latter question is usually
addressed by using a distance over the space of profiles; this is why voting rules that
can be obtained in this manner are called distance rationalizable. Often, this distance is
obtained by computing the number of “unit changes” needed to transform one profile
into the other, where the notion of “unit change” may vary from one voting rule to
another.

This method of constructing voting rules can be traced back to Dodgson (1876), who
was the first to define a voting rule in this manner (for a specific notion of consensus and
a specific distance between profiles, see Section 8.2.1). More recently, it was formalized
and studied by Nitzan (1981), Lerer and Nitzan (1985), Campbell and Nitzan (1986),
and Baigent (1987), and subsequently by Meskanen and Nurmi (2008) and Elkind
et al. (2010a, 2010b, 2011b, 2012b); we also point the reader to the survey of Eckert
and Klamler (2011). It turns out that many classic voting rules can be obtained in this
manner; Meskanen and Nurmi (2008) put together an extensive catalogue of distance
rationalizations of common voting rules, with additional examples provided by Elkind
etal. (2010b, 2012b). Furthermore, many properties of voting rules can be derived from
their distance rationalizations: a voting rule can be shown to have “nice” properties if
it can be rationalized via a “nice” consensus class and a “nice” distance. This makes
the distance rationalizability approach eminently suitable for constructing new voting
rules: it allows us to combine known distances and consensus classes, and derive
conclusions about the resulting rules based on the properties of their components.

We start by presenting a few examples that illustrate the concepts of consensus and
distance to consensus, followed by a formal definition and a discussion of properties
of distance rationalizable voting rules.

8.2.1 Examples

The examples in this section are taken from the work of Meskanen and Nurmi (2008)
and Elkind et al. (2012b); see these papers for additional references. We provide brief
descriptions of the voting rules we consider; for formal definitions the reader is referred
to Chapter 2.

Dodgson. Perhaps the most canonical example of the consensus-based approach is
the Dodgson rule. Recall that winner determination under this rule proceeds as
follows. If the given preference profile has a Condorcet winner, that is, a candidate
that beats every other candidate in a pairwise election, then this candidate is
declared the unique Dodgson winner. Otherwise, for every candidate ¢ we compute
her Dodgson score, that is, the number of swaps of adjacent candidates in voters’
ballots that need to be performed in order to make ¢ a Condorcet winner. We then
output all candidates with the smallest Dodgson score. This definition follows the
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principles of the distance rationalizability framework: the underlying notion of
agreement is the existence of a Condorcet winner, and the unit changes are swaps
of adjacent candidates. This notion of unit change corresponds to a distance on
rankings known as the swap distance, which is the number of swaps of adjacent
candidates needed to transform one ranking into the other. We refer the reader to
Chapter 5 for a complexity-theoretic analysis of the Dodgson rule.

Kemeny. The Kemeny rule is also defined in terms of the swap distance. While it is

more common to view this rule as a social preference function, that is, a mapping
that, given a preference profile, outputs a set of rankings, in this section we will
be interested in the interpretation of this rule as a social choice function. Under
the Kemeny rule, we identify all rankings that minimize the total swap distance
to the voters’ ballots. The associated social preference function then outputs all
such rankings, whereas the Kemeny social choice function (which we will refer
to as the Kemeny rule) outputs all candidates that are ranked first in at least one
of these rankings. This rule can be viewed as another example of the distance
rationalizability approach: the consensual profiles are ones where all votes are
identical, and the unit changes are the same as for the Dodgson rule, that is, swaps
of adjacent candidates.

Plurality. Under Plurality rule, each candidate gets one point from each voter who

ranks her first; the winners are the candidates with the largest number of points.
Because Plurality considers voters’ top candidates only, it is natural to use a
notion of consensus that also has this property: we say that there is an agreement
in the society if all voters rank the same candidate first. Now, consider an n-voter
preference profile. If some candidate a receives n, < n Plurality votes, there are
n — n, voters who do not rank her first. Thus, if we want to turn this profile into a
consensus where everyone ranks a first, and we are allowed to change the ballots
in any way we like (at a unit cost per ballot), we have to modify n — n, ballots. In
other words, if our notion of a unit change is an arbitrary modification of an entire
ballot, then the number of unit changes required to make a candidate a consensus
winner is inversely related to her Plurality score. In particular, the candidates for
whom the number of required unit changes is minimal are the Plurality winners.
Alternatively, we can define a unit change as a swap of two (not necessarily
adjacent) candidates; the preceding argument still applies, thereby showing that
this construction also leads to the Plurality rule.

Borda. Recall that the Borda score of a candidate a in an n-voter, m-candidate pro-

fileis givenby (m —ry) +---+(m —r,) =nm — Y, r;,wherer;,i =1,...,n,
is the rank of a in the ith ballot. To distance rationalize this rule, we use the same
notion of consensus as for the Plurality rule (i.e., all voters agree on who is the
best candidate) and the same notion of unit change as for the Dodgson rule and
the Kemeny rule, namely, a swap of adjacent candidates. Indeed, to ensure that
a is ranked first by voter i, we need to perform r; — 1 swaps of adjacent candi-
dates. Consequently, making a the unanimous winner requires ) , r; — n swaps.
That is, the number of swaps required to make a candidate a consensus winner
is inversely related to her Borda score. This construction, which dates back to
Farkas and Nitzan (1979), can be extended to scoring rules other than Borda, by
assigning appropriate weights to the swaps (Lerer and Nitzan, 1985).
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Copeland. The Copeland score of a candidate a can be defined as the number of
pairwise elections that a wins (a may also get additional points for the pairwise
elections that end in a tie; in what follows we focus on elections with an odd
number of voters to avoid dealing with ties). The Copeland winners are the
candidates with the highest Copeland score. For this rule, an appropriate notion
of consensus is the existence of a Condorcet winner. As for the notion of unit
change, it is convenient to formulate it in terms of the pairwise majority graph.
Recall that the pairwise majority graph G(R) of a profile R over a candidate set
A is the directed graph whose vertex set is A and there is a directed edge from
candidate a to candidate b if a strict majority of voters in R prefer a to b. Consider
two n-voter profiles R and R? over a candidate set A; assume that n is odd. A
natural notion of a unit change in this setting is an edge reversal, that is, a pair
(a,b) € A x A such that in G(R") there is an edge from a to b, whereas in G(R?)
there is an edge from b to a. The distance between R! and R? is then defined as the
number of edge reversals. To see that this distance combined with the Condorcet
consensus rationalizes the Copeland rule, note that if a candidate’s Copeland score
is s, she can be made the Condorcet winner by reversing m — 1 — s edges, so
the number of edge reversals and the candidate’s Copeland score are inversely
related.

Maximin. The Maximin score of a candidate a in an n-voter profile R over a
candidate set A is the number of votes that a gets in her most difficult pairwise
election (i.e., mingec4 nyp, Where n,y, is the number of voters in R who prefer
a to b); the winners are the candidates with the highest score. Suppose that
R has no Condorcet winner, and consider a candidate a € A. Let b be a’s most
difficult opponent, that is, ’s Maximin score is s, = n,4;; note that s, < % < %,

because a is not a Condorcet winner. Then if we add n + 1 — 2s, ballots where a

is ranked first, a will be the Condorcet winner in the resulting profile (which has

2n 4+ 1 — 25, voters, with n + 1 — s, of these voters ranking a above ¢ for every
¢ € A). On the other hand, if we add k < n 4+ 1 — 25, ballots, we obtain a profile
where at least n — s, voters out of n + k prefer b to a; as 2(n — s,) > n + k, this

means that at least half of the voters in this profile prefer b to a, so a is not a

Condorcet winner. Thus, a candidate’s Maximin score is inversely related to the

number of ballots that need to be added in order to obtain a profile where this

candidate is the Condorcet winner.

This argument explains the Maximin rule in the language of agreement and
changes. However, this explanation does not quite fit our framework, because
it uses a notion of unit change (adding a single ballot) that does not directly
correspond to a distance. The problem here is that a distance is supposed to be
symmetric (see Section 8.2.2), whereas adding ballots is an inherently asym-
metric operation: if we can turn R into R’ by adding s ballots, we cannot turn
R’ into R by adding s ballots. It turns out, however, that the Maximin rule
can be rationalized via the distance that measures the number of ballots that
need to be added or deleted to turn one profile into another (see Elkind et al.,
2012b, for details). Intuitively, this is because for the purpose of reaching a
Condorcet consensus adding a ballot is always at least as useful as deleting a
ballot.
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We remark that there is another voting rule that is defined in terms of deleting
ballots so as to obtain a Condorcet consensus, namely, the Young rule, which is
discussed in Chapter 5. While the Young rule, too, can be distance-rationalized,
the construction is quite a bit more complicated than for Maximin (Elkind et al.,
2012b).

These examples raise a number of questions. First, is it the case that all voting
rules can be explained within the consensus-based framework? Second, what are the
appropriate notions of consensus and distance to consensus? Third, can we derive any
conclusions about a voting rule based on the notion of consensus and distance that
explain it? To answer these questions, we need to define our framework formally.

8.2.2 Formal Model

The consensus-based framework that has been introduced informally so far has two
essential components: the definition of what it means to have an agreement in the
society and the notion of distance between preference profiles. We will now discuss
both of these components in detail. Our presentation mostly follows Elkind et al.
(2010b).

Consensus Classes

Informally, we say that a preference profile R is a consensus if it has an undisputed
winner reflecting a certain concept of agreement in the society. Formally, a consensus
class for a set of candidates A is a pair K = (X, w) where X is a nonempty set of
profiles over A and w: X — A is a mapping that assigns a unique candidate to each
profile in X’; this candidate is called the consensus choice (winner)." We require K to
be anonymous and neutral, in the following sense: For every profile R € X a profile
R’ obtained from R by permuting voters satisfies R’ € X and w(R’) = w(R), and
the profile R” obtained from R by renaming candidates according to a permutation
w:A— A satisfies R” € X and w(R") = w(w(R)) (i.e., the winner under R” is
obtained by renaming the winner under R according to 7).

The following classes of preference profiles have been historically viewed as situa-
tions of consensus:

Strong unanimity. This class, denoted S, consists of profiles where all voters report
the same preference order. The consensus choice is the candidate ranked first by
all voters. The reader may note that we have used this notion of consensus in
Section 8.2.1 to rationalize the Kemeny rule. Interestingly, it can also be used to
provide an alternative rationalization of the Plurality rule (Elkind et al., 2010a).

Unanimity. This class, denoted U/, consists of profiles where all voters rank some
candidate c first (but may disagree on the ranking of the remaining candidates).
The consensus choice is this candidate c¢. This consensus class appears in our

! One can also consider situations in which the voters reach a consensus that several candidates are equally well
qualified to be elected; this may happen, for example, under Approval voting when all voters approve the same
set of candidates. However, in what follows we limit ourselves to consensus classes with unique winners.
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rationalizations of Plurality and Borda. It is also used to rationalize other scoring
rules (Lerer and Nitzan, 1985; Elkind et al., 2009a).

Majority. This class, denoted M, consists of profiles where more than half of the
voters rank some candidate c first. The consensus choice is this candidate c. This
notion of consensus can be used to rationalize Plurality and a simplified version
of the Bucklin rule (Elkind et al., 2010b).

Condorcet. This class, denoted C, consists of profiles with a Condorcet winner.
The consensus choice is the Condorcet winner. This notion of consensus appears
in our rationalizations of the Dodgson rule, the Copeland rule, and Maximin.

Transitivity. This class, denoted T, consists of profiles whose majority relation
is transitive, that is, for every triple of candidates a, b, c € A it holds that if a
majority of voters prefer a to b and a majority of voters prefer b to ¢, then a
majority of voters prefer a to ¢. Such profiles always have a Condorcet winner, so
we define the consensus choice to be the Condorcet winner. This consensus class
can be used to rationalize the Slater rule (Meskanen and Nurmi, 2008).

It is easy to see that we have the following containment relations among the consen-
susclassess SCU Cc M CcCand S C T C C. However, Y and T are incomparable,
thatis,d € T and T € U. Similarly, we have M £ T and T £ M.

Remark 8.1. A consensus class (X', w) can be viewed as a voting rule with domain
X that always outputs a unique candidate. Conversely, every anonymous and neutral
voting rule f such that | f(R)| = 1 for at least one profile R defines a consensus class:
if f is defined on the set of all profiles over a candidate set A, we can define a consensus
class Ky = (X, wy) by setting Xy = {R | | f(R)| = 1} and for each R € X’; defining
w ¢ (R) to be the unique candidate in f(R). That is, this consensus class consists of all
profiles on which f makes a definitive choice. The condition that | f(R)| = 1 for some
profile R is necessary to ensure that X'y # (.

There are other consensus classes one could consider: for example, one could study
a 2/3-variant of the majority consensus M, where more than 2/3 of the voters rank the
same candidate first (this choice of threshold stems from the observation that in many
countries changes to the constitution require the support of two thirds of the eligible
voters). However, these five classes appear to be representative enough to rationalize
many interesting voting rules.

Distances

To capture the idea of measuring the magnitude of changes in a preference profile, we
use distances on profiles. Recall that a distance on a set X is a mappingd: X x X —
R U {400} such that for every x, y, z € X the following four conditions are satisfied:

(a) d(x,y) = 0 (nonnegativity);

(b) d(x, y) =0if and only if x = y (identity of indiscernibles);
(¢) d(x,y) =d(y, x) (symmetry);

(d) d(x,y) <d(x,z) +d(z, y) (triangle inequality).

A mapping that satisfies (a), (c), and (d), but not (b), is called a pseudodistance.
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For distance rationalizability constructions, we need distances that are defined on
pairs of profiles. Usually, it is enough to only consider pairs of profiles with the same
set of candidates (this will be the case for all distances considered in this chapter), and
in many cases it suffices to only consider pairs of profiles with the same number of
voters. In particular, to construct a distance on the space of all n-voter profiles over a
fixed set of candidates A, we can take a suitable distance d on the space L(A) of all
linear orders over A and extend it to a distance d over the space of all n-voter preference
profiles £"(A) by setting

Ay, .. tty), (V1s ey v0) = d(uy, v) + ...+ d(u,, vy). (8.1)

It can be shown that d satisfies all distance axioms whenever d does. This method of
building distances over profiles from distances over votes will play an important role
in our analysis (see Section 8.2.4).

We will now present several examples of distances on the space of preference
profiles. Some of these distances should look familiar to the reader, as they were used
to rationalize voting rules in Section 8.2.1.

Discrete distance. The discrete distance is defined on pairs of profiles with the
same set of candidates A and the same number of voters n using formula (8.1);
the underlying distance on L(A) is given by

0 ifu=nv,
ddlscr(uv U) - 1 ifu # V.
This distance was used in our rationalization of the Plurality rule.

Swap distance. The swap distance, which is also known as the Kendall tau dis-
tance, the Kemeny distance, the Dodgson distance, and the bubble-sort distance
(Kendall and Gibbons, 1990), is also defined using formula (8.1). The underlying
distance on L(A) is the swap distance between individual votes: dyap(ut, v) is
the number of pairs (c, ¢’) € A x A such that u ranks ¢ above ¢’, but v ranks ¢’
above c.

(Weighted) footrule distance. This distance is also known as Spearman distance,
or Spearman footrule (Kendall and Gibbons, 1990). Let pos(u, c¢) denote the
position of candidate ¢ in vote u (the top candidate in u has position 1, and the
bottom candidate in u has position m). Then the footrule distance on L(A) is
given by

d(u, v) = Z |pos(u, ¢) — pos(v, ¢)|.

ceA

That is, we measure the displacement of each candidate as we move from u to
v, and then we take the sum over all candidates. This distance is extended to
preference profiles using formula (8.1). The reader can verify that we can use
the footrule distance czcr instead of the swap distance in our rationalization of the
Borda rule.
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Furthermore, let « = (a4, ..., o) be a vector of m nonnegative rationals
(weights). We define a (pseudo)distance dy. (1, v) on L(A) by setting
diro(u, v) = Z |apos(u,c) - O‘pos(v,c)|' (8.2)
ceA

When all weights are distinct, df., is a distance. However, when some of the
weights coincide, df., is a pseudodistance, but not a distance. The reader can
verify thatfore = (m — 1, ..., 1, 0) the distance df.,, coincides with dy;. It can be
shown that by using chr_a we can rationalize the scoring rule with the score vector
o (Elkind et al., 2009a), that is, the rule that, given a profile R = (vy, ..., v,),
outputs the set argmax ¢ , (Apos(v;,a) + -+ + Opos(v, )

£--Sertel distance. This distance, denoted by d.*°, is also obtained by extending
a distance on rankings to n-voter profiles; however, in contrast with all distances
considered so far, it is not defined via formula (8.1). Let u(i) denote the candidate
ranked in position i in vote u. We define the distance dge : L(A) x L(A) —> R
by setting

dsert(u, v) = max{i | u(i) # v(i)},

with the convention that dge (11, v) = Oifu = v. The £.-Sertel distance on n-voter
preference profiles is then defined by setting

7 ®
dsert ((M], ey un)a (Ula ceey vn)) = _IIllaX dsert(”h ;).
i= n

.....

The reason for having the symbol £, in the name of this distance and the notation

m will become clear in Section 8.2.4. This distance, together with the majority
consensus, can be used to provide a rationalization of a simplified version of the
Bucklin rule (Elkind et al., 2010b).

Edge reversal (pseudo)distance. This distance is defined over the set of all profiles
with an odd number of voters. Given two profiles R', R? over A, we set

drCV(R19 Rz) = |{(a’ b) € A X A | a >R1 bv b >R2 a}|7

where we write a > b to denote that a majority of voters in the profile R prefer
a to b. This distance counts the number of edges in the pairwise majority graph
of R! that need to be reversed to obtain the pairwise majority graph of R?. The
edge reversal distance was used in our rationalization of the Copeland rule; it can
also be used to rationalize the Slater rule (Meskanen and Nurmi, 2008).

Note that, technically speaking, d.y is a pseudodistance rather than a distance:
we have di.y(R', R?) = 0 whenever R' and R? have the same pairwise majority
graph. It is perhaps more natural to think of the domain of dy., as the space of all
tournaments over A, in which case d,., satisfies all distance axioms.

Vote insertion (pseudo)distance. This distance is also defined over the set of all
profiles with a given candidate set. Consider two profiles R' and R? over a
candidate set A whose multisets of votes are given by V! and V? respectively.
The vote insertion distance d;,s between R! and R? is the size of the symmetric
difference between V! and V2. This distance computes the cost of transforming
R! into R? (or vice versa) if we are allowed to add or delete votes at a unit cost.
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Elkind et al. (2012b) show that by combining this distance with the Condorcet
consensus we obtain the Maximin rule. Again, dj, is a pseudodistance rather than
a distance: dins(R', R?) = 0 if R' and R? have the same multiset of votes. It can
be viewed as a distance on the space of voting situations, that is, multisets of votes
over A.

We are now ready to put together the two components of our framework.

Definition 8.1. Let d be a (pseudo)distance on the space of preference profiles over
a candidate set A, and let L = (X, w) be a consensus class for A. We define the
(IC, d)-score of a candidate a in a profile R to be the distance (according to d) between
R and a closest profile R’ € X such that a is the consensus winner of R’. The set of
(IC, d)-winners in a profile R consists of all candidates in A whose (IC, d)-score is the
smallest.

Definition 8.2. A voting rule f is distance rationalizable via a consensus class X and
a distance d over profiles (or, (IC, d)-rationalizable) if for every profile R a candidate
is an f-winner in R if and only if she is a (K, d)-winner in R.

We can now formalize our analysis of the six examples in Section 8.2.1: our
arguments show that the Dodgson rule is (C, dedp) -rationalizable, the Kemeny rule
is (S dSde) -rationalizable, Plurality is (U, ddmr) rationalizable, the Borda rule is
u, dSde) -rationalizable, the Copeland rule is (C, dyey)-rationalizable, and Maximin
is (C, dy,s)-rationalizable. Observe that three of these well-known voting rules can be
rationalized using the same distance (but different consensus classes). Further examples
can be found in the work of Nitzan (2010): Chapter 6 of his book provides a summary
of rules that are rationalizable with respect to the unanimity consensus. Meskanen and
Nurmi (2008) describe distance rationalizations for several other voting rules; while
some of these rationalizations are very appealing, others appear less intuitive. Moti-
vated by this observation, we will now try to formalize what it means to have a “good”
distance rationalization.

8.2.3 Universal Distance Rationalizability

It turns out that the unrestricted distance rationalizability framework defined in Sec-
tion 8.2.2 is too powerful: Lerer and Nitzan (1985) show that if we do not impose any
restrictions on the distance used, then essentially any voting rule is rationalizable with
respect to all the standard consensus classes. This result was subsequently rediscovered
by Elkind et al. (2010b), and our presentation follows their work.

To formally state this universal distance rationalizability result, we need a notion of
compatibility between a voting rule and a consensus class.

Definition 8.3. A voting rule f is said to be compatible with a consensus class
= (X, w), or K-compatible, if f(R) = {w(R)} for every profile R in X

2 One might think that the term “/C-consistent” would be more appropriate than “A-compatible.” Indeed, a voting
rule that elects the Condorcet winner whenever one exists is usually referred to as Condorcet-consistent. We
chose to use the term “/C-compatible” to avoid confusion with the normative axiom of consistency.
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We will now show that every voting rule is distance rationalizable with respect to
every consensus class that it is compatible with.

Theorem 8.2. Let A be a set of candidates, let f be a voting rule over A, and let
K = (X, w) be a consensus class for A. Then f is (IC, d)-rationalizable for some
distance d if and only if it is KC-compatible.

Proof. Let f be a voting rule that is (I, d)-rationalizable for some consensus class
K = (X, w) and distance d. Let R be some profile in X'. There is only one profile at
distance 0 from R—namely, R itself. Hence, the unique (XC, d)-winner in R is w(R).
Thus, f is K-compatible.

Conversely, suppose that f is JC-compatible. We will now define a distance d over
the set of all profiles over the candidate set A as follows. We setd(R, R’) = 0if R = R’.
Wesetd(R,R)=1if (a) R € X and w(R) € f(R)or(b) R € X and w(R') € f(R).
In all other cases, we set d(R, R") = 2. It is easy to check that d satisfies all distance
axioms. It remains to argue that f is (K, d)-rationalizable.

Consider a profile R € X. Because f is K-compatible, we have f(R) = {w(R)}.
Furthermore, we have d(R, R) = 0 and there is no profile R’, R’ # R, such that
d(R, R") = 0. Thus, the unique (I, d)-winner in R is w(R), too.

On the other hand, consider a profile R ¢ X. Note that d(R, R’) > 1 for every
profile R" € X. Because K is neutral and X # ¢, for each a € f(R) there exists a
consensus profile R* in which a is the consensus winner. By construction, we have
d(R, R*) = 1. Furthermore, we have d(R, R") = 2 for every profile R’ € X such that
w(R") € f(R). Thus, the set f(R) is exactly the set of (K, d)-winners in R, and the
proof is complete. 0

Theorem 8.2 implies that being compatible with any of our five standard consensus
classes suffices for distance rationalizability. Now, almost all common voting rules are
compatible with the strong unanimity consensus S, and hence distance rationalizable.
This argument does not apply to voting rules that do not have unique winners on
strongly unanimous profiles, such as Veto and k-Approval for k > 1 (recall that k-
Approval is the scoring rule with the score vector (1,...,1,0,...,0), and Veto is

k m—k
simply the (m — 1)-Approval rule). However, both Veto and k-Approval can be shown
to be distance rationalizable by a slightly different argument.

Corollary 8.3. For every anonymous neutral voting rule f over a set of candidates A
such that | f (R)| = 1 for some profile R there exist a consensus class K = (X, w) and
a distance d such that f is (IC, d)-rationalizable.

Proof. We can use the consensus class Ky = (X, wy) defined in Remark 8.1: by
definition, f is K y-compatible, so Theorem 8.2 implies that f is (K s, d)-rationalizable
for some distance d. O

Clearly, both Veto and k-Approval satisfy the conditions of Corollary 8.3, so they
are distance rationalizable as well.

Yet, intuitively, the distance used in the proof of Theorem 8.2 is utterly unnatural. For
instance, we have seen that the Dodgson rule and the Kemeny rule can be rationalized
via the swap distance, which is polynomial-time computable. In contrast, Elkind et al.
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(2010b) show that applying Theorem 8.2 to either of these rules results in a rationaliza-
tion via a distance that is not polynomial-time computable (assuming P # NP)—this
follows from the fact that winner determination for these rules is computationally hard,
as discussed in Chapter 5.

Thus, knowing that a rule is distance rationalizable—even with respect to a standard
notion of consensus—by itself provides no further insight into the properties of this
rule; for a rationalization to be informative, the distance used must be natural. Conse-
quently, we will now shift our focus from distance rationalizability per se to quality of
rationalizations, and seek an appropriate subclass of distances that would be expres-
sive enough to capture many interesting rules while allowing us to draw nontrivial
conclusions about rules that they rationalize.

8.2.4 Votewise Distances

In this section, we focus on distances that are obtained by first defining a distance on
preference orders and then extending it to profiles. The reader may observe that the
distances ZI:iiscr, Eswap, ZZ},, and cgn?o defined in Section 8.2.2 are constructed in this way.
This class of distances was identified by Elkind et al. (2010b), and our presentation in
this section is based on their work.

Definition 8.4. A norm on R" is a mapping N: R" — R that has the following
properties:

(a) positive scalability: N(au) = |e|N(u) forallu € R" and all « € R;

(b) positive semidefiniteness: N(u) > 0 for all u € R”, and N(u#) = 0 if and only if u =
0,0,...,0);

(c) triangle inequality: N(u + v) < N(u) + N(v) for all u, v € R".

A well-known class of norms on R” is that of p-norms £,, p € Z* U {00}, given by

Lp(xt, ... xn)—<2|xz|”) for p € Z*,  loo(x1, ..., x,) = max{|xi|, ..., |x,|}.

In particular, €y(xy, ..., x,) = |xi| + -+ |xul-

Definition 8.5. Let A be a fixed set of candidates, fix n > 0, let d be a distance on
L(A), and let N be a norm on R". We say that a distance D on the space of n-voter
profiles over the candidate set A is N-votewise if for every pair of profiles R and R’
over A with R = (uy,...,u,)and R’ = (vy, ..., v,) we have

D(R,R) = N(d(uy, v1), ..., d(u, v,)). (8.3)

It is easy to check that for every distance d on £(A) and every norm N on R” the
function defined by (8.3) is a (pseudo)distance. We will denote this (pseudo)distance by
dV.IfN = ¢, for some p € Z* U {oo}, we will write d? instead of d t» . Furthermore,
because many distance rationalizations use £; as the underlying norm, we will write
d instead of d1 (note that this no/tat\lon is consistent with the one used earlier in this

Chaptef for dswapa ddiscra dfr, and dscrt )
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Given a norm N, we say that a rule is N-votewise if it can be distance rationalized
via an N-votewise distance; we say that a rule is votewise if it is N-votewise for some
norm N.

Votewise distances are expressive enough to rationalize many classic voting rules.
For instance, the rationalizations of the Dodgson rule, the Kemeny rule, Plurality,
and the Borda rule described in Section 8.2.1 demonstrate that all these rules are ¢;-
votewise, and the results of Lerer and Nitzan (1985) and Elkind et al. (2009a, 2010b)
imply that the class of votewise rules includes essentially all scoring rules,’ a simplified
version of the Bucklin rule, and several other less common voting rules.

We will now demonstrate that votewise rules have a number of desirable properties,
both from a normative and from a computational perspective.

Normative Properties of Votewise Rules

An important feature of the votewise distance rationalizability framework is that one
can derive properties of votewise rules from the properties of their components, that
is, the underlying distance on votes, the norm, and the consensus class. Elkind et al.
(2010b, 2011b) consider such classic normative properties of voting rules as anonymity,
neutrality, continuity, consistency, homogeneity and monotonicity, and, for each of
them, derive sufficient conditions on the components of a votewise rationalization for
the resulting rule to have the respective property. We present a sample of these results
in the following.

Anonymity. Recall that a voting rule is said to be anonymous if its result does not
change when the ballots are permuted. It turns out that anonymity of a votewise rule
is inherited from the corresponding norm. Specifically, a norm N on R”" is said to be
symmetric if it satisfies N(x1, ..., x,) = N(xoq1), - - -, Xo(n)) fOr every permutation o
of {1, ..., n}; note that all p-norms are symmetric. Elkind et al. (2010b) show the
following easy result.

Proposition 8.4. Suppose that a voting rule f is (I, v )-rationalizable for some
pseudodistance d over L(A), a consensus class I, and a symmetric norm N. Then f
is anonymous.

Neutrality. A voting rule is said to be neutral if its result does not depend on the
candidates’ names. Neutrality of a votewise rule is a property of the underlying distance
on votes. Namely, a distance d on £(A) is said to be neutral if for every permutation
7 : A — A and every pair of votes u, v € L(A) it holds that d(u, v) = d(u’, v") where
u’ and v’ are obtained from, respectively, u and v by renaming the candidates according
to 7. The following proposition is due to Elkind et al. (2010b).

Proposition 8.5. Suppose that a voting rule f is (I, dv )-rationalizable for some norm
N, a consensus class K, and a neutral pseudodistance d over L(A). Then f is neutral.

Consistency. A voting rule f is said to be consistent if for every pair of profiles

R', R? such that f(R') N f(R?) # @, the preference profile R' + R? obtained by

3 The exceptions are rules like Veto, which are not compatible with any standard consensus class; however, even
such rules are votewise rationalizable via a pseudodistance.
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concatenating R' and R? satisfies f(R' + R?) = f(R') N f(R?).Consistency is a very
demanding property: while all common voting rules are anonymous and neutral, the
class of voting rules that are anonymous, neutral and consistent consists of compositions
of scoring rules (Young, 1975). Nevertheless, Elkind et al. (2010b) obtain a sufficient
condition for a distance rationalizable voting rule to be consistent.

Proposition 8.6. Suppose that a voting rule f is (U, d?)-rationalizable for some
p € 7" and some pseudodistance d over L(A). Then f is consistent.

Homogeneity. A voting rule f is said to be homogeneous if for every profile R and
every positive integer k it holds that f(R) = f(kR), where kR is the preference profile
obtained by concatenating k copies of R. This notion can be seen as a relaxation of
the notion of consistency. Elkind et al. (201 1b) present several sufficient conditions for
homogeneity of a votewise rule. For instance, they show that many of the voting rules
that can be rationalized via the £, norm are homogeneous.

Proposition 8.7. Suppose that a voting rule f is (IC, J‘;O)-rationalizable for some
pseudodistance d over L(A) and a consensus class K € {S,U, M}. Then f is homo-
geneous.

Monotonicity. A voting rule f is said to be monotone if moving a winning candidate
upward in some voters’ preference orders (without changing the relative order of other
candidates) does not make him a loser. To identify sufficient conditions for monotonicity
of a votewise rule, Elkind et al. (2011b) introduce several notions of monotonicity for
distances over votes. In particular, they define relatively monotone distances. These are
the distances over £(A) such that for every candidate a € A the following condition
holds. Suppose that we have:

(i) two votes y, ¥y’ € L(A) such that y and y’ rank all candidates in A \ {a} in the same
order, but y’ ranks a higher than y does, and
(ii) two votes x, z € L(A) such that x ranks a first and z does not.

Then
d(x,y)—d(x,y) >d(z,y)—d(z,y). (8.4)

Elkind et al. (2011b) show that the relative monotonicity condition is satisfied by the
swap distance. Moreover, they prove the following result.

Proposition 8.8. Suppose that a voting rule f is (IC, c?)-rationalizable for some rel-
atively monotone distance d over L(A) and a consensus class IC € {S,U}. Then f is
monotone.

Algorithmic Properties of Votewise Rules

Votewise rules are also appealing from a complexity-theoretic perspective: it turns out
that we can show tractability results for them under a mild condition on the underlying
distance. For the definitions of the complexity classes mentioned in this section, we
refer the reader to the book of Hemaspaandra and Ogihara (2002).
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Definition 8.6. We say that a distance D on the space of profiles over a candidate set
A is normal if:

(a) D is polynomial-time computable;
(b) D takes values in the set Z* U {4+o00};
(c) if R' and R? have a different number of votes, then D(R', R?) = +o0.

Given a voting rule f, we consider the problem of determining whether a given
candidate is one of the winners in a given profile under f; we refer to this problem as
f-WiINNER. Elkind et al. (2010b) show the following set of results for this problem.
Suppose that a voting rule f is (X, D)-rationalizable for some normal distance D and
a consensus class IC € {S, U, M, C}. Then:

(i) f-WINNER isin PNP;
(ii) if there exists a polynomial p such that for every pair of n-voter m-candidate profiles
R', R? it holds that D(R;, R») < p(m + n), then f-WINNER is in ©%;
(>iii) ifthere exists a distance on votes d such that D = c?, then f-WINNER is fixed-parameter
tractable with respect to the number of candidates;
(iv) if there exists a distance on votes d such that D = dorD =d>®, K e {u, M}, and D
is neutral, then f-WINNER is in P/poly.

The first two results extend to the transitivity consensus 7 (which was not considered
by Elkind et al. (2010b)); note also that for these results the distance D is not required
to be votewise. However, it is not clear if the FPT algorithm in (iii) can be extended to
T as well.

We emphasize that it is not the case that for every votewise rule the winner deter-
mination problem is in P (unless P = NP). In fact f-WINNER may be intractable even
if f is €;-votewise rationalizable with respect to a standard consensus class via an
easy-to-compute distance on votes: examples are provided by the Dodgson rule and
the Kemeny rule, which are known to be computationally hard (Hemaspaandra et al.,
1997a, 2005).

Votewise Distances: Discussion

We have seen that many common voting rules admit votewise distance rationaliza-
tions, and that distance rationalizable voting rules have several desirable properties.
On the other hand, the “trivial” distance rationalization presented in Theorem 8.2
is clearly not votewise. Furthermore, some voting rules (most notably, STV) can be
shown not to admit a votewise distance rationalization with respect to the standard
consensus classes (Elkind et al., 2010a); we remark that the known distance rational-
ization for STV (Meskanen and Nurmi, 2008) is rather complex. Thus, the concept of
a votewise distance appears to be useful for distinguishing between “good” and “bad”
rationalizations.

Note, however, that the rationalizations of the Copeland rule and Maximin given
in Section 8.2.1 are not votewise, despite being quite simple and intuitive. In fact, it
is not known whether these rules are votewise distance rationalizable. It remains a
challenge to come up with a definition of a “good” distance rationalization that covers
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all intuitively appealing rationalizations, but excludes the rationalization described in
Theorem 8.2.

8.3 Rules as Maximum Likelihood Estimators

We will now turn our attention to voting rules that can be represented as maximum
likelihood estimators. We start by revisiting the probabilistic model put forward by
Condorcet (1785), and its interpretation by Young (1988).

Briefly, the basic assumption of Condorcet’s model is that there always exists a
correct ranking of the alternatives, which, however, cannot be observed directly. Voters
derive their preferences over the alternatives from this ranking: when comparing two
alternatives, each voter is more likely to make the correct judgment than the incorrect
one. Moreover, voters make their decisions independently from each other, and a priori
each ranking is equally likely to be correct.

Formalizing Condorcet’s ideas turned out to be a challenging task; in what follows,
we discuss some of the reasons for this. However, from a historical perspective, his
ideas are very important, as they represent one of the earliest applications of what
is now known as the maximum likelihood estimation approach. Under this approach,
one computes the likelihood of the given preference profile for each possible “state
of the world,” that is, the true ranking of the alternatives. The best ranking(s) of the
alternatives are then the one(s) that have the highest likelihood of producing the given
profile. If we assume a uniform prior over the space of all possible rankings, this
procedure can be interpreted as estimating the most likely state of the world given the
preference data (the equivalence of the two interpretations follows immediately from
the Bayes rule).

Condorcet’s approach can be extended in two different directions: First, we can
consider different noise models, that is, ways in which voters’ preferences may arise
from the true state of the world. Second, instead of associating a state of the world
with a ranking of the alternatives, we can associate it with the identity of the best
alternative (or, more generally, a set of pairwise comparisons between the alternatives);
this approach is particularly attractive if the goal is to determine a single election winner
rather than a full ranking of the alternatives (and in particular if there is indeed a unique
“correct solution” to the decision problem at hand). In what follows, we survey recent
research that explores these directions.

8.3.1 Two Alternatives: Condorcet Jury Theorem

When there are only two alternatives to choose from, it is natural to use majority voting,
that is, select an alternative that is supported by at least half of the voters (breaking
ties arbitrarily). It turns out that this is also the right strategy in Condorcet’s model; in
fact, as the number of voters grows, the probability that majority voting identifies the
better alternative approaches 1. This result is known as the Condorcet Jury Theorem,
and dates back to the original paper of Condorcet (1785).

Theorem 8.9. Suppose that |A| = 2, and a priori each of the alternatives in A is
equally likely to be the better choice. Suppose also that there are n voters, and each voter
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correctly identifies the better alternative with probability p, /2 < p < 1; further, each
voter makes her judgment independently from the other voters. Then the probability
that the group makes the correct decision using the simple majority rule approaches 1
asn — +00.

Theorem 8.9 follows immediately from the Chernoff bound (see, e.g., Alon and
Spencer, 2008); Condorcet’s proof was based on a direct combinatorial argument.

Theorem 8.9 can be extended in a variety of ways. For instance, it can be generalized
to the case where voters are a priori not identical, that is, voter i’s probability to make
the correct choice is p; and not all p;s are equal: Nitzan and Paroush (1982) and
Shapley and Grofman (1984) show that in this case it is optimal to use weighted voting,
assigning a weight of log 15;;7,» to voter i. However, in practice the probabilities p; are
often not known; to mitigate this, Baharad et al. (2011, 2012) propose a procedure for
estimating them. Other extensions deal with settings where voters are not independent
(see, e.g., Shapley and Grofman, 1984; Berg, 1993a, 1993b; Ladha, 1992, 1993, 1995;
Dietrich and List, 2004) or strategic (Austen-Banks and Smith, 1994; McLennan, 1998;
Peleg and Zamir, 2012), or a priori the alternatives are not symmetric and the voters’
probabilities of making the correct choice depend on the state of nature (Ben-Yashar
and Nitzan, 1997).

When |A| > 2, the analysis becomes more complicated. In particular, it depends on
whether the goal is to identify the most likely ranking of alternatives or the alternative
that is most likely to be ranked first. We will now consider both of these options,
starting with the former.

8.3.2 Condorcet’s Model and Its Refinements

In his original paper, Condorcet made the following assumptions.

(1) In every pairwise comparison each voter chooses the better alternative with some fixed
probability p, where 1/2 < p < 1.

(2) Each voter’s judgment on every pair of alternatives is independent of her judgment on
every other pair.

(3) Each voter’s judgment is independent of the other voters’ judgments.

(4) Each voter’s judgment produces a ranking of the alternatives.

However, assumptions (2) and (4) are incompatible. Indeed, if a voter ranks every
pair of alternatives correctly with some fixed probability, then she may end up with
a nontransitive judgment, which is prohibited by (4). In other words, if we insist that
voters always produce a linear order as their judgment, then their judgments on different
pairs of alternatives are no longer independent.

There are two differing opinions on how exactly Condorcet’s model should be
understood. Some believe that we should allow intransitive preferences, arguing that
the vote is not really a preference, but rather the voter’s best approximation to the
correct ranking as she perceives it. It may happen that the best approximation is in fact
intransitive (see, e.g., Truchon, 2008); however, it cannot be ignored, as it provides
useful information.
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Another interpretation of Condorcet’s proposal is as follows: a voter forms her
opinion by considering pairs of alternatives independently, but if the result happens to
be intransitive, she discards it and tries to form her opinion again until a valid (acyclic)
preference order is obtained. In statistics, the resulting probabilistic model is known
as the Mallows noise model (Mallows, 1957). Note, however, that this model violates
condition (2) (see, e.g., Gordon and Truchon, 2008).

Commenting on Condorcet’s writings, Young (1988) wrote: “One must admit that
the specific probabilistic model by which Condorcet reached his conclusions is almost
certainly not correct in its details.” He went further to say that the plausibility of any
solution based on Condorcet’s ideas must therefore be subjected to other tests. However,
he went on and developed Condorcet’s framework to see what Condorcet would have
obtained if he possessed the necessary technical skills to perform his analysis to
the end. We will now present Young’s analysis, together with some refinements and
extensions.

8.3.3 MLE for Choosing a Ranking

In this section, we describe an MLE approach to selecting the best ranking(s) of the
alternatives. Recall that a social preference function is a mapping that given a list
of rankings of the alternatives outputs a nonempty set of aggregate rankings; thus,
in this section we focus on representing social preference functions within the MLE
framework.

We start by presenting Young’s analysis of Condorcet’s proposal (see Young, 1988),
followed by a discussion of a more general approach put forward by Conitzer and
Sandholm (2005a) and Conitzer et al. (2009b).

Let u € L(A) be the true state of the world, and let v € £(A) be some ranking
that agrees with u on k pairs of alternatives. Note that we have dgyap(v, u) = (';) — k.
Then under both interpretations of Condorcet’s model discussed in Section 8.3.2 the
probability that a voter forms opinion v is proportional to

pk(l _ p)(’;)fk — p(nzl)fdswap(lhu)(l _ p)dswap(vsu)'

If each voter forms her opinion independently from other voters, the probability of

a profile (vy, ..., v,) given that u is the true state of the world is proportional to
ﬁ p _dswap(v[ \u) _ p - Z:":l dswap(vi Ju)
t\1—p 1—p '

If each state of the world is a priori considered equally likely, the rankings that are most
likely to be correct are the ones that maximize the probability of the observed data, or,
equivalently, minimize ) ;| dswap(v;, u) (note that p > 1/2 and hence 1’p > 1). Thus,

1—
Condorcet’s approach results in a social preference function frong that given a profile

R = (vi, ..., v,)over acandidate set A, outputs the set argmin, . £(A) Zle dswap(V;, 1t).
This is exactly the social preference function associated with the Kemeny rule (see
Section 8.2.1).
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General r-Noise Models

Young’s analysis is based on a specific noise model, that is, a way voters’ judgments are
formed given an underlying state of the world. By considering other noise models, we
can obtain other social preference functions. To pursue this agenda, we need a formal
definition of a noise model.

Definition 8.7. A noise model for rankings, or an r-noise model, over a candidate set
A is a family of probability distributions P(- | u),erca) on L(A). For a givenu € L(A),
P(v | u) is the probability that a voter forms a preference order v when the correct
ranking is u.

We emphasize that the parameters of a noise model are assumed to be the same for
all voters and do not depend on the number of voters. That is, we think of voters as
independent agents that are influenced by the same factors in the same way.

Example 8.10. The Mallows model (Mallows, 1957) is a family of r-noise models
(Pdswgp,p) 1h<p<l given by

1
Pdswap’])(v | M) = _qa_dswap(v;u)’ Where Y= 1 g and MP = Z (p_dswap(vyu)‘
Kp -P veL(A)

Here, u, is the normalization constant; because dgyap is a neutral distance, the value of
W p does not depend on the choice of u (Mallows, 1957).

Under the MLE approach, every r-noise model leads to a social preference function.

Definition 8.8. A social preference function f over A is the maximum likelihood
estimator (MLE) for an r-noise model P over A if for every positive integer n and
every n-voter profile R = (vy, ..., v,) it holds that

f(R) = argmaxl_[P(v,» | u).

uel(A) j_,

A very general method of constructing r-noise models was proposed by Conitzer
et al. (2009b), who introduced the notion of a simple ranking scoring function.

Definition 8.9. A social preference function f over A is said to be a simple ranking
scoring function (SRSF) if there exists a mapping p : L(A) x L(A) — R such that for

every positive integer n and every n-voter profile R = (vy, ..., v,) it holds that
n
f(R) = argmax Y p(v;. u). (8.5)
uel(A) i

Intuitively, p(v, u) assigns a score to v based on the similarity between v and u,
and f chooses u so as to maximize the total score of the given profile. We say that
a mapping p : L(A) x L(A) — R is neutral if p(v', u’) = p(v, u), where rankings v’
and u’ are obtained by renaming alternatives in v and u# according to some permutation
m : A — A. Conitzer et al. (2009b) show that a simple ranking scoring function f is
neutral if and only if there exists a neutral mapping p satisfying (8.5).
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Example 8.11. Every distance d on £(A) defines a simple ranking scoring function:
we can set p(v, u) = —d(v, u). The corresponding social preference function maps
a profile R = (vy, ..., v,) to the set of rankings argminueﬁ(A) Z?=1 d(v;, u). Observe
that this social preference function is closely related to the voting rule that is distance
rationalizable via d and the strong unanimity consensus S.

Every SRSF corresponds to an infinite family of r-noise models: If f is the SRSF
defined by a mapping p, then for every ¢ € (1, +00) we can set

Py | 1) = e, where pppu= Y. 9" (8.6)

p.p,u vel(A)

Conitzer et al. (2009b) use ¢ = 2 in their paper. By construction, f is the maximum
likelihood estimator for P, , for every ¢ € (1, +00).

Conitzer et al. (2009b) show that for social preference functions that are neutral
(i.e., their output does not depend on the names of the candidates) the converse is also
true. More precisely, they prove the following characterization result.

Theorem 8.12. A neutral social preference function is an MLE if and only if it is an
SRSF.

Theorem 8.12 provides a convenient way to show that a given social preference
function f is an MLE: it suffices to exhibit a mapping p witnessing that f is an SRSF.
Conitzer et al. (2009b) apply this method to show that for every score vector o =
(g, ..., o) the corresponding social preference function f,, is an MLE. In the rest of
this section, we give a sketch of their argument.

Recall that f, is the social preference function that orders the candidates by their
a-scores, where the «-score of a candidate a in a profile R = (vy, ..., v,) is given
by sq(R, a) = Z?:] Qpos(u;,a); 1f some candidates have the same score, f, outputs all
rankings that can be obtained by breaking such ties in some way.

To show that f;, is an SRSF, let 1, . .., B,, be a monotonically decreasing sequence
(e.g., we can take f; = m — j), and set

pa(U, u) = Z ﬁpos(u,a)apos(v,u)» (87)

acA

We claim that f;, is the simple ranking scoring function that corresponds to p,. Indeed,

for a given profile R = (vy, ..., v,) we obtain
n n
Z pa(vi’ u) = Z ﬂpos(u,a) <Z O(pos(v,-,a)> = Z ﬂpos(u,a)sa(R, (1).
i=1 acA i=1 acA

Thus, for u to maximize the expression Z?:l Pa(v;, u), we should have Bposu,q) >
Bpos(u,py (and hence pos(u, a) < pos(u, b)) whenever s,(R, a) > s,(R, b), that is, u
orders the candidates by their a-score from the highest to the lowest, breaking ties
arbitrarily. Theorem 8.12 then implies the following corollary.

Corollary 8.13. The social preference function f, is an MLE.
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8.3.4 MLE for Choosing a Winner

In the previous section we described an MLE approach to selecting the best ranking(s).
However, typically our goal is to select a single winner (or possibly a set of winners)
rather than a ranking of the candidates. To extend the MLE framework to this setting,
we can simply output the top candidate(s) in the best ranking(s). Alternatively, we can
estimate the likelihood that a given candidate is the best. To this end, for each candidate
we determine the total probability mass (with respect to the uniform distribution) of
the rankings where she is the top choice, and output the candidate(s) that maximize this
quantity; the validity of this method follows from the Bayes rule. We will now discuss
these approaches in more detail.

Deducing Winners from Rankings: MLERIV Rules

In Section 8.2.1 we transformed the social preference function associated with the
Kemeny rule into a voting rule, by picking the top candidate in each ranking output by
this social preference function. By extending this procedure to arbitrary MLE social
preference functions, we obtain a class of rules known as MLERIV (Conitzer and
Sandholm, 2005a).

Definition 8.10. Let f be a social preference function that is MLE for an r-noise model
P. Let fbe avoting rule defined by f(R) = {top(u) | u € f(R)}, where top(u) denotes
the top candidate in ranking u. This rule is called the maximum likelihood estimator
for ranking under identically distributed independent votes (MLERIV) for P.

According to Definition 8.10, the Kemeny rule is MLERIV for the Mallows noise
model. Another family of MLERIV rules is provided by Example 8.11: Theorem 8.12
implies that for every neutral distance d over L£(A) the (S, d) )-rationalizable voting rule
is MLERIV. Furthermore, Corollary 8.13 implies that every scoring rule is MLERIV.

Estimating the Winners: Young’s Interpretation of Condorcet’s Proposal

The MLERIV-based approach provides a simple way to cast many voting rules within
the MLE framework. However, it is not appropriate if our goal is to output the candidate
that is most likely to be ranked first. Indeed, under an r-noise model the probability
that a candidate is ranked first in the true ranking is obtained by adding together the
probabilities of all rankings where she appears on top, and it is entirely possible that the
top candidate in the most likely ranking is a, but the cumulative probability of rankings
that have a on top is lower than the cumulative probability of rankings that have some
other candidate b on top.

This was clearly understood by Condorcet himself, who probably did not have the
technical skills to pursue this line of reasoning. Young (1988) argues that this approach
would lead him to the Borda rule, at least when p is sufficiently close to 1/2. Young
also speculates on reasons why Condorcet might have chosen to abandon this train
of thought (see Young, 1988, for an amusing account of the relationship between
Condorcet and Borda).
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We will now present Young’s extension of Condorcet’s analysis. While it aims to
estimate the most likely winner under the Mallows model, it makes the simplifying
assumption that in the prior distribution over the states of the world all pairwise
comparisons between the alternatives are independent from each other. For the Mallows
model this assumption is not true: if A = {a, b, ¢} and the prior distribution over the
states of the world is uniform over £(A), knowing that in the true state of the world a
is ranked above b influences our beliefs about the outcome of the comparison between
a and c. Thus, Young’s analysis can be seen as a heuristic algorithm for computing the
most likely winner; later, we will see that its output may differ from that of the exact
algorithm (see also Xia, 2014a).

Given a pair of candidates a, b € A, let n,;, denote the number of voters in a given
profile (v; ..., v,) who prefer a to b. Let S be a fixed set of voters of size n,, and
consider the event that the voters in S prefer a to b, while the remaining voters prefer b
to a; denote this event by &s. If in the true state of the world a is preferred to b, then the
probability of & is exactly p"+(1 — p)™=. Conversely, if in the true state of the world b
is preferred to a, then the probability of &g is (1 — p)"« p™=. The prior probability that
in the true state of the world a is preferred b is exactly 1/2. Therefore, the probability
of the event & is %( p'e(1 — p)y" + (1 — p)'« p™=). Hence, by the Bayes rule, the
probability that in the true state of the world a is preferred to b is proportional to

Pl = py™

prer(l = pyte + (1 = pyrar p”
To compute the probability that in the true state of the world a is preferred to every
other candidate, we take the product of probabilities (8.8) over all b # a; note that this
step makes use of the assumption that in the prior distribution over the states of the
world all pairwise comparisons are independent. It follows that the probability that a

(8.8)

is the true winner given that the observed profile is (v, ..., v,) is given by
I P (L= p)™ _ 1
beA\{a} prer(l = pyte 4 (1= pyrer p™e beA\la) 1 + (1—717)%177% |

Thus, the most likely winners are the candidates that minimize the expression

)= [T (1+¢™7), where o= (8.9)
beA\la) -p
Now, the behavior of this expression crucially depends on the value of ¢ = %. We

will consider two cases: (1) p is very close to 1 and hence ¢ — +o0 (i.e., a voter is
almost always right) and (2) p is very close to !/2 and hence ¢ — 1 (a voter has only
a slight advantage over a random coin toss). We denote the corresponding voting rules
by MLEZ and MLE], , respectively (the reasons for this notation are explained in

Remark 8.14). The following analysis is based on the work of Elkind and Shah (2014).

p — 1,9 —> +o0o. Therate of growth of x,(¢) as ¢ — +o00 depends on the degree
of its highest-order term, that is, ) ,_ A\{a)rpe > (npg — ngp): slowest-growing
functions correspond to the most likely candidates.

Thus, to determine the MLEZ; -winners, we first compute the score of each
candidate a € A as the sum of a’s loss margins in all pairwise elections she
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loses: s7(a) =), A\{a) =10 (npq — ngp). If there is a unique candidate with the

minimum score, this candidate wins. In case of a tie among ay, .. ., ax, MLE],,

takes into account the coefficients of the highest-order terms as well as the lower-

order terms of «,, (¢), ..., k4 (¢); the resulting tie-breaking procedure is quite

complicated (but can be shown to be polynomial-time computable). The voting

rule that outputs the set arg min,c4 s7(a) was proposed by Tideman (1987) as an

approximation to the Dodgson rule, and is now known as the Tideman rule; thus,

our analysis shows that MLE{ is a refinement of the Tideman rule. The Tideman
rule has been studied by McCabe-Dansted et al. (2008), as well as by Caragiannis
et al. (2014b), who refer to it as the simplified Dodgson rule; an overview of their
results can be found in Chapter 5.*

p — Y2, ¢ — 1. In this case, we are interested in the behavior of «,(¢) as ¢ — 1.
We have k,(1) = 2"~ ! foralla € A.Furthermore, the derivative of k,(¢) atg = 1
is )y, 2a(Nea — Nae)2" 2 =Y, 2o — 2n4.)2" 2. To minimize this expression,
we need to maximize ) ., Nqc, Which is the Borda score of a. Hence, MLE! _is
arefinement of the Borda rule: it selects the Borda winner when it is unique, and if
there are several Borda winners, it breaks ties by taking into account higher-order

derivatives of k,(¢) at ¢ — 1.

Remark 8.14. One can think of Young’s procedure as estimating the most likely
winner under a different noise model, namely, one where the prior distribution assigns
equal probability to all tournaments over A, that is, the state of the world is described
by the outcomes of (';) comparisons, and all vectors of outcomes are considered to be
equally likely. Voters’ preferences are tournaments as well; in each vote, the direction
of every edge agrees with the ground truth with probability p and disagrees with it
with probability 1 — p, with decisions for different edges made independently from
each other. We emphasize that this distribution assigns nonzero probability to “states of
the world” that violate transitivity. For this noise model, Young’s procedure correctly
identifies the candidate with the largest cumulative probability of the states of the world
where she wins all her pairwise elections.

It is often claimed that MLE!  is the Borda rule. We will now show that this claim
is inaccurate: while MLE! ~chooses among the Borda winners, it may fail to select

some of them.

Example 8.15. Let A = {a, b, ¢, d} and consider a 4-voter profile over A given by
(adcb, bcad, abdc, bcad) (where we write xyzt as a shorthand for x > y > z > t).
The Borda winners in this profile are a and b, and their Borda score is 8. On the other
hand, we have x,(¢) = 4(1 + ¢ =), k(@) = 2(1 + ¢~2)%. The reader can verify that
kqa(1.2) ~ 5.93, k,(1.2) = 5.74, and

dk,
de

d*«, d*«p
= —16, but =48 = 32,

. dl(b
=1 (dg)? lp=1 T (de)? o=

g=1  dg

1

so b emerges as the unique winner under MLE; ..

4 Young (1988) appears to suggest that MLESS, is Maximin; our argument shows that this is not the case.
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Estimating the Winners under an r-Noise Model

It is natural to ask whether we can estimate the most likely winner under the Mallows
model without making the simplifying assumption that in the prior distribution over
the states of the world all pairwise comparisons are independent. To the best of our
knowledge, Procaccia et al. (2012) were the first to do this for p — 1/2; their argument
extends to more general noise models and to settings where the goal is to select a
fixed-size subset of candidates. They have also considered the case p — 1 (see also
the work of Elkind and Shah, 2014). Just as in Young’s analysis, the result turns out to
depend on the value of p: when p — 1 (and ¢ = % — +00), we obtain a refinement
of the Kemeny rule, and when p — /2 (and ¢ — 1), we obtain a refinement of the
Borda rule. We will now present the arguments both for ¢ — 400 and for ¢ — 1; we
refer to the resulting rules as MLES® and MLE], respectively.

For every candidate a € A let £, denote the set of all rankings in £(A) where a
is ranked first. Recall that under the Mallows noise model the probability of a profile
(v1, ..., v,) given that the true state of the world is described by a ranking u is
proportional to ¢~ Zi=t 4w @) Thys, to compute the most likely winner, we need to
find the candidates that maximize the expression

wl@) = 3 g T dmnti

uel,

p — 1,9 — +o0o. The rule MLE[® returns a set of candidates S such that for
every a € S, b € A\ S we have 7,(p) > 15(¢) for all sufficiently large values
of ¢. To see that S is not empty, note that functions 7,(¢), a € A, are Laurent
polynomials (i.e., sums of powers of ¢), and therefore any two of these functions
either coincide or have finitely many intersection points. Moreover, foreacha € A
the most significant summand of 7,(¢) at ¢ — 400 is

n
<p72":1 dwapist) - where u' € argmin E dswap(Vi, Ut).

uel, i—1

Hence, MLE;" is a refinement of the Kemeny rule.
p— Y2, > 1. Wehave t,(1) = (m — 1)! forall a € A. Furthermore, the deriva-
tive of 7,(¢) at ¢ = 1 is given by

= - Z stwap(vh M) = - Z Z dswap(via u)

=1
¢ uely i=1 i—1 uel,

dt,
do

It is easy to show by induction on j that if pos(v;,a) = j then we have
Zue,ca dswap(vi, u) = j(m — ! + C,,, where C,, is a function of m (i.e., does
not depend on v;). As Zl'.':l(m — pos(v;, a)) is exactly the Borda score of a, it
follows that a € argmin,.4 dd—f’f , if and only if @ is a Borda winner. Hence,

o=
MLE] is a refinement of the Borda rule. Furthermore, it can be checked that
it is distinct from the Borda rule, that is, it may fail to elect some Borda win-
ners; this can happen when 7,(¢) and 7,(¢p) are different from each other, even
though their derivatives at ¢ = 1 coincide. Furthermore, it can also be shown that
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MLE, # MLE! . (Elkind and Shah, 2014), that is, these two rules are two distinct

r ntr
refinements of the Borda rule.

We can apply a similar procedure to other r-noise models. It turns out that for noise
models that are derived from neutral simple ranking scoring functions via Equation 8.6
in the case ¢ — 1 we obtain a voting rule that is a refinement of some scoring rule.

In more detail, consider a neutral SRSF given by a mapping p : £(A) x L(A) — R,
a value ¢ € (1, +00), and the corresponding r-noise model P, ,(v | u) = MPLM PP,
Because p is neutral, 11, o , is the same for all u € £L(A). Assume that each ranking of
the alternatives is a priori equally likely. A direct application of the Bayes rule shows

that the probability that the true state of the world is a ranking where « is placed first

given that the input profile is (vy, . .., v,) is proportional to
D pRimrti, (8.10)
uel,

Let MLEL be the voting rule that maps (vy, ..., v,) to the set of candidates that

maximize expression (8.10) for values of ¢ that are close to 1.
We can view expression (8.10) as a function of ¢; its derivative at ¢ = 1 equals

Z Zp(vi,u) = Z Z p(vi, u).

uel, i=1 i=1 uel,

This means that the set of MLEL-winners is a (possibly strict) subset of W =

argmax,c 4 Y i; > _,er, P(vi, u). Let MLE}) be a coarsening of MLE}) that, given a
profile (vy, ..., v,), outputs the entire set W. Because p is neutral, the value of the

expression ) ¢, P(vi, u) only depends on the position of a in v;. Thus, MLE}) is a

scoring rule. Conversely, every scoring rule can be obtained as MLE}) for a suitable
function p: for example, for the rule f, we can use the function p, defined by (8.7).

Noise Models for Winners: MLEVIW Rules

We have seen how to derive a voting rule from an r-noise model by considering the
cumulative probability of rankings with a given winner. Conitzer and Sandholm (2005a)
put forward a direct MLE-based approach for defining voting rules. It is based on a
simplified noise model, where the “state of the world” is simply the identity of the best
candidate, and the likelihood of a given vote depends on the position of this candidate
in the vote.

Definition 8.11. A noise model for winners, or a w-noise model, over a candidate set

A, |A]l =m, iia family of probability distributions P(- | @)ges on {1, ..., m}. For a
givena € A, P(j | a) is the probability of a vote where a is ranked in position j given
that a is the correct winner. We require P(j | @) > Oforalla e A, j=1,...,m.

A voting rule f over a candidate set A is a maximum likelihood estimator for
winner under identically distributed independent votes (MLEWIV) with respect to a
w-noise model P over A if for every positive integer n and every preference profile
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R = (vy,...,v,) € L(A)" it holds that
f(R) = argmax nf(pos(v,-, a) | a). (8.11)
acA i=1

However, the power of this approach is somewhat limited, at least if we require
neutrality: neutral MLEWIV rules are simply scoring rules (Conitzer and Sandholm,
2005a; Elkind et al., 2010b). Note the some form of neutrality is implicit in the definition
of a w-noise model: by construction, this model assigns the same probability to any
two votes that rank a in the same position, irrespective of how they rank the remaining
candidates.

Proposition 8.16. For every score vector o = (ay, ..., ay) the scoring rule f, is
MLEWIV. Conversely, every neutral MLEWIV rule is a scoring rule.

Proof. Given a score vector o = («y, ..., «,), define a w-noise model P, as
Pu(jla)= %2“-/’, where p, = Z;”:l 2%i. Now, consider an arbitrary profile R =
(v1,...,vy)over A and acandidatea € A. Foreachi = 1,..., n, let p; = pos(v;, a).

n

The a-score of @ in R is given by s4(R, a) = ) |_, «,. On the other hand, we have

n

L 1 1
[ [Patpostvi, a) | a) = — [ [ 2% = —2%". (8.12)
M’l n

i=1 ¥ =1 Ha

Hence, the set of most likely candidates under P, is exactly the set of f,-winners.
Conversely, let f be a neutral MLEWIV rule for a w-noise model P. It is easy
to verify that P is neutral, that is, P(j | a) = P(j | b) for every j = 1,...,m and
everya,b € A.Now, fix somea € A and seto; = log, P(j | a)forall j =1,...,m.
Equation (8.12) shows that the scoring rule f, coincides with f. 0

Proposition 8.16 provides an alternative characterization of scoring rules, thus com-
plementing the well-known results of Smith (1973) and Young (1975). Equivalently,
one can say that the results of Smith and Young provide a characterization of MLEWIV
rules in terms of standard axiomatic properties. A natural open question, which was
suggested by Conitzer et al. (2009b), is whether a similar characterization can be
obtained for MLERIV rules.

To conclude our discussion of the MLEWIV rules, we note that these rules arise
naturally from the ranking-based model considered in the previous section. Indeed, for
aneutral function p the rule MLE}) is MLEWIV. To see this, note that given a candidate
a € A, we can pick ¢ € (1, +00) and m rankings v', ..., v such that pos(v/, a) = j
for j =1,...,m,and set

m
PG | @) = ~gZeea ¥ where = Y e, P10,
% =
It is easy to verify that for any choice of ¢ € (1, +00) and v', ..., v" the MLEWIV

rule that corresponds to this noise model is exactly MLEL.
Finally, we remark that Ben-Yashar and Paroush (2001) consider another approach to
estimating winners under noise: in their model, each voter has to specify one candidate



8.4 CONCLUSIONS AND FURTHER READING 195

(rather than a ranking of the candidates), and a voter’s probability of voting for the
true winner depends on the identity of the winner, and may vary from one voter to
another. Ben-Yashar and Paroush present an extension of Condorcet’s Jury Theorem
(see Section 8.3.1) to this setting.

8.4 Conclusions and Further Reading

We have discussed two approaches to rationalizing voting rules: a consensus-based
approach that leads to the distance rationalizability framework and a probabilistic
approach that leads to the MLE framework. We showed how to rationalize many
common voting rules in each of these frameworks. For some rules, such as the Kemeny
rule, the rationalizations provided by both frameworks are closely related, while for
others (e.g., scoring rules), they seem to be quite different, and thus provide different
perspectives on the rule in question.

Due to space constraints, we were not able to overview the entire body of
research on these two frameworks; we will now briefly mention some of the relevant
papers.

Service and Adams (2012a) consider randomized strategyproof approximations to
distance rationalizable voting rules. Boutilier and Procaccia (2012) relate the concept
of distance rationalizability to the framework of dynamic social choice (Parkes and
Procaccia, 2013). Distance-based approaches have also been considered in the context
of judgment aggregation (Lang et al., 2011; Dietrich, 2014), as well as in other areas
of social choice (see Eckert and Klamler, 2011, and references therein).

Xia et al. (2010a) apply the MLE framework to voting in multi-issue domains, and
Xia and Conitzer (201 1b) extend it to partial orders, and a more general notion of “‘state
of the world”; for instance, they consider settings where the goal is to estimate the top
k alternatives for k > 1. The latter problem is explored in more detail by Procaccia
et al. (2012).

Caragiannis et al. (2013) investigate a complementary issue: given a noise model
and a fixed voting rule, how many samples do we need to generate so that this rule
identifies the correct winner? They also consider voting rules that perform well with
respect to families of noise models; such rules are further explored by Caragiannis
et al. (2014a) and Xia (2014b). Drissi-Bakhkhat and Truchon (2004) modify the Mal-
lows model by relaxing the assumption that the probability of correctly ordering two
alternatives is the same for all pairs of alternatives. They let this probability increase
with the distance between the two alternatives in the true order, to reflect the intuition
that a judge or voter is more prone to errors when confronted with two comparable
alternatives than when confronted with a good alternative and a bad one. Truchon
(2008) shows that when this probability increases exponentially with the distance, the
resulting ranking orders the candidates according to their Borda scores. MLE analysis
admits a Bayesian interpretation: if we assume the uniform prior over the true states
of the world, then an MLE rule outputs the maximum a posteriori estimate. Pivato
(2012) considers a more general class of statistical estimators (in particular, settings
where the prior distribution over the possible states of the world need not be uniform)
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and domains other than preference aggregation (including judgment aggregation and
committee selection).
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CHAPTER 9

Voting in Combinatorial
Domains

Jérbme Lang and Lirong Xia

9.1 Motivations and Classes of Problems

This chapter addresses preference aggregation and voting on domains which are the
Cartesian product (or sometimes, a subset of the Cartesian product) of finite domain
values, each corresponding to an issue, a variable, or an attribute.

As seen in other chapters of this handbook, voting rules map a profile (usually, a
collection of rankings, see Chapter 1) to an alternative or a set of alternatives. A key
question has to do with the structure of the set of alternatives. Sometimes, this set
has a simple structure and a small cardinality (e.g., in a presidential election). But in
many contexts, it has a complex combinatorial structure. We give here three typical
examples:

*  Multiple referenda. On the day of 2012 U.S. presidential election, voters in California
had to decide whether to adopt each of 11 propositions.' Five referenda were categorized
as budget/tax issues. Specifically, two of them (Propositions 30 and 38) both aimed to
raise taxes for education, with different details on the type and rate of the tax. Similarly,
in Florida voters had to vote on 11 propositions, eight of which were categorized as
budget/tax issues.

* Group configuration or group planning. A set of agents sometimes has to make a
common decision about a complex object, such as a common menu (composed for
instance of a first course, a main course, a dessert and a wine, with a few possible values
for each), or a common plan (for instance, a group of friends have to travel together to
a sequence of possible locations, given some constraints on the possible sequences).

e Committee elections and more generally multiwinner elections. A set of agents has to
choose a group of delegates or representatives of some given size, from a larger set of
candidates. As another example, a group of friends wants to choose a set of DVDs to
purchase collectively, from a larger set, subject to some budget constraints.

! http://en.wikipedia.org/wiki/California_elections, November_2012.
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In these three examples, the set of alternatives has a combinatorial structure: it
is a Cartesian product A = Dy x ... x D,, where for each i, D; is a finite value
domain for a variable X;, or, in the third example, a subset of a Cartesian product (see
further). For the menu example, we may have for instance D, = {soup, salad, quiche},
D, = {beef, salmon, tofu}, and so on. For the multiple referenda example, or more
generally in the case of binary variables (which for the sake of simplicity we assume
in most of the chapter), we write D; = {0;, 1;} for each i. Also, when all variables are
binary, we usually drop indices and parentheses: for instance, (1, 0;, 13) is denoted
simply by 101.

Each of these examples has specific properties that may call for specific ways of
solving them, which we review in this chapter. Still, the major issue for all classes of
problems mentioned, is the trade-off between expressivity and cost. This is illustrated
in the following example for multiple referenda by Lacy and Niou (2000):

Example 9.1. We have three issues, and three voters with the following preferences:

e Voter 1: 110 > 101 = 011 > 001 > 100 = 010 = 000 > 111
e Voter2: 101 > 011 = 110 > 010 > 100 = 001 > 000 > 111
e Voter 3: 011 > 110 > 101 > 100 > 010 = 001 > 000 > 111

At one extreme, we can allow the voters to be fully expressive: each voter submits
a full ranking over all 2* alternatives. The number of alternatives grows exponentially
in the number of issues, which imposes a high cognitive cost on the voters to construct
their rankings as well as a high communication cost to report these rankings to the
central authority that has to gather the votes and compute the outcome (cf. Chapter 10).

At the other extreme, we could ask each voter to report only her top-ranked alterna-
tive. This approach is almost cost-free, but the lack of expressivity can cause serious
problems. Applying plurality voting (see Chapter 1) for winner selection is quite arbi-
trary, because three alternatives are tied in the first place by receiving a single vote.
Applying the majority rule (see Chapter 1) to each issue separately, as commonly done
for multiple referenda, leads to an even worse outcome: the winner, 111, is ranked last
by all voters!

We consider separately the case where the common decision to be taken consists
of choosing the members of a committee. Benoit and Kornhauser (1991) consider two
classes of committee elections: designated post committees, and at-large committees.
In designated post committees, candidates run for a specific post (and the size of the
committee is the number of posts); in at-large committees, they do not run for a specific
post, and the size of the committee is specified explicitly. Designated post committee
elections are naturally expressed as elections on a combinatorial domain: variables
correspond to posts, and the domain of each variable is the set of candidates applying
for the post. The case of at-large elections is more subtle. An obvious choice consists in
having binary variables corresponding to candidates, but then the cardinality constraint
restricts the set of feasible committees: we are here in a case of constrained voting on a
combinatorial domain, where the set of alternatives is not simply the Cartesian product
of the domains but a subset of it. Voting for at-large committees takes this cardinality
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constraint into account for restricting the set of admissible outputs” (and, sometimes,
the set of admissible inputs), and gives rise to widely used voting rules for multiwinner
elections (Brams and Fishburn, 2002).

Consider again Example 9.1. At one extreme, one could view all these domains
as ordinary domains, and proceed as usual by eliciting voters’ preferences over the
set of alternatives A and then applying a given voting rule. Because the number of
alternatives grows exponentially with the number of variables, this is unrealistic as
soon as one has more than a few variables; we can definitely not expect individuals
to spend hours or days expressing rankings explicitly on thousands of alternatives.
At the other extreme, one may think of considering each variable or issue separately,
and then organizing votes in parallel for each of them. (This is the way it is usually
done in multiple referenda, where each voter has to cast a yes/no ballot for each of
the variables simultaneously.) This is much less expensive in terms of communication
and computation, but amounts to making the very strong assumption that voters have
separable preferences, that is, voters’ preferences for the value of any variable do
not depend on the values of other variables. This assumption is patently unrealistic in
many contexts. In multiple referenda, it is likely that a voter’s preference over some
of these referenda depends on the outcomes of the other referenda, especially when
budget/tax issues are concerned, because voters typically have some maximal budget or
tax amount they are willing to pay. In group configuration, the value taken by a variable
(such as the main course) may have a dramatic influence on a voter’s preferences on
other variables (such as the wine). In a committee election, it is often the case that a
voter’s preference for having A over B in the committee depends on whether C is also
in the committee, because for instance she wants some balance between genders or
between members of different communities.

There are several criteria on which we may assess the practical implementability
of a method for voting in combinatorial domains. Perhaps the most important one
is the communication cost necessary to elicit the votes. Because the communication
burden is borne by the voters, making sure that it is reasonably low is a crucial
requirement. A second criterion is the computational cost needed to compute the
outcome. A third criterion is the generality of the approach, that is, its applicability to
a large variety of profiles: some are widely applicable, whereas some rely on strong
domain restrictions. Lastly, and crucially, is the quality of the outcome: as we shall
soon see, some approaches may lead to extremely controversial, sometimes absolutely
unacceptable, outcomes, while others may satisfy desirable social choice axiomatic
properties such as Pareto Optimality that give a guarantee about the quality of the
solution.

Each of the following sections focuses on families of methods for implementing
elections on combinatorial domains. Section 9.2 considers simultaneous voting. As we
shall see, simultaneous voting may perform extremely poorly when separability does
not hold (and may perform poorly—although much less so—even when separability
holds); more precisely, we will list a few important criteria for evaluating methods
for implementing elections in combinatorial domains, and will show that simultane-
ous voting performs poorly on all of them except communication and computation

2 Designated post committees also need constraints if some candidates apply for more than one post.
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cost. In Section 9.3 we discuss methods that assume that voters’ preferences are par-
tially specified and then completed automatically using some completion principle.
Various completion principles are discussed in subsections: using a distance between
alternatives is discussed in Section 9.3.1; using a preference extension from single-
tons to subsets is discussed in Section 9.3.2; and more generally, using a language
for compact preference representation such as CP-nets (Section 9.3.3), lexicographic
preferences trees (Section 9.3.4), and languages for cardinal preference representation
(Section 9.3.5). In Section 9.4 we present methods based on sequential voting, where
variables (or groups of variables) are voted on one after another. Section 9.5 concludes
by discussing the respective merits and drawbacks of different classes of methods, and
briefly addresses related problems.

9.2 Simultaneous Voting and the Separability Issue

9.2.1 Preliminaries

In this chapter, X = {X, ..., X,} is a set of variables, or issues, where each issue
X; takes a value in a finite local domain D;. The set of alternatives, or the domain, is
A=D;x...xD,. ForXx =(xy,...,x,) € A,and I C {1,..., p}, we denote xX; =
(x;)ier- We also make use of the notational convention —i = {1, ..., p} \ {i}.

Let > be a linear order (a transitive, irreflexive and complete preference relation) on
A. We say that > is separable (Debreu, 1954) if and only if for all i < p, x;, y; € D;
and (X_;, y_;) € D_; we have (x;, Xx_;) > (y;, X_;) if and only if (x;, y_;) > (y;, y—i)-
When > is separable, the >/ is defined by x; >’ y; if and only if (x;, X_;) > (i, X_;)
for an arbitrary x_;.

Given n voters, a profile is a collection R = (>, ..., >,) of linear orders on A.
A profile R is separable when each of >; is separable. Given a separable profile over
a domain composed of binary variables, the simultaneous® majority outcome m(R) is
defined by m(R) = (xf, ..., x7,), where a majority of voters prefer x;" to the opposite
value 1 — x (for the sake of simplicity we assume an odd number of voters, so that
there are no ties and the majority outcome is uniquely defined). When variables are not
binary, simultaneous voting uses a specific voting rule for each variable. In the rest of
this section, for the sake of simplicity we focus on binary variables.

In simultaneous voting, each voter only has to report a ranking over D;
for each i, therefore the communication requirement of simultaneous voting is
O(n ), |Dj|log|D;|). Because all variables are binary, each voter has only to report a
ballot consisting of a (preferred) value for each variable, hence the requirement com-
plexity is O(np). For instance, if a voter prefers 1; over 01, 0, over 1, and 13 over
03, then she reports the ballot 101, which represents 1,0, 15. In this case, separability

3 The terminology “simultaneous voting” is used by Lacy and Niou (2000). It is also called standard voting by
Brams et al. (1997a), propositionwise aggregation by Brams et al. (1998), and seat-by-seat voting by Benoit
and Kornhauser (2010). We choose the terminology ‘simultaneous voting although it is a little bit ambiguous:
it does not only mean that voters vote simultaneously, but also that they vote simultaneously and separately on
all issues. Approaches reviewed in Section 9.3 do not satisfy that, although, in some sense, they may also be
considered as being ‘simultaneous’ in the sense that all voters vote simultaneously.
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implies that this ballot also corresponds to her most preferred alternative: in other
words, simultaneous voting is a tops-only voting rule.

How good is simultaneous voting? We know already that it has a low communication
cost, as well as a very low computation cost when variables are binary (and more
generally for most commonly used voting rules, when variables are not binary). Things
become much worse when we turn to the quality of the outcome. Even though there is
no single way of measuring the quality of the outcome, in most cases a popular type
of negative results is to show that simultaneous voting is prone to paradoxes, called
multiple election paradoxes, or paradoxes of multiple referenda (see next subsection).
Positive results, on the other hand, proceed by showing that some desirable axiomatic
properties are satisfied.

A key issue in assessing the quality of the outcome is whether we assume voters to
have separable preferences or not. We start with the general case.

9.2.2 Simultaneous Voting with Nonseparable Preferences

When preferences are not separable, a first problem that arises is that if a voter’s
preferred alternative is X = (x, ..., x ), then there is no guarantee that she will report
x1 as her preferred value for X,. For example, if her preference relation is 111 >
000 > 001 = 010 > 100 > 110 = 101 > 011, then for three of the four combinations
of values of X, and X3, 0y is preferred to 1}, and similarly for X, and X3; therefore,
even though the value of X, in her preferred alternative is 111, she might well report
0; as her preferred value for X, as well as 0, and 03 as her preferred values for
X, and X3. A voter whose preferred value for X; is always the value of X; in her
preferred alternative will be called optimistic, because reporting in such a way comes
down to assuming that the outcome over all other issues will be the most favorable
one. In our example, if the voter is optimistic then she should vote for 1;, for 1, and
for 15. More generally, choosing a preferred value to report for an issue depends on
the voter’s beliefs about the outcomes of the other issues, which in turn depends on
her beliefs about the other voters’ behavior. A game-theoretic analysis of this complex
phenomenon is given by Ahn and Oliveros (2012).

The multiple election paradoxes studied by Brams et al. (1998) and Scarsini (1998)
occur when the winner of simultaneous voting receives the fewest votes.

Example 9.2 (Brams et al., 1998). There are 3 issues and 3 voters voting respectively
for 110, 101 and O11. Simultaneous voting outputs 111, whereas 111 receives support
from none of the voters.

An even more striking paradox, again due to Brams et al. (1998), is obtained with 4
issues, with the outcome being 1111 whereas 1111 is the only alternative that receives
no vote and 0000 is the only alternative that receives the most votes.

Whether these are paradoxical outcomes or not depends on the voters’ preferences
over the whole domain. The implicit assumption in these examples is that voters have
plurality-based preferences: each voter i submits her preferred alternative x*, prefers
X' to all other alternatives, and is indifferent between any two alternatives different
from X'. Such dichotomous, plurality-based preferences are not separable. Under this
assumption, in the three-issue example above, 111 is Pareto-dominated by 110, 101
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and 011; in the four-issue example, 1111 is Pareto-dominated by all other alternatives,
which is clearly a very undesirable outcome.

The assumption that preferences are plurality-based is very demanding and is very
often not plausible. A weaker assumption is fop-consistency: which only states that
each voter prefers her reported alternative X’ to all other alternatives. If, instead of
assuming plurality-based preferences, we only assume top-consistency, the quality of
the outcome can be even worse, as it can be seen on the following example.

Example 9.3. We have two issues: building a swimming pool or not (15 or Og), and
building a tennis court or not (17 or Or). We have 2k + 1 voters:

e kvoters: 1507 > Ogly > 0507 > 15171
e kvoters: Ogly > 1507 > 0507 > 15171
e 1voter: 117 > Osly > 1507 > 0507

It is unclear what the first k voters will report when choosing between 1g and Oy.
Indeed, their preferences are nonseparable: they prefer the swimming pool to be built
if the tennis course is not, and vice versa. Now, if they vote for 1g, their vote, when it
is a decisive, leads to either 1507 or 1517, that is, to the voter’s best alternative or to
her worst alternative. On the other hand, voting for Og, again when it is a decisive vote,
leads to either 0507 or Ogl7, that is, to one of the voter’s ‘intermediate’ alternatives.
This shows why the first k voters may be hesitant to vote for 15 or for Og. They may
also be hesitant to vote for 17 or for Oz, although the situation here is a bit different
(a decisive vote for 17 leads to the second-ranked or to the worst alternative, while a
decisive vote for 17 leads to the best or to the third-ranked alternative). If we assume
that these first k& voters do not have any knowledge about the others’ preferences (or
even if they do, but do not use this information for voting strategically), then these
voters will feel ill at ease when voting and may experience regret once they know the
final outcome (e.g., if they vote for 15, wrongly believing that the group will decide not
to build the tennis court). The case for the next k voters is symmetric (with the roles
of S and T being swapped). Only the last voter, who has separable preferences, has no
problem voting for 15 and for 17 and does not experience regret after the election. The
analysis of the paradox by Lacy and Niou (2000) assumes that voters choose to vote
optimistically (thus the first k& voters would vote for 15)*: under this assumption, the
simultaneous voting outcome 117 is ranked last by all but one voters.

Take the profile in Example 9.1 as another example. Assuming again that voters
vote optimistically, the simultaneous voting outcome (111) is ranked last by all voters,
which is, arguably, a very bad decision.

These paradoxes are partly due to the implicit assumption that voters do not have
any knowledge about other votes. However, even if voters’ preferences are common
knowledge, and voters vote strategically, strong paradoxes can still arise (Lacy and
Niou, 2000) (see also Section 9.4.2). As argued by Saari and Sieberg (2001), the source
of these paradoxes is the loss of information that occurs when separating the input
profile into smaller profiles for single issues.

4 This assumption is often reasonable, even if it has a certain level of arbitrariness.
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9.2.3 Simultaneous Voting with Separable Preferences

Assuming separability allows us to avoid some of the paradoxes described above. First,
when all voters have separable preferences, they can vote safely for their preferred
value, for each one of the issues, and without any risk of experiencing regret (this is
called simple voting by Benoit and Kornhauser (1991)). Second, under the separability
assumption, simultaneously voting enjoys some desirable properties, including the
election of a Condorcet winner when there is one (Kadane, 1972).

However, some paradoxes still remain. In particular, the outcome may be Pareto-
dominated by another alternative (Ozkal—Sanver and Sanver, 2006; Benoit and Korn-
hauser, 2010), as shown in the following example.

Example 9.4 (Ozkal-Sanver and Sanver, 2006). We have three issues, and three
voters whose preferences are as follows:

e Voter1: 111 = 011 = 101 > 001 > 110 = 010 > 100 > 000
e Voter 2: 100 > 000 = 101 > 001 = 110 = 010 = 111 = 011
e Voter 3: 010 = 011 = 000 > 001 > 110 = 111 > 100 = 101

Note that these preferences are separable: voter 1 prefers 1; to 0;, whichever the values
of X, and X3 (that is, she prefers 100 to 000, 101 to 001, 110 to 010, and 111 to 011),
prefers 1, to 0,, whichever the values of X and X3, and 13 to 03, whichever the values
of X; and X,. Similar reasoning shows that preferences for voters 2 and 3 are also
separable. The outcome of simultaneous voting is 110, which is Pareto-dominated by
001, that is, all three voters prefer 001 to 110.

Benoit and Kornhauser (2010) prove a more general result. One may wonder whether
there could be rules other than issue-wise majority that would escape the paradox.
Unfortunately this is not the case: as soon as there are at least three issues, or when there
are exactly two issues, one of which has at least three possible values, then simultaneous
voting is efficient if and only if it is dictatorial. This result was generalized to irresolute
voting rules by Xia and Lang (2009).

9.2.4 Discussion

Evaluating simultaneous voting on the criteria evoked in the introduction (Section 9.1),
it is now clear that simultaneous voting has a low communication cost, and has also a
low computation cost, provided that the “local” rules used to determine the outcome
for each variable are easy to compute (which is obviously the case if variables are
binary). Then, there are two possibilities: either we are able to assume separability,
and in that case the outcome has some quality guarantees (even in this case it remains
prone to some paradoxes, see Section 9.2.3); or we do not assume separability, and
then the quality of the outcome can be extremely bad. We note that separability is a
very strong assumption: the proportion of preferences on a combinatorial domain that
are separable is very low (Bradley et al., 2005), and there are many domain-specific

3 This holds both in the assumption that voters vote sincerely and in the assumption that voters’ preferences are
common knowledge and voters vote strategically.



204 9 VOTING IN COMBINATORIAL DOMAINS

arguments (such as budget constraints) showing that in many domains, it is almost
hopeless to expect that voters’ preferences are separable.

9.3 Approaches Based on Completion Principles

One way of escaping the paradoxes of simultaneous voting, discussed in particular by
Brams et al. (1997a) and Lacy and Niou (2000), consists in having voters vote on com-
binations (or bundles) or values. This section discusses various ways of implementing
this. Before addressing several classes of more complex methods, we mention three
very simple solutions, which are relevant in some cases.

1. Voters rank all alternatives (i.e., all combinations) and a classical voting rule, such as
Borda, is used.

2. Voters give only their top alternatives, and the plurality rule is used.

3. Voters rank a small number of pre-selected alternatives, and use a classical voting
rule.

The first way is clearly the best method when the set of alternatives is small (say,
up to four or five binary variables). It becomes inapplicable when the number of issues
becomes more than a few, since asking voters to rank explicitly more than a few
dozens of alternatives is already hopeless. The second way, advocated by Brams et al.
(1997a), has the obvious advantage that it is relatively inexpensive both in terms of
communication and computation; it is feasible provided that the set of alternatives is
small enough with respect to the set of voters; when this is not the case, the plurality
votes are likely to be completely dispersed (for instance, with 10 binary variables
and 100 voters, the number of alternatives (2'°) is ten times larger than the number
of voters and it may plausibly happen that each alternative will get no more than
one vote), which does not help much making a decision. The third way avoids both
problems, but the arbitrariness of the preselection phase can make the whole process
very biased, and gives too much power to the authority who determines the preselected
alternatives.

Ideally, methods should avoid the arbitrariness of methods 2 and 3 and the commu-
nication requirement of method 1. Recall that simultaneous voting has a low elicitation
cost, at the price of considering all issues independently. One way of introducing links
between issues while keeping the low communication cost of simultaneous voting
consists in asking voters to specify a small part of their preference relations and then
complete them into full (or, at last, more complete) preference relations using a fixed
completion (or extension) principle. After this completion has been performed, we may
apply a classical voting rule, or a voting rule specifically designed for this extension
principle. We consider several families of completion principles, in increasing order of
sophistication.

¢ Top-based input: the voters submit their preferred alternative and the completion prin-
ciple makes use of a predefined distance over alternatives (typically, the Hamming
distance); the completion principle ranks all alternatives according to their proximity to
the preferred alternative.
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* Singleton ranking-based input: this completion principle works only for binary variables;
voters specify a ranking over single issues; the completion principle then extends it into
a preference relation over all alternatives. This class of methods is often used for the
selection of a set of items (typically, a committee).

* Hypercube-based input: the input consists of a compact representation of each voter’s
preference between all pairs of alternatives that are identical on all issues but one (this
set of pairs of alternatives is also called the hypercube associated with A).

* [Inputs based on more sophisticated inputs, such as conditionally lexicographic prefer-
ence trees, weighted or prioritized logical formulas, generalized additive independence
networks, or weighted constraints.

9.3.1 Top-Based Inputs and Distance-Based Completion Principles

One way to express a small part of the agents’ preferences and to complete them auto-
matically consists of asking each voter to specify her top alternative x*, and then apply-
ing the following intuitive completion principle: the closer to x* with respect to a pre-
defined distance d between alternatives, the more preferred. Formally: given a voter’s
top alternative x*, > is d-induced if forall y, 7 € A,y > Ziff d(y, X*) < d(Z, x*), and
> is d-consistent iff for all y, 7 € A, d(y, x*) < d(Z, X*) implies y > Z.

A trivial choice of a distance is the Dirac (or drastic) distance, defined by d(X, ¥) = 0
if Xx=79 and d(X,y) =1 if X # y. We recover here the plurality-based extension
principle discussed in Section 9.2.2, which can thus be seen as a distance-based
extension.

While many choices of a nontrivial distance can be made, the most obvious one is
perhaps the Hamming distance dy: for all X,y € A, dy(X, y) is the number of issues
on which X and y disagree. We say that > is Hamming-induced (resp. Hamming-
consistent) iff it is dy-induced (resp. dy-consistent).

Once such a preference extension principle has been fixed, we can apply a voting
rule to select the winner. A prominent example of such a rule is minimax approval
voting, defined by Brams et al. (2007) in the context of committee elections (although
there is no reason not to apply it in more general contexts); for this reason, we describe
the rule in a committee election setting, thus, with binary variables (also, it is not
entirely trivial to extend minimax approval voting to nonbinary domains). There are n
voters, p candidates, k < p positions to be filled; each voter casts an approval ballot
Vi=(@!,...,v") € {0, 1}7, where v/ = 1 if voter i approves candidate j. Then for
every subset S of k candidates, let dy (S, (Vi, ..., V,)) = max;—;__,du(S, V;) be the
largest Hamming distance between S and a ballot. Minimax approval voting selects a
committee S minimizing dg (S, (Vi, ..., V,)). Minimax approval voting makes sense
if there are few voters, but much less so in large electorates, because a single voter can
have a huge influence, even if everyone else agrees. Note that minimizing the sum of
Hamming distances would be equivalent to outputting the candidates with the k largest
approval scores (see Section 9.3.2).

Example9.5. Letn = 4, p = 4,k = 2. The ballots are defined as follows, together with
the computation of Hamming distance between the votes and any subset S composed
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of 2 candidates (there are 6 such candidates):

| Vi: 1110 V5 : 1101 | V5 : 1010] V4 : 1010 || max |
2

1100 1
1010 1
1001 3
0110 1
3
3

0101
0011

N R[N W|O|N

NN W|O|N

1
3
1
3
1
3

3
3
3
4
3

The winning committee under minimax approval voting is 1100. Minimizing the
sum of Hamming distances would lead to selecting 1010.

Because there are (f ) possible committees, winner determination for minimax
approval voting is computationally intractable: finding a winning committee is NP-
hard (Frances and Litman, 1997). LeGrand et al. (2007) give a polynomial-time 3-
approximation algorithm; a better approximation (with ratio 2) is given by Caragiannis
et al. (2010).

Another line of research that makes use of preference extensions based on the Ham-
ming distance is that of Laffond and Lainé (2009) and Cuhadaroglu and Lainé (2012).
Recall from Section 9.2 that even if voters’ preferences are separable, the simulta-
neous voting outcome can be Pareto-dominated. If furthermore voters’ preferences
are Hamming-consistent, then two positive results arise: (a) the simultaneous voting
outcome cannot be Pareto-dominated, (b) the simultaneous voting outcome is in the
top cycle (a fortiori, simultaneous voting is Condorcet-consistent). However, weaker
negative results remain: not only may the outcome be majority-defeated but it can also
fail to be in the uncovered set (Laffond and Lainé, 2009). To which extent are the
positive results specific to the Hamming extension principle? An answer is given by
Cuhadaroglu and Lainé (2012), who show that under some mild conditions, the largest
set of preferences for which the simultaneous voting outcome is Pareto-efficient is the
set of Hamming-consistent preferences.

Distance-based approaches have a lot in common with belief merging (see a recent
survey by Konieczny and Pino Pérez (2011)), which aggregates several propositional
formulas K1, . . ., K, into a collective propositional formula A(K, ..., K,). The set of
alternatives corresponds to the set of propositional valuations (or interpretations). Per-
haps the most well-studied family of belief merging operators is the class of distance-
based merging operators: there is a predefined, integer-valued, agent-independent dis-
tance d over propositional valuations (typically, the Hamming distance), and a sym-
metric, nondecreasing aggregation function  over integers, and the output is a formula
whose models minimize *{d(., K;)|i = 1...n}, where d(X, K;) = minjg, d(X, ¥).
The complexity of distance-based belief merging is addressed by Konieczny et al.
(2004). Although coming from a different area, distance-based belief merging shares
a lot with combinatorial voting with distance-based preference extensions (especially
minimax approval voting). Two important differences are that in belief merging: (a) the
input may consist of a set of equally most preferred alternatives, rather than a single
one; and (b) the input is represented compactly by a logical formula.
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9.3.2 Input Based on Rankings over Single Variables

In this section we focus specifically on the selection of a collective set of items S by
a group of agents. The meaning we give here to “items” is extremely general and can
cover a variety of situations, with two typical examples being committee elections,
where the “items” are representatives, and group recommendations, where items are
objects such as books, movies, and so on.

Formally, this can be cast as a combinatorial domain where the set of binary issues
is X ={Xy,..., X,}, with D; = {0;, 1;} for each i. These binary issues correspond
to a set of items C = {cy, ..., ¢}, where X; = 1; (resp. 0;) means that item ¢; is
(resp. is not) in the selection S. Because of the focus on the selection of a subset
of items, we change the notational convention by denoting an alternative X € A =
{01, 14} x ... x {0,, 1,} as a subset of issues S composed of items ¢;s with X; = 1;.
Thus, alternatives are elements of 2€.

In most cases, the set of feasible subsets is a proper subset of 2¢, defined by a
constraint T restricting the set of feasible or allowed subsets. In committee elections,
the most common constraints are cardinality constraints that restrict the size of a
committee, by specifying an exact size k, or a lower and/or an upper bound. More
generally, Lu and Boutilier (2011a) consider budget constraints, defined by a price
for each item and a maximum total cost—hence the terminology budgeted social
choice.

The approaches discussed in this section proceed by first eliciting from each agent
some preference information (typically, a ranking) over single items, then extend-
ing these preferences over single items to preferences over sets of items, and finally
selecting a set of items S.

The most obvious way of doing so is multiwinner approval voting (which can,
to some extent, be seen as the multiwinner version of simultaneous voting): each
voter approves as many candidates as she wants, and the winners are the k candidates
approved most often. In single nontransferable vote (SNTV) and bloc voting, there
is an additional restriction on the number of candidates approved: 1 in SNTV and k
in bloc voting (these rules are thus multiwinner versions of plurality and k-approval,
respectively). Finally, in cumulative voting, voters distribute a fixed number of points
among the candidates, and the winners are the k candidates maximizing the number
of points. The common point of all these rules is that voters’ preferences are assumed
to be separable; reformulated in terms of preference extensions, each input defines a
score over single candidates, and the total score of a candidate is the sum of the scores
it gets from the voters. Computational aspects of strategic behavior (manipulation by
a single voter and control by the chair) for these multiwinner voting rules have been
studied by Meir et al. (2008).

In the remainder of this section, we focus on classes of methods where the input
consists of rankings over single items.

In committee elections, where the items are individuals supposed to represent the
voters, the rationale for the last step is that a committee election is used to elect an
assembly whose members will make decisions on behalf of the society. As argued
by Betzler et al. (2013), finding a committee of representatives should satisfy two
criteria: representativity (the composition of the committee should globally reflect
the will of the voters), and accountability (each voter should be represented by a
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given member of the committee). In consensus recommendations, the rationale for
the last step is that each user will benefit from the best option according to her own
preferences (Lu and Boutilier, 2011a); in this case, the “representative” of a voter is
her most preferred item in S.%7 The latter interpretation leads to an obvious choice
for defining representative items for voters: if the set of items S is chosen, then the
representative item of voter i is ¢ € S if ¢ >; ¢’ for all ¢’ € C \ {c}. Alternatively, we
say that each agent is represented by an item in S. In committee elections, this principle
is the basis of the Chamberlin and Courant multiwinner election scheme (discussed
later).

We now describe these multiwinner election schemes (grouped under the termi-
nology “fully proportional representation”) more formally. For each voter i and each
item c there is a misrepresentation value |; ., representing the degree to which item ¢
misrepresents voter i. A positional misrepresentation function makes use of a scoring
vector s = (51, ..., sp) such thats; < ... < s,. In particular, the Borda scoring vector
sp is defined by s, = k for all k. By pos;(c) we mean the position of item c¢ in i’s
preference ranking (from 1 for the most preferred item to p for the least preferred
one). The misrepresentation function induced by s is ;. = s posi(c)- Intuitively, s; is the
amount of dissatisfaction that a voter derives from being represented by an alternative
that she ranks in position i. Another simple way of defining a misrepresentation based
on approval ballots is: every voter submits a subset of candidates that she approves,
and u; . is 0 if i approves c, and 1 otherwise.

An assignment function T maps every voter to an item in the selected subset S.
The misrepresentation of voter i under 7 is ; (). Once individual misrepresentation
has been defined, we need to define the global misrepresentation of the society when
selecting a subset S of items. There are two traditional ways of doing so: utilitarianism
(global misrepresentation is the sum of all individual misrepresentation) and egalitar-
ianism (global misrepresentation is the misrepresentation of the least well-represented
agent). Formally, the global misrepresentation of assignment 7 is defined as:

* (utilitarianism) uy () = 3, ¢, Kin)-
* (egalitarianism) g () = max;<, Ki @)

Finally, let F be the set of feasible subsets of items; typically, if k items are to be
elected then F is the set S; of all subsets of C of size k.

The Chamberlin and Courant scheme (Chamberlin and Courant, 1983) simply
outputs the committee of size k that minimizes py. Because there is no constraint on
the assignment function, every voter is assigned to her preferred item in the selected
subset S. That is, w (i) = arg min.cs i; .. Then, her misrepresentation when selecting
the feasible subset S is equal to u; s = min.cs t; . The best committee is then the
feasible subset S minimizing wy () (under utilitarianism) or S that minimizes g ()
(under egalitarianism). The Monroe scheme (Monroe, 1995) additionally requires that

6 As discussed by Lu and Boutilier (2011a), this can also be seen as a segmentation problem (Kleinberg et al.,
2004), where one more generally seeks k solutions to some combinatorial optimization problem that will be
used by n > k different users, each with a different objective value on items; optimization requires segmenting
users into k groups depending on which of the k items gives them the greatest benefit.

7 Skowron et al. (2015) generalize this scheme by taking into account more than one item by agent, but still giving
more importance to an agent’s most preferred item than to her second best preferred item, etc.
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the assignment 7 is balanced: each candidate in S must be assigned to at least |n/k
voters.® Formally, the Monroe scheme selects the allocation 77 minimizing sy ()
subject to the constraints |7 ~!(s)| > Lz] for all s € Range(r).

Budgeted social choice (Lu and Boutilier, 2011a) generalizes Chamberlin-Courant
by redefining feasibility via a budget constraint: Each item ¢ has a fixed cost (to be
counted if x is selected) and a unit cost (to be counted k times if k agents are represented
by the item), the maximum budget is K, and F is the set of all assignments with total
cost < K.

The egalitarian version of multiwinner schemes is due to Betzler et al. (2013). Elkind
et al. (2014a) discuss some properties of multiwinner voting schemes.

Example 9.6. Let C = {c,c1,c3,¢c4}, K =2, and the following 4 agents’
preferences:

(c1 > ¢y > c3 > g,
C1 > Cy > C3 > C4,
Cl > C3 > Cp > (4,
Cl1 > C3 > Cp > C4,
Cy) > C4 > C3 > Cq,
Cq > C3 > Cy > (] )

For the Borda misrepresentation function, the optimal Chamberlin-Courant committee
of 2 items is {cy, c4}, whereas for Monroe it is {c|, c;}. For the egalitarian versions,
both {cy, c4} and {c;, c3} are optimal for Chamberlin-Courant and {c,, c3} is optimal
for Monroe.

Because the set of feasible subsets is generally exponentially large, finding the opti-
mal subset is highly nontrivial. Brams and Potthoff (1998) were the first to discuss the
computation of the Chamberlin-Courant and the Monroe voting schemes, showing that
the optimal committee can be determined using integer programming. This provides
a method that works in practice when the number of voters and items are small, but
may not scale up well. They formulate an improved integer program for settings where
the number of agents is large, but this modified integer program is still too large to be
solved when the number of items is large.

One cannot really do better in the general case; indeed, we have the following
hardness results:

e Winner determination for the Chamberlin-Courant and the Monroe schemes with
approval ballots are both NP-complete (Procaccia et al., 2008)

* Winner determination for the Chamberlin-Courant scheme with the Borda misrepresen-
tation function is NP-complete (Lu and Boutilier, 2011a)

*  Winner determination for the minimax versions of the Chamberlin-Courant and Monroe
schemes is NP-complete (Betzler et al., 2013)

8 In indirect democracy, that is, when the set of representatives has to make a decision on behalf of the society, it
may be a good idea to give more power to people who represent more people than to those who represent less
people; for instance, Chamberlin and Courant suggested to give to each committee member a weight equal to
the number of voters she represents.
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Some slightly more positive results are obtained:

* Parameterized complexity. Procaccia et al. (2008) show that winner determination for
Chamberlin-Courant and Monroe is tractable for small committees: if the size of the
subset to be selected is constant, then winner determination is polynomial for both voting
schemes. Betzler et al. (2013) investigate further the parameterized complexity of fully
proportional representation by establishing a mixture of positive and negative results:
they mainly prove fixed-parameter tractability with respect to the number of candidates
or the number of voters, but fixed-parameter intractability with respect to the number of
winners.

* Approximation: Lu and Boutilier (2011a) give a polynomial algorithm with approxi-
mation ratio 1 — % for Chamberlin-Courant with the Borda misrepresentation function.
Skowron et al. (2013a,c) give further approximability results.

* Domain restrictions: for single-peaked profiles, most multiwinner problems discussed
above become polynomial; the only rule that remains NP-hard for single-peaked elec-
torates is the classical Monroe rule (Betzler et al., 2013). These results are extended
by Cornaz et al. (2012) to profiles with bounded single-peaked width, and by Yu et al.
(2013) who consider profiles that are more generally single-peaked on a tree. Skowron
et al. (2013b) address the case of single-crossing profiles.

Finally, the generalization of full proportional representation schemes to incomplete
preferences was considered by Lu and Boutilier (2013) (see also Chapter 10).

The notion of Condorcet winning set (Elkind et al., 2015a) also evaluates a subset
according to a best item in it. The criteria for selecting a “best” subset does not use
a misrepresentation function but is simply based on the Condorcet principle: S € C
is a Condorcet winning set if for every z ¢ S, a majority of voters prefers some s € S
to z. For every m-candidate profile, there is a Condorcet winning set of size at most
log, m + 1, therefore, finding a Condorcet winning set can be done by enumerating
all subsets of candidates of size |log, m]| + 1, i.e., in quasipolynomial time. It may
actually be even easier: it is an open issue whether for all £ there exists a profile for
which the smallest Condorcet winning set has size k.

9.3.3 Hypercube-Based Inputs

Specifying top-based inputs (respectively, rankings over variables) needs O(np)
(respectively, O(np log p)) space, hence the communication requirement of the two
previous subclasses of methods is low: each agent needs only to report O(np) (respec-
tively, O(np log p)) bits to the central authority. On the other hand, their applicability
is very weak, because only a tiny fraction of preference relations comply with the
required domain restrictions. We now consider more expressive approaches that are
based on compact representations: the votes, or a significant part of the votes, are not
given extensively but are described in some formal language that comes with a func-
tion mapping any input of the language to a (partial or complete) vote (Lang, 2004).
Formally, a compact preference representation language is a pair L = (X, I;) where
3, is a formal language, and [, is a function from X, to the set of preference relations
over A. I (X1) is the set of all preference relations expressible in L. A language L is
more expressive than L, if I, (¥,) D I1,(X,,) and more succinct than L, if there is a
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function f : ¥;, — X, and a polynomial function pol such that forall o € X, we
have (i) | f(0)| < pol(|o|) and (i1) I1,(f(0)) = I1,(c). Conditions (i) and (if) together
mean that any preference relation expressible in L, can also be expressed in L without
a superpolynomial increase in the size of expression.

If a language L is totally expressive (i.e., I;.(X) is the set of all rankings over D)
then the worst-case size necessary for expressing a ranking is exponentially large in the
number of variables.” Therefore, there is a trade-off to be made between having a fully
expressive language which, at least for some preference relations, will not be compact
at all, or making a domain restriction that will allow for a compact input in all cases.

Some of the solutions advocated in the previous sections were, to some extent,
making use of very rough compact preference representation languages. Expressing
only the top alternative, say 111, is a compact representation of the partial preference
relation

111 > A\ {111}

or, in the case of the Hamming distance completion, of the complete preorder

110 100
111 > 101 > 010 > 000.
001 001

Expressing a ranking over single items is a compact representation of a partial or
complete preorder over committees: for 2-committees and the Chamberlin-Courant
scheme, for instance, 1 > 2 > 3 > 4 is a compact representation of

{1,4}
12~ 23,y
{1,3} ’

As already discussed, these first two compact representation languages are admit-
tedly very compact, but also very inexpressive. We now give some examples of more
expressive languages.

The first compact representation language we consider is that of conditional pref-
erence networks (CP-nets). CP-nets (Boutilier et al., 2004) allow for a compact rep-
resentation of the preference hypercube associated with a preference relation over D.
Given a preference relation > over D = []'_,{0;, 1;}, the preference hypercube >y
is the restriction of > to the set of pairs of alternatives X, y differing on only one
variable (such as, for instance, 0101 and 0111). CP-nets are based on the notion of con-
ditional preferential independence (Keeney and Raiffa, 1976): given a strict preference
relation >, X; e X, Y C X\ {X;}and Z = X \ ({X;} U Y), we say that X is preferen-
tially independent of Y given Z with respect to > if forany x;, x; € D;,y, ¥’ € Dy, and
Z € Dz, we have (x;,y,2) > (x/, ¥, 2) if and only if (x;, ¥',2) > (x/, ¥, Z). A CP-net
N over A consists of two components.

9 A simple proof of this fact in the case of binary variables: for p variables there are (2)! possible rankings, and
the best we can do to express a ranking is to use log((2”)!) bits in the worst case; and log((27)!) is exponential
in p.
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¢ The first component is a directed graph G expressing preferential independence relations
between variables: if Parg(X;) denotes the set of the parents of X; in G, then every
variable X; is preferentially independent of X \ (Par(X;) U {X;}) given Par(X;).

* The second component is, for each variable X;, a set of linear orders >f; over D;, called
conditional preferences, for each i € Dparg(x,)- These conditional preferences form the
conditional preference table for issue X;, denoted by C PT (X;).

The preference relation >, induced by N is the transitive closure of
{(ai, 14,2) = (bi, i, 2) |i < psii € Dpargx)s @ir bi € Dy, a; =5 b
Z € D—pargxpyuixin -

When all issues are binary, > is equivalent to a preference hypercube and N is a
compact representation of this preference hypercube, whose size is the cumulative size
of all its conditional preference tables.

Example 9.7. Let p = 3. The following represents a CP-net N together with its
induced preference hypercube >,r. For the sake of simplicity, 000 represents the
alternative 0;0,053, and so on.

100 —— 1[)1

X1 X2 /

000

0 102 >=12 02:03 > 13
0 1
1> 11 1y =0y lo:1ls> O 110 111

01(] — 011

Group decision making in multi-issue domains via CP-net aggregation has been
considered in a number of papers, which we briefly review in a nonchronological
order. We will discuss in Section 9.4 the role of CP-nets in sequential voting (Lang and
Xia, 2009; Airiau et al., 2011): this way of proceeding sequentially leads to interleave
elicitation and aggregation, and elicits only a small part of the voters’ CP-nets. Another
way of proceeding consists in first eliciting the voters’ CP-nets entirely, then proceeding
to aggregation. Then, two ways are possible.

The first aggregation consists of mapping each of the individual CP-nets to its asso-
ciated preference relation, and aggregating these into a collective preference relation.
This method was initiated by Rossi et al. (2004), who consider several such aggregation
functions, and was studied further by Li et al. (2010), who give algorithms for com-
puting Pareto-optimal alternatives with respect to the preference relations induced by
the CP-nets, and fair alternatives with respect to a cardinalization of these preference
relations.

A second technique, considered by Xia et al. (2008), Li et al. (2011), and Conitzer
et al. (2011b), consists of aggregating the individual CP-nets into a collective CP-
net, and then outputting the nondominated alternatives of this collective CP-net. No
domain restriction is made on the individual CP-nets. For every set of “neighboring”
alternatives (differing only in the value of one issue), a local voting rule (typically
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majority if domains are binary) is used for deciding the common preferences over this
set, and finally, optimal outcomes are defined based on the aggregated CP-net.

Example 9.8. We have two issues, X; and X;, and the following three CP-nets.

voter 1 voter 2 voter 3
Xi—X5 Xi<—X, X1 Xo

01 :12 = 02| [0O2 : 11 > 04
11 :02 = 12| [12: 01 = 11

01 = 11 02 > 12 11 > 04 12 > 02

The majority aggregation of Nj, AV, and Nj; is the following CP-net, depicted with
its induced preference relation.

X1 X2 0102<=—1;02
02:13 =01 01:12>02
12:01 > 13 11 :02 > 12 011lo——1112

The dependency graph of this collective CP-net contains an edge from X; to X»
(resp., from X, to X ) because the dependency graph of voters 1 (resp., 2) CP-net does.
In the preference table for X, we have 0, : 1{ > 0; because voters 2 and 3 (unlike
voter 1) prefer 1; to 0; when X, = 0.

Once the CP-nets from agents have been aggregated to a common CP-net A'*, the
next task consists of finding a set of solutions. Because N* only specifies pairwise
preferences between neighbor alternatives, usual solution concepts are not directly
applicable. In particular, there is generally no way of checking whether a Condorcet
winner exists; however, we can check if there are hypercubewise Condorcet winners
(HCW), that is, alternatives that dominate all of their neighbours in N'*. Unlike Con-
dorcet winners, a profile may possess no HCW, one HCW, or several HCW (in Example
9.8 there are two, namely, 0; 1, and 1,0,). The notion of a HCW was first defined by Xia
et al. (2008) and studied further by Li et al. (2011), who study some of its properties
and propose (and implement) a SAT-based algorithm for computing them, whereas
the probability of existence of a HCW is addressed by Conitzer et al. (2011b). More
solution concepts (such as the top cycle, Copeland, maximin, or Kemeny) can also be
generalized to profiles consisting of preference hypercubes (Xia et al., 2008; Conitzer
etal., 2011b), while new solution concepts, based on distances between alternatives in
the hypercube, have been proposed by Xia et al. (2010a).

9.3.4 Conditionally Lexicographic Preferences

A conditionally lexicographic preference can be represented compactly by a lexico-
graphic preference tree (LP-tree) (Booth et al., 2010), consisting of (i) a conditional
importance tree, where each node is labeled by a variable X; and has either one child,
or two children associated with the values 0; and 1; taken by X;; (ii) and, for each node
v of the tree, labeled by X;, a conditional preference table expressing a preference
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order on D; for all possible combination of values of (some of) the ancestor variables
that have not yet assigned a value in the branch from the root to v.

Example 9.9. An LP-tree with p = 3 is illustrated in the following.

{05, 1,}

{05, 15}

The most important variable is X, and its preferred value is 0;; when X; = 0; then the
second most important variable is X, with preferred value 0,, then X3 with preferred
value 03; when X; = 1 then the second most important variable is X3, with preferred
value 13, then X,, with preferred value 0, if X3 = 03 and 1, if X3 = 15. The preference
relation induced by an LP-tree compares two alternatives by looking for the first node
(starting from the root) that discriminates them: for instance, for X =111andy = 100,
this is the node labeled by X3 in the branch associated with X; = 1;. Because 13 > 03
at that node, X is preferred to y. The complete preference relation associated with the
preceding LP-tree is 001 > 000 > 011 > 010 > 111 > 101 > 100 > 110.

Assuming preferences are conditionally lexicographic imposes an important domain
restriction (as does separability), but for some voting rules, determining the outcome
is efficient in communication and computation (Lang et al., 2012a). We give an exam-
ple with 27~ 2-approval. Given an LP-tree T compactly expressing a ranking >7, an
alternative is one of the 27~ best alternatives (i.e., in the top quarter) if and only if
it gives the preferred value to the most important variable (in the preceding example,
X1 = 0y) and the preferred value to the second most important variable given this value
(X, = 0,). This gives, for every voter, a conjunction of two literals (here =X | A —=X3);
the 27 ~2-approval winners are exactly those who satisfy a maximal number of such
formulas, thus the winner determination problem can be solved using a MAXSAT solver.
Note that, although the problem is NP-hard, there are efficient MAXSAT solvers (and a
MAXSAT track of the SAT competition). Results about other rules can be found in the
work of Lang et al. (2012a).

Example 9.10. Let n = 3, p = 3, and consider the three LP-trees in Figure 9.1. The
first LP-tree is the same as that in Example 9.9, and an alternative is ranked in its top
2P=2 = 2 positions if and only if =X; A =X, is satisfied. In the second LP-tree, the
top 272 alternatives can be represented as —X; A X,. In the third LP-tree, the top
2P=2 alternatives can be represented as X, A X3. These are the formulas in the MAXSAT
instance and the winner for 2-approval is 011.
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0,, 0,.1
0,:0 >12 0,071,
A0,

15:1,>0,

Figure 9.1. Three LP-trees.

9.3.5 Cardinal Preferences

In general, voting rules are using ordinal inputs. Allowing for a numerical represen-
tation of preferences (and possibly assuming interpersonal comparison of preference)
opens the door to a different class of approaches, based on the maximization of an aggre-
gation function. Many languages for compact preference representation of numerical
preferences have been defined and equipped with efficient algorithms, especially val-
ued CSPs (Bistarelli et al., 1999) and GAl-nets (Bacchus and Grove, 1995; Gonzales
and Perny, 2004). In both cases, local utility functions are defined over small (and
possibly intersecting) subsets of variables Si, ..., S, and the global utility function is
the sum (or more generally the aggregation, for some suitable aggregation function) of
the local utilities obtained from the local tables by projecting the alternatives on each
of the S;s. Gonzales et al. (2008) use such a representation based on GAl-nets and
study algorithms for finding a Pareto-optimal alternative. Lafage and Lang (2000) and
Uckelman (2009) assume that individual preferences are compactly represented using
weighted propositional formulae, and that a collectively optimal alternative is defined
through the maximization of a collective utility function resulting in the aggregation
of individual utilities, for some suitable aggregation function (which requires not only
that preferences be numerical but also that they be interpersonally comparable). See
also the work by Dalla Pozza et al. (2011), discussed in Section 9.4.

9.4 Sequential Voting

The basic principle of sequential voting is that at each step voters’ preferences over
the values of a single issue are elicited, the decision about this variable is taken using
a local voting rule, and the outcome is communicated to the voters before they vote
on the next variable. Formally, a sequential voting protocol on A is defined by (1) an
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order O over X' — without loss of generality, we let O = X; > Xo > --- > X,; and
(2) for each i < p, a resolute voting rule r; over D;. The sequential voting protocol
Seqy(r1, ..., rp) (Lang and Xia, 2009) is defined as follows.

Algorithm 1 Sequential Voting Protocol

Input: Anorder O = X > X, > --- > X, over &; p local voting rules ry, ..., 7.
Output: The winner (di, ..., d,)

1 fort =1t pdo

2 | Ask every agent i to report her preferences >§ over D, given (dy, ..., d;—1).

3 |LetP,=(~1,...,>" and d;, = r,(P).

4 | Communicate d, to the voters.
5

6

end
return (d, ...,d),)

This definition can easily be extended to irresolute voting rules. In the remainder of
this section, we will use Seq, as a shorthand notation for Seqy (71, ..., ¥p).

We have not discussed yet agents’ behavior in each step. The main complication is
that a preference for one issue may depend on the results for other issues, hence the
difficulty for a voter to decide her local preferences to report.

Example 9.11. Let X; and X, be two binary issues and let P denote the following
3-voter profile:

1112 > 0112 > 1102 > 0102
1102 > 1112 > 0112 > 0102
0112 > 0102 > 1102 > 1112

If the order O is X, I> X, then voters 2 and 3 cannot unambiguously report their
preferences over X,, because they depend on the value of X; (for instance, voter 2
prefers 0, to 1, when X; = 1, and 1, to 0, when X; = 0;), which has not been fixed
yet. In other terms, marginal (or local) preference over X, does not have a precise
meaning here.

9.4.1 Safe Sequential Voting

The condition that ensures that voters can report their preferences unambiguously is O-
legality: given O = X > X, I> - - - > X, a preference relation > over A is O-legal if
for every k < p, Xy is preferentially independent of Xy 41, ... X, given X1, ..., Xi_1;
or, equivalently, > extends the preference relation > induced by a CP-net whose
dependency graph is compatible with O (i.e., does not contain any edge from X; to X ;
such that X ; > X;). Let Legal(O) denote the set of all O-legal profiles.

Example 9.11, continued. P is not (X, > X)-legal, because voters 2 and 3 have
preferences over X, that depend on X;. On the other hand, P is (X > X»)-legal,
because all voters have unconditional preferences on X;: voters 1 and 2 prefer 1; to
01, and voter 3 prefers 0; to 1;, independently of the value of X5.
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In presence of the O-legality domain restriction, we say that sequential voting is safe.
In this section we assume O to be fixed and apply sequential voting to the domain of
O-legal profiles only. A crucial property of simultaneous voting under the separability
restriction carries over to safe sequential voting: it makes sense for a voter to report her
local preferences on the current issue given the value of earlier issues, without having
to wonder about the values of issues that have not been decided yet.

When all agents’ preferences are O-legal, a sequential voting protocol can also be
considered as a voting rule, because a voter’s preference on the values of X; given the
values of earlier variables is unambiguously defined given her preference relation over
A. More precisely, given any O-legal profile P, Seq,(P) is defined to be the output of
the sequential voting protocol where in step 2, P, = (!, ..., ") where >/ represents
local preferences of agent i over D, given X| =dy, ..., X;—1 = d,;_.

Example 9.12. Suppose there are two binary issues X; and X,. Let P denote the
same profile as in Example 9.11. Let O = X| > X;. As we discussed, P is O-legal.
To apply Seq,(maj, maj), where maj denote the majority rule, in step 1 the voters
are asked to report their (unconditional) preferences on X, which gives P, = (1| >
01,1y > 01, 0; > 1y). Therefore, d| = maj(P;) = 1;. In step 2, the voters report their
preferences over D, given X| = 11, which leads to P, = (1 > 0,2, 0, > 15,0, > 1),
and then d, = maj(P,) = 0,. Therefore, Seqp(maj, maj)(P) = 1,0;.

Normative Properties

We recall from Chapter 2 that one classical way to assess voting rules is to study
whether they satisfy certain normative properties. In this subsection we examine the
normative properties of safe sequential voting.

Classical normative properties are defined for voting rules where the input is com-
posed of linear orders over the alternatives. We note that Seq,(P) is only defined
for O-legal profiles. Some normative properties can be easily extended to Seq,(P),
for example anonymity and consistency, while others need to be modified. For exam-
ple, the classical neutrality axiom states that for any profile P and any permutation
M of the alternatives, r(M(P)) = M(r(P)). However, even if P is O-legal, M(P)
might not be O-legal. Therefore, we will focus on a weaker version of neutrality that
requires r(M(P)) = M(r(P)) for all P and M such that both P and M (P) are O-legal.
Monotonicity can be modified in a similar way.

Whether Seq, satisfies a specific normative property often depends on whether the
local voting rules satisfy the same property. Some properties are inherited by sequential
compositions from their local rules r;; for others, satisfaction of the property by the
local voting rules is merely a necessary but not sufficient condition.

Theorem 9.13 (Lang and Xia, 2009).

* Seqy(ry, ..., rp) satisfies anonymity (respectively, consistency) if and only if r; satisfies
anonymity (consistency) foralli =1, ..., p;
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* if Seqo(ri, ..., rp) satisfies neutrality (respectively, Condorcet-consistency, partici-
pation, and Pareto-efficiency) then r; satisfies neutrality (respectively, Condorcet-
consistency, participation, and Pareto-efficiency) foralli =1, ..., p;

* Seqy(r1, ..., rp) satisfies monotonicity if and only if r, satisfies monotonicity.

Proofs for the normative properties mentioned in Theorem 9.13 follow a similar
pattern. Take consistency, for example. Recall that a voting rule r satisfies consistency if
for all disjoint profiles P; and P, such that r(P;) = r(P>), we have r(P; U P,) = r(Py)
(see Chapter 1). We first prove that consistency can be lifted from all local rules to

their sequential composition Seqy(ry, ..., r,). For any disjoint sets of profiles P; and
P, such that Seqy(r1, ..., rp)(P1) = Seqo(ry, ..., r,)(P2), let d denote the outcome.
We then prove that Seqy(ry, ..., r,)(P1U P,) =d = (d,, ..., d,) by induction on the

round ¢ of sequential voting. When t = 1, let Pl1 and P21 denote the agents’ preferences
over X, which are well-defined because P, and P, are O-legal. Due to consistency
of r1, we have r1(P] U P)) = d;. Suppose the outcome of sequential voting is the
same as in d up to round k — 1. It is not hard to verify that in round k, the winner is
d; by considering agents’ preferences over X, conditioned on previous issues taking
dy, ..., di_1. This proves that Seq, (71, .. ., rp) satisfies consistency.

Conversely, if Seqy(r1, ..., rp) satisfies consistency and for the sake of contradic-
tion suppose that a local rule does not satisfy consistency. Let ¢ denote the smallest
number such that 7, is not consistent, and let P!, PZ’ denote the profiles over X; with
r(P})=r(P;) #r(P{UP)).Letry,...,ri_i,re1, ..., 7, be rules that always out-
put the same winner regardless of the local profile. We can extend P; and P; to
profiles Py, P, over the whole combinatorial domain so that Seqy(ri, ..., rp)(P1) =
Seqo(ry, ..., r,)(Py), and agents’ local preferences over X, are P| and P;. It is not
hard to verify that Seqy(ry, ..., r,)(P1) # Seqo(ri, ..., rp)(P1 U Py), which contra-
dicts the assumption that Seq,(ry, .. ., r,) satisfies consistency.

In fact, for neutrality and Pareto-efficiency, a stronger result has been proved for
irresolute sequential voting rules: Xia and Lang (2009) show that except in the case
where the domain is composed of two binary issues, the only neutral irresolute sequen-
tial voting rules are dictatorships, antidictatorships,'’ and the trivial irresolute rule that
always outputs the whole set of alternatives; and the only Pareto-efficient irresolute
sequential voting rules are dictatorships and the trivial irresolute rule. When the domain
is composed of two binary issues, sequential majority is neutral and Pareto-efficient.

Strategic Behavior

In the previous subsection, when we talked about normative properties, it was implicitly
assumed that agents were truthful. However, in practice an agent may misreport her
preferences at step 2 of the sequential voting protocol (Algorithm 1). If some variables
are nonbinary, then sequential voting will inherit manipulability from the local rules,
even if the profile is separable. However, in case all variables are binary, it is not imme-
diately clear if a sequential voting rule defined over O-legal profiles is strategyproof

10° A rule is an antidictatorship if there exists an agent such that the winner is always her least preferred alternative.
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(see Chapters 2 and 6), since the Gibbard-Satterthwaite Theorem is not directly appli-
cable. The following example shows that sequential voting is not strategyproof, even
when all variables are binary, and the agents’ preferences are O-legal for some O.

Example 9.14. Let P be the profile defined in Example 9.11. If agent 1 knows the
preferences of agent 2 and agent 3, then she has no incentive to vote truthfully on issue
X1, even though her preference relation is separable: if she votes for 1 sincerely, then
the outcome is 10. If she votes for O instead, then the outcome is 01, which is better to
her.

The problem of characterizing strategyproof voting rules in binary multi-issue
domains has received some attention. Barbera et al. (1991) characterize strategyproof
voting rules when the voters’ preferences are separable, and each issue is binary. Ju
(2003) characterizes all strategyproof voting rules on binary multi-issue domains (sat-
isfying a mild additional condition) where each issue can take three values: “good,”
“bad,” and “null.” Le Breton and Sen (1999) prove that if the voters’ preferences
are separable, and the restricted preference domain of the voters satisfies a rich-
ness condition, then a voting rule is strategyproof if and only if it is a simultane-
ous voting rule for which each local voting rule is strategyproof over its respective
domain.

We may wonder whether this extends to safe sequential voting. However, the follow-
ing impossibility theorem of Xia and Conitzer (2010a) answers the question negatively:
there is no strategyproof sequential voting rule on Legal(O)" that satisfies nonimposi-
tion, except a dictatorship. Xia and Conitzer (2010a) also prove a positive result in the
further restricted case of O-legal conditionally lexicographic preferences: essentially,
the strategyproof rules on this domain are generalized sequential voting rules, where
the choice of the local rule to apply on a given issue may depend on the values taken
by more important issues.

9.4.2 Sequential Voting: The General Case

In the absence of O-legality, sequential voting suffers from the same problem as
simultaneous voting in the absence of separability: there is no clear way for voters to
report their local preferences on the domain of an issue, since it may depend on the
value of issues yet to be decided. Moreover, choosing the agenda (the order on which
the issues are decided) can be tricky: What is a good agenda? Who chooses it? This
problem is raised by Airiau et al. (2011), who suggest designing a voting procedure
for choosing the agenda: each voter reports its dependency graph and these graphs
are aggregated into an acyclic graph, for instance using a distance-based aggregation
function. Another approach to unrestricted sequential voting is described by Dalla
Pozza et al. (2011), who assume that at each stage, voters report their local preferences
according to the projection of a weighted CSP on the current variable.

Another challenge in the analysis of sequential voting without the O-legality
assumption is that the outcome may depend on the order in which the issues are
decided. This can give the chair (or whoever chooses the order) an effective way of
controlling the election (see Chapter 7). This can be seen in the following example:
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Example 9.3, continued. Suppose the voters report their preferences optimistically,
which is known to the chair. If S is decided before 7', then we get k + 1 votes for 15,
k votes for Og, leading to the local outcome 1g; then, given S = 15, we have 2k votes
for Or and 1 vote for 17, therefore the final outcome is 1507. Symmetrically, if T is
decided before S, the final outcome is Og17. Therefore, the chair’s strategy can be to
choose the order S > T if she prefers 1307 to Ogly, and the order T > S otherwise.
(Note that 1g17 and 0507 cannot be obtained).

This shows that the chair can sometimes, and to some extent, control the election by
fixing the agenda (see also Chapter 7). This drawback of sequential voting is however
tempered by the fact that under some reasonable assumptions about the way the voters’s
behaviors are represented, in most cases, most of these agenda control problems are
NP-hard (Conitzer et al., 2009a).

We mentioned above that in the absence of O-legality, there is no clear way for voters
to report their local preferences on the domain of a variable. However, there is a case
where voters may in fact be able to determine valid reports of their local preferences.
When voters’ preferences are assumed to be common knowledge, the sequential voting
protocol can be framed as an extensive-form game, called a strategic sequential voting
process, denoted by SSVp (Xia et al., 2011a). We assume that all variables are binary.
Without loss of generality, let O = X; I> - - - > X,. The game is defined as follows:

* The players are the voters; their preferences are linear orders over A; their possible
actions at stage t < p are 0, and 1,.

* In each stage t, all voters vote on X; simultaneously, r; is used to choose the winning
value d; for X,, and d; is reported back to the voters.

* We assume complete information: all voters know the other voters’ preferences, the
local voting rules ry, ..., r, and the order O.

When all issues are binary, SSV» can be solved by backward induction where in each
stage all voters move simultaneously and perform a dominant strategy, as illustrated in
the following example.

Example 9.15. Let P be the profile defined in Example 9.11. If the outcome of the
first stage of sequential voting is 1}, then in the second stage it is voter 1’s dominant
strategy to vote for 1, because 1,1, >; 1,0, and the majority rule is strategyproof.
Similarly, in this case voters 2 and 3 will vote for 0,. Therefore, by the majority rule,
the winner will be 1,0,. Similarly, if the outcome of the first stage of sequential voting
is 01, then the votes at the second stage will be unanimously 0,, and the winner will
be 0;1,. Given this reasoning, in the first stage, each agent is comparing 1;0; to 0;1,,
and will vote 1; if he prefers 1,0, to 0,1, and 0, if he prefers 0;1, to 1;0,. Again we
have two alternatives, and the majority rule is strategyproof. This means that voter 1
will vote for 0, voter 2 will vote for 1, and voter 3 will vote for 0;. Hence, the winner
for X is 0y, and the overall winner is 0; 1,. This backward induction process is shown
in Figure 9.2.

In Example 9.15, the backward induction winner is unique. This observation can be
extended to an arbitrary number of binary issues. Let SSVy(P) denote the backward



9.5 CONCLUDING DISCUSSION 221

11 10 01 00

Figure 9.2. Backward induction tree for Example 9.15.

induction winner when the voters’ true preferences are P.'' Despite being unique, this
outcome is extremely undesirable in the worst case: Xia et al. (2011a) prove that for
any p € N and any n > 2p? + 1, there exists a profile P such that (1) SSVp(P) is
ranked within the bottom | p/2 4 2] positions in every voter’s true preferences, and (2)
SSVo(P) is Pareto-dominated by 27 — (p + 1) p/2 alternatives. We note that when p
isnottoo small, | p/2 4+ 2] and (p + 1) p/2 are much smaller than |A| = 27. Therefore,
the SSV winner can indeed be extremely undesirable. A stronger form of the theorem
and a similar negative result for O-legal profiles are given by Xia et al. (2011a).

9.4.3 Discussion

The key property of sequential voting is that it interleaves preference elicitation and
winner determination, whereas the approaches outlined in Sections 9.2 and 9.3 proceed
in a more usual fashion, by eliciting preferences in one round, and determining the
winner afterward. As a result, sequential voting can save a lot in communication costs,
but is applicable only when it is realistic to elicit preferences step by step. Now, the
quality of the outcome obtained by sequential voting primarily depends on whether
it is realistic to assume that voters’ preferences are O-legal for some common order
O: if so, then sequential voting enjoys some good properties; if not, it offers far fewer
quality guarantees. Therefore, one criticism of sequential voting is that it still needs a
strong domain restriction to work well (Xia et al., 2008); but still, when compared to
the separability restriction needed for simultaneous voting, O-legality is much weaker
(Lang and Xia, 2009). Conitzer and Xia (2012) evaluate the quality of the outcome of
sequential voting w.r.t. a scoring function, which can be seen as numerical versions of
multiple election paradoxes.

There could be other ways of interleaving elicitation and winner determination. A
completely different way of proceeding was proposed very recently by Bowman et al.
(2014), who propose an iterative protocol that allows voters to revise their votes based
on the outcomes of previous iterations.

9.5 Concluding Discussion

After reviewing several classes of methods for voting in combinatorial domains, we are
left with the (expected) conclusion that none of them is perfect. More precisely, when

' This should be distinguished from the classical social choice setting, where the input consists of the reported
preferences.
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choosing a method, we have to make a trade-off between generality, communication
(and, to a lesser extent, computation) costs, and the quality of the outcome, evaluated
with respect to classical social choice criteria. If specific domain restrictions such
as separability or, more generally, O-legality, are realistic for the case at hand, then
many of the methods discussed in this chapter work reasonably well. Otherwise, one
has to be prepared to make some trade-off between communication requirements and
the quality of the outcome. One possibility that has not really been developed yet
is to choose some intermediate method that requires some weak domain restriction,
some reasonable communication and computation costs, and offers some reasonable
guarantees about the quality of the outcome.

Voting in combinatorial domains is related to several other issues studied in this
book and elsewhere:

* Incomplete information and communication (Chapter 10): as some communication sav-
ing can be made by eliciting only a part of the voters’ preferences, winner determination
in combinatorial domains can benefit from approaches to winner determination from
incomplete preferences as well as from the design of communication-efficient voting
protocols.

* Judgment aggregation (Chapter 17) is also concerned with making common decisions
about possibly interrelated issues. There are interesting parallels between judgment
aggregation and voting in combinatorial domains. Simultaneous voting corresponds to
some extent to proposition-wise voting: while the first works well when preferences are
separable, the second outputs a consistent outcome if the agenda enjoys an independence
property that resembles separability. Note that in judgment aggregation, difficulties are
often caused by the logical relations between the elements of the agenda, while in voting
in combinatorial domains, they are mainly due to preferential dependencies. Relating
both areas is a promising research direction; see Grandi and Endriss (2011) for some
first steps in this direction.

* Fair division of indivisible items (Chapter 12) is another field where a common decision
has to be made on a combinatorial space of alternatives (the set of all allocations). In the
settings we reviewed in this chapter, we assumed that all agents were equally concerned
with all issues (which is patently false in fair division, where agents are primarily —
sometimes even exclusively — concerned by their share); but in some settings, some
issues concern some (subsets of) voters more than others, which will call for introducing
fairness criteria into multi-issue voting.
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CHAPTER 10

Incomplete Information and
Communication in Voting

Craig Boutilier and Jeffrey S. Rosenschein

Many voting schemes (and other social choice mechanisms) make stringent assump-
tions about the preference information provided by voters, as well as other aspects of
the choice situation. Realizing these assumptions in practice often imposes an unde-
sirable and unnecessary burden on both voters and mechanism designers with respect
to the provision of such information. This chapter provides an overview of a variety
of topics related to the information and communication requirements of voting. One
theme underlying much of the work discussed in this chapter is its focus on deter-
mining winners or making decisions with incomplete or stochastic information about
voter preferences—or in some cases, about the alternatives themselves. This includes
work on the computational complexity of determining possible/necessary winners and
regret-based winner determination; the query or communication complexity of eliciting
preferences; practical schemes for preference elicitation; winner determination under
alternative uncertainty; the sample complexity of learning voting rules; and compilation
complexity.

10.1 Introduction

Voting methods are extremely attractive as a means for aggregating preferences to
implement social choice functions. However, many voting schemes (and other social
choice mechanisms) make stringent assumptions about the preferences provided by
voters. For instance, it is usually assumed that each voter provides a complete pref-
erence ranking of all alternatives under consideration. In addition, such schemes are
often implemented assuming complete knowledge of the set of alternatives under con-
sideration, and over which voters provide their preferences.

While these modeling requirements are reasonable in many domains—especially
high-stakes settings such as political elections—increasingly we see the methods of
social choice applied to lower-stakes, higher frequency domains, including web search,
product recommendation, market segmentation, meeting scheduling, group travel plan-
ning, and many others. For such problems, demanding complete preference information
is not viable for several key reasons. First, the number of options from which a winning
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alternative is to be selected is often extremely large (e.g., the set of possible products
under consideration) and may even be combinatorial in nature (e.g., the set of feasi-
ble schedules or plans). Second, requiring the complete specification of a preference
ordering may impose unwarranted cognitive and communication demands given the
stakes involved. It may even be unnecessary in many instances—partial information
may be sufficient to reach the correct decision. Third, the frequency of decisions often
gives rise to considerable data that allows (statistical) prediction of voter preferences.
Finally, the set of alternatives over which decisions are made may be uncertain or
change dynamically. This all argues for a deeper analysis of the communication and
informational requirements of voting rules, and methods for reducing such require-
ments, even to the point of “approximating” the ultimate decision. Such methods may
allow for the broader practical application of voting methods. Understanding infor-
mational requirements is equally important in high-stakes domains, and may provide
significant benefits. For instance, reducing cognitive and communication complexity
may reduce voting errors (e.g., due to choice confusion), increase voter participation,
and decrease the time needed to reach decisions.

In this chapter, we overview a number of models and techniques developed to address
such issues, namely, the information and communication requirements of voting. One
theme underlying much of the work discussed in this chapter is its focus on determining
winners or making decisions with incomplete or stochastic information about voter
preferences—or in some cases, about the alternatives themselves. This includes: models
for determining winners with partial preference information, including possible and
necessary winners and regret-based winner computation; theoretical analyses of the
communication complexity of eliciting preferences, as well as practical schemes for
eliciting preferences from voters; methods for determining winners when the set of
viable alternatives is unknown or uncertain; results on the compilation complexity
of voting rules, that is, the ability to concisely summarize voter preferences; and
techniques for learning voting rules, that is, designing voting rules that “perform well”
given some model of voter utility.

The remainder of the chapter is organized as follows. We describe basic notation
and the models of partial preferences used throughout the chapter in Section 10.2.
In Section 10.3 we introduce several key solution concepts for winner determination
with partial preferences. In Sections 10.4 and 10.5 we outline key theoretical results on
communication and query complexity for vote elicitation and describe recent elicitation
techniques and their analysis. We present several models for dealing with uncertainty
in the set of alternatives in Section 10.6. Section 10.7 focuses on recent results in
compilation complexity, or the summarization of vote profiles. In Section 10.8 we
describe models and methods that support the analysis and design of voting rules that
are intended to maximize social welfare assuming voters have cardinal utilities over
alternatives. We conclude in Section 10.9 with some general observations and a brief
discussion of open issues.

10.2 Models of Partial Preferences

While incomplete information for various elements of a voting situation has been
mentioned, incomplete information about voter preferences is almost certainly the
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most fundamental. Furthermore, communicating voter preferences to the mechanism
represents probably the most critical communication bottleneck in voting. We begin
by introducing notation and defining several models of partial preferences that will be
used throughout this chapter.

10.2.1 Basic Notation and Concepts

We assume a set of alternatives A = {ay, ..., a,}, representing the space of possible
choices, and a set of voters N = {1, ..., n}. Each voter i has a preference order >;
over A, which is a total order over A, with a; >; a; denoting that i prefers a; to ag.' We
sometimes view this ordering as a permutation o; of A, in which case: o;(j) denotes
the position of a; in i’s ranking; and al-_l( J) denotes the alternative ranked in the jth
position. Let R(A) denote the set of all such preference orders over A. A preference
profile R = (>, ..., >,) is a collection of preferences for each voter.

Given a preference profile R, a social choice function or voting rule f selects a
winning alternative f(R) € A for that profile.” We refer to Chapters 2—5 for further
discussion of various voting rules and approaches.

Many voting rules are defined by schemes that explicitly score each alternativea € A
given a preference profile R, using some “natural” scoring function s(a, R) that mea-
sures the quality of a given R. The rule selects an alternative f(R) € argmax, ., s(a, R)
with maximum score. Usually some method of breaking ties is assumed, but the precise
method used has little impact on the discussion in this chapter. In some cases, however,
we will use the term co-winner to refer to any alternative a with maximum score
s(a, R) (independent of tie-breaking), especially in Section 10.3. If one interprets the
scoring function s as a measure of social welfare, such voting rules can be viewed as
maximizing social welfare. Voting rules based on scoring rules (e.g., plurality, Borda,
veto, k-approval), Copeland, Bucklin, maximin, and many others can be defined this
way.’

10.2.2 Partial Votes and Profiles

One natural way to reduce the communication and informational requirements of voting
is to elicit or otherwise obtain partial information about voter preferences and attempt
to implement a voting rule using only the information at hand.

Abstractly, we let r; denote the partial preference of voteri, and I[1 = (my, ..., m,)
a partial profile. In what follows, we will usually assume that m; is a partial order
over A, or equivalently (the transitive closure of) a consistent collection of pairwise
comparisons of the form a; >; ay.

! Allowing indifference between alternatives has little impact on the main concepts that follow, though it does
sometimes affect algorithmic details and complexity analysis.

2 Not all voting rules require the specification of the complete rankings (e.g., plurality), and certain rules, such as
approval voting or range voting cannot be defined purely as a function of a voter’s ranking.

3 We emphasize that natural measures of quality are the norm; trivially, any rule can be defined using a scor-
ing function that is a simple indicator function for the winner. We note that while Xia and Conitzer (2008a)
propose a class of generalized scoring rules, they show that it is not broad enough to encompass all vot-
ing rules, not even all anonymous rules; however, this class does seem to capture most “natural” scoring
functions.
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A partial vote 77; can represent information about voter i ’s preferences gleaned from
a variety of sources: revealed preference data (e.g., based on past choices), collaborative
filtering predictions, or responses to queries about her preferences. We note that the
responses to most natural preference queries induce constraints on preferences that can
be represented as a partial order. These include: arbitrary pairwise comparisons (is a
preferred to b?); top-k queries (what are your k most preferred alternatives?), choice
queries (which alternative in set S is most preferred?), and others.*

Let 7r; be the partial ranking of voter i. A completion of m; is any vote >; that extends
m;. Let C(xr;) denote the set of completions of m;, that is, the set of all (complete) votes
>; thatextend ;. A partial profile is a collection of partial votes [1 = (my, ..., m,). Let
C(IT) = C(ry) X ... x C(7,) be the set of completions of I1. We take the perspective
in this chapter that partial votes and profiles reflect the epistemic or information state of
a voting mechanism, agent, decision maker or other party implementing a voting rule
or social choice function. We assume that voter i has true preferences corresponding
to some completion of ;. The partial vote does not reflect uncertainty, incompleteness
or indecision on the part of the voter, merely the mechanism’s incomplete information
about those preferences.’

10.2.3 Probabilistic Preference Models

If one is given partial information about the preferences of voters, but is forced to make
a decision (e.g., select the winner of an election), or evaluate the value of eliciting
further information, several styles of approach can be used, including worst-case or
probabilistic analyses. We consider both in what follows. Probabilistic analysis requires
the specification of some prior distribution over voter preferences or preference profiles,
so we briefly review several key probabilistic models.

Probabilistic analysis has a rich history in social choice, though until recently it has
been used primarily to study the likelihood that various phenomena (e.g., Condorcet
cycles, manipulability) occur in randomly drawn voter populations, rather than as a
basis for decision making or elicitation with incomplete information. Abstractly, a
distribution over > € R(A) can be viewed as a “culture” indicating the probability
that a random voter will hold a particular preference ranking (Garman and Kamien,
1968). By far the most commonly studied distribution is the impartial culture (IC), in
which each ranking >¢€ R(A) is equally likely to be a voter’s preference, and all voter
preferences are independent (Black, 1958; Gehrlein and Fishburn, 1976; Regenwetter
et al., 2006). Related, but taking a slightly different form, is impartial anonymous
culture (IAC) which provides a uniform distribution over all preference profiles. Berg
(1985) proposes a general Polya-Eggenberger urn model that encompasses both of
these (and has been used, e.g., to study the probability and empirical hardness of
manipulation (Walsh, 2009)). See Regenwetter et al. (2006) for a discussion of other
cultures studied in social choice.

4 One exception involves constraints that are naturally disjunctive, e.g., a response to the question “What alternative
is ranked k7’ cannot generally be mapped to a set of pairwise preferences unless the positions k are queried
in ascending or descending order.

3 For approaches to voting with truly incomplete preferences represented by partial orders, see (Pini et al., 2009;
Xia and Conitzer, 2011b), and a discussion of approaches based on maximum likelihood in Chapter 8.
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It is widely recognized that impartial cultures do not accurately reflect real-world
preferences (Regenwetter et al., 2006). More realistic probabilistic models of pref-
erences, or parameterized families of distributions over rankings, have been pro-
posed in statistics, econometrics and psychometrics. These models typically reflect
some process by which people rank, judge or compare alternatives. Many models
are unimodal, based on a “reference ranking” from which user rankings are gener-
ated as noisy perturbations. A commonly used model, adopted widely in machine
learning is the Mallows ¢-model (Mallows, 1957). It is parameterized by a modal
or reference ranking o and a dispersion parameter ¢ € (0, 1]; and for any rank-
ing r we define: P(r;o,¢) = %d)d(’*"), where d is the Kendall tau distance and
z=53, D =1.04+¢)- I +¢p+¢>---(14+---+¢™ ") is a normalization
constant.” When ¢ = 1 we obtain the uniform distribution over rankings (i.e., impar-
tial culture), and as ¢ — 0 we approach the distribution that concentrates all mass on
o. A variety of other models have been proposed that reflect different interpretations
of the ranking process (e.g., Plackett-Luce, Bradley-Terry, Thurstonian) and many of
these have found application in compu