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Cake Cutting Algorithms

Ariel D. Procaccia

13.1 Introduction

Imagine a cake that must be divided between a group of gluttonous children. To

complicate matters, the cake is heterogeneous: two pieces of cake may differ in terms

of their toppings, so the children have different preferences over the pieces (one may

prefer a larger proportion of chocolate curls, while another may single-mindedly

desire the piece with the cherry). In this chapter we discuss the surprisingly intricate

problem of fairly dividing the cake — which serves as a metaphor for heterogeneous

divisible resources such as land or time.

The cake cutting problem has a long and storied history described, e.g., in the

books by Brams and Taylor (1996) and Robertson and Webb (1998). The early

research on the problem has two main themes: existence results showing that certain

fairness guarantees can be achieved; and algorithmic results showing how such

guarantees can be achieved. The focus of this chapter is on the latter theme, which

has a more computational flavor.

From a computer scientist’s point of view, the cake cutting problem provides a

sandbox in which we can explore the role of computational thinking in the allocation

of divisible goods. Indeed, the elegant cake cutting model (Section 13.2) distills

many of the issues we care about when studying divisible goods more broadly; for

example, how to reason about computational complexity in the face of continuous

inputs, and how to quantify the tradeoffs between individual fairness and global

welfare.

13.2 The Model

Our setting includes a set of agents denoted N = {1, . . . , n}, and a heterogeneous

divisible good — the cake — represented by the interval [0, 1]. We assume that each

agent i ∈ N is endowed with a valuation function Vi, which maps a given subinterval

I ⊆ [0, 1] to the value assigned to it by agent i, Vi(I). We also write Vi(x, y) as a

shorthand for Vi([x, y]). These valuation functions are assumed to satisfy several

conditions, for every i ∈ N :



2 Cake Cutting Algorithms Ariel D. Procaccia

• Normalization: Vi(0, 1) = 1.

• Divisibility: For every subinterval [x, y] and 0 ≤ λ ≤ 1 there exists a point

z ∈ [x, y] such that Vi(x, z) = λVi(x, y).

• Non-negativity: For every subinterval I, Vi(I) ≥ 0.

The divisibility property implies that the valuation functions are non-atomic,

that is, Vi(x, x) = 0 for every x ∈ [0, 1]. This property allows us to ignore the

boundaries of intervals, and in particular we can treat two intervals as disjoint if

their intersection is a singleton. We denote the length of an interval I by `(I), i.e.,

`([x, y]) = y − x.

A piece of cake is a finite union of disjoint intervals. We can alternatively view

a piece of cake X as a set of intervals, which allows us to write I ∈ X. To extend

the valuation functions to pieces of cake, we also assume:

• Additivity: For two disjoint subintervals I, I ′, Vi(I) + Vi(I
′) = Vi(I ∪ I ′).

The value of i ∈ N for a piece X is then simply Vi(X) =
∑
I∈X Vi(I), and its length

is `(X) =
∑
I∈X `(I).

A slightly more specific model for valuation functions assumes that each agent

i ∈ N has a non-negative integrable value density function vi. Given a piece of cake

X, we let Vi(X) =
∫
x∈X vi(x)dx. As before we can assume that

∫ 1

x=0
vi(x)dx =

Vi(0, 1) = 1. Importantly, divisibility and additivity follow directly from the basic

properties of integration.

In some cases it will prove useful to restrict the agents’ valuation functions via

the structure of the associated density functions. We say that a valuation function

is piecewise constant if its associated value density function has this property (see

Figure 13.1(a)). An agent with a piecewise constant valuation function desires a

collection of intervals, and each interval is valued uniformly. In other words, crumbs

of equal size from the same interval are valued equally, but crumbs from different

intervals may have different values. For example, think of the cake as television

advertising time; a toy company would be interested in commercial breaks that are

associated with children’s programs, and its value for a slot would increase with the

program’s popularity (that is, the density of different intervals can be different).

However, the company may be indifferent between slots within the same commercial

break.

Piecewise uniform valuations are a special case of piecewise constant valuations,

where the density is either a fixed constant c > 0 or 0 (see Figure 13.1(b)). An

agent with a piecewise uniform valuation function has a desired piece of cake that

it values uniformly. Such valuations can arise, for instance, if one thinks of cake as

access time to a shared backup server. Users are interested in time slots in which

their machines are idle, but would be indifferent between two idle time slots of equal

length.
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(a) Value density function for a
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(b) Value density function for a
piecewise uniform valuation.

Figure 13.1 An illustration of special value density functions.

We are interested in allocations A = (A1, . . . , An), where each Ai is the piece

of cake allocated to agent i. These pieces are assumed to form a partition of the

cake: They are disjoint and their union is the entire cake. In general each Ai can

consist of multiple disjoint intervals, but we are sometimes interested in contiguous

allocations where each Ai is a single interval. We consider the following fairness

properties:

• Proportionality: for all i ∈ N , Vi(Ai) ≥ 1/n.

• Envy-freeness: For all i, j ∈ N , Vi(Ai) ≥ Vi(Aj).
• Equitability: For all i, j ∈ N , Vi(Ai) = Vj(Aj).

Informally, proportionality means that every agent has value at least 1/n for its

piece of cake; envy-freeness implies that each agent weakly prefers his own piece

to any other piece; and equitability means that every two agents assign the exact

same value to their own pieces.

It is easy to see that envy-freeness implies proportionality. Indeed, by additivity∑
j∈N Vi(Aj) = 1, so there must exist j ∈ N such that Vi(Aj) ≥ 1/n. Using envy-

freeness we have that Vi(Ai) ≥ Vi(Aj), and therefore Vi(Ai) ≥ 1/n. The converse

is true for the case of two agents, because Vi(Ai) ≥ 1/2 and Vi(Ai) + Vi(A3−i) = 1

together imply that Vi(Ai) ≥ Vi(A3−i). However, for three agents there are alloca-

tions that are proportional but not envy-free: An agent can have value 1/3 for its

own piece, satisfying proportionality, but a value of 1/2 for another piece, violating

envy-freeness. It is also worth mentioning that equitability is incomparable to the

other two properties: An allocation where each agent assigns value 0 to its own

piece and value 1 to another piece is equitable but not proportional (and hence not

envy-free), while most envy-free (and hence proportional) allocations would not

satisfy the stringent equality constraint that equitability requires.

13.3 Classic Cake Cutting Algorithms

Although we promised to focus on constructive cake cutting results, we start our

formal discussion of cake cutting algorithms with one nonconstructive existence

result that tells us what we can expect.
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Theorem 13.1 (Alon, 1987) Let V1, . . . , Vn be valuation functions induced by

continuous value density functions. Then it is possible to cut the cake in n2 − n
places and partition the n2 − n+ 1 intervals into n pieces A1, . . . , An such that for

all i, j ∈ N , Vi(Aj) = 1/n.

So, under a mild assumption (continuity of the value density functions), there

are allocations that are equitable (each agent has value exactly 1/n for its piece)

and envy-free (each agent also has value exactly 1/n for any other piece). Moreover,

such allocations only require a number of cuts that is polynomial in n, regardless

of the valuation functions. Unfortunately, as we shall see constructing allocations

satisfying these properties is difficult. In fact, equitable allocations are impossible

to achieve in the computational model that we adopt,1 which is why we only revisit

this property in Section 13.5.

13.3.1 Proportionality for n = 2: Cut and Choose

When there are two agents, the intuitive cut and choose algorithm computes a

proportional (and hence also envy-free) allocation. Agent 1 cuts the cake into two

equally-valued pieces, i.e., two pieces X1 and X2 such that V1(X1) = V1(X2) = 1/2.

Agent 2 then chooses its preferred piece, and agent 1 receives the remaining piece.

Formally, if V2(X1) ≥ V2(X2) then set A2 = X1, A1 = X2; otherwise set A1 = X1,

A2 = X2. This allocation is clearly proportional.

An important property of the cut and choose algorithm — which is shared by

other classic algorithms, described below — is that an agent can obtain its fair share

by following the algorithm, regardless of whether others also follow the algorithm.

Indeed, agent 1 would receive a piece worth exactly 1/2 by cutting the cake into

two equal pieces, even if agent 2 deviated from the algorithm by choosing its less

preferred piece. Similarly, agent 2 would receive a piece worth at least 1/2, even if

agent 1 cut the cake into two uneven pieces. Making a distinction between the pre-

scribed algorithm and the agents’ strategies gives rise to intriguing game-theoretic

questions, which we do not discuss here; some relevant references can be found in

Section 13.6.

13.3.2 Proportionality for any n: Dubins-Spanier & Even-Paz

An algorithm devised by Dubins and Spanier (1961) guarantees a proportional

allocation for any number of agents. The algorithm was originally specified using a

continuously moving knife, but we describe its discrete version (and slightly modify

it for ease of exposition). In the first round each agent i ∈ N makes a mark at the

point xi such that Vi(0, xi) = 1/n. The agent i∗ that made the leftmost mark —

1 Methods that achieve equitable allocations, like the one by Brams et al. (2006), require
“continuous” operations.
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formally an agent in i∗ ∈ argmini∈Nxi — exits with the piece Ai∗ = [0, xi∗ ]. The

process is repeated with the remaining agents and remaining cake. When there is

only one agent left, it receives the unclaimed piece of cake.

Each agent i ∈ N that exits during the execution of the algorithm receives a

piece Ai such that Vi(Ai) = 1/n. The proportionality guarantee is also satisfied

with respect to the last agent j, because Vj(Ai) ≤ 1/n for all i ∈ N \ {j}, and

hence Vj(Aj) ≥ 1− (n− 1)/n = 1/n.

A similar algorithm, proposed more than two decades later by Even and Paz

(1984), achieves the same proportionality guarantee but in a more computationally

efficient way. Presently we describe the algorithm and establish proportionality; we

provide a complexity analysis in Section 13.4. Assume purely for ease of exposition

that n is a power of 2. When the algorithm is given a subset of agents 1, . . . , k and a

piece [y, z], it asks each agent i to mark the point xi such that Vi(y, xi) = Vi(y, z)/2.

Let xi1 , . . . , xik be the marks sorted from left to right; that is, xij ≤ xij+1
for

j = 1, . . . , k − 1. The algorithm is recursively called with agents i1, . . . , ik/2 and

the piece [y, xik/2
], and agents ik/2+1, . . . , ik and the piece [xik/2+1

, z]. When the

algorithm is called with a singleton set of agents {i} and an interval I it assigns

Ai = I. Initially the algorithm is called with all agents and the entire cake.

At depth k in the recursion tree, n/2k agents share a piece of cake that each

values at least at 1/2k. In particular, at depth lg n the algorithm is called with one

agent and a piece of cake it values at least at 1/2lgn = 1/n. We conclude that the

Even-Paz algorithm is proportional.

However, it is easy to see that the Dubins-Spanier and Even-Paz algorithms are

not envy free. For example, in Dubins-Spanier an agent would never envy agents

that exited earlier, but may certainly envy agents that exited later.

13.3.3 Envy-freeness for n = 3: Selfridge-Conway

In around 1960, Selfridge and Conway (independently) constructed the following

envy-free algorithm for the case of three agents (see, e.g., Brams and Taylor (1995)):

Initialization:

1. Agent 1 divides the cake into three equally-valued pieces X1, X2, X3: V1(X1) =

V1(X2) = V1(X3) = 1/3.

2. Agent 2 trims the most valuable piece according to V2 to create a tie for most

valuable. For example, if V2(X1) > V2(X2) ≥ V2(X3), agent 2 removes X ′ ⊆ X1

such that V2(X1 \ X ′) = V2(X2). We call the three pieces — one of which is

trimmed — cake 1 (X1 \X ′, X2, X3 in the example), and we call the trimmings

cake 2 (X ′ in the example).

Division of cake 1:

3. Agent 3 chooses one of the three pieces of cake 1.
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4. If agent 3 chose the trimmed piece (X1 \ X ′ in the example), agent 2 chooses

between the two other pieces of cake 1. Otherwise, agent 2 receives the trimmed

piece. We denote the agent i ∈ {2, 3} that received the trimmed piece by T , and

the other agent by T .

5. Agent 1 receives the remaining piece of cake 1.

Division of cake 2:

6. Agent T divides cake 2 into three equally-valued pieces.

7. Agents T, 1, T select a piece of cake 2 each, in that order.

To establish the envy-freeness of the Selfridge-Conway algorithm, first note that

the division of cake 1 is clearly envy free: Agent 3 chooses first; agent 2 receives one

of the two pieces that it views as tied for largest; and agent 1 definitely receives an

untrimmed piece, which it also views as tied for largest. Now consider the division

of cake 2. Agent T chooses first, and agent T is indifferent between the three pieces,

so these agents do not envy another agent’s piece of cake 2. Combining envy-free

divisions of two disjoint pieces of cake yields an envy-free division of the combined

cake, hence agents T and T are not envious overall. At first glance one may worry

that agent 1 prefers T ’s piece of cake 2 to its own. Observe, however, that agent

1 would not envy agent T , even if T received all of cake 2; because then T would

merely construct one of the original pieces (X1 in the example), which agent 1

values at 1/3 — only as much as its own untrimmed piece of cake 1!

13.4 Complexity of Cake Cutting

Some of the previous chapters of this book analyzed the computational complexity

of problems in terms of complexity classes such as P and NP. Understanding the

complexity of cake cutting calls for a different approach, though, because in general

there may not be a finite discrete representation of a problem instance. We must

therefore adopt a concrete complexity model that specifies which operations a cake

cutting algorithm is allowed to use; we will measure complexity via bounds on the

number of allowed operations.

The standard concrete complexity model for cake cutting is the Robertson-Webb

model (Robertson and Webb, 1998), which supports two types of queries:

• evali(x, y): Asks agent i to evaluate the interval [x, y]. Formally, evali(x, y) =

Vi(x, y).

• cuti(x, α): Asks agent i to cut a piece of cake worth a given value α, starting at

a given point x. Formally, cuti(x, α) = y where y is the leftmost point such that

Vi(x, y) = α.

The Robertson-Webb model is deceptively simple, but in fact it is powerful
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enough to capture the cake cutting algorithms described in Section 13.3. For exam-

ple, to simulate cut and choose the algorithm sends a cut1(0, 1/2) query to agent

1. Agent 1 answers with a point y; note that V1(0, y) = V1(y, 1) = 1/2. It is now

sufficient to ask agent 2 an eval2(0, y) query. If the answer is at least 1/2, we know

that A1 = [y, 1], A2 = [0, y] is a proportional allocation; otherwise we can obtain a

proportional allocation by switching the two pieces.

Let us also verify that we can simulate the initialization stage of the Selfridge-

Conway algorithm (simulating the other stages is even easier). The algorithm starts

with a cut1(0, 1/3) = y query, followed by a cut1(y, 1/3) = z query. The intervals

[0, y], [y, z], [z, 1] are now known to be worth 1/3 each to agent 1. We next ask agent

2 to evaluate the three intervals (strictly speaking, evaluating two is sufficient). Say

that V2(0, y) > V2(y, z) ≥ V2(z, 1); to trim the largest piece, the algorithm asks a

cut2(0, V2(0, y)− V2(y, z)) = w query. Cake 2 is the interval [0, w].

Earlier we claimed that the Even-Paz algorithm is more computationally efficient

than the Dubins-Spanier algorithm. We are now in a position to make this statement

formal. The Dubins-Spanier algorithm can be simulated by asking each remaining

agent a cuti(x, 1/n) query, where x is the left boundary of the remaining cake. The

overall number of queries is
∑n−2
k=0(n− k) = Θ(n2).

The Even-Paz algorithm requires a cuti(y, Vi(y, z)/2) query to each agent in

each recursive call, where [y, z] is the current piece. If we again assume for ease of

exposition that n is a power of 2, there is one recursive call with n agents, two with

n/2 agents, and in general 2k recursive calls with n/2k agents. The overall number

of queries is therefore exactly n lg n. When n is not a power of 2, the algorithm and

its analysis can be slightly adjusted to yield a bound of Θ(n lg n).

13.4.1 A Lower Bound for Proportional Cake Cutting

In light of the significant improvement the Even-Paz algorithm achieves over Dubins-

Spanier, one may ask whether it is possible to do even better. The next theorem

says that the answer is no: The Even-Paz algorithm is provably the most compu-

tationally efficient (in the asymptotic sense) proportional cake-cutting algorithm.

Theorem 13.2 (Edmonds and Pruhs, 2006a) Any proportional cake-cutting al-

gorithm requires Ω(n lg n) queries in the Robertson-Webb model.

To prove the theorem we separate the problem of finding a proportional allocation

into problems that must be solved for each agent individually. To this end, we fix an

agent i ∈ N , and say that a piece X is thin if `(X) ≤ 2/n, and rich if Vi(X) ≥ 1/n.

A piece is thin-rich if it satisfies both properties (this terminology is inspired by a

quote from Wallis Simpson, the Duchess of Windsor, “A woman can’t be too rich

or too thin”). The thin-rich problem is that of finding a thin-rich piece of cake.

Lemma 13.3 If the complexity (in the Robertson-Webb model) of the thin-rich
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problem is T (n), then the complexity of proportional cake cutting (in the Robertson-

Webb model) is Ω(nT (n)).

Proof First note that in the Robertson-Webb model each query only acquires

information about the valuation function of a single agent, hence the interaction

with one agent cannot help us find a thin-rich piece with respect to another agent.

Next, note that in any proportional allocation all the pieces must be rich. More-

over, a feasible allocation cannot include more than n/2 pieces that are not thin,

otherwise we would have that
∑
i∈N `(Ai) > (n/2)(2/n) = 1, which is impossible

because the length of the entire cake is 1 and the pieces are disjoint. It follows

that the computation of a proportional allocation requires finding at least n/2

thin-rich pieces, that is, solving the thin-rich problem with respect to at least n/2

agents. We conclude that the complexity of proportional cake-cutting is at least

(n/2)T (n) = Ω(nT (n)).

By Lemma 13.3, to prove Theorem 13.2 it is sufficient to establish that the

complexity of the thin-rich problem is Ω(lg n). Below we fix an agent i and hence

we can drop the i subscript (i.e., we use V instead of Vi, cut instead of cuti, and

so on).

We represent the valuation function of the fixed agent via a value tree. Assume

without loss of generality that n/2 is a power of 3, and divide the cake into n/2

disjoint intervals of length 2/n each. The value tree is a rooted complete ternary

tree — each internal node has exactly three children — where the leaves are the

disjoint intervals. Furthermore, for each internal node u, two of the edges to its

children are labeled by 1/4 (light edges), and the third is labeled by 1/2 (heavy

edge). We think of an internal node as the union of the intervals at the leaves of the

subtree rooted at that node, and the edge labels tell us how the value of a node is

split between its children. In particular, the value of the interval that corresponds

to a node is the product of the weights on the path from the root to the node. We

assume that the value is uniformly distributed on each interval corresponding to a

leaf (i.e., V is piecewise constant). See Figure 13.2 for an illustration.

In general an algorithm can return a piece of cake that does not correspond to a

leaf of the value tree, or even a union of such leaves. However, the next lemma im-

plies that for the purposes of the proof of Theorem 13.2 we can focus on algorithms

that return a single leaf of the value tree.

Lemma 13.4 When the valuation function is derived from a value tree, if there

exists a T (n)-complexity algorithm for the thin-rich problem in the Robertson-Webb

model, then there exists an O(T (n))-complexity algorithm that returns a thin-rich

leaf of the value tree.

Proof Suppose that after T (n) queries we were able to find a thin-rich piece of
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Figure 13.2 An example of a value tree for n/2 = 9. In this example, V (2/9, 3/9) = 1/8
and V (3/9, 4/9) = 1/16.

cake X. There exists an interval I∗ ∈ X such that V (I∗) ≥ `(I∗)/2, otherwise

V (X) =
∑
I∈X

V (I) <
∑
I∈X

`(I)

2
=
`(X)

2
≤ 1

n
,

contradicting the assumption that X is rich. It follows that the average value density

on I∗ is at least 1/2. Note that I∗ intersects at most two leaves of the value tree

because `(I∗) ≤ `(X) ≤ 2/n, and the value density function is constant on each of

these two leaves. Therefore, one of these two leaves — call it u — has density at

least 1/2, so V (u) ≥ `(u)/2 = 1/n.

To pinpoint u using queries in the Robertson-Webb model, note that after T (n)

queries the algorithm knows the values of at most O(T (n)) intervals; we can there-

fore assume without loss of generality that |X| = O(T (n)).2 We conclude that using

O(T (n)) additional eval queries the algorithm can learn the value of each leaf that

intersects an interval I ∈ X.

Lemma 13.4 tells us that it is sufficient to show that any algorithm for the thin-

rich problem that is constrained to return a (rich) leaf of the value tree requires

Ω(lg n) queries. Intuitively, the path from the root to a rich leaf must have “many”

heavy edges. To find out exactly how many, note that the height of the tree is

H = log3(n/2) = θ(lg(n)). Denoting the number of heavy edges on the path from

the root to a leaf u by q(u), we have

1

n
≤ V (u) =

(
1

2

)q(u)(
1

4

)H−q(u)

=

(
1

4

)H− q(u)
2

.

It follows that 4H−q(u)/2 ≤ n, and hence 2(H − q(u)/2) ≤ lg n. Using the fact that

2 This argument is intuitive and sufficiently formal for the purposes of this chapter, but making it
completely formal requires some more work.
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2H − lg n = Ω(lg n) we conclude that q(u) = Ω(lg n). In other words, a constant

fraction of the edges on the path to u must be heavy.

If the algorithm were only allowed to directly query the edges of the value tree, a

lower bound of Ω(lg n) would follow almost immediately from the above argument.

Indeed, unqueried edges could be light, so the algorithm must query a constant

fraction of the edges on the path from the root to a leaf in order to find a constant

fraction of heavy edges. However, we are interested in algorithms that operate in the

Robertson-Webb model, so we must explain how to simulate cut and eval queries

by revealing edges of the value tree.

We say that a node u is revealed if the weights of all edges of every node on

the path from the root to u are known to the algorithm. Intuitively the approach

is to generously answer the algorithm’s queries by revealing nodes in a way that

provides at least as much information as requested. We note the following facts:

• If u is revealed, its value (formally, the value of the interval associated with the

node) V (u) is known to the algorithm.

• If u = [x, y] is revealed then V (0, x) is known to the algorithm: Let u0, . . . , uk = u

be the path from the root to u, then V (0, x) is the sum of the values of the

nodes to the left of each ui, all of which are also revealed. Moreover, V (y, 1) =

1− V (0, x)− V (x, y) is also known.

• If z ∈ [x, y] where [x, y] is a revealed leaf then V (0, z) can be computed, using

the preceding observation and the fact that V (x, z) = V (x, y) · `([x,z])2/n .

• If w ∈ u, u is a revealed leaf, and α is a given cake value, then it is possible to

compute the least common ancestor of u and the leaf that contains the point z

such that V (w, z) = α. Indeed, let u0, . . . , uH = u be the path from the root to the

leaf u, and let yi be the rightmost point of ui. We start from i = H and working

our way upwards iteratively compute V (w, yi), where V (w, yH) = V (uH)· `([w,yH ])
2/n

and V (w, yi) is the sum of V (w, yi+1) and the values of the children of ui to the

right of ui+1. We return the first ui (i.e., the one with the largest index) such

that V (w, yi) ≥ α.

Proof of Theorem 13.2 It is sufficient to prove that any algorithm for the thin-rich

problem that returns a leaf of the value tree requires Ω(lg n) queries. We will answer

the algorithm’s eval and cut queries by revealing nodes of the value tree in a way

that maintains the following invariant: After k queries, there are at most 2k edges

that are known to be heavy on any path from the root to a leaf. Since we have

shown that Ω(lg n) edges on the path must be known to be heavy, the theorem will

directly follow. Initially the invariant trivially holds.

Say that the algorithm has already asked k queries, and any root-to-leaf path

has at most 2k edges that were revealed to be heavy. Assume first that query k+ 1

is an eval(x, y) query. Let u be the leaf that contains x, and let u0, . . . , uH = u

be the path from the root to u; ut is the lowest revealed node on this path. The

weights of the edges on the path ut, . . . , uH are revealed to be light. Moreover,
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u v

Figure 13.3 Illustration of the proof of Theorem 13.2, with n/2 = 27. In this example
the first query is an eval(x, y) query, x ∈ u, y ∈ v. Solid edges are revealed to be heavy,
dashed edges are revealed to be light. In the process of revealing u, the black nodes are
also revealed; note that all the edges from the root to u are light. Next, in the process of
revealing v, the gray nodes are revealed. Some paths are revealed to contain two heavy
edges, but no path contains more.

each ui on this path has two additional edges to its children; one is revealed to be

light, and the other heavy. We repeat the same process for y; see Figure 13.3 for

an illustration. Since the leaves containing x and y are revealed, the algorithm has

enough information to determine V (x, y) and therefore to answer the eval query.

Let us verify that the invariant has been maintained. Revealing the nodes on the

path to x adds at most one additional heavy edge on the path to a leaf, because

the edges that are revealed to be heavy do not lie on the same path. The same

observation holds for y, but it may be the case that each of the two procedures

contributed a heavy edge on the path to a leaf. Overall the number of heavy edges

on the path to a leaf increased by at most two, and is now at most 2k+2 = 2(k+1).

Dealing with a cut(w,α) query is slightly trickier. First, the leaf that contains w

is revealed as before. Second, we find the least common ancestor u of the leaf that

contains w and the leaf that contains the point z such that V (w, z) = α. Our goal

is to reveal the leaf that contains z in a way that all the currently unrevealed edges

between u and the leaf are light. Starting from the first unrevealed node in this

path, we set the values so that the path always follows a light edge. Specifically, at

node u′, let β be the additional value that is required from u′. If β/V (u′) > 1/2

we set the edge from v to its left child to be heavy; the path will then follow the

middle or right edge, both of which are light. Otherwise — β/V (u′) ≤ 1/2 — we

set the right edge to be heavy, again making the path follow one of the light edges.

It can be seen that the invariant is maintained via the same argument given for the

case of an eval query.

It is worth pointing out that Edmonds and Pruhs (2006a) actually prove a more

general lower bound that captures approximate proportionality requirements and

approximate queries, and holds even for randomized algorithms.
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13.4.2 The Complexity of Envy-Free Cake Cutting

While the complexity of proportional cake cutting is well understood, envy-freeness

is a completely different matter. The classic Selfridge-Conway algorithm provides an

envy-free solution for the case of three agents, but it took another three decades until

their algorithm was extended to any number of agents. The celebrated algorithm

of Brams and Taylor (1995) is a discrete envy-free cake cutting algorithm. When

viewed through the Robertson-Webb lens, the algorithm can be simulated via eval

and cut queries, and is guaranteed to terminate — it is finite. But it does have a

serious flaw: Its running time is unbounded. Specifically, the analysis of the Dubins-

Spanier and Even-Paz algorithms bounded the required number of queries as a

function of the number of agents: O(n2) and O(n lg n), respectively. In contrast, for

any n ≥ 4 and any k ∈ N there are valuation functions V1, . . . , Vn such that the

Brams-Taylor algorithm requires at least k queries to terminate.3

It is natural to ask whether the envy-free cake cutting problem is inherently

difficult: Is it provably impossible to design a bounded envy-free cake cutting al-

gorithm? Currently there are two partial answers to this question. The first result

restricts the allocations to be contiguous.

Theorem 13.5 (Stromquist, 2008) For any n ≥ 3, there is no finite envy-free

cake-cutting algorithm that outputs contiguous allocations.4

However, from a technical point of view the restriction to contiguous pieces is

severe. Indeed, the Brams-Taylor algorithm is finite and guarantees an envy-free

allocation for any number of agents. Moreover, for the case of n = 3 (which is

captured by Theorem 13.5), the Selfridge-Conway algorithm is actually a bounded

envy-free algorithm! Interestingly, the latter algorithm even allocates “almost con-

tiguous” pieces, in that the piece of each agent is the union of at most two intervals.

The second result does not make any assumptions, but achieves a relatively weak

lower bound.

Theorem 13.6 (Procaccia, 2009) Any envy-free cake-cutting algorithm requires

Ω(n2) queries in the Robertson-Webb model.

This theorem is somewhat unsatisfying, because the gap between Ω(n2) and

“unbounded” is still, well, unbounded. Nevertheless, it does establish a separa-

tion between the O(n lg n) complexity of proportional cake cutting and the Ω(n2)

complexity of envy-free cake cutting. In other words, the theorem implies that envy-

freeness is provably harder than proportionality, and provides a partial explanation

for why envy-freeness has been so elusive.

The running time of the Brams-Taylor algorithm depends on the valuation func-

tions; this fact seems to suggest that the hardness of envy-free cake cutting draws

3 Even when moving knives are allowed, there are no known bounded solutions beyond the case of
n = 5 (Brams et al., 1997; Saberi and Wang, 2009).

4 This theorem was extended by Deng et al. (2012).
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on the possible richness of the valuation functions. This turns out not to be the

case: In the Robertson-Webb model, envy-free cake cutting is equally hard when

the valuation functions are piecewise uniform.

Theorem 13.7 (Kurokawa et al., 2013) Suppose there is an algorithm that com-

putes an envy-free allocation for n agents with piecewise uniform valuations using

at most f(n) queries in the Robertson-Webb model. Then the algorithm can com-

pute an envy-free allocation for n agents with general valuation functions using at

most f(n) queries.

Proof Let V1, . . . , Vn be general valuation functions. We let the algorithm interact

with these functions via cut and eval queries. Suppose first that the algorithm out-

puts an allocation A using at most f(n) queries. Our goal is to construct piecewise

uniform valuation functions U1, . . . , Un that lead to an identical interaction with

the algorithm, and identical values for the allocated pieces (i.e., Vi(Ai) = Ui(Ai)

for all i ∈ N). Since the algorithm is guaranteed to output an envy-free allocation

with respect to U1, . . . , Un, these properties would imply that A is envy-free with

respect to the general valuation functions V1, . . . , Vn.

To construct the valuation functions U1, . . . , Un, we define sets of points Mi as

follows. First, Mi contains all “marks” made during the algorithm’s interaction

with agent i; an evali(x, y) query marks the points x and y, and a cuti(x, α) query

marks the point x and the point y that is returned. Second, for each j ∈ N and

each interval [x, y] ∈ Aj , Mi contains x and y; in other words, the allocation A

induces a partition of [0, 1] into subintervals, and Mi contains the boundaries of

these intervals. Third, Mi contains the boundaries of the cake, 0 and 1.

Let Mi = {0 = xi1, xi2, . . . , xiki = 1}, where xit < xi,t+1 for all t = 1, . . . , ki − 1.

Let µi = maxt
Vi(xit,xi,t+1)
xi,t+1−xit

be the maximum average density on any interval defined

by the points in Mi. The valuation function Ui is induced by a piecewise uniform

value density function ui, defined as follows:

ui(x) =

µi ∃t s.t. x ∈
[
xi,t+1 − Vi(xit,xi,t+1)

µi
, xi,t+1

]
0 otherwise

For all i ∈ N and t = 1, . . . , ki − 1 it holds that

Ui(xit, xi,t+1) =
Vi(xit, xi,t+1)

µi
· µi = Vi(xit, xi,t+1).

Since the boundaries of intervals in each Aj are contained in Mi (i.e., they are

among the points xit), it follows that for every i, j ∈ N , Ui(Aj) = Vi(Aj). We also

claim that the algorithm’s interaction with U1, . . . , Un is identical to its interaction

with V1, . . . , Vn. Indeed, the answers to evali queries are identical because the marks

made by the query are contained in the set Mi. To see that the answers to cuti
queries are also identical, consider a cuti(x, α) = y query. Note that Ui(x, y) =
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Vi(x, y) = α because x, y ∈Mi, and crucially for any ε > 0, Ui(x, y−ε) < α because

ui is strictly positive in the left neighborhood of y. This concludes the proof under

the assumption that the algorithm terminates after at most f(n) queries.

If the algorithm does not terminate after f(n) queries, consider the first f(n)

queries, and repeat the process of constructing U1, . . . , Un without including the

boundaries of allocated intervals in M1, . . . ,Mn. As before, the algorithm’s inter-

action with U1, . . . , Un is identical to its interaction with V1, . . . , Vn, and thus the

assumption that the algorithm proceeds to query f(n) + 1 contradicts the assump-

tion that the number of queries is bounded by f(n) given piecewise uniform valua-

tions.

Theorem 13.7 has two complementary interpretations. On the one hand, the

theorem tells us that to design an envy-free algorithm we can focus on handling the

seemingly simple case of piecewise uniform valuations. On the other hand, if one

seeks to prove a lower bound for envy-free cake cutting, the theorem implies that

constructing elaborate valuation functions would not be a fruitful approach.

In order to conclude this section on a positive note, we next relax the envy-

freeness requirement, instead asking for ε-envy-freeness: Vi(Ai) ≥ Vi(Aj) − ε for

all i, j ∈ N . Despite the difficulties we have discussed above, it turns out that

this natural relaxation can be solved by a very simple, computationally efficient

algorithm. First, the algorithm asks each agent i ∈ N to cut the cake into d1/εe
disjoint intervals worth ε each (except for maybe the rightmost interval, which is

worth at most ε); this step requires roughly n/ε cut queries. Next the algorithm sorts

the cut points made by all the agents, and asks each agent to evaluate each interval

between two adjacent cut points; this step requires roughly n2/ε eval queries.

We claim that at this point the algorithm has sufficient information to compute an

ε-envy-free allocation. Indeed, we can treat the intervals between adjacent cut points

as indivisible goods where, crucially, each good is worth at most ε to any agent. The

goods are allocated in a round-robin fashion: each of the agents 1, 2, . . . , n selects

its most preferred good in that order, and we repeat this process until all the goods

have been selected. To see why this allocation is ε-envy-free consider an agent i ∈ N ,

and consider the sequence of choices starting from the first time i selected a good:

i, i+ 1, . . . , n, 1, . . . , i− 1, i, . . . , i− 1, . . . In each subsequence i, . . . , i− 1, i prefers

its own good to the goods selected by other agents. The only potential source of

envy is the selections made by agents 1, . . . , i− 1 before i first selected a good, but

these agents received one good each in this phase, and Vi(g) ≤ ε for each good g.

13.5 Optimal Cake Cutting

So far we were interested in algorithms that achieve fairness guarantees. But if we

are also interested in economic efficiency, better allocations may be achieved at the

expense of depriving some agents of their fair share.
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To quantify the efficiency of an allocation A we employ the notion of social wel-

fare. While this notion has several interpretations, the computer science literature

typically adopts the utilitarian interpretation, as do we: The social welfare of A

is sw(A) =
∑
i∈N Vi(Ai). It is important to note that this notion assumes the

agents have comparable valuation functions. While above we have assumed that

Vi(0, 1) = 1, the assumption was made for ease of exposition; proportionality and

envy-freeness involve inequalities that only constrain the valuation function of a

single agent; that is, two valuation functions never appear in the same inequality.

In contrast, when discussing social welfare our objective is the sum of all valuation

functions, so our assumption that Vi(0, 1) = 1 for all i ∈ N takes a more literal

interpretation.

13.5.1 Computation of Optimal Fair Allocations

Our next task is the computation of optimal fair allocations; that is, we wish to

maximize social welfare under fairness constraints. To circumvent the computa-

tional issues discussed in Section 13.4, the algorithmic results assume that agents’

valuation functions are restricted. For ease of exposition we formulate and prove

the results for piecewise constant valuations, even though some of them also hold

under less restrictive assumptions.

Crucially, we also assume that these valuations are fully known to the algorithm.

In other words, the algorithm’s task is not to elicit information via the kind of

interaction with the agents captured by the Robertson-Webb model; rather, the

algorithm’s goal is to compute an allocation, given an explicit representation of the

valuation functions. Such an explicit representation is possible because piecewise

constant valuations are concisely representable: For each segment on which the den-

sity function is constant, the representation includes the boundaries of the segment

and the density.5

For the sake of intuition, let us first see why computing allocations that are both

envy-free and equitable (but not necessarily optimal) is easy given the full represen-

tation of the agents’ piecewise constant valuation functions. Mark the boundaries of

the agents’ reported segments, as well as 0 and 1. Let J denote the set of intervals

that lie between consecutive marks. The crucial observation is that for all i ∈ N
and all I ∈ J , vi is constant on I, as can be seen in Figure 13.4. It follows that if

I ′ ⊆ I is such that `(I ′) = `(I)/n then Vi(I
′) = Vi(I)/n. To construct the allocation

A1, . . . , An, simply partition each I ∈ J into n pieces of equal length, and give each

piece to a different agent. It holds that for all i, j ∈ N , Vi(Aj) = 1/n; that is, each

agent values each piece at exactly 1/n, and in particular the allocation is envy-free

and equitable. In other words, under piecewise constant valuation functions we can

compute the kind of allocations whose existence Theorem 13.1 guarantees.

5 We assume that these parameters are represented as k-bit rationals, i.e., numbers of the form a/b
where a and b are k-bit integers.



16 Cake Cutting Algorithms Ariel D. Procaccia
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Figure 13.4 An illustration of piecewise contant value density functions, where n = 2 and
the area under the density function of agent 1 (resp., agent 2) is filled with horizontal
(resp., vertical) lines. The boundaries of the segments reported by the agents are marked
by white circles. Note that both value density functions are constant between every pair
of consecutive marks.

More generally, suppose that the piece Aj allocated to j consists of a fraction

fjI interval I, for every I ∈ J ; then for every i ∈ N , Vi(Aj) =
∑
I∈J fjIVi(I).

Since envy-freeness, proportionality, and equitability are linear constraints on the

values of allocated pieces, this observation directly allows us to compute optimal

allocations among the allocations satisfying any of these fairness properties, or even

pairs of properties.6 For example, to compute optimal proportional allocations we

can solve the following linear program (Cohler et al., 2011):

max

n∑
i=1

∑
I∈J

fiIVi(I) (13.1)

s.t.

n∑
i=1

fiI ≤ 1 ∀I ∈ J (13.2)

∑
I∈J

fiIVi(I) ≥ 1

n
∀i ∈ N (13.3)

fiI ≥ 0 ∀i ∈ N, I ∈ J (13.4)

The social welfare objective is formulated as Equation (13.1). Equation (13.2)

ensures that the fractions of interval I that are allocated sum up to at most 1,

and (13.4) guarantees that these fractions are non-negative. The proportionality

constraint is formulated as Equation (13.3).

In contrast, as in Section 13.4 (cf. Theorem 13.5), when contiguous allocations

are required the problem becomes much harder.

Theorem 13.8 (Bei et al., 2012) Given explicit piecewise constant valuation

functions and assuming that the allocation must be proportional and contiguous,

the optimal social welfare is NP-hard to approximate to a factor of Ω(
√
n).

6 It is pointless to talk about satisfying all three properties together because envy-freeness implies
proportionality.
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13.5.2 The Price of Fairness

The results of Section 13.5.1 enable the computation of optimal fair allocations;

but how good are these allocations? The fairness constaints cause a degradation

in social welfare, which can be measured using the price of fairness. The price of

proportionality (resp., envy-freeness, equitability) is the worst-case (over agents’

valuation functions) ratio between the social welfare of the optimal allocation, and

the social welfare of the optimal proportional (resp., envy-free, equitable) allocation.

Theorem 13.9 (Caragiannis et al., 2009) The price of proportionality is Θ(
√
n).

To establish the upper bound, we must show that for any collection of valuation

functions, the ratio between the social welfare of the optimal allocation and the

optimal proportional allocation is O(
√
n). The lower bound only requires producing

one example of valuation functions such that this ratio is Ω(
√
n).

Proof of Theorem 13.9 To prove the upper bound, let V1, . . . , Vn be the agents’

valuation functions, and let A∗ be the optimal allocation. Let L = {i ∈ N :

Vi(A
∗
i ) ≥ 1/

√
n} be the set of “large” agents, and S = N \ L be the set of “small”

agents. We consider two cases.

Case 1: |L| ≥
√
n. It follows from the assumption that |S| ≤ n−

√
n. Define an

allocation A as follows. For each i ∈ S, reallocate A∗i among the agents in S so that

for each j ∈ S, Vj(Aj ∩ A∗i ) ≥ Vj(A
∗
i )/|S|; this can even be done algorithmically

(although only existence is required), e.g., using (a slight variation of) the Even-Paz

protocol. For each i ∈ L, we reallocate A∗i among the agents in {i} ∪ S so that

Vi(Ai ∩A∗i ) ≥
√
n · Vi(A

∗
i )√

n+ |S|
,

and for all j ∈ S,

Vj(Aj ∩A∗i ) ≥
Vj(A

∗
i )√

n+ |S|
.

This can be done, e.g., by creating
√
n−1 copies of agent i with identical valuations

and running the Even-Paz algorithm with the
√
n identical agents and the agents

in S.

Note that the allocation A1, . . . , An is proportional, because for all i ∈ L,

Vi(Ai) ≥
√
n · Vi(A

∗
i )√

n+ |S|
≥ 1√

n+ |S|
≥ 1

n
,

and for all i ∈ S,

Vi(Ai) ≥
∑
j∈L

Vi(A
∗
j )√

n+ |S|
+
∑
j∈S

Vi(A
∗
j )

|S|
≥
∑
j∈N Vi(A

∗
j )

n
=

1

n
.

Moreover, for each i ∈ N , Vi(Ai) ≥ Vi(A
∗
i )/
√
n, hence it holds that sw(A) ≥

sw(A∗)/
√
n; the ratio is at most

√
n.



18 Cake Cutting Algorithms Ariel D. Procaccia

Case 2: |L| <
√
n. Observe that sw(A∗) ≤ |L| + |S|/

√
n < 2

√
n, while for any

proportional allocation A, sw(A) ≥
∑
i∈N 1/n = 1; the ratio is O(

√
n).

To establish the lower bound, consider the following valuation functions. The set

of agents L ⊆ N now contains exactly
√
n agents, each uniformly interested only

in a single interval of length 1/
√
n, such that for i, j ∈ L the two desired intervals

are disjoint. The set of agents S = N \ L contains n −
√
n agents that desire the

entire cake uniformly.

The optimal allocation A∗ gives each agent in L its desired interval, hence

sw(A∗) =
√
n. In contrast, any proportional allocation A would have to give an

interval of length 1/n to each agent in S, leaving only 1/
√
n by length to the agents

in L. With their density of
√
n, it must hold that

∑
i∈L Vi(Ai) ≤

√
n/
√
n = 1, while∑

i∈S Vi(Ai) ≤ 1. Thus, sw(A) ≤ 2; the ratio is Ω(
√
n).

Two comments on the theorem and its proof are in order. First, the lower bound

of Ω(
√
n) also applies to the price of envy-freeness, because every envy-free allo-

cation is proportional. However, no nontrivial o(n) upper bound on the price of

envy-freeness is known. Second, the valuation functions used in the lower bound

construction are piecewise uniform, so one cannot hope to circumvent this negative

result by restricting the valuation functions. It is not hard to see that a similar

construction only admits severely suboptimal equitable allocations, and indeed the

price of equitability is steep.

Theorem 13.10 (Caragiannis et al., 2009) The price of equitability is Θ(n).

While the price of equitability is significantly higher than the price of propor-

tionality, the comparison relies on a worst-case notion, and it could be the case

that there are instances where the optimal equitable allocation is superior to the

optimal proportional allocation in terms of social welfare. The last technical result

for this chapter rules out this situation, even if we replace proportionality by the

stronger envy-freeness requirement; for ease of exposition we formulate and prove

the theorem for piecewise constant valuations.

Theorem 13.11 (Brams et al., 2012) Given piecewise constant valuation func-

tions V1, . . . , Vn, let A∗ be the optimal equitable allocation and let A∗∗ be the optimal

envy-free allocation. Then sw(A∗) ≤ sw(A∗∗).

The theorem’s proof draws on a connection between cake cutting and linear

Fisher markets. Instead of a single heterogeneous divisible good, the market includes

a set G = {1, . . . ,m} of homogeneous divisible goods. The utility of good j for agent

i is denoted by uij . An allocation gives each agent i ∈ N a fraction fij of good j

such that for all j ∈ G,
∑
i∈N fij ≤ 1. The utility of agent i for an allocation is∑

j∈G fijuij .

Consider a cake allocation A, and let the set of goods be the pieces in A, i.e.,

good j corresponds to the piece Aj , and uij = Vi(Aj). We claim that given an
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allocation f = (fij)i∈N,j∈G in the Fisher market, there is an allocation A′ in the

corresponding cake cutting setting such that Vi(A
′
j) =

∑
k∈G fjkuik for all i, j ∈ N ;

that is, agents’ utilities in the Fisher market can be replicated in the cake cutting

setting. This claim can be established via similar arguments to the ones we have

seen in Section 13.5.1: Each piece Aj is divides into intervals such that each interval

is valued uniformly by all agents, and then an fij-fraction (by length) of each of

these intervals is added to the piece A′i.

Lemma 13.12 (see, e.g., Vazirani, 2007) Consider a linear Fisher market where

agent i ∈ N has budget ei,
∑
i∈N ei = 1, and for every j ∈ G there is i ∈ N such

that uij > 0. Then there exists a price vector p = (p1, . . . , pm) such that pj > 0 for

all j ∈ G and
∑
j∈G pj = 1, and an allocation f such that:

1. Goods are fully allocated: For all j ∈ G,
∑
i∈N fij = 1.

2. Agents only get their most profitable goods under the price vector p: For all

i ∈ N, j ∈ G, if fij > 0 then j ∈ argmaxk∈Guik/pk.

3. Agents spend their entire budgets: For all i ∈ N ,
∑
j∈G fijpj = ei.

Proof of Theorem 13.11 Consider the optimal equitable allocation A∗. We con-

struct a linear Fisher market where good j corresponds to A∗j , and uij = Vi(A
∗
j ).

We also set the agents’ budgets to be identical: ei = 1/n for all i ∈ N . Using

Lemma 13.12 we obtain an allocation f in the Fisher market satisfying properties

1–3. Construct an allocation A that corresponds to the Fisher market allocation, as

explained above. We claim that A is an envy-free allocation and sw(A) ≥ sw(A∗).

The envy-freeness of A follows directly from the assumptions that the price of

each agent’s bundle is exactly 1/n and each agent receives only items that maximize

the ratio of utility to price. Formally, for an agent i ∈ N let r∗i = maxj∈G uij/pj ;

then

Vi(Ai) =
∑
j∈G

fijuij =
∑
j∈G

fij
uij
pj
pj =

∑
j∈G

fijr
∗
i pj =

r∗i
n
, (13.5)

where the third transition follows from the second property in Lemma 13.12, and

the fourth transition follows from the third property and ei = 1/n. Likewise,

Vi(Ak) =
∑
j∈G

fkjuij =
∑
j∈G

fkj
uij
pj
pj ≤

∑
j∈G

fkjr
∗
i pj =

r∗i
n
.

Next we prove that sw(A) ≥ sw(A∗). Since A∗ is equitable there exists α > 0

such that Vi(A
∗
i ) = α for all i ∈ N ; hence sw(A∗) = nα. We also know from

Equation (13.5) that sw(A) = 1
n

∑
i∈N r

∗
i . By definition, r∗i ≥ uii/pi; recall that

uii = Vi(A
∗
i ) = α. We conclude that

sw(A) =
1

n

∑
i∈N

r∗i ≥
1

n

∑
i∈N

uii
pi

=
α

n

∑
i∈N

1

pi
≥ α

n
n2 = nα = sw(A∗),
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where the fourth transition holds because
∑
i∈N pi = 1, and therefore the sum∑

i∈N (1/pi) is minimized when pi = 1/n for all i ∈ N .
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Brams et al. (2012), and Bei et al. (2012); all of these papers contain numerous

results that are not covered here. The complexity of cake cutting with contiguous

pieces but without fairness constraints is explored by Aumann et al. (2013). The
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sign a more intricate deterministic strategyproof envy-free algorithm for piecewise
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applied to the problem of allocating computational resources (e.g., CPU, RAM) in

cluster computing environments. Users are modeled as having Leontief preferences,

meaning that they demand the resources in fixed proportions. While the model is

somewhat different, it has much in common with the cake cutting model. Other

papers that study this research direction include papers by Dolev et al. (2012),

Gutman and Nisan (2012), Parkes et al. (2014), and Kash et al. (2014).
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