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Abstract
Effective enforcement of laws and policies requires
expending resources to prevent and detect offend-
ers, as well as appropriate punishment schemes to
deter violators. In particular, enforcement of pri-
vacy laws and policies in modern organizations that
hold large volumes of personal information (e.g.,
hospitals, banks) relies heavily on internal audit
mechanisms. We study economic considerations in
the design of these mechanisms, focusing in partic-
ular on effective resource allocation and appropri-
ate punishment schemes. We present an audit game
model that is a natural generalization of a stan-
dard security game model for resource allocation
with an additional punishment parameter. Com-
puting the Stackelberg equilibrium for this game
is challenging because it involves solving an opti-
mization problem with non-convex quadratic con-
straints. We present an additive FPTAS that effi-
ciently computes the solution.

1 Introduction
In a seminal paper, Gary Becker [1968] presented a com-
pelling economic treatment of crime and punishment. He
demonstrated that effective law enforcement involves optimal
resource allocation to prevent and detect violations, coupled
with appropriate punishments for offenders. He described
how to optimize resource allocation by balancing the societal
cost of crime and the cost incurred by prevention, detection
and punishment schemes. While Becker focused on crime
and punishment in society, similar economic considerations
guide enforcement of a wide range of policies. In this paper,
we study effective enforcement mechanisms for this broader
set of policies. Our study differs from Becker’s in two sig-
nificant ways—our model accounts for strategic interaction
between the enforcer (or defender) and the adversary; and
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we design efficient algorithms for computing the optimal re-
source allocation for prevention or detection measures as well
as punishments. At the same time, our model is significantly
less nuanced than Becker’s, thus enabling the algorithmic de-
velopment and raising interesting questions for further work.

A motivating application for our work is auditing, which
typically involves detection and punishment of policy viola-
tors. In particular, enforcement of privacy laws and policies in
modern organizations that hold large volumes of personal in-
formation (e.g., hospitals, banks, and Web services providers
like Google and Facebook) relies heavily on internal audit
mechanisms. Audits are also common in the financial sector
(e.g., to identify fraudulent transactions), in internal revenue
services (e.g., to detect tax evasion), and in traditional law
enforcement (e.g., to catch speed limit violators).

The audit process is an interaction between two agents: a
defender (auditor) and an adversary (auditee). As an example,
consider a hospital (defender) auditing its employee (adver-
sary) to detect privacy violations committed by the employee
when accessing personal health records of patients. While
privacy violations are costly for the hospital as they result in
reputation loss and require expensive measures (such as pri-
vacy breach notifications), audit inspections also cost money
(e.g., the cost of the human auditor involved in the investiga-
tion). Moreover, the number and type of privacy violations
depend on the actions of the rational auditee—employees
commit violations that benefit them.

1.1 Our Model
We model the audit process as a game between a defender
(e.g, a hospital) and an adversary (e.g., an employee). The
defender audits a given set of targets (e.g., health record ac-
cesses) and the adversary chooses a target to attack. The de-
fender’s action space in the audit game includes two com-
ponents. First, the allocation of its inspection resources to
targets; this component also exists in a standard model of se-
curity games [Tambe, 2011]. Second, we introduce a con-
tinuous punishment rate parameter that the defender employs
to deter the adversary from committing violations. However,
punishments are not free and the defender incurs a cost for
choosing a high punishment level. For instance, a negative
work environment in a hospital with high fines for violations
can lead to a loss of productivity (see [Becker, 1968] for a
similar account of the cost of punishment). The adversary’s



utility includes the benefit from committing violations and
the loss from being punished if caught by the defender. Our
model is parametric in the utility functions. Thus, depending
on the application, we can instantiate the model to either al-
locate resources for detecting violations or preventing them.
This generality implies that our model can be used to study
all the applications previously described in the security games
literature [Tambe, 2011].

To analyze the audit game, we use the Stackelberg equi-
librium solution concept [von Stackelberg, 1934] in which
the defender commits to a strategy, and the adversary plays
an optimal response to that strategy. This concept captures
situations in which the adversary learns the defender’s audit
strategy through surveillance or the defender publishes its au-
dit algorithm. In addition to yielding a better payoff for the
defender than any Nash equilibrium, the Stackelberg equilib-
rium makes the choice for the adversary simple, which leads
to a more predictable outcome of the game. Furthermore, this
equilibrium concept respects the computer security principle
of avoiding “security through obscurity”— audit mechanisms
like cryptographic algorithms should provide security despite
being publicly known.

1.2 Our Results
Our approach to computing the Stackelberg equilibrium is
based on the multiple LPs technique of Conitzer and Sand-
holm [2006]. However, due to the effect of the punishment
rate on the adversary’s utility, the optimization problem in
audit games has quadratic non-convex constraints. The non-
convexity does not permit the use of any convex optimization
methods, and in general efficient solutions for a broad class
of non-convex problems are not known [Neumaier, 2004].

However, we demonstrate that we can efficiently obtain
an additive approximation to our problem. Specifically,
we present an additive fully polynomial time approximation
scheme (FPTAS) to solve the audit game optimization prob-
lem. Our algorithm provides a K-bit precise output in time
polynomial in K. Also, if the solution is rational, our al-
gorithm provides an exact solution in polynomial time. In
general, the exact solution may be irrational and may not be
representable in a finite amount of time.

1.3 Related Work
Our audit game model is closely related to security
games [Tambe, 2011]. There are many papers (see, e.g., [Ko-
rzhyk et al., 2010; Pita et al., 2011; 2008]) on security games,
and as our model adds the additional continuous punishment
parameter, all the variations presented in these papers can be
studied in the context of audit games (see Section 4). How-
ever, the audit game solution is technically more challenging
as it involves non-convex constraints.

An extensive body of work on auditing focuses on analyz-
ing logs for detecting and explaining violations using tech-
niques based on logic [Vaughan et al., 2008; Garg et al.,
2011] and machine learning [Zheng et al., 2006; Bodik et al.,
2010]. In contrast, very few papers study economic consider-
ations in auditing strategic adversaries. Our work is inspired
in part by the model proposed in one such paper [Blocki et
al., 2012], which also takes the point of view of commitment

and Stackelberg equilibria to study auditing. However, the
emphasis in that work is on developing a detailed model and
using it to predict observed audit practices in industry and
the effect of public policy interventions on auditing practices.
They do not present efficient algorithms for computing the
optimal audit strategy. In contrast, we work with a more gen-
eral and simpler model and present an efficient algorithm for
computing an approximately optimal audit strategy. Further-
more, since our model is related to the security game model,
it opens up the possibility to leverage existing algorithms for
that model and apply the results to the interesting applications
explored with security games.

Zhao and Johnson [2008] model a specific audit strategy:
agents are permitted to violate an access control policy at
their discretion (e.g., in an emergency situation in a hospital),
but these actions are audited. They manually analyze specific
utility functions and obtain closed-form solutions for the au-
dit strategy that results in a Stackelberg equilibrium. In con-
trast, our results apply to any utility function and we present
an efficient algorithm for computing the audit strategy.

2 The Audit Game Model
The audit game features two players: the defender (D), and
the adversary (A). The defender wants to audit n targets
t1, . . . , tn, but has limited resources which allow for auditing
only one of the n targets. Thus, a pure action of the defender
is to choose which target to audit. A randomized strategy is
a vector of probabilities p1, . . . , pn of each target being au-
dited. The adversary attacks one target such that given the
defender’s strategy the adversary’s choice of violation is the
best response.

Let the utility of the defender be UaD(ti) when audited
target ti was found to be attacked, and UuD(ti) when unau-
dited target ti was found to be attacked. The attacks (vi-
olation) on unaudited targets are discovered by an external
source (e.g. government, investigative journalists,...). Sim-
ilarly, define the utility of the attacker as UaA(ti) when the
attacked target ti is audited, and UuA(ti) when attacked tar-
get ti is not audited, excluding any punishment imposed by
the defender. Attacks discovered externally are costly for the
defender, thus, UaD(ti) > UuD(ti). Similarly, attacks not dis-
covered by internal audits are more beneficial to the attacker,
and UuA(ti) > UaA(ti).

The model presented so far is identical to security games
with singleton and homogeneous schedules, and a single re-
source [Korzhyk et al., 2010]. The additional component in
audit games is punishment. The defender chooses a punish-
ment “rate” x ∈ [0, 1] such that if auditing detects an attack,
the attacker is fined an amount x. However, punishment is not
free—the defender incurs a cost for punishing, e.g., for creat-
ing a fearful environment. For ease of exposition, we model
this cost as a linear function ax, where a > 0; however, our
results directly extend to any cost function polynomial in x.
Assuming x ∈ [0, 1] is also without loss of generality as util-
ities can be scaled to be comparable to x. We do assume the
punishment rate is fixed and deterministic; this is only natural
as it must correspond to a consistent policy.

We can now define the full utility functions. Given proba-



bilities p1, . . . , pn of each target being audited, the utility of
the defender when target t∗ is attacked is

p∗U
a
D(t∗) + (1− p∗)UuD(t∗)− ax.

The defender pays a fixed cost ax regardless of the outcome.
However, the attacker suffers the punishment x only when
attacking an audited target. Thus, in the same scenario, the
utility of the attacker when target t∗ is attacked is

p∗(U
a
A(t∗)− x) + (1− p∗)UuA(t∗).

Equilibrium. The Stackelberg equilibrium solution involves
a commitment by the defender to a strategy (with a possi-
bly randomized allocation of the resource), followed by the
best response of the adversary. The mathematical problem in-
volves solving multiple optimization problems, one each for
the case when attacking t∗ is in fact the best response of the
adversary. Thus, assuming t∗ is the best response of the ad-
versary, the ∗th optimization problem P∗ in audit games is

max
pi,x

p∗U
a
D(t∗) + (1− p∗)UuD(t∗)− ax ,

subject to ∀i 6= ∗. pi(UaA(ti)− x) + (1− pi)UuA(ti)
≤ p∗(UaA(t∗)− x) + (1− p∗)UuA(t∗),

∀i. 0 ≤ pi ≤ 1 ,∑
i pi = 1 ,

0 ≤ x ≤ 1 .

The first constraint verifies that attacking t∗ is indeed a best
response. The auditor then solves the n problems P1, . . . , Pn
(which correspond to the cases where the best response is
t1, . . . , tn, respectively), and chooses the best solution among
all these solutions to obtain the final strategy to be used for au-
diting. This is a generalization of the multiple LPs approach
of Conitzer and Sandholm [2006].

Inputs. The inputs to the above problem are specified in K-
bit precision. Thus, the total length of all inputs is O(nK).

3 Computing an Audit Strategy
Because the indices of the set of targets can be arbitrarily
permuted, without loss of generality we focus on one opti-
mization problem Pn (∗ = n) from the multiple optimization
problems presented in Section 2. The problem has quadratic
and non-convex constraints. The non-convexity can be read-
ily checked by writing the constraints in matrix form, with a
symmetric matrix for the quadratic terms; this quadratic-term
matrix is indefinite.

However, for a fixed x, the induced problem is a linear
programming problem. It is therefore tempting to attempt a
binary search over values of x. This naı̈ve approach does not
work, because the solution may not be single-peaked in the
values of x, and hence choosing the right starting point for
the binary search is a difficult problem. Another naı̈ve ap-
proach is to discretize the interval [0, 1] into steps of ε′, solve
the resultant LP for the 1/ε′ many discrete values of x, and
then choose the best solution. As an LP can be solved in poly-
nomial time, the running time of this approach is polynomial
in 1/ε′, but the approximation factor is at least aε′ (due to
the ax in the objective). Since a can be as large as 2K , get-
ting an ε-approximation requires ε′ to be 2−Kε, which makes
the running time exponential in K. Thus, this scheme cannot
yield an FPTAS.

−∆n x

pn

1

1

δ = −1

δ = −2

δ = −3

δ = 1

(pon, x
o)

Figure 1: The quadratic constraints are partitioned into those
below (pon, x

o) that are tight (dashed curves), and those above
(pon, x

o) where pi = 0 (dotted curves).

3.1 High-Level Overview
Fortunately, the problem Pn has another property that allows
for efficient methods. Let us rewrite Pn in a more compact
form. Let ∆D,i = UaD(ti)− UuD(ti), ∆i = UuA(ti)− UaA(ti)
and δi,j = UuA(ti)−UuA(tj). ∆D,i and ∆i are always positive,
and Pn reduces to:

max
pi,x

pn∆D,n + UuD(tn)− ax ,
subject to
∀i 6= n. pi(−x−∆i) + pn(x+ ∆n) + δi,n ≤ 0 ,
∀i. 0 ≤ pi ≤ 1 ,∑
i pi = 1 ,

0 ≤ x ≤ 1 .

The main observation that allows for polynomial time
approximation is that, at the optimal solution point, the
quadratic constraints can be partitioned into a) those that are
tight, and b) those in which the probability variables pi are
zero (Lemma 1). Each quadratic constraint corresponding to
pi can be characterized by the curve pn(x+ ∆n) + δi,n = 0.
The quadratic constraints are thus parallel hyperbolic curves
on the (pn, x) plane; see Figure 1 for an illustration. The
optimal values pon, x

o partition the constraints (equivalently,
the curves): the constraints lying below the optimal value are
tight, and in the constraints above the optimal value the prob-
ability variable pi is zero (Lemma 2). The partitioning allows
a linear number of iterations in the search for the solution,
with each iteration assuming that the optimal solution lies be-
tween adjacent curves and then solving the sub-problem with
equality quadratic constraints.

Next, we reduce the problem with equality quadratic con-
straints to a problem with two variables, exploiting the na-
ture of the constraints themselves, along with the fact that the
objective has only two variables. The two-variable problem
can be further reduced to a single-variable objective using an
equality constraint, and elementary calculus then reduces the
problem to finding the roots of a polynomial. Finally, we use
known results to find approximate values of irrational roots.

3.2 Algorithm and Main Result
The main result of our paper is the following theorem:



Theorem 1. Problem Pn can be approximated to an addi-
tive ε in time O(n5K + n4 log( 1

ε )) using the splitting circle
method [Schönhage, 1982] for approximating roots.

Remark The technique of Lenstra et al. [1982] can be used
to exactly compute rational roots. Employing it in conjunc-
tion with the splitting circle method yields a time bound
O(max{n13K3, n5K + n4 log(1/ε)}). Also, this technique
finds an exact optimal solution if the solution is rational.

Before presenting our algorithm we state two results about
the optimization problem Pn that motivate the algorithm and
are also used in the correctness analysis. All missing proofs
in this paper are present in the full version of the paper.1

Lemma 1. Let pon, x
o be the optimal solution. Assume xo >

0 and pon < 1. Then, at pon, x
o, for all i 6= n, either pi = 0

or pon(xo + ∆n) + δi,n = pi(x
o + ∆i), i.e., the ith quadratic

constraint is tight.

Lemma 2. Assume xo > 0 and pon < 1. Let pon(xo + ∆n) +
δ = 0. If for some i, δi,n < δ then pi = 0. If for some i,
δi,n > δ then pon(xo+ ∆n) + δi,n = pi(x

o+ ∆i). If for some
i, δi,n = δ then pi = 0 and pon(xo+∆n)+δi,n = pi(x

o+∆i).

Proof. The quadratic constraint for pi is pon(xo+∆n)+δi,n ≤
pi(x

o + ∆i). By Lemma 1, either pi = 0 or the constraint
is tight. If pon(xo + ∆n) + δi,n < 0, then, since pi ≥ 0 and
xo+∆i ≥ 0, the constraint cannot be tight. Hence, pi = 0. If
pon(xo + ∆n) + δi,n > 0, then, pi 6= 0 or else with pi = 0 the
constraint is not satisfied. Hence the constraint is tight. The
last case with pon(xo + ∆n) + δi,n = 0 is trivial.

From Lemma 2, if pon, x
o lies in the region between the

adjacent hyperbolas given by pon(xo + ∆n) + δi,n = 0 and
pon(xo + ∆n) + δj,n = 0 (and 0 < xo ≤ 1 and 0 ≤ pon < 1),
then δi,n ≤ 0 and pi ≥ 0 and for the kth quadratic constraint
with δk,n < δi,n, pk = 0 and for the jth quadratic constraint
with δj,n > δi,n, pj 6= 0 and the constraint is tight.

These insights lead to Algorithm 1. After handling the case
of x = 0 and pn = 1 separately, the algorithm sorts the δ’s to
get δ(1),n, . . . , δ(n−1),n in ascending order. Then, it iterates
over the sorted δ’s until a non-negative δ is reached, assuming
the corresponding pi’s to be zero and the other quadratic con-
straints to be equalities, and using the subroutine EQ OPT
to solve the induced sub-problem. For ease of exposition we
assume δ’s to be distinct, but the extension to repeated δ’s is
quite natural and does not require any new results. The sub-
problem for the ith iteration is given by the problem Qn,i:

max
x,p(1),...,p(i),pn

pn∆D,n − ax ,

subject to
pn(x+ ∆n) + δ(i),n ≥ 0 ,
if i ≥ 2 then pn(x+ ∆n) + δ(i−1),n < 0 ,
∀j ≥ i. pn(x+ ∆n) + δ(j),n = p(j)(x+ ∆j) ,
∀j > i. 0 < p(j) ≤ 1 ,
0 ≤ p(i) ≤ 1 , 0 ≤ pn < 1 ,∑n−1
k=i p(k) = 1− pn ,

0 < x ≤ 1 .

1http://arxiv.org/abs/1303.0356

Algorithm 1: APX SOLVE(ε, Pn)

l← prec(ε, n,K), where prec is defined after Lemma 7
Sort δ’s in ascending order to get δ(1),n, . . . , δ(n−1),n,
with corresponding variables p(1), . . . , p(n−1) and
quadratic constraints C(1), . . . , C(n−1)

Solve the LP problem for the two cases when x = 0 and
pn = 1 respectively. Let the solution be
S0, p0

(1), . . . , p
0
(n−1), p

0
n, x

0 and
S−1, p−1

(1), . . . , p
−1
(n−1), p

−1
n , x−1 respectively.

for i← 1 to n− 1 do
if δ(i),n ≤ 0 ∨ (δ(i),n > 0 ∧ δ(i−1),n < 0) then

p(j) ← 0 for j < i.
Set constraints C(i), . . . , C(n−1) to be equalities.
Si, pi(1), . . . , p

i
(n−1), p

i
n, x

i ← EQ OPT(i, l)

else
Si ← −∞

f ← arg maxi{S−1, S0, S1, . . . , Si, . . . , Sn−1}
pf1 , . . . , p

f
n−1 ← Unsort pf(1), . . . , p

f
(n−1)

return pf1 , . . . , pfn, xf

The best (maximum) solution from all the sub-problems (in-
cluding x = 0 and pn = 1) is chosen as the final answer.

Lemma 3. Assuming EQ OPT produces an ε-additive ap-
proximate objective value, Algorithm 1 finds an ε-additive ap-
proximate objective of optimization problem Pn.

EQ OPT solves a two-variable problem Rn,i instead of
Qn,i. The problem Rn,i is defined as follows:

maxx,pn pn∆D,n − ax ,
subject to
pn(x+ ∆n) + δ(i),n ≥ 0 ,
if i ≥ 2 then pn(x+ ∆n) + δ(i−1),n < 0 ,

pn

(
1 +

∑
j:i≤j≤n−1

x+∆n

x+∆(j)

)
=

1−
∑
j:i≤j≤n−1

δ(j),n
x+∆(j)

,

0 ≤ pn < 1 ,
0 < x ≤ 1 .

The following result justifies solving Rn,i instead of Qn,i.

Lemma 4. Qn,i and Rn,i are equivalent for all i.

Proof. Since the objectives of both problems are identical,
we prove that the feasible regions for the variables in the ob-
jective (pn, x) are identical. Assume pn, x, p(i), . . . , p(n−1)

is feasible in Qn,i. The first two constraints are the same
in Qn,i and Rn,i. Divide each equality quadratic constraint
corresponding to non-zero p(j) by x + ∆(j). Add all such
constraints to get:

∑
j:1≤j≤i

p(j) = pn

 ∑
j:1≤j≤i

x+ ∆n

x+ ∆(j)

+
∑

j:1≤j≤i

δ(j),n

x+ ∆(j)



Algorithm 2: EQ OPT(i, l)

Define Fi(x) =
1−

∑
j:1≤j≤i−1

δj,n
x+∆j

1+
∑
j:1≤j≤i−1

x+∆n
x+∆j

Define

feas(x) =

{
true (x, Fi(x)) is feasible for Rn,i
false otherwise

Find polynomials f, g such that f(x)
g(x) = Fi(x)∆D,n − ax

h(x)← g(x)f ′(x)− f(x)g′(x)
{r1, . . . , rs} ← ROOTS(h(x), l)

{rs+1, . . . , rt} ← ROOTS(Fi(x) +
δ(i),n
x+∆n

, l)

{rt+1, . . . , ru} ← ROOTS(Fi(x), l)
ru+1 ← 1
for k ← 1 to u+ 1 do

if feas(rk) then
Ok ← f(rk)

g(rk)

else
if feas(rk − 2−l) then

Ok ← f(rk−2−l)
g(rk−2−l)

; rk ← rk − 2−l

else
if feas(rk + 2−l) then

Ok ← f(rk+2−l)
g(rk+2−l)

; rk ← rk + 2−l

else
Ok ← −∞

b← arg maxk{O1, . . . , Ok, . . . , Ou+1}
p(j) ← 0 for j < i

p(j) ←
pn(rb + ∆n) + δ(j),n

rb + ∆(j)
for j ∈ {i, . . . , n− 1}

return Ob, p(1), . . . , p(n−1), pn, rb

Then, since
∑
k:1≤k≤i p(k) = 1− pn we get

pn

1 +
∑

j:i≤j≤n−1

x+ ∆n

x+ ∆(j)

 = 1−
∑

j:i≤j≤n−1

δ(j),n

x+ ∆(j)
.

The last two constraints are the same in Qn,i and Rn,i.
Next, assume pn, x is feasible in Rn,i. Choose

p(j) = pn

(
x+∆n

x+∆(j)

)
+

δ(j),n
x+∆(j)

. Since pn(x+ ∆n) + δ(i),n ≥
0, we have p(i) ≥ 0, and since pn(x + ∆n) + δ(j),n > 0 for
j > i (δ’s are distinct) we have p(j) > 0. Also,

n−1∑
j=i

p(j) = pn

n−1∑
j=i

x+ ∆n

x+ ∆(j)

+

n−1∑
j=i

δ(j),n

x+ ∆(j)

which by the third constraint ofRn,i is 1−pn, thus, p(j) ≤ 1.
Thus, pn, x, p(i), . . . , p(n−1) is feasible in Qn,i.

The equality constraint in Rn,i, which forms a curve Ki,
allows substituting pn with a function Fi(x) of the form
f(x)/g(x). Then, the steps in EQ OPT involve taking the
derivative of the objective f(x)/g(x) and finding those roots

of the derivative that ensure that x and pn satisfy all the con-
straints. The points with zero derivative are however local
maxima only. To find the global maxima, other values of x of
interest are where the curve Ki intersects the closed bound-
ary of the region defined by the constraints. Only the closed
boundaries are of interest, as maxima (rather suprema) at-
tained on open boundaries are limit points that are not con-
tained in the constraint region. However, such points are cov-
ered in the other optimization problems, as shown below.

The limit point on the open boundary pn(x + ∆n) +

δ(i−1),n < 0 is given by the roots of Fi(x) +
δ(i−1),n

x+∆n
. This

point is the same as the point considered on the closed bound-
ary pn(x + ∆n) + δ(i−1),n ≥ 0 in problem Rn,i−1 given by

roots of Fi−1(x) +
δ(i−1),n

x+∆n
, since Fi−1(x) = Fi(x) when

pn(x + ∆n) + δ(i−1),n = 0. Also, the other cases (x = 0
and pn = 1) are covered by the LP solved at the beginning of
Algorithm 1.

The closed boundary in Rn,i are obtained from the con-
straint pn(x + ∆n) + δ(i),n ≥ 0, 0 ≤ pn and x ≤ 1. The
value x of the intersection of pn(x + ∆n) + δ(i),n = 0 and

Ki is given by the roots of Fi(x) +
δ(i),n
x+∆n

= 0. The value
x of the intersection of pn = 0 and Ki is given by roots of
Fi(x) = 0. The value x of the intersection of x = 1 and Ki

is simply x = 1. Additionally, as checked in EQ OPT, all
these intersection points must lie with the constraint regions
defined in Qn,i.

The optimal x is then the value among all the points of in-
terest stated above that yields the maximum value for f(x)

g(x) .
Algorithm 2 describes EQ OPT, which employs a root find-
ing subroutine ROOTS. Algorithm 2 also takes care of ap-
proximate results returned by the ROOTS. As a result of the
2−l approximation in the value of x, the computed x and pn
can lie outside the constraint region when the actual x and pn
are very near the boundary of the region. Thus, we check for
containment in the constraint region for points x ± 2−l and
accept the point if the check passes.

3.3 Analysis
Before analyzing the algorithm’s approximation guarantee
we need a few results that we state below.

Lemma 5. The maximum bit precision of any coefficient of
the input polynomials to ROOTS is 2n(K + 1.5) + log(n).

Proof. The max. bit precision is obtained in g(x)f ′(x) −
f(x)g′(x). Consider the worst case when i = 1. Then,
f(x) is of degree n and g(x) of degree n − 1. There-
fore, the bit precision of f(x) and g(x) is upper bounded by
nK + log(

(
n
n/2

)
), where nK comes from multiplying n K-

bit numbers and log(
(
n
n/2

)
) arises from the maximum number

of terms summed in forming any coefficient. Thus, using the
fact that

(
n
n/2

)
≤ (2e)n/2 the upper bound is approximately

n(K+1.5). We conclude that the bit precision of g(x)f ′(x)−
f(x)g′(x) is upper bounded by 2n(K + 1.5) + log(n).

We can now use Cauchy’s result on bounds on root of poly-
nomials to obtain a lower bound for x. Cauchy’s bound states



that given a polynomial anxn + . . .+ a0, any root x satisfies

|x| > 1/ (1 + max{|an|/|a0|, . . . , |a1|/|a0|}) .

Using Lemma 5, it can be concluded that any positive
root of the polynomial input to ROOTS satisfies x >
2−4n(K+1.5)−2 log(n)−1 = B. The following lemma bounds
the additive approximation error.
Lemma 6. Assume that x > B and |x− x′| ≤ ε < B/2 then
for any index i in Algorithm 2 we have |Fi(x)− Fi(x′)| ≤
εΨ, where Ψ is of order O(n2(8n(K+1.5)+4 log(n)+K).

We are finally ready to establish the approximation guar-
antee of our algorithm.
Lemma 7. Algorithm 1 solves problem Pn with additive ap-
proximation term ε if

l > max{1+log(
∆D,nΨ + a

ε
), 4n(K+1.5)+2 log(n)+3}.

Also, as log(
∆D,nΨ+a

ε ) = O(nK + log( 1
ε )), l is of order

O(nK + log( 1
ε )).

Proof. Let x denote the optimal punishment level and let
x′ denote the corresponding approximation returned by
EQ OPT. If ROOTS is called by EQ OPT with accuracy
parameter l then |x′−x| ≤ 2 · 2−l. The additional factor of 2
arises due to the boundary check in EQ OPT. Let p′n denote
our approximation to the optimal inspection rate pn. If we set
l > 1 + log(

∆D,nΨ+a
ε ) and apply Lemma 6 then

∆D,n |pn − p′n|+ a |x− x′|
≤ max

i
|Fi(x)− Fi(x′)|+ a |x− x′|

≤ 2 · 2−lΨ∆D,n + a2 · 2−l ≤ ε .

The other term in the max above arises from the condition
2 · 2−l < B/2 in Lemma 6.

As the upper bound on ψ is only in terms of n and K, we
can express l as a function of ε, n and K: l = prec(ε, n,K).

We still need to analyze the running time of the algo-
rithm. For ease of notation, we use O(n) as the time of
multiplication of n bit numbers obtained on a pointer based
Turing machine. The same on a normal Turing machine is
O(n log n log log n), which also results in an overall polyno-
mial running time. Next, we briefly discuss the known al-
gorithms that we use and their corresponding running-time
guarantees. Linear programming can be done in polynomial
time using Karmakar’s algorithm [Karmarkar, 1984] with a
time bound of O(n3.5L), where L is the length of all inputs.

The splitting circle scheme to find roots of a polynomial
combines many varied techniques. The core of the algorithm
yields linear polynomials Li = aix+bi (a, b can be complex)
such that |P −

∏
i Li| < 2−s. The norm |.| considered is the

sum of absolute values of the coefficient. The running time of
the algorithm is O(n3 log n+ n2s) in a pointer based Turing
machine. By choosing s = θ(nl) and choosing the real part
of those complex roots that have imaginary value less than
2−l, it is possible to obtain approximations to the real roots of
the polynomial with l bit precision in timeO(n3 log n+n3l).

The above method may yield real values that lie near complex
roots. However, such values will be eliminated in taking the
maximum of the objective over all real roots, if they do not
lie near a real root.

With these properties, we can state the following lemma.
Lemma 8. The running time of Algorithm 1 with input ap-
proximation parameter ε and inputs of K bit precision is
bounded by O(n5K + n4 log( 1

ε )) .

Proof. We use T (n,K, ε), E (n, l), R(n, l), and H(n, l)
respectively to denote the running times of Algorithm 1,
EQ OPT, ROOTS and Horner’s method [Horner, 1819]
for evaluating a degree n polynomial with ` bits of pre-
cision. On a pointer-based machine we have R(n, l) =
O
(
n3 log n+ n3l

)
and H(n, l) = O

(
n2l
)
. EQ OPT makes

3 calls to ROOTS, and evaluates one polynomial so we have

E (n, `) ≤ 3 ·R (2n, `) +H (n, `) ≤ O
(
n3 log n+ n3l

)
.

From Lemma 7 we get l = O
(
nK + n log

(
1
ε

))
. As the lin-

ear programs can be computed in O(n4.5K) and Algorithm 1
calls EQ OPT at most n times T (n,K, ε) is bounded by

T (n,K, ε) ≤ O(n4.5K) + n · E (n, `)

≤ O(n4.5K) +O
(
n4 log n+ n4l

)
= O

(
n5K + n4 log (1/ε)

)
.

4 Discussion
We have introduced a novel model of audit games. Our model
augments the simplest model of security games with a pun-
ishment parameter. However, the security game framework
is in general much more expressive. The model [Kiekintveld
et al., 2009] includes a defender that controls multiple secu-
rity resources, where each resource can be assigned to one of
several schedules, which are subsets of targets. This notion
of schedules also applies to audit games, e.g., in organiza-
tions managers (resources) are often required to audit actions
of their direct employees. Other generalizations of security
games include an adversary that attacks multiple targets [Ko-
rzhyk et al., 2011], and a defender with a budget [Bhat-
tacharya et al., 2011]. These characteristics as well as the
repeated nature of audits raise interesting modeling questions
some of which have been studied in our prior work on au-
dit games [Blocki et al., 2012]. The associated algorithmic
questions are another exciting direction for future work.

Ultimately, we view our work as a first step toward a com-
putationally feasible model of audit games. We envision a
vigorous interaction between AI researchers and security and
privacy researchers, which can quickly lead to deployed ap-
plications, especially given the encouraging precedent set by
the deployment of security games algorithms [Tambe, 2011].
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