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Abstract. The theoretical guarantees provided by voting have distinguished it
as a prominent method of preference aggregation among autonomous agents.
However, unlike humans, agents usually assign each candidate an exact utility,
whereas an election is resolved based solely on each voter’s linear ordering of
candidates. In essence, the agents’ cardinal (utility-based) preferences are em-
bedded into the space of ordinal preferences. This often gives rise to a distortion
in the preferences, and hence in the social welfare of the outcome.

In this paper, we formally define and analyze the concept of distortion. We
fully characterize the distortion under different restrictions imposed on agents’
cardinal preferences; both possibility and strong impossibility results are estab-
lished. We also tackle some computational aspects of calculating the distortion.
Ultimately, we argue that, whenever voting is applied in a multiagent system,
distortion must be a pivotal consideration.

1 Introduction

Social choice mechanisms have long been in the service of computer-scientists, a tool in
the quest to reach consensus among agents. The problem is especially acute, as multiple
heterogeneous, self-interested agents may (and often do) have conflicting preferences.
Voting is a well-studied and well-understood method of preference aggregation, with
numerous applications in multiagent systems. In practice, an election is held, and the
winning candidate is declared to be the agreed choice; the candidates can be beliefs,
joint plans [7], schedules [9], movies [8], or indeed entities of almost any conceivable
sort.

A social choice function, also known as a voting protocol, is used to determine the
winner of an election. The agents specify their preferences by reporting a linear order
relation on the candidates. Such ordinal preferences are only natural when the voters are
humans; a human might prefer, say, Ehud Olmert to Benjamin Netanyahu as the prime
minister of Israel, but would probably find it impossible to evaluate each candidate
precisely in terms of utility.

For computational agents, on the other hand, calculating utilities is a way of (ar-
tificial) life. In fact, even in settings where voting is used, it is usually assumed that
agents compute the utility of each alternative. For instance, Ghosh et al. [8] describe
a movie recommender system that relies on voting; with the guarantees provided by
voting schemes, the system is able to generate convincing explanations for different
recommendations, and is robust to small errors in the evaluation of the user’s prefer-
ences. Aspects of these preferences are represented as dimensions, and every movie has
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a value (or utility) with respect to each dimension. The exact utilities are not taken into
account: one movie is preferred over another with respect to a dimension if the former’s
utility is greater than the latter’s.

So in some settings, designers of multiagent systems do away with exact cardinal
(utility-based) preferences in order to exploit different properties of voting. Essentially,
the cardinal preferences of agents are embedded into the space of ordinal preferences
over candidates, in a way somewhat reminiscent of embeddings of metric spaces [10].
This embedding of preferences entails a degree of distortion, which depends on the
properties of the social choice function used in the election.

Informally, we define the distortion of a social choice function to be the maximal
ratio between the total utility of the candidate that maximizes social welfare, and the
total utility of the candidate that is elected. The maximum is taken over all possible
cardinal preference profiles, subject to certain restrictions.

We first explore distortion when the only restriction imposed on cardinal preferences
is that all voters have the same sum of utilities for candidates. We establish some strong
impossibility results regarding the degree of distortion in this model. Further, we show
that these results also hold in an alternative model, where utilities are not constrained,
but weighted voting is used. Another impossibility result is computational in nature: we
prove that a decision problem associated with the computation of distortion isNP-hard.1

The impossibility results mentioned above suggest that distortion is an obstacle that
should be taken into account when applying voting in multiagent systems. Nevertheless,
they motivate us to examine a model where the preferences of users are more restricted;
in this context, we reformulate distortion as misrepresentation. We examine the mis-
representation of different well-known social choice functions. In addition, we analyze
complexity issues related to calculating misrepresentation.

The paper proceeds as follows. In Section 2 we review some relevant issues in so-
cial choice theory. In Section 3, we put forward results concerning the distortion of
social choice functions in models where preferences are little constrained. In Section 4,
we examine the more specific setting of misrepresentation, especially with respect to
important social choice functions. Finally, we give our conclusions in Section 5.

2 Preliminaries

In this section we give a brief introduction to classic social choice theory. Readers are
urged to consult [3] for more information.

Let N be the set of voters, |N | = n, and let C be the set of candidates, |C| = m;
we assume that n ≥ 2 and m ≥ 3, unless explicitly stated otherwise. We usually use
the index i to refer to voters, and the index j to refer to candidates. When we discuss
attributes of voters or candidates, the index of a voter usually appears in superscript,
whereas the index of a candidate appears in subscript.

Let L be the set of all linear orders2 on C. Each voter has ordinal preferences �i∈ L.
We refer to �= 〈�1, . . . , �n〉 ∈ LN as an ordinal preference profile.

1 Many recent articles have explored other computational aspects of voting; see for exam-
ple [5,6,12,2].

2 Binary relations that satisfy antisymmetry, transitivity, and totality.
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Given �i, let j1, . . . , jm be indices of candidates such that j1 �i j2 �i · · · �i jm;
we denote by pi

l the candidate that voter i ranks in the l’th place, i.e., pi
l = jl. We denote

by lij the position in which candidate j is ranked by voter i; it holds that pi
lij

= j.

2.1 Social Choice Functions

A social choice function, also known as a voting protocol,3 is a function F : LN → C,
i.e., a mapping from preferences of voters to candidates. We shall consider the following
voting protocols:

– Scoring protocols are defined by a vector α = 〈α1, . . . , αm〉.4 Given �∈ LN ,
the score of candidate j is sj =

∑
i αlij

. The candidate who wins the election is

F (�) = argmaxjsj . Some of the well-known scoring protocols are:
• Borda: α = 〈m − 1, m − 2, . . . , 0〉.
• Plurality: α = 〈1, 0, . . . , 0〉.
• Veto: α = 〈1, . . . , 1, 0〉.

Some of our results (in particular regarding complexity) concentrate on scoring
protocols, as these voting protocols can be concisely represented by the vector α.

– Copeland: we say that candidate j beats j′ in a pairwise election if |{i ∈ N : lij <

lij′}| > n/2. The score sj of candidate j is the number of candidates that j beats in
pairwise elections, and Copeland(�) = argmaxjsj .

– Maximin: the maximin score of candidate j is the candidate’s worst performance
in a pairwise election: sj = minj′ |{i ∈ N : lij < lij′}|, and Maximin(�) =
argmaxjsj .

– Single Transferable Vote (STV): the election proceeds in rounds (a total of m − 1
rounds); in each round, the candidate with the fewest votes ranking him first among
the remaining candidates is eliminated.

– Plurality with Runoff : similar to STV, but there are only two rounds. After the first
round, only the two candidates that maximize |{i ∈ N : lij = 1}| survive. In the
second round, a pairwise election is held between these two candidates.

– Bucklin: for any candidate j and l ∈ {1, . . . , m}, let Bj,l = {i ∈ N : lij ≤ l}. It
holds that Bucklin(�) = argminj(min{l : |Bj,l| > n/2}).

It is also to possible to consider weighted voting. A voter i with weight K and pref-
erences �i is taken into account as K voters, each with preferences �i.

2.2 Properties of Social Choice Functions

In this subsection we formulate several criteria that are commonly used to compare
social choice functions.

– Majority criterion: [∃j ∈ C s.t. |{i ∈ N : lij = 1}| > n/2] ⇒ F (�) = j.
– Participation: if F (�) = j and one adds a ballot that ranks j above j′, then the

winner is not j′ (it is better to vote honestly than not to vote at all).

3 We use the two terms interchangeably.
4 More formally, a scoring protocol is defined by a sequence of such vectors, one for each value

of m, but we abandon this formulation for clarity’s sake.
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– Monotonicity: If F (�) = j, and �′ is an ordinal preference profile where some of
the voters rank j higher compared to � (but none rank j lower), then F (�′) = j.

– Consistency: if the electorate is partitioned in two and a candidate wins in both
parts, then he wins overall.

3 Distortion of General Cardinal Preferences

Let U = (N ∪ {0})C be the set of all possible cardinal preferences on C. Each voter is
associated with preferences in U , ui = 〈ui

1, . . . , u
i
j〉, where ui

j ∈ N ∪ {0} is voter i’s
utility for candidate j; denote uj =

∑
i ui

j , and denote the cardinal preference profile
by u = 〈u1, . . . , un〉 ∈ UN .

When voting is used to aggregate preferences, agents’ cardinal preferences are trans-
lated into ordinal preferences in the natural way.

Definition 1. Let u ∈ UN and �∈ LN . � is derived from u iff both of the following
conditions hold:

1. ∀i ∈ N, j1, j2 ∈ C : ui
j1

> ui
j2

⇒ j1 �i j2.
2. ∀i ∈ N, j1, j2 ∈ C : ui

j1
= ui

j2
⇒ j1 �i j2 ∨ j2 �i j1, but not both.

Definition 2. Let F be a social choice function. The distortion of F with n voters and
m candidates, denoted Δn

m(F ), is max maxj uj

uF (�)
, where the first maximum is taken over

all u ∈ UN and �∈ LN , under the restrictions that there exists K ∈ N such that for
all voters i,

∑
j ui

j = K ≥ 1, and � is derived from u. It is additionally assumed that
in case several candidates are tied in the election, the one that minimizes social welfare
is elected.5 If the denominator is 0 but the numerator is not 0, we write Δn

m(F ) = ∞,
where ∞ > k for all k ∈ N.

Less formally, the distortion of F with n voters and m candidates is the worst-case
ratio between the utility of the candidate that maximizes social welfare and the winner
according to F , when one considers all possible cardinal preference profiles u with
fixed utility-sum for each voter, and derived ordinal preference profiles �.

Remark 1. Clearly, when one eschews the assumption that
∑

j ui
j = K for all i, it is

not possible to bound the distortion even when a small number of voters and candidates
is considered. For example, assume n = 3 and m = 2, and F is the plurality protocol.
Let u1

1 = c for some c > 2, u1
2 = 0, u2

1 = u3
1 = 0, u2

2 = u3
2 = 1. The derived ordinal

preference profile is 1 �1 2, 2 �2 1, 2 �3 1, therefore candidate 2 is chosen by the
plurality protocol. The distortion is c/2.

The following proposition is a strong impossibility result; it implies that no voting pro-
tocol is optimal in terms of distortion, even for very small values of n and m.

Proposition 1. Let F be a social choice function. Then Δ3
2(F ) > 1.

5 This assumption is justified as we engage here in a worst-case analysis.
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Proof. Consider the cardinal utility profile u1
1 = 3, u1

2 = 2, u2
1 = 0, u2

2 = 5, u3
1 = 3,

u3
2 = 2. The only derived ordinal preference profile is 1 �1 2, 2 �2 1, 1 �3 2. Since

u1 < u2, if F (�) = 1 then we are done. Otherwise, suppose F (�) = 2, and consider
the cardinal preference profile u1

1 = 5, u1
2 = 0, u2

1 = 0, u2
2 = 5, u3

1 = 5, u3
2 = 0.

Again, the only derived preference profile is �, but now u1 > u2. ��

Definition 3. Let F be a social choice function. We say that F has unbounded distortion
if there exists m ∈ N such that for all k ∈ N, Δn

m(F ) > k for infinitely many values
of n.

Proposition 2. Let F be a scoring protocol with

α2 ≥ 1
m − 1

∑

l �=2

αl (1)

for some m. Then F has unbounded distortion.

Proof. Let n such that m − 1 divides n. Consider the profile u ∈ UN where for every
candidate j �= 1, exactly n/(m − 1) voters i have utility ui

j = 1 and ui
j′ = 0 for every

j′ �= j. Let � be a derived ordinal preference profile; define for all

Pj,l = {i ∈ N : pi
l = j}.

It must hold that for all j �= 1, |Pj,1| = n/(m − 1). Moreover, it is possible to derive
an ordinal preference profile such that for all j �= 1 and l �= 2, |Pj,l| = n/(m − 1),
and with respect to candidate 1, |P1,2| = n. Without loss of generality, let � be such
a profile. The score of candidate 1 in this election is nα2, and the score of every other
candidate is n

m−1

∑
l �=2 αl. Further, it holds that u1 = 0, and uj = n/(m − 1) for

all j �= 1. By Equation (1) and the assumption that in case of a tie the candidate that
minimizes utility wins, it follows that candidate 1 wins the election, but for any other
candidate, say candidate 2, u2

u1
= n/(m−1)

0 . Thus, the distortion of F is unbounded. ��

It follows from Proposition 1 that in many reasonable scoring protocols, the distortion
is unbounded. In particular:

Corollary 1. The Borda and Veto Protocols have unbounded distortion.

3.1 An Alternative Model

So far, we have analyzed the distortion with respect to cardinal preference profiles that
satisfy, for all voters, i:

∑
j ui

j = K . If one allows for weighted voting, it is possible

to obtain a generalization of this model. Indeed, let Ki =
∑

j ui
j , possibly Ki �= Ki′

for i �= i′. However, when an election is held based on a derived ordinal preference
profile �, voter i has weight Ki. The definition of distortion can be reformulated in
the obvious way to apply to this model; we denote the worst-case ratio between the
candidate that maximizes utility and the one that wins the weighted election governed
by F , when different Ki are allowed, by Δ̃n

m(F ).
The next proposition shows that the two models are equivalent with respect to dis-

tortion.
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Proposition 3. For all social choice functions F , n1 and m, Δn1
m (F ) ≤ Δ̃n1

m (F ), and
there exists n2 ≥ n1 such that Δ̃n1

m (F ) ≤ Δn2
m (F ).

Proof. For the first inequality, let n1, m ∈ N. Let u ∈ UN and �∈ LN that maximize,
in the first model, the ratio maxj uj

uF (�)
, subject to: for all i,

∑
j ui

j = K , and � is derived

from u. In the second model, F (�) is as before, since all voters have identical weights
in the election (K). Therefore maxj uj

uF (�)
in the second model is at least as large as in the

first.
Regarding the second inequality, let n1, m ∈ N, and let ũ ∈ UN and a derived

�̃ ∈ LN that maximize the ratio maxj �uj

uF ( ��)
(with weighted voting). ũ may not be a valid

cardinal preference profile in the first model, but we construct a profile that is. Let
n2 =

∑
i Ki; for each one of the original voters ĩ = 1, . . . , n1, consider K

�i voters i

whose utility is ui
j = u

�i
j ·

∏
�i′ �=�i K

�i′
. Let K =

∏
�i K

�i; it holds that for all i,
∑

j ui
j = K ,

hence u is valid in the first model. Further, for every candidate j it holds that uj =

K · ũj . Notice that �̃
�i

can be derived from ui for every voter i that corresponds to

ĩ; denote the ordinal preference profile that is obtained by replicating ��i K
�i times,

once for each voter that corresponds to ĩ, by �. In the new election, we have K
�i voters

casting identical ballots to the one cast by voter ĩ, and this voter had weight K
�i in the

original election. Therefore, F (�̃) with weighted voting is identical to F (�) without.
To conclude, we have obtained that:

maxj uj

uF (�)
=

K maxj ũj

KũF (�̃)
=

maxj ũj

ũF (�̃)
. ��

Corollary 2. Let F be a social choice function. Then Δ̃3
2(F ) > 1.

Corollary 3. Let F be a social choice function. F has unbounded distortion in the first
model iff F has unbounded distortion in the second model.

3.2 Complexity Issues

The existence of an algorithm that efficiently computes (or approximates) the distortion
of a given voting protocol is, clearly, a basic prerequisite for comparing voting protocols
in terms of distortion. As we shall see in Subsection 4.1, one of the building blocks of
such an algorithm is a procedure that efficiently decides the following problem:

Definition 4. In the MIN-SCORE-MAX-UTIL (MSMU) problem, we are given the
number of voters n, the number of candidates m, a scoring protocol F defined by
parameters α1, . . . , αm, for each voter i, a sequence of nonnegative integers bi =
〈bi

1, . . . , b
i
m〉, and y, z ∈ N. We are asked whether there are n permutations on C,

π1, . . . , πn, such that for the cardinal preference profile u defined by ui
j = bi

πi(j) and a
derived ordinal preference profile �, it holds that u1 ≥ y but s1 ≤ z.

To put it less formally, we are given a scoring protocol, and for each voter, a sequence
of m numbers. We know what the utilities of each voter are in general, but it is still
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left to determine how each voter assigns these utilities to candidates. Essentially, this is
equivalent to choosing an ordinal preference relation for each voter, and then assigning
the maximal element in bi to pi

1, the second largest element to pi
2, etc. — and this is the

approach that will later become relevant.

Remark 2. It is not assumed here that
∑

l bi
l = K for all i.

Proposition 4. MSMU is NP-complete.

Proof. Reduction from KNAPSACK; omitted due to space constraints.

4 Misrepresentation

Impossibility results regarding the general model, manifested above as Propositions 1,
2, and (to a lesser degree) 4, motivate us to impose restrictions on agents’ possible
cardinal preference profiles. In this section, we examine a slight variation on the concept
of distortion that allows for possibility results.

Monroe [11] defines a measure of misrepresentation; using our notations, voter i’s
misrepresentation with respect to candidate j is μi

j = lij−1. To put it differently, if voter
i ranks candidate j first, then i’s misrepresentation w.r.t. to j is 0, the misrepresentation
w.r.t. the second highest-ranked candidate is 1, and so forth. The misrepresentation of
candidate j is μj =

∑
i μi

j .

Definition 5. Let F be a social choice function. The misrepresentation of F with n
voters and m candidates, denoted μn

m(F ), is max μF (�)

minj μj
, where the maximum is taken

over all ordinal preference profiles �i and their associated misrepresentation values. If
several candidates are tied in an election, the one that maximizes misrepresentation is
elected.

Misrepresentation values can, of course, be interpreted as cardinal preferences (e.g.,
ui

j = m−μi
j −1), albeit restricted ones: a voter’s ordinal preference relation �i fixes a

(perfect) matching between candidates and the utilities 0, 1, . . . , m− 1.6 Consequently,
the misrepresentation of a social choice function F can be easily reformulated as distor-
tion. In fact, similar results can be obtained, but the latter formulation favors candidates
that are ranked last by few voters, whereas the former formulation rewards candidates
that are placed first by many voters.

When is misrepresentation an issue? The following scenario provides a compelling,
albeit somewhat artificial, example. Consider the meeting scheduling problem discussed
in [9]: scheduling agents schedule meetings on behalf of their associated users, based
on given user preferences; a winning schedule is decided in an election. Say three pos-
sible schedules are being voted on. These schedules, being fair, conflict with at most
two of the requirements specified by any user. In other words, a user’s misrepresenta-
tion with respect to a certain schedule is 0 if there are no conflicts, 1 if there is a single

6 Unlike the general model, in the current setting there is a unique derivation of misrepresenta-
tion values from ordinal preferences, and vice versa.
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conflict, and 2 if there are two conflicts.7 In this case, having no conflicts at all is vastly
superior to having at least one conflict, as even one conflict may prevent a user from
attending a meeting. As noted above, this issue is taken into account in the calculation
of misrepresentation — emphasis is placed on candidates that were often ranked first.

Proposition 1 stated that there is no social choice function with distortion 1. Clearly
this is not the case here:

Proposition 5. Let m ∈ N, and let F be a scoring protocol with parameters α1 ≥
α2 ≥ . . . ≥ αm. Then μn

m(F ) = 1 for all n iff there exist a and b such that αl = −a·l+b
for all l = 1, . . . , m.

Proof. Assume first that there exist a and b such that αl = −a·l+b for all l = 1, . . . , m,
and let n ∈ N, �∈ LN . Candidate j’s score is:

∑

i

αlij
=

∑

i

[−a · lij + b] =
∑

i

[−a(μi
j + 1) + b] = n[b − a] − a

∑

i

μi
j ,

so the candidate that maximizes the score is the one that minimizes misrepresentation.
In the other direction, assume there do not exist a and b such that αl = −a·l+b for all

l = 1, . . . , m. It follows that there exist l0, a and a′ such that a �= a′, and α1 − α2 = a
but α1 − αl0 = a′(l0 − 1), and a, a′ > 0.8 Assume w.l.o.g. that a > a′. Consider the
following ballot: n′ voters vote 2 �i 1 �i . . ., n′ − x voters rank 1 �i 2 �i . . ., and y
voters cast their ballots in a way that pi

1 = 1, pi
l0

= 2, for some x, y ∈ N (we have that
n = 2n′ − x + y). When comparing the scores of candidates 2 and 1, we have:

s2 − s1 = xa − ya′(l0 − 1). (2)

Further, it holds that:
μ2 − μ1 = −x + y(l0 − 1). (3)

It is sufficient to show that it is possible to make candidate 2 win the election, and
in particular guarantee that candidate 2’s score be higher than 1’s, but simultaneously
ensure that candidate 2’s misrepresentation be higher than 1’s. Indeed, by Equations (2)
and (3) both conditions are satisfied whenever

x

l0 − 1
< y <

a

a′ · x

l0 − 1
. (4)

Choosing x > 3(l0 − 1) a′

a−a′ , it is possible to choose y that satisfies Equation (4).
Moreover, it is clearly now possible to choose n′ large enough so as to guarantee that
candidate 2 wins the election, since for all candidates j �= 1, 2, there are at most y voters
such that pi

2 = j, and α1 > αl for all l �= 1. ��

Corollary 4. For all n, m, μn
m(Borda) = 1.

7 We implicitly assume that for each user there is one schedule with no conflicts, one with a
single conflict, and one with two conflicts.

8 It is safe to assume that a > 0 (and therefore a′ > 0), because if α1 = α2 then the result is
obvious.
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Corollary 4 establishes the optimality of the Borda protocol in terms of misrepresen-
tation. Unfortunately, this protocol is notoriously easy to manipulate, and is plagued
by other disadvantages. Therefore, it is worthwhile to explore the misrepresentation of
other protocols.

The concept of unbounded misrepresentation can be defined analogously to Defini-
tion 3. In the framework of misrepresentation, we have the following proposition.

Proposition 6. Let F be a scoring protocol with parameters α1 ≥ α2 ≥ . . . ≥ αm.
Then F has unbounded misrepresentation iff α1 > α2.

Proof. Suppose first that α1 > α2. Let n, m ∈ N, �∈ LN , and assume w.l.o.g. that
argminjμj = 1 and F (�) = 2. Let k = |{i ∈ N : li1 = 1}| be the number of
voters that ranked candidate 1 first. The number of points candidate 2 received is at
most s2 ≤ (n − k)α1 + kα2, and the number of points candidate 1 received is at least
s1 ≥ kα1. We have:

(n − k)α1 + kα2 ≥ s2 ≥ s1 ≥ kα1.

Therefore, k ≤ n α1
2α1−α2

; this implies that μ1 ≥ n α1−α2
2α1−α2

. As μ2 ≤ n(m − 1), we
have that

μ2

μ1
≤ n(m − 1)

n α1−α2
2α1−α2

=
(m − 1)(2α1 − α2)

α1 − α2
.

For a fixed m, this expression is a constant, even as n grows.
In the other direction, suppose α1 = α2, and consider �∈ LN where for all voters

i, 1 �i 2 �i · · · . It holds that μ1 = 0, μ2 = n. We can assume w.l.o.g. that F (�) = 2,
since in case of a tie a candidate that maximizes misrepresentation is elected, hence
the winner must have misrepresentation at least as high as μ2. The proposition follows
from the fact that μ2

μ1
= ∞. ��

Corollary 5. The Veto protocol has unbounded misrepresentation.

Remark 3. Corollary 5 implies that the Participation, Monotonicity, and Consistency
properties (even together) do not guarantee that a voting protocol has bounded misrep-
resentation, as the Veto protocol satisfies all three properties.

Proposition 7. For all n, m, μn
m(Plurality) = μn

m(Plurality with Runoff) = m − 1.

Proof. Omitted due to space constraints.

Proposition 8. For all n, m, μn
m(Copeland) ≤ m − 1.

Proof. Let �∈ LN ; w.l.o.g. suppose argminjuj = 1 and Copeland(�) = 2. Addi-
tionally, denote by C′ the set of candidates that candidate 2 beats in a pairwise elec-
tion, |C′| = k. For each candidate j ∈ C′, at least �n/2� voters have li2 < lij . Let
Ci = {j ∈ C : li2 < lij}; for all i, li2 = m − |Ci|. It holds that

∑
i |Ci| ≥ k�n/2�, but

this implies that:

μ2 =
∑

i

μi
2 =

∑

i

(li2 − 1) =
∑

i

[(m − 1) − |Ci|] ≤ n(m − 1) − k�n/2�.
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We distinguish two cases:

Case 1: k = m. In this case, candidate 1 has not won the pairwise election against
2, and thus there are at least �n/2� voters i such that li2 < li1. This implies that μ1 ≥
�n/2�, and hence μ2

μ1
≤ n(m−1)−m�n/2�

�n/2� ≤ m − 2.
Case 2: k ≤ m − 1. Candidate 1 won at most k pairwise elections. In each pairwise

election that 1 did not win against candidate j, at least �n/2� voters voted lij < li1. By
the same reasoning as before, μ1 ≥ (m − k)�n/2�. Therefore,

μ2

μ1
≤ n(m − 1) − k�n/2�

(m − k)�n/2� ≤ 2m − k − 2
m − k

. (5)

The ratio in Equation (5) on the right is monotonic increasing as a function of k when
1 ≤ k ≤ m − 1, and thus is bounded by m − 1. ��

Proposition 9. For all n, m, μn
m(Bucklin) ≤ m.

Proof. Let �∈ LN ; assume w.l.o.g. that argminjuj = 1, and Bucklin(�) = 2. Let
l0 = min{l ∈ {1, . . . , m} : ∃j s.t. Bj,l > n/2}. At least �n/2� voters i have pi

l = 2
for l ≤ l0. Therefore, μ2 ≤ �n/2�(l0−1)+�n/2�(m−1). We now examine two cases.

Case 1: l0 = 1. It cannot be the case that B2,1 > n/2 and B1,1 > n/2 simultane-
ously. Therefore, it must be true that at least �n/2� voters i have li1 ≥ 2, and hence
μ1 ≥ �n/2�. We have that μ2

μ1
≤ m − 1.

Case 2: l0 ≥ 2. At most �n/2� voters i have li1 ≤ l0 − 1, therefore μ1 ≥ �n/2�(l0 −
1). It holds that

μ2

μ1
≤ �n/2�(l0 − 1) + �n/2�(m − 1)

�n/2�(l0 − 1)
.

The ratio is maximized when l0 = 2; it follows that μ2
μ1

≤ m. ��

Proposition 10. For all n, m, μn
m(Maximin) ≤ 2√

5−1
(m − 1) ≈ 1.62(m − 1).

Proof. Let �∈ LN . Assume w.l.o.g. that argminjuj = 1, and Maximin(�) = 2. Ad-
ditionally, suppose that candidate 2’s Maximin score is k. With foresight, we denote
c = 3−√

5
2 . We distinguish two cases:

Case 1: k > cn. At least cn voters i have li2 < li1. In the worst case, (1 − c)n voters
i vote li1 = 1, li2 = m, and cn voters have li2 = 1 and li1 = 2. Therefore, in this case,

μ2

μ1
≤ (1 − c)

c
(m − 1) ≈ 1.62(m − 1).

Case 2: k ≤ cn. There exists a candidate, w.l.o.g. candidate 3, s.t. at most k voters i
have li1 < li3, i.e., at least (1 − c)n voters do not rank 1 first. Since μ2 ≤ n(m − 1), it
holds that

μ2

μ1
≤ n(m − 1)

(1 − c)n
=

1
1 − c

(m − 1) ≈ 1.62(m − 1).

This concludes the proof.9 ��
9 c was chosen such that 1−c

c
= 1

1−c
.



The Distortion of Cardinal Preferences in Voting 327

Algorithm 1
1: procedure MIN-MISREP(n,m,α, y)
2: for l ← 0, y do � Initialization
3: a0,l ← 0
4: end for
5: for k ← 1, n do
6: for l ← 0, y do
7: q ← min{l, m − 1}
8: ak,l ← minp=0,...,q(ak−1,l−p + αp+1) � Induces rankings for candidate 1
9: end for

10: end for
11: return an,b

12: end procedure

Proposition 11. For all n, m, μn
m(STV ) ≤ 3

2 (m − 1).

Proof. Omitted due to space constraints.

Remark 4. It is easy to show that if F is a voting protocol that satisfies the majority
criterion, then μn

m(F ) ≤ 2(m − 1).

4.1 Complexity Issues

In this subsection we address complexity issues related to calculating misrepresentation.
We begin by reformulating the MSMU problem, presented in Section 3, in the context
of misrepresentation.

Definition 6. In the MIN-SCORE-MIN-MISREPRESENTATION (MSMM) problem, we
are given the number of voters n, the number of candidates m, a scoring protocol F
defined by parameters α = 〈α1, . . . , αm〉, and y, z ∈ N. We are asked whether there
exists �∈ LN such that it holds that μ1 ≤ y but s1 ≤ z.

Unlike the general formulation of the problem, here we have:

Lemma 1. MSMM can be decided in time polynomial in n and m.

Proof. We describe a dynamic programming algorithm MIN-MISREP, given as Algo-
rithm 1. The algorithm keeps a matrix A = (akl)k∈{0,...,n},l∈{0,...,y}; entry akl is the
minimal score candidate 1 may have under the constraints that k voters have cast their
vote, and μ1 ≤ l.

The correctness of the algorithm can be easily proven by induction on k. As y =
O(nm), the running time of the algorithm is O(n2m2). Now, the given instance of
MSMM is a “yes” instance iff the output of MIN-MISREP is at most z: an,y ≤ z. ��

We now consider the following problem:

Definition 7. In the LOSER-WITH-MIN-MISREPRESENTATION (LWMM) problem, we
are given the number of voters n, the number of candidates m, a scoring protocol
F defined by parameters α1, . . . , αm, and y ∈ N. We are asked whether there exists
�∈ LN such that it holds that μ1 ≤ y but candidate 1 loses the election.
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Lemma 2. LWMM can be decided in time polynomial in n and m.

Proof. Algorithm 1 can easily be adapted to return candidate 1’s minimal score, under
the former constraint that μ1 ≤ y, and the additional constraint that exactly n′ voters,
0 ≤ n′ ≤ n, satisfy li1 = 1. This can be accomplished, for example, by running MIN-
MISREP once for each value of n′, and assuming that n′ voters have already cast their
vote (ranking candidate 1 first), whereas the remaining n − n′ cast their vote according
to the algorithm.

For each value of n′, it is possible to assume the remaining voters rank candidate 2
as high as possible, i.e., candidate 2 receives s2 = (n − n′)α1 + n′α2 points. Clearly,
there exists a value of n′ such that s2 ≥ s1 iff the given instance of LWMM is a “yes”
instance.10 ��

Given n, m, and α, we have shown so far that it is possible to find rankings li1
ALG

for
candidate 1, such that the associated misrepresentation of candidate 1 satisfies:

μALG
1 = min{μ : ∃ �∈ LN s.t. μ1 = μ ∧ candidate 1 loses the election}.

Ultimately, we would like to be able to compute μ(F ) = max μF (�)

minj μj
; let �∗∈ LN

that maximizes this ratio, let μ∗
j be the associated total misrepresentation values of

candidates, s∗j be the associated scores, and lij
∗

be the associated rankings; assume
w.l.o.g. that argminju

∗
j = 1, and F (�∗) = 2.

Definition 8. Let F be a scoring protocol. F has the popular loser property iff the
rankings li1

ALG
are identical to the rankings li1

∗
, up to the order of the voters.

Definition 9. Let F be a scoring protocol. F has the even match property iff, given s∗1,
the rankings li2

∗
are the ones that maximize μ∗

2, under the constraint s∗2 ≥ s∗1.

In other words, a scoring protocol has the popular loser property if any ordinal prefer-
ence profile such that candidate 1 has maximal misrepresentation, under the constraint
that candidate 1 is not the winner, is optimal in the sense that candidate 1’s ranking
by voters is identical to candidate 1’s ranking in the preference profile that maximizes
misrepresentation. A scoring protocol has the even match property if, once the above
rankings for candidate 1 are known, in order to find the misrepresentation of the protocol
it is sufficient to find rankings for candidate 2 that maximize candidate 2’s misrepresen-
tation, while guaranteeing that 2 has a higher score than 1.

Certainly, if F has both properties, then Lemma 2 is a step forward towards calcu-
lating the misrepresentation of F . But are there protocols that possess both properties?

Example 1. The Plurality and Veto protocols have the popular loser property and the
even match property.

If so, some important protocols possess the properties. Characterizing more fully the
protocols that possess both properties remains an open question.

10 It is enough to demand a weak inequality in s2 ≥ s1, as candidate 1 is the candidate that
minimizes the score while achieving misrepresentation μ1; if s2 = s1 then it must hold that
μ2 ≥ μ1, hence candidate 2 still wins the election.



The Distortion of Cardinal Preferences in Voting 329

Theorem 1. Let F be a scoring protocol with the popular loser property and the even
match properties. Then the problem of calculating μn

m(F ) has a Fully Polynomial Time
Approximation Scheme (FPTAS).

Proof (Sketch). Observe the rankings li1
ALG

fixed by the algorithm from the proof of
Lemma 2, on the given input. By the assumptions, it is sufficient to find rankings li2 for
candidate 2 in a way that μ2 is maximal, under the constraint s2 ≥ sALG

1 .
The above problem reduces to the exact KNAPSACK problem with cardinality con-

straints (E-kKP). In this problem, we are given n items, each with a weight wi and a
value vi, and a weight limit K; the goal is to find a subset S of items of size k, that
maximizes

∑
i∈S vi, subject to

∑
i∈S wi ≤ K .

In our setting, li2 can take any value in {1, . . . , m} \ {li1
ALG}; let there be an item

associated with each possible value of li2, i = 1, . . . , n (there are n(m − 1) items). The
value of the item associated with li2 = l is μi

2 = l−1, and its weight is α1 −αl. Exactly
n items are to be chosen; the weight limit is nα1 − sALG

1 .
This is a polynomial time reduction. Indeed, given rankings li2, i = 1, . . . , n such

that s2 ≥ sALG
1 , choose n corresponding items in the knapsack instance. The items’

total value is exactly μ2. Moreover, the total weight associated with the items is at most
nα1 minus the total score of the associated rankings, which is at least sALG

1 . The other
direction is similar.

Caprara et al. [4] present an FPTAS for E-kKP. Therefore, for any ε > 0, it is possible
to find (in polynomial time) μ2 such that μ2 ≤ μ∗

2 ≤ (1 + ε)μ2. In addition, recall that
μALG

1 = μ∗
1. Therefore:

(
μ∗

2
μ∗

1

)

(
μ2

μALG
1

) =
μALG

1 μ∗
2

μ∗
1μ2

=
μ∗

2

μ2
≤ 1 + ε.

��

5 Conclusions

We have defined the distortion of a social choice function as the worst-case ratio be-
tween the total utility of the candidate that maximizes social welfare, and the elected
candidate. At first, we have focused on a model where, for all voters, the sum of utilities
is identical. We have shown that every social choice function is distorted, even when
the number of voters and the number of candidates are small. Moreover, we have es-
tablished a sufficient condition for unbounded distortion — a result which implies that
several well-known scoring protocols have unbounded distortion in the general model.
We have shown our model to be equivalent, in terms of distortion, to another model
where the voters’ cardinal preferences are unconstrained, but each voter’s weight is the
sum of its utilities. Finally, we have proven that a problem associated with calculating
distortion is NP-complete when utilities are unconstrained.

Motivated by the impossibility results mentioned above and the work of Monroe
[11], we have reformulated the concept of distortion as misrepresentation. The main
difference between the two settings is, essentially, that in the misrepresentation setting
voters’ cardinal preferences are quite restricted. We have established a necessary and
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Table 1. The misrepresentation of common voting protocols

Voting Protocol Misrepresentation

Borda 1
Veto Unbounded

Plurality = m − 1
Plurality with Runoff = m − 1

Copeland ≤ m − 1
Bucklin ≤ m
Maximin ≤ 1.62(m − 1)

STV ≤ 1.5(m − 1)

sufficient condition for a social choice function to be optimal in terms of misrepre-
sentation, and have also characterized the scoring protocols with unbounded misrepre-
sentation. More importantly, we have given bounds — in some cases tight — for the
misrepresentation of specific voting protocols; these bounds are summarized in Table 1.

Last, we have tackled the problem of calculating misrepresentation. Moving through
several sub-problems, we have ultimately demonstrated that there is a fully polynomial
time approximation scheme (FPTAS) for this problem, when the voting protocol is a
scoring protocol that possesses the popular loser and even match properties. It remains
an open issue to characterize the scoring protocols that have these properties.

The results presented in Section 3 suggest that distortion may be a major obstacle for
designers of multiagent systems who wish to apply voting. This is true, however, only if
the agents’ cardinal preferences are almost unconstrained. On the other hand, we have
seen in Section 4 that restricting the preferences overturns some of the impossibility
results.

In the context of restricted preferences, the results imply that the distortion of a vot-
ing protocol should be a major criterion in the comparison of different protocols —
alongside other classical criteria like manipulability. For instance, whenever misrepre-
sentation is a concern (as in the meeting scheduling example discussed in Section 3),
one might prefer to employ the Borda protocol, which is optimal in terms of misrep-
resentation but highly manipulable, rather than the STV protocol, which is difficult to
manipulate [1] but has high misrepresentation. In a three candidate example, STV’s
misrepresentation might be 3 times higher than Borda’s; in the scheduling domain, this
might imply three times as many conflicts with user preferences — certainly a steep
price to pay for preventing strategic behavior.

We briefly mention two directions for future research. Our computational complex-
ity analysis of distortion is rather rough. It seems true that calculating distortion (or
even misrepresentation) in scoring protocols is NP-complete, but currently there is no
proof. Second, our approximation scheme relies on the popular loser and even match
properties; it remains an open issue to characterize the scoring protocols that have these
properties. Further, can these assumptions be abandoned?
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