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Abstract. The recent result of Friedgut, Kalai and Nisan [9] gives a
quantitative version of the Gibbard-Satterthwaite Theorem regarding
manipulation in elections, but holds only for neutral social choice func-
tions and three alternatives. We complement their theorem by proving a
similar result regarding Pareto-Optimal social choice functions when the
number of voters is two. We discuss the implications of our results with
respect to the agenda of precluding manipulation in elections by means
of computational hardness.

1 Introduction

Can we design a good voting rule that is immune to manipulation? That is, one in
which the best strategy for each voter is to report its true preferences, without
taking into account complicated strategic issues (“my first-ranked alternative
has no chance of winning, so perhaps I should vote for my second best option”)?
The classic result of Gibbard and Satterthwaite [10,16] gives us an unfortunate
answer: every voting rule that is immune to manipulation must be dictatorial.
The question we ask in this paper is: is there a reasonable voting rule that is
mostly immune to manipulation? That is, can we find a voting rule that cannot
be manipulated “most” of the time?

Let us discuss this problem more formally. The basic ingredients of a voting
setting are a set of voters N , |N | = n, and a set of alternatives A, |A| = m. The
preferences of each voter are represented by a ranking of the alternatives, which
is the private information of the voter. The collection of the preferences of all
the voters is known as a preference profile. The setting also consists of a social
choice function (SCF), which is simply a voting rule: a function that receives the
preference profile submitted by the voters, and outputs the winning alternative.
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Motivation and Related Work. Ideally, one would like to design SCFs that are
strategyproof, i.e., theoretically immune to manipulation. A voter is said to ma-
nipulate the election if misreporting its preferences improves the outcome (from
the voter’s point of view). Unfortunately, as mentioned above, the seminal im-
possibility result of Gibbard [10] and Satterthwaite [16] states that if there are
at least three alternatives, an SCF that is strategyproof and onto A must be a
dictatorship, in the sense that there is a single voter whose favorite alternative is
elected under any preference profile. This devastating theorem (hereinafter, the
G-S Theorem) implies that, in theory, it is impossible to design a “reasonable”
SCF that is strategyproof.

Nevertheless, several avenues have been suggested for circumventing the G-S
Theorem. One approach, introduced by Bartholdi, Tovey and Trick [1], is em-
ploying computational complexity. Indeed, Bartholdi et al. suggested that some
of the prominent SCFs may be computationally hard to manipulate. The work-
ing hypothesis is that, if successfully lying is computationally infeasible, voters
would simply report the truth. Since then, and especially in recent years, numer-
ous results about the worst-case hardness of manipulation have been published
(see, e.g., [2,4,5,6,8,11,15]).

The foregoing line of work is encouraging, and doubtless being worst-case
hard to manipulate is a desirable property in an SCF. However, researchers have
pointed out that worst-case hardness may not be a sufficient barrier against ma-
nipulation. What one would ideally wish for is an SCF that is almost always hard
to manipulate, when the instances are drawn according to typical distributions;
this notion of hardness of manipulation is closer to the cryptographic notions of
hardness.

Recent works have argued that common SCFs are not frequently hard to ma-
nipulate with respect to typical distributions. An algorithmic approach to this
issue was presented by Procaccia and Rosenschein [14]. This work relies on the
arguable (as discussed by Erdélyi et al. [7]) concept of junta distributions, and
only deals with manipulation by coalitions in a specific family of SCFs when
the number of alternatives is constant. The algorithmic results of Procaccia and
Rosenschein were later significantly strengthened by Zuckerman, Procaccia and
Rosenschein [20], but this work also deals with specific SCFs and coalitional ma-
nipulation. Another algorithmic, general, approach was introduced by Conitzer
and Sandholm [3], but in order to apply their results, the SCF has to satisfy a
somewhat restrictive property. This property is empirically shown to hold with
respect to some SCFs, when the number of alternatives is very small. Yet another
approach was proposed by Procaccia and Rosenschein [13], and generalized by
Xia and Conitzer [18]. This approach, once again, only deals with manipulation
by coalitions and a constant number of alternatives.

An intriguing and ambitious approach to the issue of frequency of hardness in
manipulation was presented by Friedgut, Kalai and Nisan [9]. They looked at a set-
ting where each voter votes independently and uniformly at random; this is known
in the social choice literature as the impartial culture assumption. Friedgut et al.
suggested that, under the impartial culture assumption, a potential manipulator
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can improve the outcome of the election with nonnegligible probability by simply
reporting a random ranking instead of its truthful ranking.

Roughly speaking, define an SCF f to be δ-dictatorial if one must change
the outcome of f on at most a δ-fraction of the preference profiles in order to
transform f into a dictatorship. We call f ε-strategyproof if, given a random
profile, a random manipulation succeeds with probability at most ε. Friedgut
et al. suggested that the following quantitative version of the G-S Theorem
is true: If |A| ≥ 3, then any ε-strategyproof SCF that is onto A (and possibly
satisfies additional weak properties) is δ-dictatorial, for δ = K1·poly(n, m)·ε1/K2 ,
where K1 and K2 are constants. Such a result would directly imply that if
a random manipulation succeeds with only negligible probability, namely ε is
superpolynomially small, then the SCF must be very close to being dictatorial,
that is unreasonable from a social choice point of view. Hence, if this statement
is true, it would be of supreme importance to the frequency-of-manipulation
agenda.

Friedgut et al. themselves were only able to prove the above result under
the assumptions that there are exactly three alternatives, and that the SCF is
neutral, i.e. indifferent to the identities of the alternatives. The techniques of
Friedgut et al. are beautiful, but it seems to be very difficult to generalize their
proof to more than just 3 alternatives. Strictly speaking, neutrality might also
be undesirable, since neutrality and anonymity (indifference to the identities of
the voters) are sometimes mutually exclusive [12, page 25], and all prominent
SCFs are anonymous.

Xia and Conitzer [19] extended the result of Friedgut et al. (via a completely
different, involved line of reasoning) to any number of alternatives. However, the
quality of their result decreases rapidly with the number of alternatives, so the
authors assume that the number of alternatives is constant in order to achieve
the ideal of Friedgut et al. In addition, Xia and Conitzer require several very
technical and restrictive assumptions with respect to the SCF. Although they
show that these assumptions are satisfied by most (but not all) prominent SCFs,
the assumptions still severely limit the scope of their result when it comes to the
possibility of designing nonstandard SCFs that are usually hard to manipulate.

Our result. We complement the two previous results along the line of work
proposed by Friedgut et al. by establishing the desired quantitative version of
G-S for an arbitrary number of alternatives m but n = 2, namely only two
voters. The only assumption we make is that the SCF is Pareto-optimal, i.e., if
all voters rank alternative a above b, than b is not elected. Specifically, we prove:

Main Theorem. Let ε < 1
32m9 ; assume N = {1, 2}, m ≥ 3, and let f be an

ε-strategyproof and Pareto-optimal SCF. Then f is 16m8ε-dictatorial.

In particular, if the probability of success of a random manipulation is negligible,
then f is very close to being dictatorial. As Pareto-Optimality is a very basic
requirement, this directly implies that it is impossible to design a reasonable SCF
that is frequently hard to manipulate, when each voter votes independently and
uniformly at random and N = {1, 2}.
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Discussion. A crucial aspect of our theorem is that it seems to be better than
previous results as a first step towards a more general result. Indeed, the proof
of Friedgut et al. is fascinating but involved and relies on heavy mathematical
machinery: Fourier analysis, isoperimetric inequalities, and so on. The proof of
Xia and Conitzer seems to strongly rely on their assumptions, and it is not clear
if the same techniques can be used once these assumptions are removed.

On the other hand, our proof is relatively simple and is built “from scratch”.
More importantly, Svensson [17] gives an inductive argument that extends the
deterministic proof of G-S from two voters to n voters. However, this argument is
not “robust”, in the sense that using it directly causes too great a deterioration
in the quality of the result with respect to n and m. Certainly, new tricks are
needed, but we believe that using clever induction on the number of voters in
order to achieve a general result should be possible.

We wish to make some remarks regarding the generality of our result. First, we
assume Pareto-optimality, but this assumption can probably be relaxed, since in
the deterministic case Pareto-optimality is implied by strategyproofness. Second,
our auxilary monotonicity lemma (Lemma 1) can certainly be generalized to any
number of voters n.

Let us briefly examine the significance of our result in its own right (and not as
a first step towards a general result). The case of two voters and m alternatives
might at first seem less important than the case of n voters and three alternatives
that was considered by Friedgut et al. This is true in political elections (where one
expects to find more voters than candidates), but not in general (and especially
not in computer science). For instance, in settings where multiple agents must
decide between joint plans or beliefs the number of alternatives is typically far
greater than the number of voters. In addition, when the number of alternatives
is constant, a potential manipulator can simply check all the possible rankings,
so there is no question of computational complexity. The problem becomes more
interesting when the number of alternatives is large, as it is in our case.

As a final remark, we wish to address the impartial culture assumption (vot-
ers vote independently and uniformly), also used by Friedgut et al. and Xia and
Conitzer. Even if one proves the general quantitative version of G-S (as discussed
above), it would not necessarily spell the end of the hardness of manipulation
agenda. The rankings of voters are typically not independent nor uniform, but
centered around specific strong alternatives. So, the underlying assumption that
voters vote independently and uniformly at random may not be realistic. How-
ever, this assumption allows for elegant “lower bounds”, as noted by Friedgut et
al. Ultimately, the ideal is to obtain results that also hold under a wide range of
typical distributions.
Structure of the paper. In Section 2, we formally present the necessary notations
and definitions. In Section 3, we formulate and prove our main result.

2 Preliminaries

We deal with a finite set of voters N = {1, 2, . . . , n}, and a finite set of alternatives
A, where |A| = m. We denote alternatives by letters such as a, b, c, x, y.
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Each voter i ∈ N holds a strict total order Ri over A, i.e. Ri is a binary
relation over A that satisfies irreflexivity, antisymmetry, transitivity and totality.
Informally, Ri is a ranking of the alternatives. The set L = L(A) is the set of
all such (linear) orders, so for all i ∈ N , Ri ∈ L throughout. A preference profile
RN is a vector 〈R1, . . . , Rn〉 ∈ LN . A social choice function (SCF) is a function
f : LN → A.

We make the Impartial Culture Assumption throughout the paper, that is,
we assume that random preference profiles are drawn by independently and
uniformly drawing a random ranking for each voter (each possible ranking has
a probability of 1/m!). So, for instance, when we write PrRN [E] we refer to
the probability that the event E occurs, when the preferences of each voter Ri

are independently and uniformly distributed. Furthermore, when we write, e.g.,
PrRN ,Q1 [E], we mean that the preferences R1, . . . , Rn and Q1 are all drawn
independently at random.

Definition 1. Let f be an SCF. f is Pareto-optimal if for all RN ∈ LN , if
there exist x, y ∈ A such that xRiy for all i ∈ N , then f(RN ) �= y.

We now define some probabilistic versions of well-known properties of SCFs.

Definition 2. Let f be an SCF. Voter i ∈ N is a δ-dictator with respect to
a ∈ A iff

Pr
RN

[f(RN ) �= a | ∀x ∈ A \ {a}, aRix] ≤ δ.

Voter i is a δ-dictator iff it is a δ-dictator with respect to every a ∈ A. f is a
δ-dictatorship if there exists a δ-dictator.

The classical definition of a dictatorship corresponds to the definition of a
0-dictatorship under this formulation. Also note that δ-dictatorship under our
definition implies δ-far from dictatorship under the definition of Friedgut
et al. [9].

Let us turn to a probabilistic definition of strategyproofness. An SCF f is
manipulable at RN ∈ LN if there exists a voter i ∈ N and a ranking Qi such
that f(Qi, RN\{i})Rif(RN), where (Qi, RN\{i}) is identical to RN except that
Ri is replaced by Qi. That is, voter i strictly benefits according to its true
preferences Ri by reporting false preferences Qi. An SCF is strategyproof if it is
not manipulable at any RN ∈ LN .

Definition 3. An SCF f is ε-strategyproof iff for all voters i ∈ N ,

Pr
RN ,Qi

[f(Qi, RN\{i})Rif(RN)] ≤ ε.

So, strategyproofness corresponds to 0-strategyproofness accordingto this prob-
abilistic definition. Our definition of ε-strategyproofness is exactly equivalent to
all voters having manipulation power at most ε according to the definition given
by Friedgut et al. [9].
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The classic formulation of the Gibbard-Satterthwaite Theorem [10,16] is as
follows.

Theorem 1 (Gibbard-Satterthwaite). Assume |A| ≥ 3, and let f : LN → A
be a strategyproof SCF that is onto A. Then f is dictatorial.

Finally, we wish to extend the classic definition of monotonicity. Let R ∈ L,
a ∈ A, and denote

I(R, a) = {Q ∈ L : ∀x ∈ A, aRx ⇒ aQx}.

Now, let RN ∈ LN , and denote

I(RN , a) = {QN ∈ LN : ∀i ∈ N, Qi ∈ I(Ri, a)}.

Definition 4. Let f be an SCF. f is γ-monotonic if

Pr
RN ,QN

[
f(RN ) �= f(QN) | QN ∈ I(RN , f(RN))

]
≤ γ.

In words, f is γ-monotonic if improving a winning alternative harms it with
probability at most γ. Monotonicity is equivalent to 0-monotonicity. We wish
to point out that monotonicity is a very strong property, as the order of other
alternatives can change as long as the winner only improves with respect to
other alternatives. In fact, monotonicity is closely related to, and implied by,
strategyproofness.

3 Main Theorem

Our aim is to prove a quantitative version of the Gibbard-Satterthwaite Theorem
(Theorem 1), under the assumptions that N = {1, 2} and that the SCF in
question is Pareto-optimal. Note that Pareto-optimality implies surjectivity, as
if all the voters rank x ∈ A first then x must be elected, and this is true for all
x ∈ A.

Theorem 2. Let ε < 1
32m9 ; assume N = {1, 2}, m ≥ 3, and let f be an ε-

strategyproof and Pareto-optimal SCF. Then f is 16m8ε-dictatorial.

We wish to stress once again that, as in Friedgut et al. [9] and Xia and Conitzer [19],
the underlying assumption is the impartial culture assumption, that is the voters
vote independently and uniformly at random.

Let us now turn to the proof of Theorem 2. The proof follows the lines of the
proof of Theorem 1 in Svensson [17]. He gives a very simple and short proof of
the G-S Theorem for N = {1, 2}. Our proof is considerably more involved, but
ultimately our main mathematical contribution is to notice that all of Svensson’s
arguments are robust, in the sense that they do not greatly restrict the space of
preference profiles, and thus survive the transition to the quantitative version.
The reader is encouraged to read Svensson’s proof before reading ours.
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As noted above, the deterministic notion of strategyproofness implies the de-
terministic notion of monotonicity. We will require a lemma that gives a quan-
titative version of this implication. The lemma also presents in detail the type
of robustness arguments that we employ throughout the proof of the Theorem.

Lemma 1 (Monotonicity). Assume N = {1, 2}, and let f be an ε-strategyproof
SCF. Then f is 4m2ε-monotonic

Proof. Since f is ε-strategyproof, we have

Pr
RN ,Q1

[
f(Q1, R2)R1f(RN)

]
≤ ε. (1)

We are now about to apply a critical “robustness” argument, which will be
central to the proofs of both this lemma and Theorem 2. We first claim that

PrRN ,Q1

[
Q1 ∈ I(R1, f(RN ))

]
≥ 1/m. (2)

Indeed, this is true since any ranking Q1 ∈ L that places f(RN ) on top is a
member of I(R1, f(RN)), and there are (m − 1)! such rankings out of the total
m! rankings.

Now, from the basic laws of probability it follows that for two events E1 and
E2,

Pr[E1] = Pr[E1|E2] · Pr[E2] + Pr[E1|¬E2] · Pr[¬E2] ≥ Pr[E1|E2] · Pr[E2],

and therefore

Pr[E1|E2] ≤ Pr[E1]
Pr[E2]

. (3)

Now, from (1), (2), and (3) we obtain:

Pr
RN ,Q1

[
f(Q1, R2)R1f(RN )|Q1 ∈ I(R1, f(RN))

]
≤

PrRN ,Q1

[
f(Q1, R2)R1f(RN )

]

PrRN ,Q1 [Q1 ∈ I(R1, f(RN))]

≤mε,

(4)

where the first inequality follows from (3) and the second inequality follows by
using both (1) and (2). By using symmetric arguments and the union bound we
have that:

Pr
RN ,Q1

[
f(Q1, R2)R1f(RN ) ∨ f(RN )Q1f(Q1, R2) | Q1 ∈ I(R1, f(RN))

]
≤ 2mε.

(5)
Fix RN ∈ LN and Q1 ∈ I(R1, f(RN)), and assume that strategyproofness

holds “in both directions”, namely the event in (5) does not occur. Let a =
f(RN) and b = f(Q1, R2). Assume that a �= b; by strategyproofness aR1b, and
since Q1 is an improvement of a over R1, aQ1b. Strategyproofness in the other
direction implies that bQ1a, which leads to a contradiction. Hence, a = b. To
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summarize, we have shown that given that Q1 ∈ I(R1, f(RN )), then f(RN ) �=
f(Q1, R2) with probability at most 2mε.

Let us extend our arguments to two steps of improvement instead of one.
Analogously to (2), we have that:

PrRN ,QN

[
Q1 ∈ I(R1, f(RN )) ∧ Q2 ∈ I(R2, f(Q1, R2))

]
≥ 1

m2 . (6)

Now, similarly to (4) we conclude by ε-strategyproofness, (6) and (3) that:

Pr
RN ,QN

[
f(QN)Q2f(Q1, R2)|Q1 ∈ I(R1, f(RN)) ∧ Q2 ∈ I(R2, f(Q1, R2))

]

=
PrRN ,QN

[
f(QN )Q2f(Q1, R2)

]

PrRN ,QN [Q1 ∈ I(R1, f(RN)) ∧ Q2 ∈ I(R2, f(Q1, R2))]

=
PrR2,QN

[
f(QN)Q2f(Q1, R2)

]

PrRN ,QN [Q1 ∈ I(R1, f(RN)) ∧ Q2 ∈ I(R2, f(Q1, R2))]

≤ m2ε.

The third equality simply drops R1 in the probability; this is possible as the
event is indifferent to the choice of R1. Hence, we can use ε-strategyproofness
directly on the random preference profile (Q1, R2) and the random manipulation
Q2 by voter 2.

By repeating the arguments given above for a single improvement, we get that if
we choose RN and QN such that Q1 ∈ I(R1, f(RN )) and Q2 ∈ I(R2, f(Q1, R2)),
then f(Q1, R2) �= f(QN ) with probability at most 2m2ε.

Finally, we apply the union bound one last time to get:

Pr
RN ,QN

[
f(RN ) �= f(QN) | QN ∈ I(RN , f(RN))

]

≤ Pr
RN ,QN

[(
f(RN ) �= f(Q1, R2)

)
∨

(
f(RN) = f(Q1, R2) ∧ f(Q1, R2) �= f(QN)

)

| QN ∈ I(RN , f(RN ))
]

≤ Pr
RN ,Q1

[
(f(RN ) �= f(Q1, R2)) | Q1 ∈ I(R1, f(RN))

]

+ Pr
RN ,QN

[
f(RN ) = f(Q1, R2) ∧ f(Q1, R2) �= f(QN) | QN ∈ I(RN , f(RN))

]

= Pr
RN ,Q1

[
(f(RN ) �= f(Q1, R2)) | Q1 ∈ I(R1, f(RN))

]

+ Pr
RN ,QN

[
f(RN ) = f(Q1, R2) ∧ f(Q1, R2) �= f(QN)

| Q1 ∈ I(R1, f(RN)) ∧ Q2 ∈ I(R2, f(Q1, R2))
]

≤ 2mε + 2m2ε ≤ 4m2ε.

(7)

The third transition follows from the fact that, given that f(RN ) = f(Q1, R2)
occurred, the events QN ∈ I(RN , f(RN )) and Q1 ∈ I(R1, f(RN )) ∧ Q2 ∈
I(R2, f(Q1, R2)) are one and the same. Formally,
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Pr
RN ,QN

[
f(RN ) = f(Q1, R2) ∧ f(Q1, R2) �= f(QN ) | QN ∈ I(RN , f(RN ))

]

= Pr
RN ,QN

[
f(RN ) = f(Q1, R2) | QN ∈ I(RN , f(RN))

]

· Pr
RN ,QN

[
f(Q1, R2) �= f(QN) | QN ∈ I(RN , f(RN)) ∧ f(RN) = f(Q1, R2)

]

= Pr
RN ,QN

[
f(RN ) = f(Q1, R2) | Q1 ∈ I(R1, f(RN )) ∧ Q2 ∈ I(R2, f(Q1, R2))

]

· Pr
RN ,QN

[
f(Q1, R2) �= f(QN) | Q1 ∈ I(R1, f(RN )) ∧ Q2 ∈ I(R2, f(Q1, R2))

∧ f(RN ) = f(Q1, R2)
]

= Pr
RN ,QN

[
f(RN ) = f(Q1, R2) ∧ f(Q1, R2) �= f(QN ) | Q1 ∈ I(R1, f(RN))

∧ Q2 ∈ I(R2, f(Q1, R2))
]
,

where in the second equality above the two left hand side factors are equal since
the event f(RN) = f(Q1, R2) is independent of the choice of Q2.

The last transition of (7) is true since the probability that

f(RN ) = f(Q1, R2) ∧ f(Q1, R2) �= f(QN)

is bounded from above by the probability that f(Q1, R2) �= f(QN ). �
We are now in a position to prove our main theorem.

Proof (of Theorem 2). Fix two distinct alternatives a, b ∈ A, and define

Z(a, b) = {RN ∈ LN : ∀x ∈ A \ {a, b}, aR1bR1x ∧ bR2aR2x}.

That is, Z(a, b) is the set of all preference profiles where voter 1 ranks a first
and b second, and voter 2 ranks b first and a second. We have that

Pr
RN

[
RN ∈ Z(a, b)

]
=

(
(m − 2)!

m!

)2

= 1/m4. (8)

Now, for every RN ∈ Z(a, b), we have that f(RN ) ∈ {a, b} from Pareto-
optimality. Assume without loss of generality that at least a 1/2-fraction of the
profiles in Z(a, b) satisfy f(RN) = a, that is

Pr
RN

[
f(RN ) = a | RN ∈ Z(a, b)

]
≥ 1

2
. (9)

For any RN ∈ Z(a, b) such that f(RN ) = a, let Q2 ∈ L such that bQ2xQ2a for
all x ∈ A \ {a, b}. Let Y (a, b) be the set of all such ordered pairs (RN , Q2), i.e.,

Y (a, b) = {(RN , Q2) ∈ Z(a, b) × L : f(RN ) = a ∧ ∀x ∈ A \ {a, b}, bQ2xQ2a}.

We have that

Pr
RN ,Q2

[
(RN , Q2) ∈ Y (a, b)

]

= Pr
RN

[
RN ∈ Z(a, b) ∧ f(RN ) = a

]
· Pr

Q2

[
∀x ∈ A \ {a, b}, bQ2xQ2a

]

≥ 1
2m4 · 1

m2 =
1

2m6 ,

(10)
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where the first equality is by the independence of the two events, and the in-
equality follows from (8) and (9).

At this point we appeal to ε-strategyproofness, and apply our recurring ro-
bustness argument, namely, in this case, (3) coupled with (10). This gives us:

Pr
RN ,Q2

[
f(R1, Q2)R2f(RN) | (RN , Q2) ∈ Y (a, b)

]
≤ 2m6ε ≤ 1/2,

where the last inequality follows from our choice of ε. Therefore,

Pr
RN ,Q2

[
f(RN )R2f(R1, Q2) ∨ f(RN) = f(R1, Q2) | (RN , Q2) ∈ Y (a, b)

]

= 1 − Pr
RN ,Q2

[
f(R1, Q2)R2f(RN) | (RN , Q2) ∈ Y (a, b)

]
≥ 1/2.

(11)

From Pareto-optimality we have that for any (RN , Q2) ∈ Y (a, b), f(R1, Q2) ∈
{a, b}, and, if in addition we have that f(RN)R2f(R1, Q2) or f(RN ) = f(R1, Q2),
then f(R1, Q2) = a. Indeed, this is true since b is ranked first in R2, and by def-
inition f(RN) = a; hence, if f(R1, Q2) = b then voter 2 gains by switching from
R2 to Q2.

Now, by applying (10) and (11), we obtain:

Pr
RN ,Q2

[
(RN , Q2) ∈ Y (a, b) ∧ f(R1, Q2) = a

]
≥ 1

4m6 .

We are now in a position to show that when a preference profile is chosen at
random, the probability of obtaining a profile where voter 1 ranks a first, voter
2 ranks a last, and the winner is a is significant. Indeed,

Pr
R1,Q2

[(
∀x ∈ A \ {a}, aR1x ∧ xQ2a

)
∧

(
f(R1, Q2) = a

)]

≥ Pr
R1,Q2

[
∃R2 ∈ L s.t. (RN , Q2) ∈ Y (a, b) ∧ f(R1, Q2) = a

]

≥ Pr
RN ,Q2

[
(RN , Q2) ∈ Y (a, b) ∧ f(R1, Q2) = a

]
≥ 1

4m6 .

(12)

Next, we are finally going to use Lemma 1. We have that

Pr
RN ,QN

[
f(QN ) �= f(RN)

|
(
∀x ∈ A \ {a}, aR1x ∧ xR2a

)
∧

(
f(RN ) = a

)
∧

(
QN ∈ I(RN , a)

)]

≤
PrRN ,QN

[
f(QN) �= f(RN ) | QN ∈ I(RN , a)

]

PrRN [(∀x ∈ A \ {a}, aR1x ∧ xR2a) ∧ (f(RN) = a)]
≤ 4m2ε · 4m6 = 16m8ε.

The first inequality follows from (3), while the second inequality is obtained by
applying Lemma 1 and (12). Therefore, there must be some RN

0 that satisfies
for all x ∈ A \ {a}, aR1

0x and xR2
0a, f(RN

0 ) = a, and

Pr
QN

[
f(QN ) �= f(RN

0 ) = a | QN ∈ I(RN
0 , a)

]
≤ 16m8ε. (13)
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Crucially, since in RN
0 voter 1 ranks a first and voter 2 ranks a last, I(RN

0 , a)
is exactly the set of preference profiles such that voter 1 ranks a first. In other
words, (13) can be reformulated as:

Pr
QN

[
f(QN ) �= a | ∀x ∈ A \ {a}, aQ1x

]
≤ 16m8ε.

In words, voter 1 is a δ = 16m8ε-dictator with respect to a. If we had assumed
that at least half the profiles in Z(a, b) satisfied f(RN) = b, we would have
deduced that voter 2 is a δ = 16m8ε-dictator with respect to b.

So far, the analysis was for a fixed pair of alternatives a, b ∈ A. By repeating
the analysis for every pair of alternatives, we may obtain two sets of alternatives
A1 and A2, such that Ai contains all the alternatives for which voter i is a
16m8ε-dictator. First notice that A3 = A\(A1 ∪A2) satisfies |A3| ≤ 1, otherwise
we could perform the analysis for two alternatives in A3 and deduce that either
the first is in A1 or the second is in A2.

Second, we claim that for two distinct alternatives a, b ∈ A, it can’t be the case
that a ∈ A1 and b ∈ A2. Indeed, otherwise, by the assumption that ε < 1/(32m9),
voter 1 is less than a 1/2m-dictator for a, whereas voter 2 is less than a 1/2m-
dictator for b. This directly implies that:

Pr
RN

[
f(RN) �= a |

(
∀x ∈ A \ {a}, aR1x,

)
∧

(
∀x ∈ A \ {b}, bR2x

)]

≤
PrRN

[
f(RN ) �= a | ∀x ∈ A \ {a}, aR1x

]

PrRN [∀x ∈ A \ {b}, bR2x]
<

1
2m

· m = 1/2,

and similarly

Pr
RN

[
f(RN) �= b |

(
∀x ∈ A \ {a}, aR1x,

)
∧

(
∀x ∈ A \ {b}, bR2x

)]
< 1/2.

It follows that there exists a profile, where voter 1 ranks a first and voter 2
ranks b first, such that a and b are both winners, which is a contradiction to the
definition of f as an SCF.

Now, since |A3| ≤ 1 and m ≥ 3, we must have that one of A1 or A2 is empty (it
is easily verified that otherwise there must be distinct x, y ∈ A such that x ∈ A1
and y ∈ A2). Our early assumption that at least a 1/2-fraction of the profiles in
Z(a, b) satisfy f(RN ) = a ultimately led to the conclusion that a ∈ A1, thus it
follows that A2 = ∅.

To conclude the proof, we must show that A3 = ∅. This is obvious, since
if c ∈ A3, we can repeat the analysis with the pair {c, a}, and get that either
c ∈ A1 or a ∈ A2, which implies a contradiction. Hence, it must hold that
A1 = A, namely voter 1 is a 16m8ε-dictator. �
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