
The Provable Virtue of Laziness in Motion Planning

Nika Haghtalab
Computer Science Department

Carnegie Mellon University

Simon Mackenzie
Computer Science Department

Carnegie Mellon University

Ariel D. Procaccia
Computer Science Department

Carnegie Mellon University

Oren Salzman
Robotics Institute

Carnegie Mellon University

Siddhartha S. Srinivasa
School of Computer Science & Engineering

University of Washington

Abstract

The Lazy Shortest Path (LazySP) class consists of motion-
planning algorithms that only evaluate edges along candi-
date shortest paths between the source and target. These algo-
rithms were designed to minimize the number of edge evalua-
tions in settings where edge evaluation dominates the running
time of the algorithm; but how close to optimal are LazySP al-
gorithms in terms of this objective? Our main result is an an-
alytical upper bound, in a probabilistic model, on the number
of edge evaluations required by LazySP algorithms; a match-
ing lower bound shows that these algorithms are asymptoti-
cally optimal in the worst case.

1 Introduction

The simplest motion planning model (Halperin, Salzman,
and Sharir 2017; LaValle 2006) involves a robot system R
moving in a workspace W ∈ {R2,R3} cluttered with obsta-
cles O. Given an initial placement s and a target placement t
of R, we wish to determine whether there exists a collision-
free motion of R connecting s and t, and, if so, to plan such
a motion.

Typically, R is abstracted as a point, or a configuration, in
a high-dimensional space called the configuration space X ,
where each configuration maps R to a specific placement
in W (Lozano-Perez 1983). The configuration space is sub-
divided into the free and forbidden spaces, corresponding
to placements of R that are free or that intersect with an
obstacle, respectively. Since the general motion-planning
problem is PSPACE-hard (Hopcroft, Schwartz, and Sharir
1984), a common approach is to use sampling-based al-
gorithms (Kavraki et al. 1996; Hsu, Latombe, and Mot-
wani 1999; LaValle and Kuffner 1999; Karaman and Fraz-
zoli 2011). These algorithms approximate X via a discrete
graph G called a roadmap. Vertices in G correspond to sam-
pled configurations in X , and edges in G correspond to lo-
cal paths (typically straight lines). Approximately solving
the motion-planning problem thus reduces to the problem of
finding a collision-free shortest path in G between the ver-
tices corresponding to s and t.

Testing if a vertex or an edge of G is collision free re-
quires one or more geometric tests called collision detec-

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tion. Arguably, collision detection in general, and edge eval-
uation in particular, are the most time-consuming operations
in sampling-based algorithms (LaValle 2006; Choset et al.
2005). Thus, path planning on G differs from traditional
search algorithms such as Dijkstra (1959) or A* (Hart, Nils-
son, and Raphael 1968), where the graph is typically im-
plicit and large, but edge evaluation is trivial compared to
search. Indeed, much recent work in motion planning fo-
cuses on evaluating the edges of G lazily, that is, assuming
that the edges do not intersect with the obstacles O (Bohlin
and Kavraki 2000; Hauser 2015; Dellin and Srinivasa 2016;
Salzman and Halperin 2015; Choudhury et al. 2017; Man-
dalika, Salzman, and Srinivasa 2018).

In a recent paper, Dellin and Srinivasa (2016) present a
unifying formalism for shortest-path problems where edge
evaluation dominates the running time of the algorithm.
Specifically, they define and investigate a class of algorithms
termed Lazy Shortest Path (LazySP), which run any shortest-
path algorithm on G followed by evaluating the edges along
that shortest path. The algorithms are differentiated by an
edge selector function, which chooses the edges the algo-
rithm evaluates along the shortest path. Dellin and Srinivasa
show that several prominent motion-planning algorithms are
captured by LazySP, using a suitable choice of this selector.
Furthermore, they extensively evaluate the algorithm em-
pirically on a wide range of edge selectors. Their experi-
ments range from toy scenarios, which demonstrate the ad-
vantages of each edge selector, to articulated 7D motion-
planning problems that show that, using this approach, non-
trivial problems can be solved within seconds.

LazySP was proposed as an algorithm that attempts to
minimize the overall number of edges evaluated (or queried)
in the process of solving a given motion-planning problem.
A natural question to ask is

... what is the query complexity of LazySP, and is its
query complexity the best possible?

In other words, can we bound the number of edges eval-
uated by LazySP as a function of the complexity of the
roadmap G? And are there algorithms not in this class that
have lower query complexity?

To address these questions, we need to explicitly model
how queries are answered. We start in Section 3 by consid-
ering the deterministic setting, where the set of collision-free
edges is determined upfront. Our first result establishes that,

Twenty-Eighth International Conference on Automated Planning and Scheduling (ICAPS 2018)

106

in this model, it is optimal to always test edges along the
shortest path, i.e., in every instance there is an edge selec-
tor for which LazySP is optimal. Although the edge selector
in question requires full access to the set of collision-free
edges, so the real-world implications of this result are lim-
ited, it does provide a theoretical underpinning for the idea
of restricting queries to shortest paths, which lies at the heart
of LazySP.

In practice, we are interested in a slightly more complex
model, which we call the probabilistic setting; it is explored
in Section 4. Here, each edge is endowed with a probabil-
ity of being in collision — a common assumption in motion
planning (see, e.g., Choudhury, Dellin, and Srinivasa 2016)
— and we are interested in policies that minimize the query
complexity, that is, policies that minimize the expected num-
ber of steps until the algorithm finds the shortest path or de-
clares that no path exists. We first show that there are in-
stances where LazySP is suboptimal, regardless of the edge
selector. In a nutshell, we describe a delicate construction
where initially querying edges that are not on the shortest
path provides valuable information for subsequent queries.

So, in the probabilistic setting, LazySP is just a proxy
for the (presumably intractable) optimal policy, but is it a
good proxy? We answer this question in the positive. Our
main result is that the query complexity of LazySP (with an
edge selector satisfying a certain connectivity property) is
bounded by O(n/p) edge evaluations with high probability,
where n is the number of vertices in G, and p is the min-
imum probability on any edge. We complement this result
with an Ω(n/p) lower bound that holds for every algorithm
that is guaranteed to be correct. We conclude that, from a
worst-case viewpoint, LazySP is, in fact, (asymptotically)
optimal.

2 The Model
An instance of our problem is given by a multigraph G =
(V,E) — that is, there may be multiple edges between two
vertices — whose set of vertices includes two distinguished
vertices: the source vertex s and the target vertex t. We deal
with multigraphs, rather than simple graphs, mostly for ease
of exposition; see Section 5 for a discussion of this point.
We simply refer to G as a graph hereinafter.

We say that a graph G′ = (V,E′) is a subgraph of G
if E′ ⊆ E. Given a graph G = (V,E) and a subgraph
G′ = (V,E′) of G, an oracle OG

G′ is a function that takes
as input an edge e ∈ E and returns YES if e ∈ E′, and NO
otherwise. When G is clear from the context, we suppress it
in this notation.

In the path-finding problem, an algorithm ALG is given a
graph G and an oracle OG′ . The goal of the algorithm is to
find the shortest s-t path in G′. Since G′ is not revealed to the
algorithm directly, the algorithm has to query OG′ on spe-
cific edges of G to find a path. That is, ALG(G,OG′) issues
a sequence of edge queries to OG′ , and upon termination,
returns an s-t path or decides that none exists. To ground
this model in the context of a motion-planning algorithm,
the graph G is lazily constructed and can have edges that are
in collision while the subgraph G′ contains only collision-
free edges.

For an algorithm to be correct, we require that it correctly
identifies a shortest s-t path in G′, or that it certify that none
exists (by invalidating every possible path), for any G and
G′ ⊆ G. Therefore, a correct algorithm can only terminate
when the solution it provides continues to be correct even if
the responses to unqueried edges are selected adversarially.
More formally, let Q ⊆ E be the set of edges queried by a
correct algorithm ALG on G and OG′ . Let Qy = Q∩E′ and
Qn = Q \ E′ be the set of queried edges that, respectively,
belong and do not belong to G′. Then ALG can terminate
only if there is a shortest s-t path in G′, denoted P ∗, such
that P ∗ ⊆ Qy , and there is no s-t path in (V,E \ Qn) that
is shorter than P ∗. If no path exists, then ALG can terminate
only if there is no s-t path in (V,E \Qn).

Clearly, an algorithm that first queries all edges in E,
thereby fully constructing G′, and only then finds the short-
est s-t path, is a correct algorithm. However, such an algo-
rithm may use a large number of queries, some of which
may be unnecessary. In this paper, we are interested in algo-
rithms that find a shortest s-t path using a minimal number
of queries. We denote the number of queries that ALG makes
on input G and OG′ by cost(ALG(G,OG′)).

We are especially interested in the LazySP class of algo-
rithms, introduced by Dellin and Srinivasa (2016). Any algo-
rithm in the class LazySP is determined by an edge selector,
which, informally, decides which edge to query on a given
s-t path. Formally, let P be the set of all s-t paths in G. An
edge selector is a function f : P × 2E × 2E → E that takes
any s-t path P ∈ P , a subset of queried edges Qy that are
in E′, and a subset of queried edges Qn that are not in E′,
and returns an edge e ∈ P \ Q. Examples of edge selectors
include:

• Forward edge selector: Returns the first unqueried edge
in P , that is, the one closest to s.

• Backward edge selector: Returns the last unqueried edge
in P , that is, the one closest to t.

• Bisection edge selector: Returns an unqueried edge in P
which is furthest from an evaluated edge on the path.

Given an edge selector f , the corresponding LAZYSPf ∈
LazySP is described in Algorithm 1. At a high level,
LAZYSPf , in a given time step, considers a candidate short-
est s-t path P over all those edges whose existence has not
yet been ruled out by the oracle. Then, it uses the edge se-
lector to query an unqueried edge e ∈ P . It updates the
set of queried edges and repeats. At any point, if the edges
of path P that is currently under consideration are all veri-
fied, the algorithm terminates and returns P . If no viable s-t
paths remain, the algorithm terminates and certifies that no
s-t path exists in G′.

It is not hard to see that any algorithm in the class LazySP
is a correct algorithm. This is due to the fact that these al-
gorithms always consider the shortest path that has not yet
been ruled out. Therefore, upon termination, they return the
shortest s-t path in G′. Moreover, an edge selector never re-
turns an edge that has been queried before and, hence, these

1If there are multiple s-t paths of the same length, the algorithm
breaks ties according to a consistent tie-breaking rule.

107

Algorithm 1: LAZYSPf

input: Graph G and oracle OG′

Qn ← ∅ ; /* in-collision evaluated edges */

Qy ← ∅ ; /* collision-free evaluated edges */

while there exists1 a shortest s-t path P in E \Qn do
if P ⊆ Qy then return P ;
e ← f(P,Qy, Qn) ; /* select edge along P */

if OG′(e) = YES then Qy ← Qy ∪ {e};
else Qn ← Qn ∪ {e};

end
return ∅;

s

c

b

a

d e

t

1

5

2
3

4

3

4

7

8

9

6

Figure 1: Example of the execution of LAZYSP with the
forward edge selector. Solid edges are in E′, dashed edges
are in E \ E′.

algorithms never query an edge more than once. It follows
that any such algorithm eventually terminates. See the paper
of Dellin and Srinivasa (2016) for a more detailed discussion
of the LazySP class.

Let us conclude this section with an example of the execu-
tion of LAZYSP with the forward edge selector, which also
illustrates some of the terminology introduced earlier. Fig-
ure 1 shows the set of vertices V = {s, t, a, b, c, d, e} shared
by G and G′, as well as two types of edges: those in E′,
shown as solid edges, and those in E \E′, shown as dashed
edges. The order in which edges are queried is shown as la-
bels on the edges. This order on edge queries is induced by
evaluating shortest paths in the following order: sat, sabt,
scdt, sabdt, and sabdet.

3 The Deterministic Setting

In this section, we consider the problem of using a minimum
number of edge queries to find a shortest s-t path, or veri-
fying that no s-t path exists, when a subgraph G′ ⊆ G is
deterministically chosen (but not revealed to the algorithm).

In more detail, let G = (V,E) be a graph, and let G′ =
(V,E′) be a subgraph of G. Recall that cost(ALG(G,OG′))
denotes the number of edge queries ALG makes on graph
G when oracle responses are according to graph G′. Our
first result asserts that the class LazySP is optimal in this
setting, in the sense that for any correct algorithm there is a
LAZYSP algorithm (with a specific edge selector) that finds
the shortest path using at most as many queries.
Theorem 1. For any graph G and G′ ⊆ G, and any correct
algorithm ALG, there exists ALG′ ∈ LazySP such that

cost(ALG′(G,OG′)) ≤ cost(ALG(G,OG′)).

Proof. Let P ∗ be a shortest s-t path in G′ and let
P1, . . . , Pm be the s-t paths in G that are strictly shorter
than P ∗, ordered by their length. If no path in G′ exists,
P1, . . . , Pm is the list of all s-t paths in G. Let Q be the
set of edges queried by ALG(G,OG′), Qy = Q ∩ E′, and
Qn = Q \ E′.

Let Q∗ be the set that includes all edges of P ∗, all of
which exist in G′, and an optimal cover for the sets Pi using
edges that do not belong to G′. That is, let Q∗ = P ∗ ∪ Q∗

n,
where

Q∗
n = argmin

S⊆E\E′
{|S| : ∀i ∈ [m], Pi ∩ S �= ∅}.

We argue that |Q| ≥ |Q∗|. This is due to the fact that cor-
rectness of ALG implies that P ∗ ⊆ Qy , and any path that is
shorter than P ∗ has an invalidated edge, i.e., for all i ∈ [m],
Pi ∩ Qn �= ∅. Note that the latter condition shows that Qn

is a cover for the sets Pi using edges E \ E′, so by the opti-
mality of Q∗

n, we have
|Q| = |Qy|+ |Qn| ≥ |P ∗|+ |Q∗

n| = |Q∗|.
It remains to show that there is ALG′ ∈ LazySP that only
queries edges in Q∗. Let ALG′ be the algorithm that first
queries an edge in Q∗

n∩P1 (there must be one), then an edge
in Q∗

n ∩ P2 (if it is nonempty), and so on, until Q∗
n ∩ Pm (if

it is nonempty), and finally queries all the edges in P ∗. We
argue that ALG′ must query all the edges in Q∗. Indeed, the
only difficulty is that, in principle, it may be the case that
at some point P1, . . . , Pk have already been invalidated, and
there is some e ∈ Q∗

n such that e /∈ Pk+1∪· · ·∪Pm, meaning
that e cannot be queried in the future. But, in that case, e
is not needed in order to invalidate the paths P1, . . . , Pm,
in contradiction to the optimality of Q∗ (and that of Q∗

n,
specifically).

Note that ALG′ has the property that at any time it only
queries edges on the shortest s-t path that has not been in-
validated yet. Clearly, it is possible to define an edge selec-
tor that makes the same choices as ALG′. We conclude that
ALG′, whose cost is at most that of ALG, can be represented
as a member of LazySP .

We can alternatively interpret Theorem 1 in a model
where LAZYSP may be equipped with an omniscient edge
selector that has full access to G′. In particular, this omni-
scient edge selector can compute Q∗, which, by the way,
requires solving an NP-hard variant of SET COVER. Even
though the algorithm already knows G′, it still has to issue
queries as it must certify that P ∗ is indeed the shortest path
(if an s-t path exists).

Clearly, an omniscient edge selector is impractical. The
significance of Theorem 1, therefore, is mostly conceptual.
It suggests that the restriction that algorithms must always
query edges on the current shortest path is not a barrier to
optimality. This gives theoretical justification for the LazySP
class. However, as we shall see shortly, the message is more
nuanced when the outcomes of queries are randomized.

4 The Probabilistic Setting
In this section, we consider a probabilistic variant of the set-
ting we investigated in Section 3. We view the probabilistic

108

s a b t

A
A A

B

B

Figure 2: A graph for which no algorithm in LazySP is an
optimal query policy. All arcs labeled by A and B include
multi-edge structures shown in Figures 3 and 4, respectively.
For clarity, we include two examples of these structures on
sa and at in this figure.

model as a closer fit with reality than its deterministic coun-
terpart.

In more detail, let p ∈ (0, 1) be the probability that any
given edge in G exists in G′. In a more general setting with
different probabilities associated with different edges, we
can simply think of p as a lower bound on the probabilities
for query upper bounds, or as an upper bound on the proba-
bilities for query lower bounds. We denote by G′ ∼p G the
process of generating a random graph G′ = (V,E′) from G
by allowing each e ∈ E to belong to E′ with probability p,
independently. We suppress p in this notation when it is clear
from the context.

In the current setting, a subgraph G′ = (V,E′) ∼p G
is realized according to edge probability p, but it is not re-
vealed to the algorithm. As before, the algorithm receives G
and OG′ as input, and uses OG′ to verify whether an edge
exists. The goal of the algorithm is to minimize the expected
number of edge queries over G′ ∼p G, such that it correctly
either

1. returns a path that is the shortest s-t path in G′, or

2. certifies that there is no s-t path in G′.

Note that, although the expected number of queries an algo-
rithm issues is taken over G′ ∼ G, the correctness condition
must hold for every G′.

4.1 Suboptimality of LazySP

Our next result asserts that the class of algorithms LazySP
does not always include an optimal query policy, which min-
imizes the expected number of queries. At a high level, the
reason behind this is that, in some graphs, querying a few
edges that are not on the shortest path can identify the most
important regions of the graph, which should be explored
next. To see this, consider the graph in Figure 2. In this
graph, the arcs marked by A and B each include multi-edge
structures shown in Figures 3 and 4, respectively. Struc-
tures A and B are designed so that arcs labeled by B are
much longer than A, so any LAZYSP algorithm starts by
querying the arcs labeled by A.

We compare the cost of any LAZYSP ∈ LazySP (for an
arbitrary edge selector) to that of an algorithm ALG defined

c d

...

� = 1
ε ln(

κ
δ)

κ = 104

Figure 3: Structure A used on arcs sa, ab, and bt in Figure 2.
We refer to one path connecting c and d as a “string”.

c d

�′ = 3�

κ′ = 2

Figure 4: Structure B used on arcs sb and at in Figure 2.

as follows. ALG first queries all the edges in the multi-edge
structures B on arcs sb and at. There are two cases:

1. A path exists in both of the structures sb and at, or in nei-
ther one: In this case, ALG calls LAZYSP on the original
graph.

2. There is a path in exactly one of the sb or at structures:
Without loss of generality (by symmetry) assume that at
has a path. Then, ALG queries the edges in structure A
on sa, ab and bt in order, until it verifies that at least one
of these structures does not have a path or all do. Then, it
returns the shortest s-t path on the edges whose existence
has been verified by the queries, or certifies that no s-t
path exists.

It is not hard to see that ALG demonstrates the required
guarantees for a correct algorithm, i.e., upon its termination
it correctly certifies that there is no s-t path or returns the
shortest s-t path in the realized graph.

Let us provide an overview of why ALG queries fewer
edges than any LAZYSP algorithm in expectation. The
structures A and B are designed so that structure A requires
more queries than structure B. Additionally, structure A al-
most certainly fails to have a path, while structure B has a
path with a probability close to 1

2 . Note that such a graph
almost certainly does not have a path, so a large fraction
of E[cost(ALG(G,OG′))] comes from the effort required to
invalidate possible s-t paths.

In the first case of ALG (a path exists in both ab and at, or
in neither one), it queries more edges than LAZYSP. How-
ever, we argue that ALG uses much fewer queries in its sec-
ond case. The probability of existence of a path in struc-
ture B is chosen so that the second case happens with sig-
nificant probability (almost 1

2), in which case the overall sav-
ings in the analysis of the second case bring down the total
expected cost of ALG compared to LAZYSP.

In slightly more detail, the crux of the proof is the case
where sb does not have a path and at has a path (an exam-

109

ple of the second case of ALG). To invalidate all possible
s-t paths, it suffices to certify that structure A on sa does
not have a path. Therefore, ALG terminates after querying
only one A structure, with high probability, in addition to
querying two B structures on sb and at. On the other hand,
LAZYSP does not know which one of sb or at has a path,
so with probability at least 1

2 it first queries some A struc-
ture other than sa, in which case it has to also query and
verify that no path exists in sa. Therefore, LAZYSP has
to query 1.5 A structures in expectation. We design struc-
tures A and B so that half the cost of checking an addi-
tional A structure is much larger than the initial cost that
ALG invests in querying edges in two B structures.

The next theorem and its proof formalize the foregoing
discussion.
Theorem 2. There is a graph G = (V,E) and p ∈ (0, 1)
for which the optimal query policy is not in LazySP .

Proof. Consider the graph in Figure 2. Let

κ = 104,

κ′ = 2,

ε = 10−2,

δ = 10−3,

� =
1

ε
ln
(κ
δ

)
,

�′ = 3�

for the structures in Figures 3 and 4. Let p = 1 − ε be the
probability of existence of any one edge in these structures.

In the following claim, we show that the structure in Fig-
ure 3 almost certainly does not have a path, but one has to
query many edges to verify that this is indeed the case.

Claim 1. With probability at least 1−δ, there is no c-d path
in the structure shown in Figure 3. Conditioned on the event
that no c-d path exists, any correct querying policy has to
query at least 106 − 2 edges in expectation to certify that no
path exists.

Proof. The probability of a path existing in this structure is
at most

κ(1− ε)� ≤ κe−ε� = δ.

Let E be the event that no path exists in the structure.
Given E , each of the κ strings of length � have to be inval-
idated. Consider the expected number of queries needed to
invalidate a single string, conditioned on E . For i = 1, . . . , �,
let Fi be the event that the first i − 1 queried edges in the
string exist in G′, and the ith edge does not. Clearly the
events Fi and E are positively correlated, that is, for all
i = 1, . . . , �, Pr[Fi | E] ≥ Pr[Fi]. Therefore, conditioned
on E , the expected number of queries on a string is

�∑
i=1

Pr[Fi|E] · i ≥
�∑

i=1

Pr[Fi] · i

=

�∑
i=1

(1− ε)i−1εi

=
1− (1− ε)� − �(1− ε)�ε

ε

≥ 1

ε
− 2 · 10−4.

Using the linearity of expectation and summing over all κ
disjoint strings that have to be invalidated, the expected
number of queries needed to invalidate the structure is at
least

κ

(
1

ε
− 2 · 10−4

)
= 106 − 2.

In the next claim, we show that the structure in Figure 4,
though narrower and longer than the structure in Figure 3,
has a path with higher probability.

Claim 2. With probability 0.616±10−3 there is a path in the
structure shown in Figure 4. Moreover, the expected number
of queries needed to find a path or certify that none exists is
at most 104.

Proof. The probability of a path existing in this structure is
exactly

(1− εκ
′
)�

′
= (1− 0.012)

3
0.01 ln(107) = 0.616± 10−3.

Moreover, since the structure has κ′�′ edges overall, the ex-
pected number of queries is also bounded by κ′�′ ≤ 104.

We now turn to comparing the performance of ALG with
that of LAZYSP. First, note that ALG queries at most 2 · 104
edges for verifying arcs sb and at at the beginning, whereas
LAZYSP may not query those edges. Consider the following
cases:

1. There is a path in at least one of the A structures sa, ab,
or bt.

2. There is no path in the A structures sa, ab and bt, and
exactly one of the B structures sb or at has a path.

3. Cases 1 and 2 do not hold.

Consider Case 1. By Claim 1, this is a rare event that hap-
pens with probability at most 3δ. Conditioned on this event,
ALG verifies at most three A structures in addition to arcs sb
and at, with overall number of edges 3κ�. Taking the prob-
ability of this event into account, ALG issues at most

3δ · 3κ� ≤ 1.46 · 105

more queries in expectation (in addition to the B structures
which we will account for separately).

Consider Case 2. By Claims 1 and 2, this event happens
with probability at least

2(1− 3δ) · (0.616± 103) · (1− 0.616∓ 103) ≥ 0.471.

Conditioned on this event, ALG invalidates one A structure
in addition to verifying arcs sb and at. This is due to the fact
that ALG only needs to query and invalidate the A structure
that is parallel to the non-valid B structure on sb or at. For
example, when arc at has a path and sb does not, it suffices
to invalidate structure sa to certify that no s-t path exists in
Figure 2.

110

On the other hand, conditioned on the event that exactly
one of the structures sb or at has a path, LAZYSP has to
invalidate 1.5 A structures in expectation. Indeed, initially it
must query edges on the shortest path, and they are all in A
structures. It can only query sb or at after an A structure
has been invalidated, but, at that point, with probability 1/2
there might still be a path using another A structure, chained
with the valid B structure.

In Case 3, ALG verifies at most 2 more B structures than
LAZYSP (this is Case 1 of ALG).

To summarize,

E
G′∼G

[cost(ALG(G,OG′))]

≤ E
G′∼G

[cost(LAZYSP(G,OG′))]

+ 2 · 104︸ ︷︷ ︸
verifying B structures

+1.46 · 105︸ ︷︷ ︸
Case 1

− 2.35 · 105︸ ︷︷ ︸
Case 2

< E
G′∼G

[cost(LAZYSP(G,OG′))]

It may be instructive to understand why the Example of
Figure 2 does not contradict Theorem 1. Consider the poten-
tially problematic Case 2 of the proof of Theorem 2, where,
say, the arc sb is collision-free, and the arc at is not; more-
over, the three A structures are in collision. Then Q∗ = Q∗

n
(as defined in the proof of Theorem 1) would be a set of
edges that invalidates at and bt. In the deterministic setting,
LAZYSP with an omniscient edge selector could start by in-
validating bt, then proceed to at.

4.2 Query Complexity Bounds

Theorem 2 implies that algorithms in LazySP may be sub-
optimal in the probabilistic setting. Nevertheless, it may still
be possible to give satisfying worst-case guarantees with re-
spect to the performance of algorithms in this class. This is
exactly what we do next.

Specifically, we first show that any algorithm in LazySP
(with an edge selector satisfying a certain property) uses
O(n/p) queries, where n = |V |, with high probability. We
then show that there is a graph where no correct path-finding
algorithm terminates within ω(n/p) queries. Taken together,
these results show that no other algorithm can hope to do
significantly better than algorithms in LazySP over all un-
derlying graphs.

In our upper bound, we focus on edge selectors that
choose an unqueried edge between two connected compo-
nents formed by the validated queried edges.
Definition 1. An edge selector f : P×2E×2E is connective
if for any P ∈ P and edge sets Qy and Qn, f(P,Qy, Qn)
returns an edge e ∈ P \ (Qy ∪ Qn) that connects two con-
nected components of the subgraph (V,Qy).

It is not hard to see that the bisection edge selector (de-
fined in Section 2) is not a connective edge selector. On the
other hand, both forward and backward edge selectors are
connective.

Let us provide an overview of why the forward edge se-
lector — used with a LAZYSP algorithm that breaks ties

s

v

v′ t

P1

P2 R

Figure 5: LAZYSP with the forward edge selector does not
query an edge between two vertices in the same connected
component.

in favor of paths with more verified edges — is connective
(the same argument applies to the backward edge selector,
switching the roles of s and t). Note that at any time the
set of verified edges forms a connected component around
vertex s. Moreover, by the same reasoning behind Dijk-
stra (1959), if a vertex v is in that connected component, the
shortest s-v path in G′ has been found. Now, refer to Fig-
ure 5, and consider the path P1, v, v

′, R, for two vertices v
and v′ that are already reachable from s (i.e., P1 ⊆ Qy and
P2 ⊆ Qy), and R ⊆ E \Q. Then LAZYSP would prefer the
path P2, R, because |P2| ≤ |P1|+1 (as it is the shortest path
to v′), and P2 is fully verified. We conclude that LAZYSP
with the forward edge selector never queries an edge within
a connected component.

We now turn to deriving a rigorous upper bound on the
number of edges queried by any LAZYSP algorithm with a
connective edge selector. Although the proof seems straight-
forward in retrospect, it is actually rather tricky. In terms of
implications, we view this theorem as our main result.
Theorem 3. For any δ > 0, p ∈ (0, 1), graph G with n
vertices, and a connective edge selector f , with probability
at least 1− δ,

cost(LAZYSPf (G,OG′)) ∈ O

(
n+ ln(1/δ)

p

)
.

Proof. Let

m =
1

p
max

{
2n, 8 ln

(
1

δ

)}
,

and let E be the event that cost(LAZYSPf (G,OG′)) > m.
Consider m independent Bernoulli random variables each

with parameter p, �X = (X1, . . . , Xm). Let Xi = 1 corre-
spond to the event where the ith edge queried by LAZYSPf

is in E′, and Xi = 0 otherwise. Intuitively, we think of
X1, . . . , Xm as flipping coins with bias p in advance to de-
cide the answers to the queries issued by LAZYSP. We can
do this because the probability that the answer to a query is
YES is independent of which edge is queried.

Formally, let Pr(�X,G′)[·] correspond to taking probability
over a random process that generates G′ by first instantiat-
ing the Bernoulli random variables X1, . . . , Xm, then deter-
mining the corresponding sets of edges Qy and Qn that are
validated and invalidated by LAZYSP, respectively. For any
edge e ∈ Qy or e ∈ Qn, set e to belong to, or not belong
to E′, respectively. For any edge e ∈ E \ (Qy ∪ Qn), set e

111

to belong to E′ with probability p, independently. Note that
in this process each edge belongs to E′ with probability ex-
actly p. So, PrG′∼G[E] = Pr(�X,G′)[E]. Using conditional
probability, we have

Pr
G′

[E]= Pr
(�X,G′)

[
E

∣∣∣∣∣
m∑
i=1

Xi < n

]
Pr

(�X,G′)

[
m∑
i=1

Xi < n

]
(1)

+ Pr
(�X,G′)

[
E

∣∣∣∣∣
m∑
i=1

Xi ≥ n

]
Pr

(�X,G′)

[
m∑
i=1

Xi ≥ n

]
(2)

In the following, we analyze terms (1) and (2), separately.
For the first term, we have

(1) ≤ Pr
(�X,G′)

[
m∑
i=1

Xi < n

]
= Pr

�X

[
m∑
i=1

Xi < n

]
≤ δ,

where the last inequality is a direct consequence of the Cher-
noff bound:

Pr
�X

[
m∑
i=1

Xi < n

]
≤ Pr

�X

[
m∑
i=1

Xi <
mp

2

]
≤ exp

(
−mp

8

)
.

Next, we argue that the second term, in Equation (2), is
zero. Specifically, we show that

Pr
(�X,G′)

[
E

∣∣∣∣∣
m∑
i=1

Xi ≥ n

]
= 0. (3)

Indeed recall that Qy denotes the set of edges validated
by LAZYSPf during the first m queries, corresponding to
X1, . . . , Xm. Note that if LAZYSPf does not terminate
within the first m queries, then s and t belong to two dif-
ferent connected components of the graph H = (V,Qy).
By the connectivity property of f , at any time LAZYSPf

only queries an edge that is between two connected com-
ponents of the validated edges at that time. So, every time
LAZYSPf encounters a queried edge that is realized (that
is, Qy grows), the number of connected components in H
decreases. Therefore, after encountering n verified edges,
i.e.,

∑
Xi ≥ n, there is an s-t path in H . This establishes

Equation (3).
Putting terms (1) and (2) together, we have that

PrG′ [E] ≤ δ.

In the next theorem, we provide a matching lower bound
for the number of queries that any correct path finding algo-
rithm requires.

Theorem 4. For all p ∈ (0, 1) and n > 15, there exists
a graph G with n vertices such that for any correct path-
finding algorithm ALG,

Pr
G′

[
cost(ALG(G,OG′)) ≤ n− 1

2p

]
≤ 0.1.

Proof. Let m = �(n− 1)/2p�. Consider the following
graph G = (V,E): Let V be the sequence of vertices
s = v1, v2, . . . , vn = t. For each i = 1, . . . , n− 1, let there
be m+ 1 parallel edges between vi and vi+1.

Since there are m + 1 parallel edges between any two
vertices, ALG cannot certify that no s-t path exists in G′
with only m queries. So, if ALG terminates with at most m
queries, it is because it has found an s-t path. To find an
s-t path, ALG must have encountered at least n− 1 realized
edges between the m queries it has made. Therefore, using
the same Bernoulli random variables as in the proof of The-
orem 3, the Chernoff bound, and the fact that n > 15, we
have

Pr
G′ [cost(ALG(G,OG′)) ≤ m] ≤ Pr

X1,...,Xm

[
m∑
i=1

Xi ≥ n− 1

]

≤ Pr
X1,...,Xm

[
m∑
i=1

Xi ≥ 2mp

]

≤ exp(−mp/3) ≤ 0.1.

5 Discussion

We wrap up by briefly discussing some pertinent issues.

Multigraphs are mostly for ease of exposition. Recall that
the graph G can have multiple edges between two vertices.
As we mentioned in Section 2, this assumption is “mostly”
for ease of exposition. Clearly, our positive results, Theo-
rems 1 and 3, hold even for simple graphs. Our first negative
result, Theorem 2, holds for simple graphs but the construc-
tion becomes (even) more unwieldy. The only exception is
Theorem 4: we were unable to establish it for simple graphs
(it is easy to prove a lower bound of Ω(n/ lnn) for con-
stant p, though).

Is the connectivity assumption needed? Theorem 3 holds
for LAZYSP with a connective edge selector. Even though
the current proof strongly relies on the connectivity assump-
tion, we have not found examples of edge selectors that vi-
olate the theorem’s conclusion (in particular, we have not
been able to find a bad example for the bisection edge se-
lector). We therefore conjecture that the O(n/p) query com-
plexity upper bound holds for any edge selector, as long as
LAZYSP breaks ties in favor of paths with more verified
edges (otherwise it is easy to construct bad examples). De-
spite significant effort on our part, this conjecture remains
open.

Should we consider edge evaluations or shortest paths?
A natural concern that could be raised is that this paper con-
siders only shortest paths in terms of number of edges tra-
versed, instead of shortest paths in a directed graph. Is the
unweighted graph case that was analyzed in this paper suffi-
cient to deal with the applications mentioned in the introduc-
tion? The answer is yes. Indeed, evaluating whether an edge
in a motion-planning roadmap is collision free or not is typi-
cally done by finely discretizing the edge. Every discretized
point is associated with a robot configuration, which can be
tested for collision against all physical obstacles. Thus, the
computational cost of testing if an edge is collision free or
not is proportional to its length. Importantly, if we take a di-
rected graph (which is a motion-planning roadmap) and sub-
divide each edge into short edges of constant length (except,

112

maybe, the last edge), we obtain an unweighted graph. Min-
imizing the number of edge evaluations in this unweighted
graph is roughly proportional to minimizing the number of
collision checks for robot configurations in the original di-
rected graph.

Computation of the optimal policy in the probabilistic
setting. Our results suggest that LAZYSP is an excellent
proxy for the optimal policy in the probabilistic setting,
in that with, say, the forward edge selector, it is computa-
tionally efficient and provides satisfying guarantees. This is
backed up by the empirical evaluation presented by Dellin
and Srinivasa (2016). One may ask, though, whether the op-
timal policy itself can be computed. The answer is that this
seems to be an extremely hard problem. The most direct rep-
resentation of the problem is via a Markov decision process
(MDP), where there is a state for every possible choice of Qy

and Qn, the action space is edges in E \ Q, and the transi-
tions and rewards are defined in the obvious way. Although
an optimal policy in an MDP can be computed in polyno-
mial time in its representation, the difficulty is that the size
of the state space is exponential in |E|. That said, heuristics
for (exactly or approximately) computing the optimal pol-
icy in the probabilistic setting have the potential to provide
a practical alternative to LAZYSP.

6 Acknowledgments

This work was partially supported by NSF grants IIS-
1409003, IIS-1350598, IIS-1714140, CCF-1525932, and
CCF-1733556; by ONR grants N00014-16-1-3075 and
N00014-17-1-2428; and by a Sloan Research Fellowship, an
MSR PhD Fellowship and a Siebel Scholarship.

References

Bohlin, R., and Kavraki, L. E. 2000. Path planning using
lazy PRM. In IEEE Int. Conf. on Robotics and Automation
(ICRA), 521–528.
Choset, H.; Lynch, K. M.; Hutchinson, S.; Kantor, G.; Bur-
gard, W.; Kavraki, L. E.; and Thrun, S. 2005. Principles
of Robot Motion: Theory, Algorithms, and Implementation.
MIT Press.
Choudhury, S.; Salzman, O.; Choudhury, S.; and Srinivasa,
S. S. 2017. Densification strategies for anytime motion
planning over large dense roadmaps. In IEEE Int. Conf. on
Robotics and Automation (ICRA), 3770–3777.
Choudhury, S.; Dellin, C. M.; and Srinivasa, S. S. 2016.
Pareto-optimal search over configuration space beliefs for
anytime motion planning. In IEEE/RSJ Int. Conf. on Intelli-
gent Robots and Systems (IROS), 3742–3749.
Dellin, C. M., and Srinivasa, S. S. 2016. A unifying formal-
ism for shortest path problems with expensive edge evalu-
ations via lazy best-first search over paths with edge selec-
tors. In Int. Conf. on Automated Planning and Scheduling
(ICAPS), 459–467.
Dijkstra, E. W. 1959. A note on two problems in connexion
with graphs. Numerische Mathematik 1(1):269–271.

Halperin, D.; Salzman, O.; and Sharir, M. 2017. Algorith-
mic motion planning. In Handbook of Discrete and Compu-
tational Geometry, Third Edition. CRC Press. 1311–1342.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems, Science, and Cyber-
netics SSC-4(2):100–107.
Hauser, K. 2015. Lazy collision checking in asymptotically-
optimal motion planning. In IEEE Int. Conf. on Robotics and
Automation (ICRA), 2951–2957.
Hopcroft, J. E.; Schwartz, J. T.; and Sharir, M. 1984. On the
complexity of motion planning for multiple independent ob-
jects; PSPACE-hardness of the “warehouseman’s problem”.
I. J. Robotics Res. 3(4):76–88.
Hsu, D.; Latombe, J.; and Motwani, R. 1999. Path planning
in expansive configuration spaces. Int. J. Comput. Geometry
Appl. 9(4–5):495–512.
Karaman, S., and Frazzoli, E. 2011. Sampling-based al-
gorithms for optimal motion planning. I. J. Robotics Res.
30(7):846–894.
Kavraki, L. E.; Svestka, P.; Latombe, J.; and Overmars,
M. H. 1996. Probabilistic roadmaps for path planning
in high-dimensional configuration spaces. IEEE Trans.
Robotics and Automation 12(4):566–580.
LaValle, S. M., and Kuffner, J. J. 1999. Randomized kino-
dynamic planning. In IEEE Int. Conf. on Robotics and Au-
tomation (ICRA), 473–479.
LaValle, S. M. 2006. Planning Algorithms. Cambridge
University Press.
Lozano-Perez, T. 1983. Spatial planning: A configura-
tion space approach. IEEE Transactions on Computers C-
32(2):108–120.
Mandalika, A.; Salzman, O.; and Srinivasa, S. S. 2018. Effi-
cient shortest-path algorithm for graphs with expensive edge
evaluation via lazy lookahead. In Int. Conf. on Automated
Planning and Scheduling (ICAPS). to appear.
Salzman, O., and Halperin, D. 2015. Asymptotically-
optimal motion planning using lower bounds on cost. In
IEEE Int. Conf. on Robotics and Automation (ICRA), 4167–
4172.

113

