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Abstract

In many dynamic matching applications—especially
high-stakes ones—the competitive ratios of prior-free
online algorithms are unacceptably poor. The algorithm
should take distributional information about possible
futures into account in deciding what action to take now.
This is typically done by drawing sample trajectories of
possible futures at each time period, but may require a
prohibitively large number of trajectories or prohibitive
memory and/or computation to decide what action to
take. Instead, we propose to learn potentials of elements
(e.g., vertices) of the current problem. Then, at run time,
we simply run an offline matching algorithm at each
time period, but subtracting out in the objective the po-
tentials of the elements used up in the matching.

We apply the approach to kidney exchange. Kidney ex-
changes enable willing but incompatible patient-donor
pairs (vertices) to swap donors. These swaps typically
include cycles longer than two pairs and chains trig-
gered by altruistic donors. Fielded exchanges currently
match myopically, maximizing the number of patients
who get kidneys in an offline fashion at each time
period. Myopic matching is sub-optimal; the clearing
problem is dynamic since patients, donors, and altruists
appear and expire over time. We theoretically compare
the power of using potentials on increasingly large ele-
ments: vertices, edges, cycles, and the entire graph (op-
timum). Then, experiments show that by learning vertex
potentials, our algorithm matches more patients than the
current practice of clearing myopically. It scales to ex-
changes orders of magnitude beyond those handled by
the prior dynamic algorithm.

Introduction

Kidney failure is a life-threatening health issue that af-
fects hundreds of thousands of people worldwide. In the US
alone, the waitlist for a kidney transplant had 90,563 patients
as of January 23, 2012. This list is growing: demand far out-
strips supply.

A recent innovation, kidney exchange, allows patients to
bring an (incompatible) donor to a large pool where they
can swap donors with other patients. Currently, fielded kid-
ney exchanges match patients to donors in a myopic fashion,
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maximizing the number of candidates who get kidneys (on
a weekly, monthly, or bimonthly basis) in an offline fash-
ion. However, this is sub-optimal, since patients and donors
arrive and leave the pool over time. Recent work shows
that more candidates can be matched by considering the fu-
ture (Awasthi and Sandholm 2009; Unver 2010), but those
approaches are either overly simplified or do not scale.

We introduce a method for informing myopic matching
about the future in dynamic applications. It automatically
learns potentials of structural elements of the problem (e.g.,
of vertices or edges in a graph) in a one-time offline fashion,
then uses these potentials to guide myopic matching at run
time. We apply these techniques to kidney exchange by first
proving bounds on the power of learning potentials on ver-
tices, edges, cycles, and the entire graph (which is optimal).
Then, we learn potentials for vertices using a state-of-the-art
parameter learning package and kidney exchange instance
generator. We show that these learned potentials allow for a
greater number of matches than simple myopic matching at
nearly no run time cost across all the settings tested.

Static matching

One can encode a static n-patient kidney exchange as a
directed graph G(n) by constructing one vertex for each
patient-donor pair. Add an edge e from v; to v; if the pa-
tient in v; wants the item (donor kidney) of v;. Each donor
is willing to give a kidney if and only if the patient in his
vertex v; receives a kidney. The weight w,. of edge e rep-
resents the utility to v; of obtaining v;’s kidney. In current
practice, those weights are set by design committees, and
they are typically equal or close to equal. A cycle c in this
graph represents a possible swap, with each vertex in the cy-
cle obtaining the kidney of the previous vertex. The weight
w, of a cycle c is the sum of its edge weights. A matching
is a collection of disjoint cycles; they have to be disjoint be-
cause no donor can give more than one of his two kidneys.
The vanilla version of the clearing problem is to find a
maximum-weight matching consisting of cycles with length
at most some small constant L. Typically, 2 < L < 5, and in
most fielded kidney exchanges, including the UNOS nation-
wide kidney exchange with which we are closely involved,
L = 3. The cycle length constraint L is crucial, since all op-
erations in a cycle must be performed simultaneously. If they
were not, a donor might back out after the patient in his ver-



tex has received a kidney.! In current practice, this matching
is conducted using a single-shot optimization, with no con-
cern for future matches. We call such matching myopic.

The clearing problem is NP-complete for L > 2 (Abra-
ham, Blum, and Sandholm 2007). Significantly better so-
lutions can be obtained by allowing cycles of length 3 in-
stead of allowing 2-cycles only (Roth, Sénmez, and Unver
2007). Using an integer linear program (ILP) where there
is a decision variable for each cycle no longer than L, and
constraints that state that accepted cycles are vertex dis-
joint, combined with specialized branch-and-price ILP solv-
ing code, the problem, with L = 3, is solvable to optimal-
ity in practice at the projected steady-state nationwide scale
of 10,000 patients (Abraham, Blum, and Sandholm 2007).
In our experiments, we use that algorithm as a subroutine
whenever we have to solve the batch optimization problem.

A recent innovation in kidney exchange is chains (Roth et
al. 2006; Montgomery et al. 2006; Rees et al. 2009). Each
chain starts with an altruistic donor—that is, a donor who
enters the pool, without a patient, offering to donate a kid-
ney to any needy candidate in the pool, and expecting noth-
ing in return. Chains start with an altruist donating a kidney
to a candidate, whose paired donor donates a kidney to an-
other candidate, and so on. Chains can be longer than cycles
in practice because it is not necessary to carry out all the
transplants in a chain simultaneously.?

Dynamic matching

In dynamic matching, the problem changes over time. In
kidney exchange, patient-donor pairs and altruists enter and
expire. While fielded kidney exchanges currently operate
under the static paradigm described above, recent work in
the kidney exchange community has shown that optimizing
dynamically leads to higher cardinality matching overall.
From a theoretical standpoint, Unver (2010) derives effi-
cient dynamic mechanisms for general exchanges such that
the total exchange surplus is maximized. These results are a
generalization of an abstracted kidney exchange. He derives
dynamic dispatch policies for kidney exchange in this ab-
stract model; however, the model itself does not accurately
reflect real-world kidney exchange. The results hinge on the
assumption that one pair’s candidate will be compatible with
another pair’s donor if they are blood type (aka ABO) com-
patible, ignoring other aspects of the potential match, most
critically tissue type. His model also does not have chains.
Very few empirical results on non-myopic matching in dy-
namic kidney exchange are known. Most notable is a recent
paper by Awasthi and Sandholm (2009) that uses trajectory-
based online stochastic optimization algorithms to inform
the matching algorithm of possible futures, thus potentially
holding off matching some candidates and donors in an
effort to increase overall matches later. Their results are
promising, but the algorithm does not scale beyond very
small exchanges due to the empirical complexity of sam-

!This reneging cannot be prevented by legal means because it
is illegal to contract for organs in most countries.

2If a chain breaks by some donor reneging, the chain merely
stops, but no pair is out their “bargaining chip” (donor kidney).
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pling a large number of future world states, and the memory
requirements associated with storing those trajectories and
optimizing what to do in the present in light of them.

Many papers include experimental results on dynamic
kidney exchange using myopic clearing (Gentry et al. 2009;
Gentry and Segev 2011; Ashlagi et al. 2011; Ashlagi,
Gamarnik, and Roth 2011; Dickerson, Procaccia, and Sand-
holm 2012). This is useful due to the ubiquity of myopic
matching in fielded kidney exchanges, but, as we show in
this paper, ultimately the strategy is flawed. Myopic match-
ing that is informed about the future results in more matches.

Using potentials to inform myopia

In this paper, we introduce the idea of potentials to capture
the future into myopic matching. Given a structural element
(e.g., vertex, edge, cycle type, etc.) of the problem, a poten-
tial P € R quantifies the future expected usefulness to the
exchange of that element.

For example, consider potentials on vertices. In terms of
ABO compatibility, an O-type donor can give to O-, A-, B-,
and AB-type patients, an A-donor can give to A or AB, a B-
donor can give to B or AB, and an AB-donor can only give to
AB. Therefore, an O-type altruistic donor typically leads to
more matched patients (i.e., has higher potential) than other
types of altruist. Similarly, an altruist with a given blood
type tends to have higher potential than a patient-donor ver-
tex with that same donor type because the pair is harder to
match, since it expects a kidney in return and that kidney
needs to be compatible with the pair’s patient. Intuitively,
then, it might make sense to not match an O-altruist until
he or she can trigger a long chain of patient-donor pairs in
the pool. Similarly, if a feasible match for a hard-to-match
patient-donor pair exists at the present time, it might make
sense to immediately match this pair since saving the pair for
later would likely yield no benefit (and would risk that pair
never being matchable in the future). So, the altruist would
be given a high potential: by saving the O-type altruist until
she triggered a long chain, more lives would be saved over-
all. Similarly, the hard-to-match patient-donor pair would be
given a low potential to incentivize immediate matching.

As described in the introduction, the exchange clearing
problem finds a maximum-weight exchange of disjoint cy-
cles. Given the potential for a vertex, edge, or cycle type
(where type is defined by the ABO blood types of the donors
and the patients in the vertices), we can easily translate this
information into a language the matching algorithm under-
stands. For example, with vertex potentials, the translation
works as follows. Given vertex potentials Py and Py repre-
senting the potentials of patient-donor pairs of ABO type X
and Y, respectively, any edge e between vertices of type X
and Y receives weight w. = f(Px, Py ), for some function
f R xR — R. Cycles in the exchange are then assigned
weights as usual, as the sum of their edge weights. In this
way, the potentials assigned to specific elements affect the
final maximum-weight exchange of disjoint cycles.

In our example above, say P._p = 2.1 and Po_ap =
0.1, representing the vertex potentials of an O-type altruist
and an O-AB type patient-donor pair, respectively. Further-
more, define f(Px,Py)=1— %(PX + Py ). (This formula



assumes that edge weights before taking potential into ac-
count are 1, as is the case in the state-of-the-art kidney ex-
change simulator (Saidman et al. 2006), which we use. Some
fielded kidney exchanges also set all edge weights to 1, and
others set them roughly equally. The methodology in this
paper applies to unequal edge weights as well.) Then, any
edge e between an O-type altruist and an O-AB type patient-
donor pair will receive weight 1 — 0.5(2.1 + 0.1) = —0.1.
Informally, this is telling the matching algorithm that any
chain c including edge e—triggered by the extremely valu-
able O-type altruist—will need to be long (i.e., high weight)
enough to offset the negative weight of e.

In the ABO model of kidney exchange, there are 20 pos-
sible vertex types: 4 types of altruists (O-, A-, B-, and AB-
type), and 16 types of patient-donor pairs (O-O, O-A, ...,
AB-AB-type). If we consider edge types, this number jumps
to 244: 208 possible edges originating from patient-donor
pairs, and 36 originating from altruists. Allowing potentials
to be learned for variable-length cycles increases this num-
ber dramatically. Intuitively, there is a tradeoff between the
expressive power of the potentials (allowing potentials for
larger structural elements such as edges, or cycles, or even
beyond, having more expressiveness) and the computational
power needed to learn the potentials (the hypothesis space
being larger the more variables there are). To lend insight
to this, in the next section, we prove bounds that compare
associating potentials with vertices, edges, cycles, or even
higher-level elements such as the entire graph.

How much can associating potentials to larger
elements help?

In this section, we prove bounds on the best-case benefit
from associating potentials on larger elements compared to
associating them with smaller elements. (However, as we
will experimentally show later in the paper, even properly
setting vertex potentials works very well in practice.)

First, in Theorem 1 we compare the application of poten-
tials to vertices and to edges and show that edge potentials
can do notably better. Second, Theorem 2 considers allowing
potentials to be applied to edges and cycles; again, we show
that the finer-grained resolution of cycles can allow better
overall results than just edges. Finally, Theorem 3 shows
that, in certain pathological cases, even applying potentials
to cycles can perform poorly compared to potentials on un-
limited graph elements (which is equivalent to comparing
against an omniscient algorithm with perfect foresight).

The constructions in the proofs are in the two- and three-
stage setting and work even if the clearing engine is omni-
scient about the future. To evaluate the quality of a choice
of potentials, we compute the number of matched pairs as
follows: in the first stages the number of matched pairs plus
the potentials of leftover elements is maximized, and in the
final stage the number of matched pairs is maximized.
Vertex versus edge potentials. We first consider associating
potentials only to the vertices, in the two-stage model.

Theorem 1 (Vertex potentials vs edge/graph potentials).

1. Forevery k € N there exists an input with cycles of length
at most 2k + 4 and no chains such that for any choice
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Figure 1: Example of Theorem 1. Vertices present in both
stages are white. Vertices present only in stage 2 are dashed.
Vertices present only in stage 1 are gray.

of vertex potentials the number of matched patients is at
most a (4k + 4)/(6k + 4)-fraction of the optimum.

2. For every k € N there exists an input with 2-cycles and

chains of length at most 2k + 5 such that for any choice
of vertex potentials the number of matched patients is at
most a (4k + 5)/(6k + 5)-fraction of the optimum.>

3. There exists an input with cycles of length at most 2 and

no chains such that for any choice of vertex potentials the
match size is at most a (5/6)-fraction of the optimum.

In each of the three cases, the construction is such that the
optimum is achievable using edge potentials.

Proof. Forpart 1, given k € N, consider the input illustrated
in Figure 1. In stage 1 there is a 2-cycle between AB-O and
AB-A, a 2-cycle between A-A and A-O, k 2-cycles between
AB-O and A-O, and k 2-cycles between AB-A and A-A. In
stage 2 the gray vertices disappear, and 2k AB-AB vertices
appear, so that a (2k +4)-cycle is formed between the white
and dashed vertices. Note that an edge exists between two
donor-patient pairs only if they are blood type compatible.

The optimal solution matches all gray cycles in the first
stage, and the long cycle in the second stage, for a total of
6k + 4 pairs matched. This can easily be accomplished using
edge potentials but, as we will show, not vertex potentials.

To analyze the quality of the solution when using vertex
potentials, first consider the case where the 2-cycle between
AB-O and AB-A and the 2-cycle between A-A and A-O both
remain unmatched at the end of the first stage. Because these
cycles are disjoint from other cycles in the graph, they can
remain unmatched only if the potential of their vertices is
greater than their length; formally, Pag.o + Pap-a > 2 and
Paa + Pao > 2. By summing these two inequalities we
obtain the inequality

Pag-o + Pag-a + Paa + Pa.o > 4. (D

It follows that Pag.o + Pa.o > 2 or Pag.a + Paa > 2.
Indeed, otherwise by summing we would obtain that Pag_ o+
Pag.a + Paa + Pa.o <4, in contradiction to Equation (1).
Assume without loss of generality that Pag.o + Pa.o > 2.
Therefore, in stage 1 the k cycles between AB-O and A-O

3As is common practice, we say that the last donor in a chain
donates to the deceased donor waiting list (not shown in our illus-
trations). That is included in all our analyses and experiments. For
example, if an altruist donates to a pair that donates to the waiting
list, the chain length is 2 and the number of patients saved is 2.
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Figure 2: Example of Theorem 2.

pairs are not matched. It follows that the number of pairs that
are matched can be at most 4% + 4.

We now consider the case where the first-round match-
ing includes either the 2-cycle between AB-O and AB-A or
the 2-cycle between A-A and A-O. In stage 2, the 2k AB-AB
vertices in the long cycle cannot be matched. Thus, the num-
ber of matched pairs is at most 4k + 4. We see that the ratio
between the number of patients matched under optimal ver-
tex potentials and the optimum is at most (4k +4)/(6k+4).

The input for part 2 is almost identical, and is obtained
by removing the edge from AB-AB to AB-O, and adding
an altruistic donor (say with blood type O), who appears in
stage 2, with an edge to the white AB-O pair. The proof of
part 3 is omitted due to lack of space. OJ

As k grows in Theorem 1, the ratio of vertex to edge (and
optimal) potentials in parts 1 and 2 tend toward 2/3. This is a
negative result in the high-stakes world of kidney exchange,
where losing 1/3 of the possible matches is highly undesir-
able. However, the subsection below shows that worst-case
performance is poor even if we allow potentials on edges.
Edge versus cycle potentials. We now show that edge po-
tentials can have poor performance compared to cycle poten-
tials, tending toward matching 1/2 of the matchable patients
in a two-stage model. We allow the cycle potential to be a
function of all the ABO types of the vertices of the cycle.

Theorem 2 (Edge potentials vs cycle/graph potentials).

1. Forevery k € N there exists an input with cycles of length
at most 3k + 2 and no chains such that for any choice of
edge potentials the number of matched patients is at most
a (3k + 2)/(6k + 2)-fraction of the optimum.

2. For every k € N there exists an input with 2-cycles and
chains of length at most 3k + 3 such that for any choice of
edge potentials the number of matched patients is at most
a (3k + 3)/(6k + 3)-fraction of the optimum.

In both of these cases, the construction is such that the opti-
mum is achievable using cycle potentials.

Proof sketch. The construction in Figure 2 proves case 1.
Cycle potentials match the gray nodes and the long cycle,
while edge potentials can match either the gray and solid
white vertices or only the long cycle. In this construction, ev-
ery vertex has the same ABO-type, so each edge must have
the same potential P. Assume that the edge weights before
potential is taken into account are all 1. Now, if P > 1, the
algorithm must match nothing in stage 1 while if P < 1, it
must match the 2-cycle in stage 1 (along with the 3-cycles),

1343

AT T
- NIV N
1 o A
| - ' t )
-t i Y
, 8 @ N’ TN
= 2 ok
i
/j\
O
-
_/
A
O
A
o
~ -

Figure 3: Example of Theorem 3.

which precludes it from matching the long cycle in stage 2.
The adjustment for case 2 is the same as in Theorem 1. [

Cycle versus graph potentials. We now show that we can-
not get optimal matching in the worst case even if we as-
sociate potentials with entire cycles, in a three-stage model
(where all vertices expire after the second stage).

Theorem 3 (Cycle potentials vs graph potentials). Denote
by L the cap on cycle length. There exists an input with cy-
cles of length at most L (even with no altruistic donors) such
that for any choice of cycle potentials the number of matched
patients is at most a 1/ L-fraction of the optimum.

Proof. In Figure 3, the optimal solution is to pass on the L-
cycle in stage 1, but to accept all the L-cycles except the
central one in stage 2. The cycle-potential algorithm cannot
accomplish that because it has to wait on all L-cycles or to
take them all (since this construction assumes that all edges
have the same pre-potential weight, and all L-cycles have the
same potential because all the vertices have the same ABO
type). It must either take the L-cycle in stage 1 or nothing in
either stage; the former choice is better. O

While the theoretical results in this section show that there
can be a significant benefit to associating potentials with
larger elements, in the experiments that follow, we will use
potentials on vertices. This is motivated by there being fewer
weights to learn. As we will show, even learning that number
of weights is challenging, but as we also show, the approach
works well in practice.

Learning the values of potentials

In this section, we describe our technique for learn-
ing potentials for elements of kidney exchange. We use
ParamILS (Hutter et al. 2009), a state-of-the-art algorithm
configuration package, to intelligently search through the
parameter space for an optimal (or near-optimal) instanti-
ation of the potential variables. The method given is general
enough to handle potentials on vertices, edges, cycles, and so
on. However, due to the computational complexity of learn-
ing potentials, we focus on learning vertex potentials only.
Given an objective function and a parameter space over
which to search, ParamILS takes an initial vector of param-
eter values and, using iterated local search, tries to optimize



the objective by adjusting the parameters. In our case, the
parameters are 20 real-valued vertex potentials (16 patient-
donor pair ABO types plus 4 altruist ABO types). Our ob-
jective function in ParamILS was to maximize the number
of patients matched as a fraction of the optimal number of
patients that could be matched in a full information model.
This ratio is measured by running the myopic kidney ex-
change solver using the vertex potentials as parameters.

ParamILS requires discretization of the parameters. We
let each potential live in the space {0,0.2,...,3.0}. (The
highest value that ParamILS ended up with was 1.4.)

To learn the parameter values, ParamILS uses a training
set and an internal test set. Our sets contained 1500 and
300 kidney exchange graphs, respectively. Each graph had
95 patient-donor pairs and 5 altruists total arriving over 25
months, and was generated using the standard kidney ex-
change generator (Saidman et al. 2006). We amended the
generator to generate altruists to correspond to fielded kid-
ney exchanges. The expiration rate of vertices was set ac-
cording to the reality that 12% of kidney patients survive 10
years (USRDS 2007). The expiration rate for altruists was
set to be the same. The other ParamILS settings were: 1000
runs per random seed per graph, and 1000 random graphs
per parameter vector. The authors of ParamILS recommend
running ParamILS multiple times with different settings of
the numRuns parameter; we ran 24 times with different val-
ues and ran for three days on each. Finally, we chose the
parameter vector with highest score across all runs.

None of the ParamILS iterated local search runs termi-
nated. This is due to (a) the high variability in running dy-
namic match runs on the same compatibility graphs, (b) the
high variability between different compatibility graphs, and
(c) the long run time required to solve each instance (the
clearing problem is NP-hard). However, as our results in the
next section show, the learned weights did, in fact, improve
myopic matching significantly. Also, the relative sizes of the
learned parameter values made sense, with easier-to-match
vertices receiving greater potentials.

Weighted myopic matching at run time

We now present extensive experimental results using the
potentials learned on our training and ParamILS-internal
test data sets. We test on a new test set starting with the
problem sizes used for training and then testing on much
larger instances. We conclusively show that the learned ver-
tex potentials increase the total number of matches made by
the (currently fielded) myopic matching algorithm. Further-
more, once these potentials are learned, they do not seriously
affect match run time. As such, the current state-of-the-art
solving algorithm will still be able to clear exchanges at the
estimated nationwide steady-state size of 10,000 pairs.

Comparing to optimal matching. We begin by comparing
our weighted myopic algorithm and standard myopic algo-
rithm to an optimal matching. The optimal matching is com-
puted in a full-information model where the optimization al-
gorithm is given access up front to exactly which patient-
donor pairs and altruists will be in the pool at each period. It
is impossible for any algorithm to match more candidates—
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Figure 4: Percentage gain of weighted over unweighted my-
opic matching relative to the optimal match cardinality.

Z-statistic
1972.5
2371.5
1722.5
321.0
185.5
8.5
0.0

patient-donor pairs
110
210
310
410
510
610
710

Yoimprovement
7.54
9.04
12.21
17.74
18.36 239
21.44 66
26.16 15

samples
240
240
240
240

p-value

2.970e-204
6.240e-40
4.515e-37
5.994e-41
1.468e-41
1.400e-12
5.320e-04

Figure 5: Statistical significance tests. The %improvement
over unweighted is relative to the optimal matching.

and unlikely that any would be able to match equally many
due to lack of full information about the future.

As in prior experiments on dynamic kidney exchange,
each simulation was conducted over 51 time periods, rep-
resenting 4 years and 3 months of actual time. We vary the
number of patient-donor pairs from 110 to 710 and add 5%
as many altruists as there are patient-donor pairs. For exam-
ple, with 510 pairs, there are 25 altruists in the pool.* This
number is motivated by the UNOS pilot nationwide kidney
exchange that we have been working to establish. Altruistic
donors were incorporated into that exchange in April 2011.
Recently, their number has been roughly 5% of the number
of patient-donor pairs.

Figure 4 shows the improvement gained by our weighted
myopic matching algorithm, relative to the difference be-
tween plain myopic matching and the optimal match size.
For example, if the standard myopic algorithm matched 300
candidates, the optimal matched 360, and the weighted my-
opic algorithm matched 315, we report (315 — 300) /(360 —
300) = 25%. Clearly, vertex potentials help. Interestingly,
as the number of patient-donor pairs and altruists increases,
the weighted myopic algorithm tends toward the optimal so-
lution more quickly than standard myopic matching.

The table in Figure 5 gives the statistical significance of

our results. Statistical significance testing was done using a
Wilcoxon signed-rank test. The p-values and Z-test statis-
tics (which are more useful than p-values for large-sample
experiments like ours) clearly show the significance of the
weighted matching algorithm’s gains.
Scaling to larger graphs. We now study how the approach
scales to larger problems. Because the parameter learning
was complex already at a smaller problem size, we do not
attempt to re-learn the parameters for the larger problems.

*At each time period, the number of pairs and number of al-
truists are drawn from a normal distribution; this is retried until the
total number of each of the two across all 51 time periods is correct.
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Figure 7: Percentage gain of weighted over unweighted my-
opic matching relative to the myopic match cardinality.

Furthermore, calculating the optimal match size quickly
becomes intractable, since the clearing algorithm must con-
sider an unrealistically large pool over all 51 time periods at
once. Therefore, we only evaluate the efficacy of our algo-
rithm against the myopic matching algorithm. We maintain
the test setup from the last section, with 5% as many altruists
as there are patient-donor pairs.

Figure 6 gives two sample cumulative distribution func-
tions of the weighted myopic gains over unweighted myopic
in terms of total match size. White bars correspond to the
weighted algorithm matching more than unweighted. Black
bars represent when our method was beaten by unweighted
myopic. Losses such as these are unavoidable in any non-
full-information model; however, in our experiments losses
were rare and significantly smaller than respective gains.

Figure 7 shows the percentage gain of the weighted my-
opic algorithm relative to the match cardinality of the un-
weighted myopic matching algorithm. While these percent-
ages are relatively small, it is important to note that (1) the
full-information upper bound on the amount of room for im-
provement is rather low and our algorithm captures a large
percentage of that (Figure 4), (2) these are improvements in
real lives saved, so even small improvements are important,
and (3) the improvements are statistically significant as dis-
cussed above. Furthermore, some of the decline in absolute
percentage gain may be due to our learning vertex potentials
on significantly smaller graphs.

The role of altruistic donors

One significant unknown in kidney exchange is the ratio of
altruistic donors to patient-donor pairs. More altruists in the
pool drastically increases the fraction of patients matched
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altruists Jimprovement samples p-value Z-statistic

0 729 369 2.507e 43 9098.5
10 16.51 280 4.759¢ 45 1003.5
20 18.97 280 1.304e 44 1196.0
30 16.63 280 1.572¢ 40 1725.0
40 17.77 280 1.863e-38 1808.0
50 19.58 280 8.005e 42 1355.5
60 18.00 280 1.906e-37 2231.0
70 21.55 280 4.829¢ 44 12535
80 20.43 280 2.407e 41 1483.0
90 19.50 270 1.763e 41 1438.5
100 21.10 160 5.974e-26 316.5
110 23.81 65 3.552e-12 13.5

120 17.51 49 1.769e-09 45.5

Figure 9: Statistical significance tests for graphs with 510
patient-donor pairs and varying number of altruistic donors.

(see, for example, recent work by Dickerson et al. (2012)).
In this section, we vary the percentage of altruists in the pool
relative to the number of patient-donor pairs. It turns out that
our method works well when there are no altruists, few al-
truists, or many altruists. This is despite the fact that we do
not re-learn potentials for a specific density of altruists.

For these experiments, we held the number of patient-
donor pairs in the pool constant at 510, and varied the num-
ber of altruists from O to 120. Figure shows the absolute
gain in the number of candidates matched by our weighted
myopic algorithm over the standard myopic algorithm. As
above, the absolute gain is 1-1.5%. Interestingly, the abso-
lute gain percentage decreases as the number of altruists in-
creases; this can be explained by myopic matching being
closer to optimal when the number of altruists is large. Fig-
ure shows the percentage gain of weighted myopic match-
ing relative to the gap between optimal matching and tra-
ditional myopic matching. We see that using the vertex po-
tentials learned earlier results in matching 10-25% of the
candidates left unmatched by unweighted myopic matching,
regardless of the number of altruists in the pool.

Figure 9 shows that the vertex potentials improve the
matching with extremely high statistical significance. Again,
Wilcoxon signed-rank test methodology was used.
Potentials on altruists only. We also ran experiments where
we learned and tested potentials on altruists only. This sig-
nificantly reduces the search space size to 4 parameters.
ParamILS learned the following potentials for O-, A-, B-,
and AB-altruists, respectively: 0.8, 0.6, 0.4, and 0.2. This
makes qualitative sense because O-altruists are easiest to
match and AB-altruists the hardest. Interestingly, the po-
tential is less than 1 even for O-altruists. Perhaps surpris-



ingly, this approach led only to a tiny improvement over un-
weighted myopic matching across graph sizes. For example,
averaged over 1500 runs with 410 vertices each, the relative
gain over unweighted myopic was 0.06% while it was 16.3%
when learning all 20 potentials (over patient-donor pairs and
altruists).

Conclusions and future research

We introduced an automated, scalable method for informing
myopic matching algorithms about the future. It learns po-
tentials of elements of the problem offline and then uses the
potentials to guide myopic matching at run time.

We applied these techniques to kidney exchange. We the-
oretically compared the power of using potentials on in-
creasingly large elements: vertices, edges, cycles, and the
entire graph. Then, experiments showed that by learning ver-
tex potentials, our algorithm matches more patients than the
current practice of clearing myopically—at nearly no run
time cost. We experimented with a variety of graph types;
weighted myopic matching helped on them all. It scales to
the projected nationwide kidney exchange size.

A clear direction for future research would be an empiri-
cal comparison of potentials learned on vertices to larger el-
ements. There is a tradeoff: on the one hand, as we proved,
associating potentials with larger elements has more power,
but on the other hand, there are more parameters to learn.
ParamILS did not converge even on vertex potentials; we
conjecture that a new learning method is required to move
beyond vertex potentials. This could involve using domain
knowledge of partial ordering of potentials.

Mechanism design results in dynamic kidney exchange
are few and far between, with one notable exception (Unver
2010). It would be interesting to extend these results along
the lines of static kidney exchange mechanism results (Ash-
lagi et al. 2010; Ashlagi and Roth 2011; Caragiannis, Filos-
Ratsikas, and Procaccia 2011; Toulis and Parkes 2011), and
to perhaps tie in the algorithms presented in this paper.
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