
Information Processing Letters 108 (2008) 390–393
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A note on the query complexity of the Condorcet winner problem

Ariel D. Procaccia

School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 March 2008
Received in revised form 17 July 2008
Accepted 17 July 2008
Available online 25 July 2008
Communicated by L.A. Hemaspaandra

Keywords:
Analysis of algorithms
Graph algorithms
Theory of computation
Concrete complexity
Social choice

Given an unknown tournament over {1, . . . ,n}, we show that the query complexity of the
question “Is there a vertex with outdegree n − 1?” (known as a Condorcet winner in social
choice theory) is exactly 2n − �log(n)� − 2. This stands in stark contrast to the evasiveness
of this property in general digraphs.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

An impressive body of literature is concerned with the
query complexity of properties of graphs. In the determin-
istic model, one is presented with an unknown directed
graph (digraph) G = 〈V , E〉, V = {1, . . . ,n}, and is allowed
to submit queries of the form: “Is the edge (i, j) in the
graph?” An algorithm for testing a property is essentially
a decision tree that at each node, given the answers to
its queries so far, either submits another query or outputs
an answer. The complexity of a property is the worst-
case number of queries that must be asked. This simple
model of computation was the subject of much interest
as it gives an abstraction of graphs represented by an
adjacency matrix, in addition to giving lower bounds on
the complexity of problems in more sophisticated mod-
els.

A fascinating branch of research focused on evasive
properties of digraphs. An evasive property is a property
such that one has to ask about all the edges in the graph
(n(n − 1) in the case of digraphs) in order to test for it.
Karp conjectured that any graph property that is mono-
tone (still holds if more edges are added) and nontrivial

E-mail address: arielpro@gmail.com.
0020-0190/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2008.07.012
(holds for some but not all graphs) is evasive. Over the
years, many works have provided increasingly better lower
bounds on the complexity of monotone, nontrivial proper-
ties [8,7,3,4], although Karp’s conjecture remains open.

A prominent example of a monotone, nontrivial graph
property is the existence of a vertex with outdegree n − 1.
It is straightforward to verify that this property is evasive
in digraphs. In this paper, we ask whether this is also the
case in tournaments.

A tournament over N = {1, . . . ,n} is a digraph with ex-
actly one directed edge between every two vertices. In
other words, a tournament is an orientation of a complete
undirected graph. Tournaments play a major role in graph
theory (see, e.g., [6]), but are of particular interest in the
context of social choice theory.

In an election, the voters are usually assumed to hold
linear preferences over the set of candidates. Candidate
i ∈ N is said to dominate candidate j ∈ N if a majority
of voters prefer i to j. This dominance relation is an ir-
reflexive, asymmetric, and complete binary relation T on
{1, . . . ,n}; iT j means that i dominates j. Such a binary
relation on the set of candidates is known as a tourna-
ment. Crucially, this definition and the one given above are
equivalent: there is a directed edge (i, j) in tournament T ’s

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:arielpro@gmail.com
http://dx.doi.org/10.1016/j.ipl.2008.07.012

A.D. Procaccia / Information Processing Letters 108 (2008) 390–393 391
graph if and only if iT j.1 Throughout the paper, we shall
use the language of social choice theory (e.g., we shall call
the vertices “candidates” and use the term “dominate”),
but will employ the two representations of tournaments
(as a binary relation and as a digraph) interchangeably.

In a tournament, a candidate that dominates every
other candidate (that is, has an outdegree of n − 1) is
known as a Condorcet winner.2 The question of the exis-
tence of a Condorcet winner has a special place in social
choice theory. As early as the 18th century, the Marquis de
Condorcet suggested that a candidate that dominates ev-
ery other candidate—should such a candidate exist—must
be the winner of the election.

Our results. We show that the complexity, in the query
model, of the question “Given a tournament T , is there a
Condorcet winner?” is 2n − �log(n)� − 2. Specifically, we
give matching upper and lower bounds of 2n−�log(n)�−2.
Our results stand in contrast to the evasiveness of this
property (“Is there a candidate with outdegree n − 1?”) in
general digraphs. Note that in the context of tournaments,
a query is of the form 〈i, j〉, and the answer is either iT j
or jT i.

Related work. Several previous works studied the query
complexity of problems in tournaments. For example, Bar-
Noy and Naor [1] leveraged comparison-based sorting al-
gorithms to find a Hamiltonian path in tournaments.

The Condorcet winner problem itself has been ad-
dressed in a different concrete model of complexity. In-
deed, Conitzer and Sandholm [2] studied the communi-
cation complexity of different voting rules, and, inter alia,
gave asymptotic bounds on the communication complex-
ity of the Condorcet winner problem. Their lower bound
implies a lower bound of �(n) in the query model (but
obtaining such an asymptotic lower bound in our model is
trivial).

2. Proof of main results

Let us introduce some terminology that will ease our
exposition. In analyzing algorithms, we shall refer to the
point in time when t queries have been submitted as
time t . Given a tournament T , we shall denote by T (t) the
subset of the binary relation T based on the queries up to
time t . In other words, T (t) is a directed graph, with the
set of vertices N , and a subset of size t of the edges of T .
Informally, T (t) is the part of the tournament T revealed
to the algorithm at time t . At a certain time t , we say that
i ∈ N is in if, based on the queries so far, the tournament
can be completed in a way that i becomes a Condorcet
winner; that is, i does not have any incoming edges in T (t) .
A candidate that is not in is out. Finally, we define two
notions of score. The score of candidate i at time t , de-
noted s(t)

i , is the number of candidates i beats based on
the first t queries, i.e. i’s outdegree in T (t) . The knockout

1 McGarvey’s Theorem [5] states that every possible tournament is in-
duced by a preference profile of a set of voters, given enough voters.

2 Clearly, if a Condorcet winner exists it is unique.
score (k-score) of candidate i at time t , denoted s̄(t)
i , is the

number of other candidates that i ousted; that is, the num-
ber of candidates j such that at some time t′ < t when j
was in the algorithm queried 〈i, j〉, and received the an-
swer iT j.

We are now ready to present our upper bound.

Theorem 2.1. 2n − �log(n)� − 2 queries are sufficient to de-
termine whether a Condorcet winner exists in a given tourna-
ment T .

Proof. Consider the following algorithm.

Stage 1. The algorithm constructs a binary tree with n
leaves that is almost complete, i.e. a tree of height D , such
that for all levels d � D − 1, the number of leaves at depth
d is 2d . We also require that the tree be full, that is each
node has exactly 0 or 2 children. Each leaf of the tree is
labeled by a distinct candidate i ∈ N . At each step, the al-
gorithm submits the query 〈i, j〉, where i and j are two
sibling leaves in the tree. The father of i and j is labeled
with the winner (i if iT j and j if jT i), and the two leaves
are trimmed (so the father becomes a leaf). We continue
in this way until the tree becomes a singleton labeled by
some candidate i0.3

Stage 2. The algorithm matches i0 against every candidate
that was not matched against i0 in Stage 1. If i0 prevails
in every competition, the algorithm returns true. If i0 loses
some competition, the algorithm returns false.

Let us consider Stage 1 of the algorithm. Each query
submitted in this stage involves two candidates that are
in. Therefore, each query ousts one candidate. The number
of queries submitted in this stage (the number of internal
nodes in the initial tree) is n − 1. Therefore, at time n − 1,
we have only one candidate, i0, that is in. Since the depth
of any leaf in the tree is at least �log(n)�, we have that

s̄(n−1)
i0

= s(n−1)
i0

�
⌊

log(n)
⌋
.

Moving on to Stage 2, we observe that in each step,
we match i0 versus a candidate not previously known to
be dominated by i0. If i0 loses in one of these competi-
tions, it follows that i0 is not a Condorcet winner; since
in Stage 2 (at time t � n − 1) i0 is the only candidate that
is still in, we return false. Otherwise, we may return true.
At the beginning of Stage 2 we have that s(n−1)

i0
� �log(n)�,

hence we conclude that at most n − 1 − �log(n)� queries
are needed in this stage. It follows that the algorithm re-
quires a total of at most 2n − �log(n)� − 2 queries. �

We presently formulate and prove our lower bound.

Theorem 2.2. 2n − �log(n)� − 2 queries are necessary to de-
termine whether a Condorcet winner exists in a given tourna-
ment T .

3 Such a procedure is sometimes called a Voting tree or a binary tree
on N .

392 A.D. Procaccia / Information Processing Letters 108 (2008) 390–393
Proof. The theorem trivially holds for n = 1,2, and is easy
to verify for n = 3. We may therefore assume that n � 4.

In order to establish the lower bound, we design an
adversary that answers the algorithm’s queries. The ad-
versary’s strategy, given the query 〈i, j〉 at time t , is as
follows. If i and j are both in at time t , answer iT j if
s̄(t)

i � s̄(t)
j , and jT i otherwise. If i is in and j is out at

time t , answer iT j. Otherwise (j is in and i is out, or both
are out) answer jT i.

We shall show that 2n − �log(n)� − 3 queries are not
sufficient. We first notice that there is always at least
one candidate that is in. Indeed, this is straightforward, as
when i is in and j is out, the adversary answers iT j in
response to the query 〈i, j〉. The second point we wish to
establish is the trickiest part of the proof: we show that,
given the limitation on the number of queries, no candi-
date is a certain Condorcet winner.

Lemma 2.3. Let t∗ = 2n − �log(n)� − 3. For all i ∈ N, s(t∗)
i <

n − 1.

Proof. Assume for contradiction that there is some i0 ∈ N
with score n − 1 at time t∗ . We derive a contradiction by
showing that the number of queries must be too large.

We first establish an upper bound on m = s̄(t∗)
i0

. The
crux of the proof, indeed of the adversary’s design, is that
for each j ∈ N and time t when j was ousted by i0, we
have s̄(t)

i0
� s̄(t)

j . So, the k-score of the first candidate j1

ousted by i0 is at least 0; the k-score of the second j2,
at least 1; the third j3, at least 2; and so on. Inductively,
j2 ousted a candidate with k-score at least 0, j3 ousted
two candidates with k-scores at least 0 and at least 1, and
so on. Importantly, it is easy to see that the ousted can-
didates are all distinct, as a candidate can only be ousted
once. Imagine a tree with some candidate with k-score h
at the root, where a candidate j is a child of the candi-
date i that ousted it, and the leaves are candidates with
k-score 0 (once again, the candidates that appear in the
tree are all distinct). We shall recursively define a function
f (h), which gives a lower bound on the size of the tree
described above as a function of the k-score h of the can-
didate at the root:

f (h) =
h−1∑
l=0

f (l) + 1, f (0) = 1.

We may reformulate the recursion as f (h) = 2 f (h − 1),
since

f (h) =
h−1∑
l=0

f (l) + 1 = f (h − 1) +
(

h−2∑
l=0

f (l) + 1

)

= 2 f (h − 1); (1)

notice that (1) also holds for h = 1. Therefore, f (h) = 2h ,
and in particular f (m) = 2m . Now, the total number of
candidates is n, so it follows that 2m � n. We conclude that
m � log(n). Since m is an integer, it holds in particular that
m � �log(n)�.

Having achieved this bound on m, we count the total
number of queries. Since i0 itself ousted only m candidates,
other queries involving other candidates had to oust the
remaining n − 1 − m candidates; this accounts for at least
n − 1 − m queries. In addition, in order to reach a score of
n − 1, we must have n − 1 queries involving i0. The total
number of queries at time t∗ is therefore at least

2n − 2 − m � 2n − ⌊
log(n)

⌋ − 2 > t∗.

We have reached a contradiction, which proves Lem-
ma 2.3. �

Now, we must show that at time t∗ = 2n −�log(n)�− 3,
the adversary’s answers are consistent with both a tour-
nament that has a Condorcet winner and a tournament
that does not have one (if this is true then, whatever the
algorithm answers, the adversary can cause the opposite
answer to be correct). Since we have noticed that there is
always at least one candidate that is in, by definition T (t∗)

can be completed in a way that allows for a Condorcet
winner. In order to establish the latter claim (consistency
with a tournament without a Condorcet winner), we ex-
amine three cases:

Case 1. Only one candidate i ∈ N is in at time t∗ . By Lem-
ma 2.3, s(t∗)

i � n − 2, so there is some j ∈ N and some
query 〈i, j〉 that was not asked by the algorithm. We let
jT i, and complete the rest of the tournament arbitrarily.
Since all candidates except i were already out, there is no
Condorcet winner.

Case 2. Exactly two candidates i, j ∈ N are in at time t∗ .
Assume without loss of generality that s(t∗)

i � s(t∗)
j . By

Lemma 2.3, s(t∗)
i � n − 2. Since it must hold that s(t∗)

i +
s(t∗)

j � t∗ � 2n − 5 (where the second inequality follows

from n � 4), j’s score is at most n − 3.4 Therefore, there
is some k 	= i, j such that the query 〈 j,k〉 was not asked
by the algorithm. In addition, as both i and j are in, there
is no edge between i and j in T (t∗) . We let kT j and jT i,
and complete the rest of the tournament arbitrarily. This
clearly guarantees that there is no Condorcet winner.

Case 3. At least three candidates are in at time t∗ . As in
Case 2, we note that the set of candidates that are in at
time t∗ constitutes an independent set in T (t∗) . We can
therefore create a cycle in T on the candidates that are in,
and complete the rest of the tournament arbitrarily.

The proof of Theorem 2.2 is completed. �
Acknowledgements

The author would like to thank Vince Conitzer, Felix Fis-
cher, Nati Linial, Noam Nisan, Jeff Rosenschein, and Lirong
Xia for helpful discussions. The author is supported by the
Adams Fellowship Program of the Israel Academy of Sci-
ences and Humanities.

4 This is an important point, as if there are two candidates that are in
and have score n −2, one of them must beat the other, hence a Condorcet
winner must exist.

A.D. Procaccia / Information Processing Letters 108 (2008) 390–393 393
References

[1] A. Bar-Noy, J. Naor, Sorting, minimal feedback sets, and Hamilton
paths in tournaments, SIAM Journal on Discrete Mathematics 3 (1)
(1990) 7–20.

[2] V. Conitzer, T. Sandholm, Communication complexity of common vot-
ing rules, in: Proceedings of the Sixth ACM Conference on Electronic
Commerce (ACM-EC), 2005, pp. 78–87.

[3] J. Kahn, M. Saks, D. Sturtevant, A topological approach to evasiveness,
Combinatorica 4 (1984) 297–306.
[4] V. King, Lower bounds on the complexity of graph properties, in:
Proceedings of the Twentieth Annual ACM Symposium on Theory of
Computing (STOC), 1988, pp. 468–476.

[5] D.C. McGarvey, A theorem on the construction of voting paradoxes,
Econometrica 21 (4) (1953) 608–610.

[6] J.W. Moon, Topics on Tournaments, Holt, Reinhart and Winston, 1968.
[7] R. Rivest, S. Vuillemin, On recognizing graph properties from adja-

cency matrices, Theoretical Computer Science 3 (1976) 371–384.
[8] A. Rosenberg, The time required to recognize properties of graphs:

A problem, SIGACT News 5 (4) (1973) 15–16.

	A note on the query complexity of the Condorcet winner problem
	Introduction
	Proof of main results
	Acknowledgements
	References

