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Abstract. Social choice theory can serve as an appropriate foundation
upon which to build cooperative information agent applications. There
is a rich literature on the subject of voting, with important theoretical
results, and builders of automated agents can benefit from this work as
they engineer systems that reach group consensus.

This paper considers the application of various voting techniques, and
examines nuances in their use. In particular, we consider the issue of pref-
erence extraction in these systems, with an emphasis on the complexity
of manipulating group outcomes. We show that a family of important
voting protocols is susceptible to manipulation by coalitions in the aver-
age case, when the number of candidates is constant (even though their
worst-case manipulations are NP-hard).

1 Introduction

Research on the theory of social choice, and in particular on its computational
aspects, has become an important pursuit within computer science (CS). Moti-
vating this work is the belief that social choice theory can have direct implications
on the building of systems comprised of multiple automated agents. This paper
describes some of that research, so it is a paper about voting and manipulation,
but it is also inter alia about how computer science can help scientists and math-
ematicians see questions in new ways, spurring progress in new theoretical and
applied directions.

Computer science occupies a unique position with respect to other fields of
scientific endeavor. Its idiosyncratic nature should be celebrated and strength-
ened; it helps to make computer science in general, and its subfield multiagent
systems (MAS), among the most exciting of scientific research areas today.

Computer Science is, at one and the same time:

1. An independent field with its own set of fundamental questions (both the-
oretical and applied). This distinctive blurring of theoretical and applied
research, in both computer science and MAS, can be a great strength. There
exist established fields of Applied Physics and Applied Mathematics, but
there is no Applied Computer Science. Fundamental research certainly ex-
ists in those parts of CS closest to mathematics, but it is hard to conceive of
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a computer scientist, even one who occupies its most mathematical corners,
uttering anything analogous to the quote attributed to the mathematician
Leonard Eugene Dickson, “Thank God that number theory is unsullied by
any application”.1 It’s the aspiration to be purely theoretical that is absent
in computer science.

2. A contributor to other fields of both technological and conceptual enablers;
as the much-quoted New York Times article provocatively put it, “All Science
is Computer Science” [18]. However, that article was referring mainly to the
use of powerful computing in other fields, which is certainly not the core of
computer science. One could argue that the more important influence of CS
has been in changing how scientists in other fields view their problems: com-
putation becomes a basic conceptual model, part of the intellectual toolset
of other fields. There have been a number of highly visible examples of this
trend, such as in cognitive psychology (e.g., information processing models
of memory and attention [11]), attempts to develop computational models of
the cell [27], and computational statistical mechanics [17]. The type of work
described in this paper has had an influence on political science and sociology.

3. An avid consumer of the results produced by other fields. The interdiscipli-
nary nature of computer science is nowhere more evident than in the area
of artificial intelligence (AI), and perhaps nowhere more evident in artificial
intelligence than in its subarea of multiagent systems. MAS researchers for
the last 20 years have eagerly derived inspiration from fields as diverse as bi-
ology, physics, sociology, economics, organization theory, and mathematics.
This is appropriate (even necessary), and the field takes a justifiable pride
in its interdisciplinary openness.

1.1 Game Theory and Economics in MAS

One of the most exciting trends in computer science (and specifically in MAS)
has been the investigation of game theory and economics as tools for automated
systems.2 Beginning with work in the mid-1980s, researchers have turned out
a steady drumbeat of results, considering the computational aspects of game
theory and economics, and how these fields can be put to appropriate use in the
building of automated agents [23,9,29,24,19,15].

In this paper, we explore the use of preference aggregation in multiagent sys-
tems. Preference aggregation has deep roots in economics, but what distinguishes
the CS work on this issue is the concern for computational issues: how are results
arrived at (e.g., equilibrium points)? What is the complexity of the process? Can
complexity be used to guard against unwanted phenomena? Does complexity of
computation prevent realistic implementation of a technique?

The criteria to be used in evaluating this work (and exploiting its results)
needs to take into account the ultimately applied nature of the endeavor. The
1 Of course, number theory eventually provided the basis for the cryptography embed-

ded throughout the internet, so it was not quite as unsullied as all that (eventually).
2 We use the terms loosely, to encompass related fields and subfields such as decision

theory, mechanism design, and general equilibrium theory.
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idealized models of classic game theory might fall short when used normatively
or descriptively with regard to human behavior, but for the most part that might
remain a theoretical concern. Application of these models to automated agents
quite urgently argued for their adjustment. To take one example, if computing
an equilibrium point in a particular interaction is computationally infeasible,
what would be the meaning of telling an agent to choose one?

Much of what follows first appeared in [21,22,20], and we use that material
(particularly from the first of those papers) freely. We present it as a specific
example of how preference aggregation can be handled in automated systems,
and how computational issues come to the forefront.

1.2 The Theory and Practice of Preference Aggregation

In multiagent environments, it may be the case that different agents have di-
verse preferences, and it is therefore important to find a way to aggregate agent
preferences. Even in situations where the agents are cooperative, there may still
be independent motivations, goals, or perspectives that require them to come to
a consensus.

A general scheme for preference aggregation is voting3: the agents reveal their
preferences by ranking a set of candidates, and a winner is determined according
to a voting protocol. The candidates can be entities of almost any conceivable sort.

For instance, Ghosh et al. [12] designed an automated movie recommendation
system, in which the conflicting preferences a user may have about movies were
represented as agents, and movies to be suggested were selected according to
a voting scheme (in this example there are multiple winners, as several movies
are recommended to the user). The candidates in a virtual election could also
be items such as beliefs, joint plans [10], or schedules [14]. In fact, to see the
generality of the (automated) voting scenario, consider modern web searching.
One of the most massive preference aggregation schemes in existence is Google’s
PageRank algorithm, which can be viewed as a vote among indexed web pages on
candidates determined by a user-input search string; winners are ranked (Ten-
nenholtz [26] considers the axiomatic foundations of ranking systems such as
this).

Things are made more complicated by the fact that in many automated set-
tings (as in non-virtual environments) the agents are self-interested, or at the
very least bring different knowledge/perspectives to the interaction. Such an
agent may reveal its preferences untruthfully, if it believes this would make the
final outcome of the elections more favorable for it. In fact, well-meaning agents
may even lie in an attempt to improve social welfare [20].4 In any case, whether
the agents are acting out of noble or ignoble motives, there may be an undesir-
able social outcome. Strategic behavior in voting has been of particular interest
to AI researchers [3,5,8,21]. This problem is provably acute: it is known [13,25]
that, for elections with three or more candidates, in any voting protocol that
3 We use the term in its intuitive sense here, but in the social choice literature, “pref-

erence aggregation” and “voting” are basically synonymous.
4 Though if several do it in parallel there may be unintended negative consequences.
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is non-dictatorial,5 there are elections where an agent is better off by voting
untruthfully.

Of course, in some systems, particularly centrally-designed systems, strategic
behavior can be effectively banned by fiat. We would argue this covers a distinct
minority of multiagent systems.

1.3 Nuances

Different voting protocols will often have different outcomes, as well as different
properties. Some protocols may be hard to manipulate; others may skew the
preferences of voters in particular ways. Many of these phenomena are well-
known in social choice theory, such as the effects of run-off voting on who wins
an election (a good heuristic: bring your candidate up for a vote as late as
possible in the process). Consider as another example one that comes from a
paper in this collection [20]. There we discuss the concepts of distortion and
misrepresentation, two (related, but distinct) measures of how well (or badly) a
given candidate represents the desires of a voter.

Quoting from [20]:

[T]he misrepresentation of a social choice function. . . can be easily refor-
mulated as distortion. In fact, similar results can be obtained, but the
latter formulation favors candidates that are ranked last by few voters,
whereas the former formulation rewards candidates that are placed first
by many voters.

So depending on whether distortion or misrepresentation is used, we may be
developing a technique that prefers candidates with many first place votes over
one that prefers candidates with few last place votes. The choice is in the hands
of the designer, and one or the other may be more natural for some specific
domain. Continuing from [20]:

Consider the meeting scheduling problem discussed in [14]: scheduling
agents schedule meetings on behalf of their associated users, based on
given user preferences; a winning schedule is decided in an election. Say
three possible schedules are being voted on. These schedules, being fair,
conflict with at most two of the requirements specified by any user. . . In
this case, having no conflicts at all is vastly superior to having at least
one conflict, as even one conflict may prevent a user from attending a
meeting. As noted above, this issue is taken into account in the calcula-
tion of misrepresentation — emphasis is placed on candidates that were
often ranked first.

This type of consideration runs throughout our choices of preference aggrega-
tion techniques. The system put into place may have major ramifications on the
outcomes. In addition (and this is the main concern of the rest of the paper),

5 In a dictatorial protocol, there is an agent that dictates the outcome regardless of
the others’ choices.
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the resistance of the system to strategic behavior may influence whether agents
truthfully reveal their preferences, and whether a socially desirable candidate is
elected.

1.4 Complexity to the Rescue

Fortunately, it is reasonable to make the assumption that automated agents are
computationally bounded. Therefore, although in principle an agent may be able
to manipulate an election, the computation required may be infeasible. This has
motivated researchers to study the computational complexity of manipulating
voting protocols. It has long been known [2] that there are voting protocols that
are NP-hard to manipulate by a single voter. Recent results by Conitzer and
Sandholm [6,4] show that some manipulations of common voting protocols are
NP-hard, even for a small number of candidates. Moreover, in [7], it is shown
that adding a pre-round to some voting protocols can make manipulations hard
(even PSPACE-hard in some cases). Elkind and Lipmaa [8] show that the notion
of pre-round, together with one-way functions, can be used to construct protocols
that are hard to manipulate even by a large minority fraction of the voters.

In computer science, the notion of hardness is usually considered in the sense
of worst-case complexity. Not surprisingly, most results on the complexity of
manipulation use NP-hardness as the complexity measure. However, it may
still be the case that most instances of the problem are easy to manipulate.

A relatively little-known theory of average case complexity exists [28]; that
theory introduces the concept of distributional problems, and defines what a
reduction between distributional problems is. It is also known that average-case
complete problems exist (albeit artificial ones, such as a distributional version
of the halting problem).

Sadly, it is very difficult to show that a certain problem is average-case com-
plete, and such results are known only for a handful of problems. Additionally,
the goal of the existing theory is to define when a problem is hard in the average-
case; it does not provide criteria for deciding when a problem is easy. A step
towards showing that a manipulation is easy on average was made in [8]. It
involves an analysis of the plurality protocol with a pre-round, but focuses on
a very specific distribution, which does not satisfy some basic desiderata as to
what properties an “interesting” distribution should have.

In this paper, we engage in a novel average-case analysis, based on criteria
we propose. Coming up with an “interesting” distribution of problem instances
with respect to which the average-case complexity is computed is a difficult task,
and the solution may be controversial. We analyze problems whose instances are
distributed with respect to a junta distribution. Such a distribution must satisfy
several conditions, which (arguably) guarantee that it focuses on instances that
are harder to manipulate. We consider a protocol to be susceptible to manipu-
lation when there is a polynomial time algorithm that can usually manipulate
it: the probability of failure (when the instances are distributed according to a
junta distribution) must be inverse-polynomial. Such an algorithm is known as
a heuristic polynomial time algorithm.
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We use these new methods to show our main result: an important family
of protocols, called scoring protocols, is susceptible to coalitional manipulation
when the number of candidates is constant.6 Specifically, we contemplate sen-
sitive scoring protocols, which include such well-known protocols as Borda and
Veto. To accomplish this task, we define a natural distribution μ∗ over the in-
stances of a well-defined coalitional manipulation problem, and show that this
is a junta distribution. Furthermore, we present the manipulation algorithm
Greedy, and show that it usually succeeds with respect to μ∗.

We also show that all protocols are susceptible to a certain setting of manip-
ulation, where the manipulator is unsure about the others’ votes. This result
depends upon a basic conjecture regarding junta distributions, but also has im-
plications that transcend our specific definition of these distributions.

In Section 2, we outline some important voting protocols, and properly define
the manipulation problems we shall discuss. In Section 3, we formally introduce
the tools for our average case analysis: junta distributions, heuristic polynomial
time, and susceptibility to manipulations. In Section 4 we present our main
result: sensitive scoring protocols are susceptible to coalitional manipulation with
few candidates. In Section 5, we discuss the case when a single manipulator is
unsure about the other voters’ votes. Finally, in Section 6, we present conclusions
and directions for future research.

2 Preliminaries

We first describe some common voting protocols and formally define the manip-
ulation problems with which we shall deal. Next, we introduce a useful lemma
from probability theory.

2.1 Elections and Manipulations

An election consists of a set C of m candidates, and a set V of n voters, who
provide a total order on the candidates. An election also includes a winner de-
termination function from the set of all possible combinations of votes to C. We
note that throughout this paper, m = O(1), so the complexity results are in
terms of n.

Different voting protocols are distinguished by their winner determination
functions. The protocols we shall discuss are:

– Scoring protocols: A scoring protocol is defined by vector α=〈α1, α2, . . . , αm〉,
such that α1 ≥ α2 ≥ . . . ≥ αm and αi ∈ N ∪ {0}. A candidate receives
αi points for each voter which ranks it in the i’th place. Examples of scoring
protocols are:

• Plurality: α = 〈1, 0, . . . , 0, 0〉.
• Veto: α = 〈1, 1, . . . , 1, 0〉.
• Borda: α = 〈m − 1, m − 2, . . . , 1, 0〉.

6 Proofs can be found in [21].
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– Copeland: For each possible pair of candidates, simulate an election; a candi-
date wins such a pairwise election if more voters prefer it over the opponent.
A candidate gets 1 point for each pairwise election it wins, and −1 for each
pairwise election it loses.

– Maximin: A candidate’s score in a pairwise election is the number of voters
that prefer it over the opponent. The winner is the candidate whose minimum
score over all pairwise elections is highest.

– Single Transferable Vote (STV): The election proceeds in rounds. In each
round, the candidate’s score is the number of voters that rank it highest
among the remaining candidates; the candidate with the lowest score is elim-
inated.

Remark 1. We assume that tie-breaking is always adversarial to the manipulator.7

In the case of weighted votes, a voter with weight k ∈ N is naturally regarded
as k voters who vote unanimously. In this paper, we consider weights in [0, 1].
This is equivalent, since any set of integer weights in the range 1, . . . , polyn can
be scaled down to weights in the segment [0, 1] with O(logn) bits of precision.

The main results of the paper focus on scoring protocols. We shall require the
following definition:

Definition 1. Let P be a scoring protocol with parameters α=〈α1, α2, . . . , αm〉.
We say that P is sensitive iff α1 ≥ α2 ≥ . . . ≥ αm−1 > αm = 0 (notice the strict
inequality on the right).

In particular, Borda and Veto are sensitive scoring protocols.

Remark 2. Generally, from any scoring protocol with αm−1 > αm, an equivalent
sensitive scoring protocol can be obtained by subtracting αm on a coordinate-
by-coordinate basis from the vector α. Moreover, observe that if a protocol is a
scoring protocol but is not sensitive, and αm = 0, then αm−1 = 0. In this case,
for three candidates it is equivalent to the plurality protocol, for which most
manipulations are tractable even in the worst-case. Therefore, it is sufficient to
restrict our results to sensitive scoring protocols.

We next consider some types of manipulations, state the appropriate complexity
results, and introduce some notations.

Remark 3. We discuss the constructive cases, where the goal is trying to make
a candidate win, as opposed to destructive manipulation, where the goal is to
make a candidate lose. Constructive manipulations are always at least as hard
(in the worst-case sense) as their destructive counterparts, and in some cases
strictly harder (if one is able to determine whether p can be made to win, one
can also ask whether any of the other m−1 candidates can be made to win, thus
making p lose).

7 This is a standard assumption, also made, for example, in [6,4]. It does, indeed, make
it more straightforward to prove certain results.
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Definition 2. In the Individual-Manipulation problem, we are given all the
other votes, and a preferred candidate p. We are asked whether there is a way
for the manipulator to cast its vote so that p wins.

Bartholdi and Orlin [2] show that IM is NP-complete in Single Transferable
Vote, provided the number of candidates is unbounded. However, the problem
is in P for most voting schemes, and hence will not be studied here.

Definition 3. In the Coalitional-Weighted-Manipulation (CWM) prob-
lem, we are given a set of weighted votes S, the weights of a set of votes T which
have not been cast, and a preferred candidate p. We are asked whether there is
a way to cast the votes in T so that p wins the election.

We know [6,4] that CWM is NP-complete in Borda, Veto and Single Transferable
Vote, even with 3 candidates, and in Maximin and Copeland with at least 4
candidates.

The CWM version that we shall analyze, which is specifically tailored for
scoring protocols, is a slightly modified version whose analysis is more straight-
forward:

Definition 4. In the Scoring-Coalitional-Weighted-Manipulation

(SCWM) problem, we are given an initial score S[c] for each candidate c, the
weights of a set of votes T which have not been cast, and a preferred candidate
p. We are asked whether there is a way to cast the votes in T so that p wins the
election.

S[c] can be interpreted as c’s total score from the votes in S. However, we do not
require that there exist a combination of votes that actually induces S[c] for all c.

Definition 5. In the Uncertain-Votes-Weighted-Evaluation (UVWE)
problem, we are given a weight for each voter, a distribution over all the votes,
a candidate p, and a number r ∈ [0, 1]. We are asked whether the probability of
p winning is greater than r.

Definition 6. In theUncertain-Votes-Weighted-Manipulation (UVWM)
problem, we are given a single manipulative voter with a weight, weights for all
other voters, a distribution over all the others’ votes, a candidate p, and a number
r, where r ∈ [0, 1]. We are asked whether the manipulator can cast its vote so that
p wins with probability greater than r.

If CWM is NP-hard in a protocol, then UVWE and UVWM are also NP-hard in
it [6]. These problems will be studied in Section 5. We make the assumption that
the given distributions over the others’ votes can be sampled in polynomial time.

2.2 Chernoff’s Bounds

The following lemma will be of much use later on. Informally, it states that the
average of independent identically distributed (i.i.d.) random variables is almost
always close to the expectation.
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Lemma 1 (Chernoff’s Bounds). Let X1, . . . , Xt be i.i.d. random variables
such that a ≤ Xi ≤ b and E[Xi] = μ. Then for any ε > 0, it holds that:

– Pr[1t
∑t

i=1 Xi ≥ μ + ε] ≤ e
−2t ε2

(b−a)2

– Pr[1t
∑t

i=1 Xi ≤ μ − ε] ≤ e
−2t ε2

(b−a)2

3 Junta Distributions and Susceptible Mechanisms

In this section we lay the mathematical foundations required for an average-case
analysis of the complexity of manipulations. All of the definitions are as general
as possible; they can be applied to the manipulation of any mechanism, not
merely to the manipulation of voting protocols.

We describe a distribution over the instances of a problem as a collection
of distributions μ1, . . . , μn, . . ., where μn is a distribution over the instances x
such that |x| = n. We wish to analyze problems whose instances are distributed
with respect to a distribution which focuses on hard-to-manipulate instances.
Ideally, we would like to insure that if one manages to produce an algorithm
which can usually manipulate instances according to this distinguished “difficult”
distribution, the algorithm would also usually succeed when the instances are
distributed with respect to most other reasonable distributions.

Definition 7. Let μ = {μn}n∈N be a distribution over the possible instances of
an NP-hard manipulation problem M . μ is a junta distribution if and only if μ
has the following properties:

1. Hardness: The restriction of M to μ is the manipulation problem whose
possible instances are only:

⋃

n∈N

{x : |x| = n ∧ μn(x) > 0}.

Deciding this restricted problem is still NP-hard.
2. Balance: There exist a constant c > 1 and N ∈ N such that for all n ≥ N :

1
c

≤ Prx∼μn [M(x) = 1] ≤ 1 − 1
c
.

3. Dichotomy: for all n and instances x such that |x| = n:

μn(x) ≥ 2−polyn ∨ μn(x) = 0.

If M is a voting manipulation problem, we also require the following property:

4. Symmetry: Let v be a voter whose vote is given, let c1, c2 
= p be two can-
didates, and let i ∈ {1, . . . , m}. The probability that v ranks c1 in the i’th
place is the same as the probability that v ranks c2 in the i’th place.
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If M is a coalitional manipulation problem, we also require the following
property:

5. Refinement: Let x be an instance such that |x| = n and μn(x) > 0; if all
colluders voted identically, then p would not be elected.

The name “junta distribution” comes from the idea that in such a distribution,
relatively few “powerful” and difficult instances represent all the other problem
instances. Alternatively, our intent is to have a few problematic distributions
(the family of junta distributions) convincingly represent all other distributions
with respect to the average-case analysis.

The first three properties are basic, and are relevant to problems of manipu-
lating any mechanism. The definition is modular, and additional properties may
be added on top of the basic three, in case one wishes to analyze a mechanism
which is not a voting protocol.

The exact choice of properties is of extreme importance (and, as we men-
tioned above, may be arguable). We shall briefly explain our choices. Hardness
is meant to insure that the junta distribution contains hard instances. Balance
guarantees that a trivial algorithm which always accepts (or always rejects) has
a significant chance of failure. The dichotomy property helps in preventing situ-
ations where the distribution gives a (positive but) negligible probability to all
the hard instances, and a high probability to several easy instances.

We now examine the properties that are specific to manipulation problems.
The necessity of symmetry is best explained by an example. Consider CWM
in STV with m ≥ 3. One could design a distribution where p wins if and only
if a distinguished candidate loses the first round. Such a distribution could be
tailored to satisfy the other conditions, but misses many of the hard instances.
In the context of SCWM, we interpret symmetry in the following way: for every
two candidates c1, c2 
= p and y ∈ R,

Pr
x∼μn

[S[c1] = y] = Pr
x∼μn

[S[c2] = y].

Refinement is less important than the other four properties, but seems to
help in concentrating the probability on hard instances. Observe that refinement
is only relevant to coalitional manipulation; we believe that in the analysis of
individual voting manipulation problems, the first four properties are sufficient.

Definition 8. [28] A distributional problem is a pair 〈L, μ〉 where L is a decision
problem and μ is a distribution over the set {0, 1}∗ of possible inputs.

Informally, an algorithm is a heuristic polynomial time algorithm for a distrib-
utional problem if it runs in polynomial time, and fails only on a small fraction
of the inputs. We now give a formal definition; this definition is inspired by [28]
(there the same name is used for a somewhat different definition).

Definition 9. Let M be a manipulation problem and let 〈M, μ〉 be a distribu-
tional problem.
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1. An algorithm A is a deterministic heuristic polynomial time algorithm for the
distributional manipulation problem 〈M, μ〉 if A always runs in polynomial
time, and there exists a polynomial p and N ∈ N such that for all n ≥ N :

Pr
x∼μn

[A(x) 
= M(x)] <
1

p(n)
. (1)

2. Let A be a probabilistic algorithm, which uses a random string s. A is a
probabilistic heuristic polynomial time algorithm for the distributional ma-
nipulation problem 〈M, μ〉 if A always runs in polynomial time, and there
exists a polynomial p and N ∈ N such that for all n ≥ N :

Pr
x∼μn,s

[A(x) 
= M(x)] <
1

p(n)
. (2)

Probabilistic algorithms have two potential sources of failure: an unfortunate
choice of input, or an unfortunate choice of random string s. The success or
failure of deterministic algorithms depends only on the choice of input.

We now combine all the definitions introduced in this section in an attempt to
establish when a mechanism is susceptible to manipulation in the average case.
The following definition abuses notation a bit: M is both used to refer to the
manipulation itself, and the corresponding decision problem.

Definition 10. We say that a mechanism is susceptible to a manipulation M if
there exists a junta distribution μ, such that there exists a deterministic/probabi-
listic heuristic polynomial time algorithm for 〈M, μ〉.

4 Susceptibility to SCWM

Recall [6,4] that in Borda and Veto, CWM is NP-hard, even with 3 candidates.
Since Borda and Veto are examples of sensitive scoring protocols, we would like
to know how resistant this family of protocols really is with respect to coalitional
manipulation. In this section we use the methods from the previous section to
present our main result:

Theorem 1. Let P be a sensitive scoring protocol. Then P , with candidates
C = {p, c1, . . . , cm}, m = O(1), is susceptible to SCWM.

Intuitively, the instances of CWM (or SCWM) which are hard are those that
require a very specific partitioning of the voters in T to subsets, where each subset
votes unanimously. These instances are rare in any reasonable distribution; this
insight will ultimately yield the theorem.

The following proposition generalizes Theorem 1 of [6] and Theorem 2 of [4],
and justifies our focus on the family of sensitive scoring protocols. A stronger
version of Proposition 1 has been independently proven in [16].

Proposition 1. Let P be a sensitive scoring protocol. Then CWM in P is NP-
hard, even with 3 candidates.
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Definition 11. In the Partition problem, we are given a set of integers
{ki}i∈[t], summing to 2K, and are asked whether a subset of these integers
sum to K.

It is well-known that Partition is NP-complete.

Proof (of Proposition 1). All proofs in the paper are omitted, but can be seen
in [21].

Since an instance of CWM can be translated to an instance of SCWM in the
obvious way, we have:

Corollary 1. Let P be a sensitive scoring protocol. It holds that SCWM in P
is NP-hard, even with 3 candidates.

4.1 A Junta Distribution

Let w(v) denote the weight of voter v, and let W denote the total weight of the
votes in T ; P is a sensitive scoring protocol. We denote |T | = n: the size of T is
the size of the instance.

Consider a distribution μ∗ = {μ∗
n}n∈N over the instances of CWM in P ,

with m + 1 candidates p, c1, . . . , cm, where each μ∗
n is induced by the following

sampling algorithm:

1. ∀v ∈ T : Randomly and independently choose w(v) ∈ [0, 1] (up to O(logn)
bits of precision).

2. ∀i∈{1, . . . , m}: Randomly and independently choose S[ci]∈ [(α1−α2)W, α1W ]
(up to O(logn) bits of precision).

We assume that S[p] = 0, i.e., all voters in S rank p last. This assumption is
not a restriction. If it holds for a candidate c that S[c] ≤ S[p], then candidate c
will surely lose, since the colluders all rank p first. Therefore, if S[p] > 0, we may
simply normalize the scores by subtracting S[p] from the scores of all candidates.
This is equivalent to our assumption.

Remark 4. We believe that μ∗ is the most natural distribution with respect to
which coalitional manipulation in scoring protocols should be studied. Even if
one disagrees with the exact definition of junta distribution, μ∗ should satisfy
many reasonable conditions one could produce.

We shall, of course, (presently) show that the distribution possesses the proper-
ties of a junta distribution.

Proposition 2. Let P be a sensitive scoring protocol. Then μ∗ is a junta dis-
tribution for SCWM in P with C = {p, c1, . . . , cm}, and m = O(1).

4.2 A Heuristic Polynomial Time Algorithm

We now present our algorithm Greedy for SCWM, given as Algorithm 1. w
denotes the vector of the weights of voters in T = {t1, . . . , tn}.
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Algorithm 1. Decides SCWM
1: procedure Greedy(S, w, p)
2: for all c ∈ C do � Initialization
3: S0[c] ← S[c]
4: end for
5: for i = 1 to n do � All voters in T
6: Let j1, j2, . . . , jm s.t. ∀l, Si−1[cjl−1 ] ≤ Si−1[cjl ]
7: Voter ti votes p � cj1 � cj2 � . . . � cjm

8: for l = 1 to m do � Update score
9: Si[cjl ] ← Si−1[cjl ] + w(ti)αl+1

10: end for
11: Si[p] ← Si−1[p] + w(ti)α1

12: end for
13: if argmaxc∈CSn[c] = {p} then � p wins
14: return true
15: else
16: return false
17: end if
18: end procedure

The voters in T , according to some order, each rank p first, and the rest of the
candidates by their current score: the candidate with the lowest current score is
ranked highest. Greedy accepts if and only if p wins this election.

This algorithm, designed specifically for scoring protocols, is a realization of
an abstract greedy algorithm: at each stage, voter ti ranks the undesirable candi-
dates in an order that minimizes the highest score that any undesirable candidate
obtains after the current vote. If there is a tie between several permutations, the
voter chooses the option such that the second highest score is as low as possible,
etc. In any case, every colluder always ranks p first.

Remark 5. This abstract scheme might also be appropriate for protocols such as
Maximin and Copeland. Similarly to scoring protocols, in these two protocols the
colluders are always better off by ranking p first. In addition, the abstract greedy
algorithm can be applied to Maximin and Copeland since the result of an election
is based on the score each candidate has (unlike STV, for example).

In the following lemmas, a stage in the execution of the algorithm is an iteration
of the for loop.

Lemma 2. If there exists a stage i0 during the execution of Greedy, and two
candidates a, b 
= p, such that

|Si0 [a] − Si0 [b]| ≤ α2, (3)

then for all i ≥ i0 it holds that |Si[a] − Si[b]| ≤ α2.
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Lemma 3. Let p 
= a, b ∈ C, and suppose that there exists a stage i0 such that
Si0 [a] ≥ Si0 [b], and a stage i1 ≥ i0 such that Si1 [b] ≥ Si1 [a]. Then for all i ≥ i1
it holds that |Si[a] − Si[b]| ≤ α2.

Lemma 4. Let P be a sensitive scoring protocol, and assume Greedy errs on
an instance of SCWM in P which has a successful manipulation. Then there is
d ∈ {2, 3, . . . , m}, and a subset of candidates D = {cj1 , . . . , cjd

}, such that:

d∑

i=1

(α1W − S[cji ]) −
d−1∑

i=1

(i · α2) ≤ W

d∑

i=1

αm+2−i

≤
d∑

i=1

(α1W − S[cji ]).

(4)

Lemma 5. Let M be SCWM in a sensitive scoring protocol P with C =
{p, c1, . . . , cm}, m=O(1). Then Greedy is a deterministic heuristic polynomial
time algorithm for 〈M, μ∗〉.

Clearly, Theorem 1 directly follows.

5 Susceptibility to UVWM

In this section we shall show:

Theorem 2. Let P be a voting protocol such that there exists a junta distri-
bution μP over the instances of UVWM in P , with the following property: r
is uniformly distributed in [0, 1]. Then P , with candidates C = {p, c1, . . . , cm},
m = O(1), is susceptible to UVWM.

The existence of a junta distribution with r uniformly distributed is a very weak
requirement (it is even quite natural to have r uniformly distributed). In fact,
the following claim is very likely to be true:

Conjecture 1. Let P be a voting protocol. Then there exists a junta distribution
μP over the instances of UVWM in P , with r uniformly distributed in [0, 1].

If this conjecture is indeed true, we have that all voting protocols are susceptible
to UVWM. If for some reason the conjecture is not true with respect to our
definition of junta distributions, then perhaps the definition is too restrictive
and should be modified accordingly.

To prove Theorem 2, we require a procedure named Sample, which decides
UVWE. Sample samples the given distribution on the votes n3 times, and
calculates the winner of the election each time. If p won more than an r-fraction
of the elections then the procedure accepts, otherwise it rejects. We omit the
details of the procedure.
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Algorithm 2. Decides UVWM
1: procedure Sample-and-Manipulate(w, ν, p, r)
2: for all permutations of the m + 1 candidates do
3: π ← next permutation
4: ν∗ ← the manipulator votes π
5: � others’ votes are always distributed w.r.t. ν
6: if Sample(w, ν∗, p, r) then
7: return true
8: end if
9: end for

10: return false
11: end procedure

Lemma 6. Let P be a voting protocol, and E be UVWE in P with C ={p, c1, . . . ,
cm}. Furthermore, let μ be a distribution over the instances of E, with r uni-
formly distributed in [0, 1]. Then there exists N such that for all n ≥ N :

Pr
x∼μn

[Sample(x) 
= E(x)] ≤ 1
polyn

.

We now present an algorithm, Sample-and-Manipulate that decides UVWM;
it is given as Algorithm 2. Here, w denotes the weights of all voters including
the manipulator, and ν is the given distribution over the others’ votes.

Given an instance of UVWM, Sample-and-Manipulate generates (m + 1)!
instances of the UVWE problem, one for each of the manipulator’s possible votes,
and executes Sample on each instance. Sample-and-Manipulate accepts if
and only if Sample accepts one of the instances.

Lemma 7. Let P be a voting protocol, and M be UVWM in P with C =
{p, c1, . . . , cm}, m = O(1). Furthermore, let μ be a distribution over the instances
of UVWM, with r uniformly distributed in [0, 1]. It holds that Sample-and-

Manipulate is a probabilistic heuristic polynomial time algorithm for 〈M, μ〉.

6 Future Research

The issue of resistance of mechanisms to manipulation is important, particularly
in the context of voting protocols. Most results on this issue use NP-hardness
as the complexity measure. One of this paper’s main contributions has been
introducing tools that can be utilized in showing that manipulating mechanisms
is easy in the average case. We were concerned with the likely case of coalitional
manipulation, and showed that sensitive scoring protocols are susceptible to such
manipulation when the number of candidates is constant.

These results suggest that scoring protocols cannot be safely employed. More
importantly, this paper should be seen as a starting point for studying the aver-
age case complexity of other types of manipulations, in other protocols. In addi-
tion, the definitions in Section 3 are deliberately general, and can be applied to
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manipulations of mechanisms that are not voting mechanisms. One such mecha-
nism of which we are aware, whose manipulation is NP-hard, is presented in [1].

There is still room for debate as to the exact definition of a junta distribution,
especially if Conjecture 1 turns out to be false. It may also be the case that there
are “unconvincing” distributions that satisfy all of the (current) conditions of
a junta distribution. It might prove especially fruitful to show that a heuristic
polynomial time algorithm with respect to a junta distribution also has the
same property with respect to some easy distributions, such as the uniform
distribution.

An issue of great importance is coming up with natural criteria to decide when
a manipulation problem is hard in the average-case. The traditional definition
of average-case completeness is very difficult to work with in general; is there a
satisfying definition that applies specifically to the case of manipulations? Once
the subject is more fully understood, this understanding can be used to design
mechanisms that are hard to manipulate in the average-case.
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