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Abstract

Agents situated in a real-world setting may frequently lack complete knowledge of their environment
and the capabilities of other agents. Researchers have addressed this problem by exploiting tools from
learning theory. In particular, advances in reinforcement learning have yielded learning algorithms that
converge to different solution concepts for stochastic games. However, scarcely any studies have at-
tempted to tackle learning in coalition formation. Even fewer have applied the widely known Probably
Approximately Correct (PAC) theory to multiagent systems.

In this paper, we endeavor to remedy these shortcomings by considering PAC learning of simple
cooperative games, in which the coalitions are partitioned into “winning” and “losing” coalitions. We
analyze the sample complexity of a suitable concept class by calculating its Vapnik-Chervonenkis (VC)
dimension, and provide an algorithm that learns this class. Furthermore, we study constrained simple
games; we demonstrate that the VC dimension can be dramatically reduced when there exists only
a single minimum winning coalition (even more so when this coalition has cardinality 1), while other
interesting constraints do not significantly lower the dimension.

1 Introduction

A significant portion of recent research in multiagent systems has focused on learning. In particular, re-
searchers have constructed and analyzed algorithms that converge to equilibrium concepts (such as Nash
equilibrium) for stochastic games [13, 14, 10, 8]. The latest studies have attempted to introduce algorithms
that achieve an optimal payoff in the presence of other agents, but have not considered the convergence to
equilibrium as obligatory [3, 18, 5, 22].

Some researchers have applied learning to the problem of coordination in multiagent systems. In [16],
coordination is achieved through reinforcement learning techniques, without the use of communication.
Another approach is the “Coordinated Reinforcement Learning” Framework [9]; agents use learning, as well
as limited communication, to select an optimal joint action from an exponential action space.

Nevertheless, very few investigations have been devoted to learning in coalition formation, an area of
game theory that is exceedingly relevant to multiagent systems. Classical models of coalition formation
assume the values of all coalitions are known a priori, but this assumption is unreasonable in many (indeed,
almost all) multiagent settings. In [4], a new model for coalition formation was proposed, where agents must
learn the values of possible coalitions. Moreover, the (strongest) classical solution concept, called the core,
is replaced by a modified version called the Bayesian core.

All of the aforementioned papers adopt reinforcement learning [19], or some slightly doctored version,
as the learning technique; each agent maintains an estimated model of the environment, based on past
experiences. The model is updated as the agent repeatedly interacts with other agents and the environment,
but at each stage an agent must base its decisions on the current model it possesses.

Surprisingly, only a handful of researchers have attempted to apply PAC1 (Probably Approximately Cor-
1The PAC model is also known as the formal model.
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rect) learning theory to multiagent settings, although this model has been extensively studied by researchers
in computational learning theory. One example of PAC research in a multiagent model can be found in [6],
where PAC learning is used to identify agents that can provide specific services. Another investigation [20]
introduces a framework used to predict the behavior of a multiagent system with learning agents, and uses
PAC learning theory to obtain bounds on the values of the learning parameters.

In this paper, we focus on simple cooperative games, in which each coalition is either “winning” or
“losing”, the assumption being that if a coalition is winning, any coalition that contains it is also winning.
Simple games are a suitable model for numerous n-person conflict situations. An example of such a game
is voting on a bill in a parliament (with, say, 120 members), where a majority of votes has to be obtained
in order to pass the bill; a winning coalition is any coalition with at least 61 members. Given the set
N = {1, 2, . . . , n} of players (agents2), we can concisely describe a simple cooperative game by maintaining
a list of minimum winning coalitions; a coalition is winning if and only if it is a superset (in the weak sense)
of some minimum winning coalition, and is losing otherwise. In this way, sets of minimum winning coalitions
can be considered as functions from 2N to {0, 1}. Let C∗ be the class of such concepts.

In our setting, an agent is learning, in the PAC model, some target concept ct ∈ C∗, by training on a
set of “sample” coalitions. The samples are labeled either 1 (for winning) or 0 (for losing), and are drawn
from some fixed distribution on the instance space 2N . Observing the conventions of PAC learning theory,
the hypothesis that is produced by the learning process is expected to be ε-close to the target concept, with
confidence 1− δ.

It is important to note that this setting can be embedded into real-world environments. Consider a group
of advisers to the president of some political or financial organization. Different advisers would like to pursue
different courses of action. Some of the advisers are closer to the ear of the president; coalitions that include
such powerful advisers are more likely to convince the president. Since the group of advisers influences the
president’s decisions on a daily basis, the “winning” coalitions of advisers can be identified by examining the
decisions the president has made over a period of weeks or months. The assumption of a fixed distribution
on the coalitions is justified by noting that coalitions are likely to form among advisers with some common
agenda; hence the set of plausible coalition structures is not likely to change over a short period of time.

The Vapnik-Chervonenkis (VC) dimension, which is formally defined in Section 2, is a combinatorial
measure of the “richness” of a concept class, and is proportional to the difficulty of learning the class. We
prove that

VC-dim(C∗) =
(

n

bn/2c

)
.

We use our bounds on the VC dimension to estimate the training set size a consistent3 algorithm needs in
order to be “probably approximately correct”, and present a specific algorithm that learns C∗.

We attempt to lower the VC dimension by studying constrained classes of simple games. We demonstrate
that some constraints greatly reduce the VC-dimension: requiring that there be a dictator player reduces
the dimension to blognc, while a generalization of this constraint to a single winning coalition has a VC-
dimension of n. We consider other interesting constraints, and show that they do not substantially reduce
the VC dimension.

We wish to stress that although similar upper bounds on the sample complexity can be derived from the
size of our (finite) concept classes, we still benefit from computing the VC dimension of such classes, since
this also yields lower bounds on the sample complexity.

Interestingly, C∗ is equivalent to the concept class of monotone DNF formulas, which is formally defined
below. The latter concept class has not been sufficiently studied in the context of PAC learning and VC
dimension. In particular, the constraints we study on simple games stem from game theoretic intuitions that
are scarcely relevant when discussing boolean formulas.

The rest of the paper is organized as follows. In Section 2 we discuss known definitions and results. In
Section 3 we present our results. In Section 4 we give our conclusions.

2Throughout the paper, we use the terms “agent” and “player” interchangeably.
3The algorithm is consistent in the sense that it produces a hypothesis that labels the examples in the training set correctly.
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2 Preliminaries

We first provide a mathematical model of simple games. We then formally define the PAC model and the
VC dimension, and present some relevant theorems. The monotone DNF learning problem is also discussed.
We conclude this section by stating Sperner’s Theorem [1].

2.1 Simple Cooperative n-Person Games

In this subsection we follow Section 2.5 of [11].
A cooperative n-person game in characteristic form with side payments is a pair (N ; v), where N =

{1, 2, . . . , n} is a set of players, and v is the characteristic function, which assigns a real number v(C) to
each coalition C ⊂ N . v(C) is the value of C.

Simple games are games where each coalition has a value of either 1 or 0. A coalition C is said to be
winning if v(C) = 1, and losing if v(C) = 0. 2N , the powerset of N , is partitioned into W , the set of winning
coalitions, and L , the set of losing coalitions. This partition is assumed to satisfy three properties:

1. ∅ ∈ L .

2. N ∈ W .

3. C1 ∈ W ∧ C1 ⊂ C2 → C2 ∈ W .

2.2 The PAC model and VC-dimension

In this subsection we give a very short introduction to the PAC model and the VC dimension. A more
comprehensive overview of the model, and results concerning the VC dimension, can be found in [21], and a
more concise summary is available in [17] (the latter is the text we follow in the next few paragraphs).

In the PAC model, the learner is given a set of m instances x1, x2, . . . , xm which are sampled i.i.d. (in-
dependent identically distributed) according to a distribution D over the sample space X. D is unknown,
but is fixed throughout the learning process. In this paper, we assume the “realizable” case, where a target
concept ct(x) exists, and the given training examples are Z = {xi, ct(xi)}mi=1. Let C : X → {0, 1} be the
concept class; the error of a concept h ∈ C is defined as

err(h) = Pr
x∼D

[ct(x) 6= h(x)].

ε > 0 is a parameter given to the learner that defines the “accuracy” of the learning process: we would
like to achieve err(h) ≤ ε. Notice that err(ct) = 0. The learner is also given a “confidence” parameter δ > 0,
that provides an upper bound on the probability that err(h) > 0:

Pr[err(h) > ε] < δ.

We now formalize the discussion above:

Definition 1.

1. A learning algorithm L is a function from the set of all training examples to C with the following
property: given ε, δ ∈ (0, 1) there exists an integer m0(ε, δ), such that for any distribution D on X, if Z
is a sample of size at least m0 where the samples are drawn i.i.d. according to D, then with probability
at least 1− δ it holds that err(L(Z)) ≤ ε.

2. A concept class C is PAC-learnable if there is a learning algorithm for C.

Remark 2. m0 is known as the sample complexity of C.
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Definition 3. Let C : X → {0, 1} be a concept class, S = {x1, x2, . . . , xm} ⊂ X, and let

ΠC(S) = {〈h(x1), h(x2), . . . , h(xm)〉 : h ∈ C}.

If |ΠC(S)| = 2m, then S is considered shattered by C.

In other words, if S is shattered by C, then C realizes all possible dichotomies on S.

Definition 4. The Vapnik-Chervonenkis (VC) dimension of a concept class C, denoted VC-dim(C), is the
size of the largest set S that is shattered by C. If C shatters arbitrarily large sets, then VC-dim(C) =∞.

Lemma 5. Let C be a finite concept class. Then VC-dim(C) ≤ blog2|C|c.

Proof. If the VC-dimension is d, a set of cardinality d is shattered by C. Therefore, C realizes at least 2d

different dichotomies, and thus:
|C| ≥ 2d ⇒ d ≤ blog2|C|c.

The following theorem gives an upper bound on the sample complexity of learning a given concept class,
i.e., the size of the training set that is required to insure that a consistent hypothesis is ε-accurate with
confidence 1− δ [2].

Theorem 6 (Double Sampling). Let C be any concept class of VC dimension d. Let L be an algorithm
such that, when given a set S of m labeled examples {(xi, c(xi))}i of some c ∈ C, sampled i.i.d. according to
some fixed but unknown distribution over the instance space X, produces as output a concept h ∈ C that is
consistent with S. Then L is an (ε, δ)-learning algorithm for C provided that the sample size obeys:

m ≥ O
(

1
ε

log
1
δ

+
d

ε
log

1
ε

)
.

Interestingly, the VC dimension also gives a lower bound on the sample complexity that almost matches
the upper bound [7].

Theorem 7. Let C be a concept class of VC dimension d. Then any (ε, δ)-learning algorithm for C must
use sample size

m ≥ Ω
(

1
ε

log
1
δ

+
d

ε

)
.

Remark 8. Since the upper and lower bound are very close, any algorithm that is consistent with given
training sets is nearly optimal asymptotically, in terms of sample complexity.

2.3 Monotone DNF

A concept class that will be shown to be equivalent to the one with which we concern ourselves is the class
of monotone DNF formulas. A monotone DNF formula over variables x1, . . . , xn is a disjunction of terms,
where each term is a monotone monomial in the variables over which the formula is defined. In other words,
each term is a conjunction of literals in which no literal appears negated.

The following result appears as Lemma 6 in [12]:

Lemma 9. For 1 ≤ k ≤ n and 1 ≤ l ≤
(
n
k

)
let C be the class of functions expressible as l-term monotone

k-DNF formulas, and let m be any integer, k ≤ m ≤ n such that
(
m
k

)
≥ l. Then V C − dim(C) ≥ klblog2

n
mc.

Another relevant result is formulated in [15]:

Proposition 10. The VC dimension for k-term monotone DNF is less than nk − k · logke .
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∅

{1} {2} {3} {4}

{1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2, 3, 4}

Table 1: Subsets of {1,2,3,4}, sorted by size. A maximal antichain is constructed by choosing all subsets of
size 2; Sperner’s Theorem states that one cannot construct a larger antichain.

2.4 Sperner’s Theorem

In this subsection we introduce Sperner’s Theorem [1], which will be employed in the proof of Proposition 13.
Given the numbers {1, 2, . . . , n}, we would like to find a maximal antichain of subsets, i.e., a family of subsets
such that for any two subsets, neither one is contained in the other. Finding an antichain of size

(
n
bn/2c

)
is

easy: we simply choose all the subsets of size bn/2c (see Table 1). But can one do better? The theorem
gives a negative answer.

Theorem 11 (Sperner’s theorem). Let F be a family of subsets of {1, 2, . . . , n}, such that for all A,B ∈ F :
A * B. Then |F| ≤

(
n
bn/2c

)
.

3 Results

We now present our results, divided into two subsections. The first focuses on the general scenario of
identifying winning coalitions in simple cooperative games, while in the second subsection we place constraints
on the games in order to reduce the VC dimension.

3.1 Unconstrained Simple Games

Recall that in a simple game, if C ⊂ N is winning, any superset of C is also winning. Thus, the game can
be concisely represented by the set of minimum winning coalitions: C is a minimum winning coalition if and
only if

C ∈ W ∧ ∀i ∈ C, (C \ {i}) ∈ L .

In this way, a set of minimum winning coalitions may be considered as a function from the set of coalitions
to {0, 1}: a coalition is winning (labeled by 1) if and only if it is a superset (in the weak sense) of one of the
minimum winning coalitions.4

Remark 12. Surprisingly, learning to identify minimum winning coalitions is equivalent to learning mono-
tone DNF formulas. Indeed, one can associate players with variables, and coalitions with terms. A hypothesis
consisting of a set of minimum winning coaltions is essentially a disjunction of terms. When learning min-
imum winning coalitions, the sample space X is the space of all coalitions; these can be identified with
assignments to variables, where a coalition C induces an assignment of 1 to the variables associated with the
players in C, and 0 to all other players. This equivalence will aid us later on.

Proposition 13. Let C∗ be a concept class, in which each concept is a set of minimum winning coalitions.
Then:

VC-dim(C∗) =
(

n

bn/2c

)
.

4There is an exception to this rule: ∅ is always a losing coalition.
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Algorithm 1 Given a training set {(Ci, yi)}mi=1, learns a hypothesis in C∗.
1: W m ← ∅
2: for i = 1 to m do
3: if yi = 1 ∧ ∀R ∈ W m, R * Ci then
4: W m ← W m \ {R ⊂ N : Ci ⊂ R}
5: W m ← W m ∪ {Ci}
6: end if
7: end for
8: return W m

Proof. We first show that the VC-dimension is at least
(

n
bn/2c

)
, by producing a set of size

(
n
bn/2c

)
which is

shattered by C∗. Consider the set S of all coalitions of size bn/2c. Clearly, any dichotomy on S can be
realized by the concept that contains as minimum winning coalitions exactly the coalitions in S that are
labeled by 1.

On the other hand, the VC-dimension is at most
(

n
bn/2c

)
. Indeed, consider a set S of more than

(
n
bn/2c

)
coalitions. By Theorem 11, there are two coalitions C1, C2 ∈ S such that C1 ⊂ C2. The dichotomy in which
C1 is labeled by 1 and C2 is labeled by 0 cannot be realized.

Observe Algorithm 1, which receives as input a training set with m coalitions Ci, whose labels are yi,
and returns a set of minimum winning coalitions. We claim that Algorithm 1 is consistent with any training
set (assuming the realizable case, where there exists a target concept).

Proposition 14. Let {(Ci, yi)}mi=1 be a training set given as input to Algorithm 1. Assuming there exists
a target concept that is consistent with the training set, then the algorithm returns a set W m which is also
consistent, i.e., for all i = 1, . . . ,m:

yi = 1⇔ ∃R ∈ W m s.t. R ⊂ Ci.

Proof. Assume first that yi = 1. If in iteration i of the for loop there is no minimum coalition which is
already contained in Ci, then Ci is added to W m. In subsequent iterations, a minimum coalition that is a
subset of Ci may be replaced by a still smaller coalition, but such a coalition would also be a subset of Ci.

For yi = 0, assume that W m labels Ci incorrectly. Then there exists R ∈ W m such that R ⊂ Ci. By the
algorithm, R must be some Cj with yj = 1. Hence, there exists no hypothesis that is consistent with the
training set — a contradiction.

Remark 15. By Theorem 6 we have that C∗ is learnable, with sample complexity

O

(
1
ε

log
1
δ

+
d

ε
log

1
ε

)
,

for d =
(

n
bn/2c

)
. By Theorem 7, the sample complexity of C∗ for any consistent algorithm is Ω

(
1
ε log 1

δ + d
ε

)
;

hence, in terms of sample complexity, we are guaranteed that Algorithm 1 is almost asymptotically optimal.

3.2 Constrained Simple Games

Although C∗ is learnable, when the number of agents is large, huge training sets may be needed in order to
produce an accurate hypothesis. We wish to show that for some constrained games, the VC dimension of
the appropriate concept classes is far smaller than that of C∗. Therefore, by Theorems 6 and 7, identifying
the minimum winning coalitions in these games is easier.

Veto games are cooperative games where any coalition with nonzero value contains a distinguished player,
called the veto player. In some veto games, the inclusion of the veto player in a coalition is also a sufficient
condition for the coalition to be winning, not just a necessary one; in this case, we say the veto player is a
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C1 C2 C3 |T |
1

2 1
3

4 4
5 5 2

6 6
7 7 7 3

Table 2: Constructing a set of size blognc = 3 which is shattered by C1, for n = 8. The three coalitions in S
are C1, C2, and C3, which are initialized as empty. We first add a new player to each subset T ⊂ S of size
1: player 1 is added to C1, i.e., to all coalitions in the subset {C1} ⊂ S; 2 is added to C2, and 3 is added to
C3. Next, the algorithm adds a new player to each subset of coalitions of size 2: 4 is added to C1 and C2,
i.e., to all coalitions in the subset {C1, C2}; 5 is added to C1 and C3, and 6 is added to C2 and C3. Finally,
7 is added to C1, C2 and C3. The algorithm yields the coalitions: C1 = {1, 4, 5, 7}, C2 = {2, 4, 6, 7}, and
C3 = {3, 5, 6, 7}. Notice that 8 is not in C1 ∪ C2 ∪ C3 — it was intuitively added to all coalitions in the
empty subset of coalitions.

dictator. Some real-world n-person conflict situations are simple games with a dictator. Returning to our
example with the group of advisers to a president of an organization, if the president is also considered one
of the players, then he is a dictator.

That being the case, in order to identify winning coalitions in a simple game with a dictator, it is
enough to pinpoint this distinguished player. The set of minimum coalitions contains exactly one coalition
of cardinality 1: the dictator.

Proposition 16. Let C1 be a concept class, in which each concept is a single winning coalition of cardinality
1. Then:

VC-dim(C1) = blognc.

Remark 17. C1 is equivalent to the class of monotone 1-DNF formulas with one literal. Substituting k = 1
and l = 1 in Lemma 9 immediately gives a lower bound. Nevertheless, we include our proof since it is far
simpler than the one in [12].

of Proposition 16. We begin by proving a lower bound on VC-dim(C1). We will construct a set S of size
blognc which is shattered by C1. We describe an algorithm that builds the coalitions in S. Initially, all the
blognc coalitions in S are empty. For each subset of coalitions T ⊂ S, we add to every coalition in T a new
player (an element of N that has not been added to any other subset of coalitions). In other words, we
iteratively add players to the coalitions in S; each player is associated with a different subset of coalitions
(see Table 2 for an example). In particular, we “add” to the empty subset of coalitions a new player, thus
guaranteeing that there is a player that is not a member of any of the coalitions in S. We first notice that
S is shattered by C1. Consider a dichotomy where some subset of coalitions T ⊂ S is labeled by 1; by the
construction of S, all coalitions in T have a common player, which is not a member of any other coalition in
S \ T . Choosing this player as the dictator realizes the dichotomy. Moreover, we used a total of

2|S| = 2blognc ≤ n

“new” players in the process of constructing S.
For a lower bound, we have from Lemma 5 that:

|C1| = |N | = n⇒ VC-dim(C1) ≤ blognc.
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Algorithm 2 Given a training set {(Ci, yi)}mi=1, returns a hypothesis in C1.
1: W ← N
2: for i = 1 to m do
3: if yi = 1 then
4: W ←W ∩ Ci
5: else
6: W ←W \ Ci
7: end if
8: end for
9: return some player in W

Consider Algorithm 2. It is clearly a learning algorithm for C1. However, it is not at all certain that it is
optimal, in terms of computational complexity.

It is worthwhile to generalize our requirement of a single dictator player; we now wish to analyze simple
games where there is a junta coalition, i.e., a coalition W such that for all coalitions C, C is winning if and
only if W ⊂ C. Since W is the only minimum winning coalition, the goal of the learning process in such
games is to recognize the junta coalition.

Proposition 18. Let C∗1 be a concept class, in which each concept is a single minimum coalition. Then:

VC-dim(C∗1 ) = n.

Proof. We first bound the VC-dimension of C∗1 from below, by producing a set of size n which is shattered
by C∗1 . Observe the set S of coalitions of size n − 1; there are n such coalitions. Consider a dichotomy on
S that labels exactly k ≤ n of these coalitions by 1, and denote these k coalitions by S+ = {Ci1 , . . . , Cik},
Cik = N \{ik}. Let C0 =

⋂k
l=1 Cil = N \{i1, i2, . . . , ik}. Notice that any subset C ⊂ N such that |C| = n−1

and C /∈ S+ satisfies C0 * C, since C = N \ {j}, and j /∈ {i1, i2, . . . , ik}, so j ∈ C0. Hence, the dichotomy
is realized by choosing C0 as the junta coalition.

In order to bound the VC-dimension from above, we invoke Lemma 5:

|C∗1 | = |{S : S ⊂ N}| = 2n ⇒ VC-dim(C∗1 ) ≤ n.

A hypothesis that is consistent with a given training set (assuming there is a junta coalition) can be
obtained by simply taking the intersection of all coalitions Ci with yi = 1; this is essentially the well known
Elimination algorithm [17].

Remark 19. Another possible generalization is having at most k minimum winning coalitions; denote this
concept class by C∗k . An upper bound for this case is given by Proposition 10. In particular, if k = O(1),
then VC-dim(C∗k) = O(n).

We proceed by examining a different type of constraint:

∀S ⊂ N, S ∈ W → N \ S ∈ L (1)

Simple games that satisfy equation (1) are known as proper simple games. However, this constraint does
little to reduce the VC dimension, compared with unconstrained simple games.

Proposition 20. Let C∗p be a concept class, in which each concept is a set of minimum winning coalitions
in a proper simple game. Then:

VC-dim(C∗p) ≥
(
n− 1⌊
n−1

2

⌋).
8



Proof. We must exhibit a set S of size
( n−1

bn−1
2 c
)

which is shattered by C∗p . Let

S =
{
C ⊂ N : 1 ∈ C ∧ |C| =

⌊
n− 1

2

⌋
+ 1
}
.

It holds that the cardinality of S is as desired. Moreover, for any dichotomy on S, one may choose exactly
the subsets labeled by 1 as the minimum winning coalitions: since the intersection of all subsets in S is not
empty, the constraint (1) is not violated.

A popular constraint is the elimination of dummy players:

∀i ∈ N∃C ⊂ N s.t. i ∈ C ∧ C ∈ W ∧ (C \ {i} ∈ L ). (2)

The elimination of dummy players also does not substantially reduce the VC dimension.

Proposition 21. Let C∗d be a concept class, in which each concept is a set of minimum winning coalitions
in a simple game with no dummy players. Then:

VC-dim(C∗d) ≥
(
n− 1⌊
n−1

2

⌋).
Proof. We must exhibit a set S of size

( n−1

bn−1
2 c
)

which is shattered by C∗d . Let

S =
{
C ⊂ N : 1 /∈ C ∧ |C| =

⌊
n− 1

2

⌋}
.

It holds that the cardinality of S is as desired. Given a dichotomy on S, let S+ be the set of coalitions in S
that are labeled by 1, and let B be the set of players that are not members of any of the coalitions in S+. The
set of minimum winning coalitions is S+∪{B}; the purpose of including B is to ensure that constraint (2) is
not violated. It remains to show that this is a legitimate set of minimum coalitions in a proper simple game,
which realizes the dichotomy. Since 1 ∈ B, B is not a subset of any of the coalitions in S, and in particular
is not a subset of any of the coalitions in S \ S+ — so it is not the case that the addition of B to the set of
minimum winning coalitions mistakenly labels a coalition in S \ S+ by 1. Clearly, neither is B a superset of
any of the coalitions in S+; thus it is not the case that there are two winning coalitions such that one is a
superset of the other. Since the coalitions in S+ are included in the set of minimum winning coalitions, the
dichotomy is realized. Moreover, constraint (2) is satisfied: every i ∈ N is contained in one of the coalitions
in S+, or in B, and these are all minimum winning coalitions.

4 Conclusions

Simple games have natural interpretations in multiagent systems. Such games can be concisely represented
by the set of minimum winning coalitions; this set can be regarded as a function from the set of coalitions
to {0, 1}. We have shown that the VC-dimension of this concept class is

(
n
bn/2c

)
, and presented an algorithm

that learns the class. We have also discussed constrained simple games, and proved that restricting the
set of minimum coalitions to a single coalition, or a dictator player, greatly reduces the VC-dimension.
Nevertheless, other popular constrained games are almost as hard to learn as unconstrained games.

We believe that there exist many opportunities to apply the PAC learning model in multiagent systems,
and intend to investigate such applications in future work.
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