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Abstract

The mathematical investigation of voting originated in the 17th century with such pioneers as the
marquis de Condorcet and the chevalier de Borda, was taken upn the 18th century by Lewis
Carroll, and exploded in the second half of the 20th century vith the foundational work of Noble
laureate Kenneth Arrow. Broadly speaking, the mathematicd model of voting deals with a set of
n agents that must reach a collective decision with respect taa set of m alternatives. Each agent
submits a ranking of the alternatives; the outcome is then deided by a social choice function.

The eld of Multi-Agent Systems is much younger, barely two decades old, and is concerned with
systems occupied by multiple heterogeneous, autonomousnd self-interested agents. Collective
decision making in such systems is one of the prominent and nsb challenging issues. Fortunately,
the centuries of work on Voting Theory can be leveraged to reeh a consensus among agents,
but applying voting in distributed computational settings requires a richer understanding of the
computational aspects of voting. Achieving such an undersdnding is the goal of this thesis.

We present our results on Computational Voting Theory in three parts, as follows.

Part If] Elections and Approximation. The rst part focuses on using the paradigm of
approximation, so common in the theory of computer scienceto obtain novel positive results with
respect to Voting. Chapter [3 deals with the social choice fustion suggested by Lewis Carroll. It
has been known for some time that it is computationally intractable to determine the score of an
alternative under this rule, and consequently hard to detemine the winner of the election. Our main
result in this context is a randomized rounding algorithm that yields an O(log m) approximation
ratio.

In Chapter @] we apply the concept of approximation to a di erent classic problem. Voting
trees describe an iterative procedure for selecting a singlvertex from a tournament. It has long
been known that there is no voting tree that always singles otia vertex with maximum degree. We
study the power of voting trees in approximating the maximum degree. We give upper and lower
bounds on the worst-case ratio between the degree of the vertechosen by a tree and the maximum
degree, both for the deterministic model concerned with a sigle xed tree, and for randomizations
over arbitrary sets of trees.

Part IL_JElections and Computational Learning. The second part of the thesis studies the
interplay between computational learning theory and voting theory. Chapter [H investigates the

learnability of two classes of social choice functions, asufictions from the preferences of the agents
to alternatives. We nd that one of the two classes is e cient ly learnable, whereas the other is
harder to learn. We apply our results in an emerging theory: aitomated design of voting rules by

learning.



Chapter[d takes a step forward towards establishing a theoryof incentives in a general machine
learning framework. We focus on a game-theoretic regressiolearning setting where private in-
formation is elicited from multiple agents, which are interested in di erent distributions over the
sample space; this conict potentially gives rise to untruthfulness on the part of the agents. We
show that various positive results can be obtained. Our techiques rely on classic concepts from
social choice theory such as single peaked preferences, berour results are intimately related to
Voting Theory.

Part I[L._Frequency of Manipulation in Elections. The third and nal part of thesis pro-
vides an analysis of the frequency of manipulation in electins. A well-known impossibility result
asserts that any \reasonable" social choice function is proe to manipulation by the agents, that
is, an agent can benet by lying in certain situations. It has been proposed that computational
hardness might prove a barrier against manipulation. In Chapter [Zlwe present analytic results that
suggest that manipulation may be tractable under typical distributions on the preferences of the
agents, even under social choice functions that are hard to amipulate in the worst-case.

In Chapter Bl we analyze the probability that a coalition of manipulators is able to sway
the outcome of the election. Our theorems establish a threstid phenomenon: for many typical
distributions, this probability is very small if the size of the coalition is below a certain threshold,
and close to one if the size of the coalition is above the thrémld.

Ultimately, we advocate certain agendas that all involve usng computer science paradigms to obtain
novel, positive results in some of the classic problems of Wimg Theory.
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Chapter 1

Introduction

Throughout the thesis we advocate several agendas, but hofdly one of the important contri-
butions of this thesis will be coining the term \Computation al Voting Theory", and positioning
this eld as a strict subset of the area called \Computational Social Choice". In the sequel we
elaborate on this point. We note that this chapter overlaps with portions of the presentation given
in subsequent chapters, but here we strive to provide the reder with a bird's eye view of the eld.
The exact de nitions of many of the terms informally mention ed in this chapter can be found in
Chapter [2.

1.1 A Broad Overview of Computational Voting Theory

Before we begin our discussion of Computational Voting Theoy, it seems appropriate to brie y
present the broader eld of Computational Social Choice. In general, Social Choice Theory is
concerned with the design and analysis of methods for colléige decision making. This eld has
been, for several centuries now, the object of investigatio by mathematicians and economists.

In the last two decades computer scientists, and especiallyesearchers in Arti cial Intelligence
(Al), have become increasingly interested in Computationd Social Choice. The attention is stimu-
lated by the fact that Social Choice techniques have been shn to facilitate the design and analysis
of Multi-Agent Systems (MAS). Indeed, MAS are often decentrdized and populated by heteroge-
neous, self-interested agents|exactly the type of entities generally studied in economics! Curiously,
Social Choice paradigms that often fail to capture human ineractions are more applicable when
the agents are rational software programs.

Computational Social Choice deals with, but is not necessaly limited to, the following ar-
eas [24]:

1. Fair Division . This area deals with the allocation of goods among self-intested agents, in a
way that satis es di erent desiderata. Examples of desiderata are: Pareto e ciency , meaning
that no other allocation is weakly preferred by all agents ard strongly preferred by some; and
envy-freenessin the sense that no agent prefers the bundle given to anotheagent. See the
survey by Chevaleyre et al. [2B] for more information.

2. Coalition Formation . In many settings agents cooperate in order to achieve comnmogoals.
Since the agents are assumed to be self-interested, game thists have sought criteria for
stable coalition structures, i.e., structures such that noagent has an incentive to deviate from
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its assigned coalition. Computer scientists have examinethe algorithmic aspects of coalition
formation (see, e.g., Sandholm et al. [134]).

3. Judgment Aggregation This eld deals with the aggregation of agents' judgementson inter-
connected propositions into collective judgements, and ixlosely related to Voting Theory.

4. Computational Voting Theory. This is the subject of the remainder of this section, and, moe
generally, this thesis.

The setting usually considered in Voting Theory can be formudated as follows. A setN =
f1,:::;ngof agent@ must choose aralternative that belongs to the setA, jAj = m. The alternatives
can be candidates in a political election, but in computational settings the alternatives are often
beliefs, joint plans, recommendations, or other conceivale issues. Each agent's preferences are
formulated as a linear order (a ranking) over the alternatives. The common choice is determined by
a social choice function (SCF), which is a function from the preferences of the agentso alternatives.

An ubiquitous SCF, used in nearly all political elections, is the Plurality SCF. Under Plurality,
each agent awards one point to its top-ranked alternative; tre alternative with the largest number
of total points wins the election. A less obvious example is lte Copeland function, where the
winner is the alternative that dominates the most alternati ves in pairwise elections;a 2 A is said
to beat b2 A in a pairwise election if a majority of agents prefera to b. The formal de nitions
and notations are given in Chapter[2.

Similarly to Computational Social Choice in general, Compuational Voting Theory is an in-
terdisciplinary eld where Economics and Computer Scienceinteract. The interaction is mutual,
namely it works both ways:

1. Economics applied to Computer Science: applications of &ting Theory techniques to decision
making in Al.

2. Computer Science applied to Economics: computational aalysis of Voting theory paradigms
sheds new light on much studied issues.

Currently the body of work regarding the rst item is not larg e, and yet includes works in
areas as diverse as Planning [45], Scheduling [64], Recommaer Systems |[59], Collaborative Fil-
tering [109], Information Extraction [139], and Computati onal Linguistics [106]. However, most
research on Computational Voting Theory has concentrated a the second item above, and this
is indeed our focus here. We presently discuss in slightly nre detail some of the major, specic
issues (not necessarily the ones featured in this thesis);ybno means do we give a full coverage.

1.1.1 Circumventing the G-S Theorem on Computational Groun ds

One of the major issues in in Social Choice Theory, which lieat the heart of its intersection with
Game Theaory, is the problem of manipulation in voting. Recal that an SCF, given the preferences
of the agents, returns a winning alternative. However, the tuthful preferences of the agents are
their private information; the SCF can only rely on the preferencesreported by the agents. It is
self evident that in many settings, agents can benet by repating false preferences, that is, may
improve the outcome of the election by lying. The quality of the outcome is measured, naturally,

lAgents are often referred to as voters, or, in some contexts, players.
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according to the truthful preferences. An agent that reveak its preferences strategically is said to
manipulate the election. An SCF under which agents can never bene t frommanipulation is called
strategyproof

The seminal result of Gibbard [60] and Satterthwaite [135] asentially states that manipulation
is inescapable. In more detail, the theorem asserts that anysCF that satis es minimal assump-
tions is not strategyproof. Since the 1970's, an incalculale amount of work has been devoted
to circumventing the Gibbard-Satterthwaite (G-S) theorem. | n particular, Mechanism Designis
a eld that can be seen as stemming from ruinous implicationsof the theorem. The underlying
assumption that allows for possibility results is that agernts can be compensated by transferring
money, thus aligning their incentives with those of the desgner. The works of Vickrey [146], Clarke
[25], and Groves|[62] have laid the foundations of the eld ofMechanism Design by introducing the
all-important VCG mechanism. For an excellent overview of Mechanism Design, see Nisan [104].

A di erent path to circumventing the G-S Theorem was introduc ed in the in uential work of
Bartholdi et al. [8]. These authors have suggested that thempossibility result can be avoided on
computational grounds. Indeed, the agents under considet#n, and in particular agents in political
elections, can be assumed to be bounded-rational. Thus, evahough revealing false preferences in
a bene cial way is theoretically possible, it might prove to be a computationally di cult task under
certain SCFs. To be more precise, the computational problems formulated as follows: under a
xed SCF, we are given the preferences of the truthful agentsand a preferred alternative p, and
asked whether a manipulator can cast a ballot such thatp wins. The agenda is therefore to nd
(among the existing SCFs) or design SCFs that are computatioally hard to manipulate.

Bartholdi et al. supported their approach by presenting a speci ¢ SCF|Copeland with second
order tie breaking|that is NP -hard to manipulate. Decisive evidence to support the approah
was ultimately presented by Bartholdi and Orlin [7], who proved that the Single Transferable Vote
(STV) is hard to manipulate. STV is one of the prominent SCFs in the literature on voting. It
proceeds in rounds; in the rst round, each agent votes for tke alternative that it ranks rst. In
every subsequent round, the alternative with the least numler of votes is eliminated, and the votes
of agents who voted for that alternative are transferred to the next surviving alternative in their
ranking (see Chapter(2 for a formal de nition).

Two decades later, the agenda suggested by Bartholdi et al.sistill the object of signi cant,
and growing, interest. An important step forward was taken by Conitzer and Sandholm [30],
who noticed that hardness of manipulation can be induced by weaking common SCFs, that is
by adding a preround. In the preround, the alternatives are paired; the alternatives in each pair
compete against each other. The introduction of a preround an make an electionN P -hard, # P-
hard, or PSPACE-hard, depending on whether the preround precedes, comes aft or is interleaved
with the SCF, respectively. Elkind and Lipmaa [43] generalized this approach using Hybrid SCFs,
which are composed of several base SCFs.

Some authors have also considered a setting where there is antire coalition of manipulators.
In this setting, the standard formulation of the manipulati on problem is as follows: we are given a
set of votes that have been cast, and a set of manipulators. laddition, all votes are weighted, e.g.,
a agent with weight k counts ask agents voting identically. We are asked whether the manipuhtors
can cast their vote in a way that makes a speci c alternative win the election.

Conitzer et al. [35] have shown that the coalitional manipulation problem is NP -hard in a
variety of SCFs. Indeed, in this setting the manipulators must coordinate their strategies, on top
of taking the weights into account, so manipulation is made nuch more complicated. In fact, the
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problem is so complicated that the hardness results hold evewhen the number of alternatives is
constant. Hemaspaandra and Hemaspaandra [65] generalizeadme of these last results by exactly
characterizing the scoring functions (see Chapter[2) in which manipulation is NP -hard. Elkind
and Lipmaa [44] have shown how to use cryptographic techniges, namely one-way functions, to
make coalitional manipulation hard.

More recently researchers have begun looking at the unweidged version of the coalitional ma-
nipulation problem. Faliszewski et al. [50] demonstrated hat this version of the problem is still
hard under Copeland (under some assumptions on tie breakirjg Zuckerman, Procaccia and Rosen-
schein [155] have established, as corollaries of their maitheorems, that the problem is tractable
under several prominent SCFs, and gave approximation algaethms for an optimization version of
the problem (\How many manipulators are needed in order to m&e a given alternative win?")
under the important Borda and Maximin SCFs. The Borda function is de ned as follows: each
agent awardsm 1 points to the alternative it ranks rst, m 2 points to the second place, etc.
The alternative that accumulates the most points wins the ekction. For a de nition of Maximin,
see Chapter2.

Recently researchers have investigated the complexity of mmipulation in elections with mul-
tiple winners. In general, the assumption is that the manipdator has a utility function on the
alternatives, and the question is whether it can cast its voe in a way that guarantees that the
total utility of the set of winners be above a given threshold Procaccia et al. [125] characterized
the computational complexity of the multi-winner manipulat ion problem under several prominent
SCFs. Meir, Procaccia and Rosenschein [96] have extendeddhesults of Procaccia et al.[[125] by
asking whether the above characterization still holds whenthe manipulator has a more restricted
goal in mind, such as including some alternative among the seof winners.

Despite the abundance of results regarding the worst-case omplexity of manipulation, some
researchers have suggested that worst-case complexity maynbe a good enough barrier against
manipulation. Indeed, one would ideally like to design a SCRhat is hard to manipulate according
to some average-case avor of hardness, that is, computaticaly hard with respect to almost all
instances of the manipulation problem. Several recent work suggest that common SCFs that are
in fact hard to manipulate in the worst-case do not satisfy this criterion. We elaborate below.

Procaccia and Rosenschein [119] attempted to establish agmework that would enable showing
that manipulation is frequently tractable. They introduce d the paradigm of Junta distributions,
exceptionally hard distributions over the instances of thecoalitional manipulation problem. Using
their notions, they demonstrated that the family of scoring functions, which includes Plurality
and Borda, is frequently easy to manipulate when the number 6 alternatives is constant. The
concept of Junta distributions was further discussed at lemgth by Ercelyi et al. [46]. Zuckerman,
Procaccia and Rosenschein [155] took a step forward by adapg the general approach of Procaccia
and Rosenschein, but re ning their results by characterizng the windows of error of dierent
manipulation algorithms, i.e. instances on which the algoithms err. Their results, formulated for
the coalitional manipulation problem, are conceptually close to approximation results, and in fact
directly yield approximation algorithms for the unweighte d setting, as mentioned above.

Procaccia and Rosenschein [120] have reconsidered the dtahal manipulation setting. They
asked what the relation between the number of manipulators ad probability of manipulation is,
and found that the threshold is the square root of the number ¢ agents. Speci cally, if the number
of manipulators is asymptotically smaller than the threshdd then the probability is negligible,
whereas if it is larger then the probability is almost 1. These results were generalized by Xia and
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Conitzer [147].

Another interesting approach was advocated by Conitzer andSandholm [33], who noticed that
SCFs can be frequently manipulated if they satisfy two propeties. The rst property is quite
natural (albeit not satis ed by some common SCFs), whereas he second property is nonintuitive.
The authors validated their approach by empirically demondrating that the second property holds
with high probability with respect to most prominent SCFs.

Friedgut et al. [57] have proposed yet another approach to te question of frequency of manipu-
lation. They have shown that if a manipulator simply reports random preferences, it bene ts with
nonnegligible probability when compared with submitting its true preferences. Hence, drawing a
polynomial number of random rankings and submitting the beg one yields a bene cial manipula-
tion with high probability. Their results hold under any rea sonable SCF, but only when the number
of alternatives is exactly three. Xia and Conitzer [148] conplemented this result by showing that
a similar result holds for any constant number of alternatives, but under stricter assumptions on
the SCF.

All the results given above relate to the approach rst proposed by Bartholdi et al. [8] for
circumventing Gibbard-Satterthwaite on the grounds of computational complexity. We presently
brie y discuss a new approach recently introduced by Peleg ad Procaccia [107]. They suggested
that truthfulness can be induced by assuming the presence & mediator, and tweaking the solution
concept under consideration. More precisely, Peleg and Praccia have shown how to design SCFs
such that, given the existence of a mediator, even coalitios of agents cannot bene t by lying. Peleg
and Procaccia [108] later extended this investigation to a baracterization of social choice corre-
spondences (functions from preferences to sets of alternaés) where truth-telling is in equilibrium,
assuming a mediator.

1.1.2 Control and Bribery

While manipulation, and circumventing the Gibbard-Sattert hwaite Theorem, might well be the
single most important issue in Computational Voting Theory, closely related issues have also re-
ceived much attention. Another seminal paper by Bartholdi e al. [10] introduced the problem
of control in elections. In the basic setup, the authority in charge of he election|known as the
chairman|seeks to in uence its outcome by tampering with the set of re gistered agents or the set
of available alternatives. For instance, the chairman can dd agents that support some cause, or
remove strong alternatives that might cause a favorite altenative to lose. Bartholdi et al. studied
the complexity of seven di erent types of control under two SCFs. The authors reached the conclu-
sion that di erent SCFs di er signi cantly in terms of their resistance to control. Hemaspaandra
et al. [67] extended these results to the destructive settig, where the chairman wishes for a speci ¢
alternative to lose the election rather than win it.

Hemaspaandra et al. |[68] asked whether it is possible to dagi a SCF that is fully computa-
tionally resistant to control. They showed that there is an SCF, obtained as a hybrid of other
functions, which is resistant to twenty di erent types of control. Some common SCFs were later
shown to come close to this ideal of total resistance to contl [49,|51].

Faliszewski et al. [48] introduced a variation on the contrd setting: the bribery problem. Here,
the chairman must bribe agents in order to win them over. The aithors give a characterization of
the complexity of bribery under several SCFs. Faliszewski47] extended this setup by de ning and
characterizing the complexity of the nonuniform bribery problem, where the corrupt agents' prices
depend on the exact nature of the change in their votes that igequested.
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1.1.3 Winner Determination

We turn to yet another important agenda introduced by Bartho Idi et al. [9]. They suggested that,
under some SCFs, determining the winner of the election may & a hard computational problem.
Note that, in stark contrast to the problems discussed abovein this case computational complexity
is a negative phenomenon rather than a positive one, as it maprevent the SCF from being used
in practice.

Bartholdi et al. demonstrated that, under the interesting f unction proposed by Charles Dodgson
in the 19th century, determining the winner of the election is NP -hard. Under Dodgson's function,
an alternative's score is the number of exchanges between gatent alternatives in the agents'
preferences that must be performed in order to make that altenative beat every other alternative
in pairwise elections. An exact characterization of the corplexity of this problem remained elusive
until Hemaspaandra et al. [66] proved that it is complete forthe complexity class g Rothe et al.
[132] subsequently showed that winner determination undeithe closely related SCF proposed by
Young [154] is also complete for 2 Procaccia et al. [123] designed an algorithm that approxinates
an alternative's score under Dodgson's function to a factorof O(log m), but proved that Young's
function is hard to approximate by any factor.

Similarly, the related social welfare functions (that map the preferences of the agents to rankings
over alternatives) proposed by Kemeny and Slater have beerhewn to be g-complete to decidel[9,
2]. Kemeny's function aggregates the rankings of the agentsto a ranking that minimizes the total
sum of disagreements, over pairs of alternatives, with therdividual rankings. Slater's function
chooses the ranking that most agrees with themajority of agents regarding pairs of alternatives.
Davenport and Kalagnanam [38], and later Conitzer et al. [33, provided heuristic algorithms for
exactly computing the results of an election under Kemeny'sunction, while Ailon et al. [1] designed
approximation algorithms for Kemeny. Heuristic algorithm s for computing the results of Slater's
function have also been the subject of interest [72, 26].

Procaccia et al. [127] discuss the complexity of winner detenination under the prominent social
choice correspondences proposed by Monrae [99] and by Chaertin and Courant [22]. These two
correspondences basically elect a set of alternatives thanhinimizes the total misrepresentation of
the agents; the goal is to achieve fully proportional repreentation: a faction of agents should be
represented in the elected set of alternatives in a way thats proportional to its size. Procacia et al.
show that winner determination is NP -hard in both schemes, but the problem is tractable when
the number of alternatives to be elected is constant.

Slightly further a eld, some recent work explored the complexity of computing tournament
choice sets|[17] 18, 19, ¥1]. A tournament is a complete asyratric relation on the set of alter-
natives; a tournament is often used to model the results of dlpossible pairwise elections between
pairs of alternatives. Tournament choice sets single out ge of \best" alternatives in a tourna-
ment, according to di erent criteria. The works mentioned above, put together, give a complete
characterization of the computational complexity of most prominent choice sets.

1.1.4 \Vote Elicitation

Despite the results outlined in the previous subsection, a@ctions held under most prominent SCFs
are easy to decide. Nevertheless, in plausible settings, @scially those where communication is
restricted or error-prone, one may be interested in obtainirg as little information as possible from
the agents in a way that is su cient to determine the outcome of the election. This is known as
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vote elicitation.

Conitzer and Sandholm [28] de ned several computational poblems related to vote elicitation.
For instance, in the e ective elicitation problem the question is whether there is a small subset of
agents that can decide the outcome of the election. Conitzeand Sandholm,inter alia, showed this
problem to be NP -hard under several SCFs.

Another way to approach the vote elicitation setting is to assume that the agents only submit
incomplete preferences, i.e. for a given agent, its orderg over alternatives is not necessarily
complete. An alternative is a possible winner if it wins for some completion of the preferences,
and a necessary winnerif it wins under all completions. Characterizations of the complexity of
determining possible and necessary winners appear in sewabmworks [81,/111/) 149].

In the communication complexity model, we are only interested in the number of bits trans-
ferred between the agents, that is the amount of informationsent and received. This concrete
complexity model is perhaps even more appropriate, in the catext of vote elicitation, than com-
putational complexity. Conitzer and Sandholm [32] demonstated that, while some SCFs require
very little information, others practically need an amount of information asymptotically equivalent
to the entire preference pro le of the agents. In closely redted work, Segal [13]7] characterized the
communication complexity of a large class of SCFs. Conitze[27] investigated the problem in the
query complexity model, and under the assumption that agens have single peaked preferences.
As a canonical example for single peaked preferences, catsi a setting where the alternatives are
points on the real line; each agent has an ideabliss point, and the closer a point is to the bliss
point the more preferred it is.

1.1.5 Combinatorial Voting

In many domains, in particular those that arise in Al, the preferences of the agents have a com-
binatorial structure. Speci cally, if the agents are votin g on multiple issues, their preferences over
the issues can be interdependent. This signi cantly increges the computational complexity of
SCFs [84].

An intriguing approach is to try to decompose the social chote function into votes on indi-
vidual issues. A barrier that must be overcome is the phenomaon known as multiple election
paradoxes[16]. For example, suppose there are two boolean-valued isssiY and Z; 10 agents want
Y but don'twant Z (YZ), 10 agents wantZ and not Y (Y Z), and one agent wants bothY and
Z (Y Z). Voting separately on the two issues would lead to the outcme Y Z, even though this
outcome is preferred only by one agent.

Well known SCFs, such as Borda, cannot be decomposed [85]. Weatheless, recent papers give
su cient conditions and techniques for designing decompoable SCFs [150, 151].

1.2 Structure and Overview of Results

Chapter [2 of the thesis gives an introduction to Voting Theory. In particular, we present the
basic concepts and notations and introduce the prominent saal choice functions. We then discuss
tournaments and voting trees. Finally, we formulate the Gibbard-Satterthwaite Theorem [60,|135].

The bulk of the thesis is devoted to the presentation of our rsults. The presentation consists
of three parts, where each part contains two chapters. We elorate below on the structure of this
partition and the results given therein.



Part IE]Elections and Approximation

Approximation algorithms are one of the major areas of resexh in the modern theory of algorithms.
Usually the goal is to solve a computationally intractable gptimization problem in a manner which
is computationally e cient, albeit only approximate. Spec i cally, we say that an algorithm is an

-approximation algorithm if the quality of its solution is al ways (in the worst-case worse than
the optimal solution by at most a factor of . In Part [Jwe deal with approximation algorithms in
the traditions sense, but also nd a novel application for the concept of approximation.

Chapter 3]Approximability of Dodgson and Young Elections. Some previous work has
dealt with approximating social welfare functions that are hard to resolve [1, 36/ 7[7]. We continue
this line of work by studying the approximability of two prom inent SCFs: Dodgson and Young.

Charles Dodgson (better known by his pen name, Lewis Carrojlsuggested an appealing voting
system in 1876. Unfortunately, at the time Dodgson did not take into account such futuristic
considerations as computational complexity, and, as it tuned out more than a century later,
computing the Dodgson score of an alternative is NP-hard[[9].

In order to understand the SCF suggested by Dodgson, we mustagyeven further back in time.
The French mathematician Marie Jean Antoine Nicolas de Cariat, marquis de Condorcet, suggested
(as early as the 18th century) the following criterion for resolving an election: choose an alternative
that is preferred to any other alternative by a majority of agents. However, the marquis himself
noticed that such an alternative, known as aCondorcet winner, does not always exist.

Dodgson suggested to choose the alternative closest to bgjra Condorcet winner. Speci cally,
the Dodgson scoreof an alternative is the minimum number of exchanges that mustbe introduced
in the preferences of the agents in order to make said alternive a Condorcet winner. Young [154]
followed the same line of reasoning; theroung score of an alternative is the size of the maximum
subset of agents for which the alternative is a Condorcet winer. The Young score is also hard to
compute [132].

Our results are two-fold. In the context of approximating the Dodgson score, we devise an
O(log m) randomized approximation algorithm, where m is the number of alternatives. Our algo-
rithm is based on solving the linear program proposed by Barholdi et al. [9] and using randomized
rounding. It follows from a result of McCabe-Dansted [92] tha no polynomial-time randomized
algorithm can approximate the Dodgson score to within an expgcted ratio of (log m) (unless
NP = RP), so this result is asymptotically optimal.

The problem of calculating the Young score seems simpler atrst glance. Therefore, our result
with respect to this problem is quite surprising: it is NP -hard to approximate the Young score
by any factor. Speci cally, we show that it is NP -hard to distinguish between the case where the
Young score of a given alternative is 0, and the case where th&core is greater than 0.

Chapter 4[] Approximating Maximum Degree in a Tournament by Binar y Trees. A
tournament is a complete and asymmetric (dominance) relatbn over a set of alternatives. Tourna-
ments appear in many contexts but are closely linked to votirg theory, since the dominance relation
is often used to represent the preferences of the majority,iat is, alternative a dominates b if the
majority of agents prefera to b.

A voting tree is a binary tree whose leaves are labeled by alt@atives; such trees describe an
iterative procedure for choosing a winning alternative fran a tournament. At each stage, two
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sibling leaves compete, the winner according to the given ternament survives and proceeds to the
father. The alternative that reaches the root in this way is the winner.

Previous work in economics|[52, 95, 98, 102, 69, |41, 143, 37<hinvestigated which functions
from tournaments to alternatives can be realized by voting tees. In particular, it is known that
there is no voting tree such that, given any tournament, alwa/s chooses a Copeland winner. To
elaborate a bit, the Copeland scoreof an alternative in a tournament is the number of other
alternatives beaten by this alternative. A Copeland winner is an alternative that maximizes the
Copeland score.

We apply the Computer Science-oriented concept of approximi@on to this setting. Indeed,
we ask whether there exist voting trees that always choose t@rnatives with Copeland score that
approximates the score of the winner. We investigate this gastion in two models: a deterministic
model, and a randomized model that allows arbitrary distributions over trees, and considers the
expected score of the winner.

Our main negative results are upper bounds of 34 and 56, respectively, on the approximation
ratio achievable by deterministic trees and randomizatiors over trees. We nd it quite surprising
that randomizations over trees cannot achieve a ratio arbitarily close to 1.

For most of the chapter we concentrate on the randomized mode We study a class of trees we
call voting caterpillars, which are characterized by the fact that they have exactly two nodes on
each level below the root. We devise a randomization over \s@ll" trees of this type, which further
satis es an important property we call admissibility: its support only contains trees where every
alternative appears in some leaf. Our main positive result $ the construction of an admissible
randomization over voting trees of size polynomial inm with an approximation ratio of 1 =2
O(1=m). We prove this theorem by establishing a connection to a noreversible, rapidly mixing
random walk on the tournament, and analyzing its stationary distribution. The proof of rapid
mixing involves reversibilizing the transition matrix, an d then bounding its spectral gap via its
conductance. To the best of our knowledge, this constituteshe rst use of rapid mixing, and
in particular of notions like conductance, as a proof techngue in Computational Economics. We
further show that our analysis is tight, and that voting cate rpillars also provide a lower bound of
1=2 for the second order degree of an alternative, de ned as theum of degrees of those alternatives
it dominates.

The chapter concludes with negative results about more comiex tree structures, which turn
out to be rather surprising. In particular, we show that the approximation ratio provided by
randomized balanced trees can become arbitrarily bad with gpwing height. We further show that
\higher-order" caterpillars, with labels chosen by lower-order caterpillars instead of uniformly at
random, can also cause the approximation ratio to deteriorée.

Part I[_IElections and Computational Learning

Broadly speaking, computational learning theory tackles he following problem. Given sample
values for an unknown target function, nd a function that is generally \close" to the target
function. The target function is often assumed to belong to ®me xed function class, hence it is
possible to determine how many samples are needed to achieaegood generalization based on the
combinatorial properties of the function class.

In Part [[of the thesis, we deal with the interplay between voting theory and computational
learning, but in two opposite directions: one chapter dealswith the application of learning theory
to the design of SCFs, whereas the other deals with the applation of voting and mechanism design
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paradigms to improve the machine learning process itself. Tie latter chapter also ties in nicely to
our results regarding approximation (given in Part [}, as a substantial part of the chapter studies
approximation in a mechanism design setting without paymerts.

Chapter 5.1The Learnability of Social Choice Functions. SCFs can be regarded as func-
tions to be learned in a machine learning model. The input speae is the space of all possible
preference pro les, while the output space is the set of altmatives. In this setting, it is natural to
investigate the complexity, both in the computational sense and in the learning-theoretic sense, of
learning prominent classes of SCFs.

We motivate this agenda by relating it to the question of desgning SCFs. Think of a designer
who has in mind some SCF; this function can be ine ciently represented, e.g., by a huge table that
lists all the possible preference pro les and the correspating winners. So, the goal is to design
an SCF that is concisely representable and close to what the ekigner has in mind, while asking
the designer as few queries as possible and investing as liitcomputational e ort as possible. We
investigate these questions in the context of two prominentfamilies of SCFs: scoring functions and
voting trees.

A scoring function can be represented by a vector of real numbrs = h 1;:::; mi. We show
that scoring functions are e ciently learnable, that is, it is possible to learn a scoring function
\close" to the target function in time polynomial in the numb er of agents and alternatives; in
particular, the number of queries to the designer is also pginomial. We achieve this result by
giving bounds on the generalized dimensionof the class of scoring functions, a measure of the
combinatorial richness of this class.

Next, we address the class of voting trees. We show that in gesmal, in order to learn an SCF
close to a target voting tree, an exponential number of quers is needed. However, the goal can be
achieved with a polynomial number of queries if the target vding tree has a polynomial number of
leaves. We further study the computational aspects of the poblem, showing that a related decision
problem is N P -hard, but providing experimental data that suggests that the problem can be solved
in practice for reasonable instances.

Finally, we ask whether it is possible to extend this approab. Speci cally, we pose the question:
given a class of SCFs, if the designer has some general SCF innah (rather than an SCF that is
known to belong to this class), is it possible to learn a \clog" rule from this class? We answer this
guestion in the negative with respect to our two classes of SEs.

Chapter 6] Strategyproof Regression Learning. Regression learning deals with learning
real-valued functions. The accuracy of the learning procesis measured according to doss function,
which measures the distance between the values of the targdtinction and the function returned
by the learner. Common examples of loss functions are thequared losswhich returns the square
of the Euclidean distance, and theabsolute losswhich is simply the Euclidean distance.

In our setting we have, in addition, a set of strategic agents Each agent holds as private
information a distribution over the input space, which re e cts the relative importance it gives to
di erent issues, as well as its own values for the points of tle input space. The cost of each agent
is given by the expected distance between the function retured by the learner and the agent's
own values, weighted by the distribution of the agent. The designer's goal is to minimize the total
cost of the agents. The examples that are used in the learningrocess are elicited from the agents
by sampling their distributions; the agents might lie about the values of the sampled examples in
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order to sway the outcome of the learning process to one theynd more favorable.

Before elaborating on our results, we brie y touch on the rehtion between this work and voting
theory. Ultimately, we shall see that the foregoing setting reduces to an interesting mechanism
design setting that does not involve sampling. In the latter setting, it is possible to obtain strate-
gyproofness results even without payments, by leveraging aigni cant body of research from voting
theory. Hence, although at rst glance this chapter may seemunrelated to voting, in fact the two
are intimately connected.

We begin our investigation by considering a restricted seting where each agent is only interested
in a single point of the input space. Quite surprisingly, it turns out that a specic choice of
loss function, namely the absolute loss function, leads toxxellent game-theoretic properties: an
algorithm which simply nds an empirical risk minimizer on t he training set is group strategyproof,
meaning that no coalition of agents is motivated to lie. We ako show that even much weaker
truthfulness results cannot be obtained for a wide range of ther loss functions, including the
popular squared loss.

In the more general case where agents are interested in non-glenerate distributions, achieving
incentive compatibility requires more sophisticated meclanisms. We show that the well-known
VCG mechanism does very well: with probability 1, no agent can gain more than by lying,
where both and can be made arbitrarily small by increasing the size of the taining set. This
result holds for any choice of loss function.

We also study what happens when payments are disallowed. Inhis setting, we obtain limited
positive results for the absolute loss function and for regticted yet interesting function classes.
In particular, we present a mechanism which is approximatey group strategyproof as above and
3-e cient in the sense that the solution provides a 3-approximation to optimal social welfare. We
complement these results with a matching lower bound and preide strong evidence that no ap-
proximately incentive compatible and approximately e cie nt mechanism exists for more expressive
function classes.

Part I[._Frequency of Manipulation in Elections

Part [[[of the thesis presents two approaches to dealing wih the question: is manipulation in
elections frequently hard under typical distributions on the preferences of the agents? An algorith-
mic approach is presented in Chapte 7, and a descriptive apach is given in Chapter[8. It is
important to note that both chapters deal with manipulation by coalitions (the coalitional manip-
ulation problem) rather than by individual manipulators; t he former problem is computationally
much harder than the latter. Since some general background as already given in Sectior 1.111, in
the sequel we simply describe our approaches and state ourgelts.

Chapter 7]Junta Distributions. Our goal in this chapter is to show that manipulation might
be tractable under typical distributions, even under SCFs that are known to be hard to manipulate
in the worst-case. The greatest obstacle is coming up with aninteresting” distribution of preference
pro les with respect to which the complexity is computed, and our solution may be controversial.
We analyze manipulation problems that are distributed with respect to aJunta distribution. Such a
distribution must satisfy several conditions, which (arguably) guarantee that it focuses on preference
pro les that are harder to manipulate. We consider an SCF to be susceptible to manipulation when
there is a polynomial time algorithm that can usually manipulate it: the probability of failure (when
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the instances are distributed according to a Junta distribution) must be inverse-polynomial. Such
an algorithm is known as aheuristic polynomial time algorithm.

We then show that the family of scoring functions, mentioned several times above, can be
frequently manipulated, even when the preference pro les e distributed according to a Junta
distribution, if the number of alternatives is constant. Speci cally, we contemplate sensitive scoring
functions, which include such well-known functions as Bordaand Veto. To accomplish this task,
we de ne a natural distribution over the instances of a well-de ned coalitional manipulation
problem, and show that this is a Junta distribution. Further more, we present the manipulation
algorithm Greedy , and prove that it usually succeeds with respect to . The signi cance of this
result stems from the fact that sensitive scoring functionsare N P -hard to manipulate, evenwhen
the number of alternatives is constant. We support our claim that Junta distributions provide
a good benchmark by proving that Greedy also usually succeeds with respect to the uniform
distribution.

Chapter 8] The Fraction of Manipulators The last results that are included in the thesis
deal with the probability that a coalition of manipulators h as the power to sway the outcome of
the election. Intuitively, if the size of the coalition is small then this probability is small, under
preferences that are reasonably distributed. If the coaliton is very large, then the probability must
be close to 1. In other words, it is either almost always posbie to nd a successful manipulation,
or almost never possible. Chaptei B makes this intuition moe accurate.

We notice that the correct option (small or large probability) depends only on easily testable
properties of the distribution, and on the fraction of manipulators. If nis the numger of agents and™
is the number of manipulators in the coalition, we demonstrde that, when fi = o(" n), manipulation
is almost never possible under almost any distribution whee the agents vote independently. When
A = ! (" n), we characterize the distributions where manipulation is almost always possible, and
the ones where it is almost never possible. We rigorously pk@ these results in the context of the
family of scoring functions.

Ultimately, our results yield a generic algorithm that usually decides the coalitional manipula-
tion problem under many natural distributions.

1.3 Prerequisites

This thesis requires basic (graduate-level) knowledge of th theory of computer science on the part
of the reader. In particular, the reader is assumed to be (at éast generally) familiar with the
following topics: basic complexity theory, approximation algorithms, linear programming, Markov
chains, basic probability theory, basic algebra. A signi cant portion of the thesis (Part [[) deals with
learning theory, but the necessary concepts and theorems arintroduced in the relevant chapters.

On the other hand, the thesis is completely self-contained wh respect to its economic as-
pects. To put it dierently, any graduate student in compute r science should be able to read
and understand the entire thesis. Passing knowledge of gamiaeory and mechanism design may
help understand some of the concepts that are dealt with, butsuch knowledge is certainly not a
prerequisite. Most importantly, no prior knowledge of voting theory is required.
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1.4 Bibliographic Notes

Chapter [3 is based on joint work with Michal Feldman and Je Rosenschein; a signi cantly ex-
tended version appeared as [21]. Chapterl4 is based on jointosk with Felix Fischer and Alex
Samorodnitsky [56]. Chapter® is based on joint work with Yori Peleg, Je Rosenschein, and Aviv
Zohar [128]. Chapter[® is based on joint work with Ofer Dekel ad Felix Fischer [39]. Chapters[Y
and[8 are based on joint work with Je Rosenschein|[119, 120].

1.4.1 Excluded Research

Many topics that | have worked on during my PhD studies have been left out of this thesis, mainly in
order to adhere to the Hebrew University's strict page limit for PhD theses. Many of these works
lie within the boundaries of computational voting theory, some do not. The excluded research
includes (but is not limited to):

Computational Voting Theory

Work on the distortion of cardinal preferences in voting [116] and the robustness of SCFs [124],
which are related to the topics discussed in Partll of this thesis.

Additional work on frequency of manipulation in elections [155, 40], intimately related to
Part [T

Work on worst-case complexity issues related to elections wh multiple winners, both with
respect to their strategic aspectsi[125, 96], and winner dermination [127].

Recent work on Strategyproof learning [[97], an extension athe work presented in Chapter[®.

Extensions of the work on approximating Dodgson and Young edctions [21], given in Chap-
ter @

Work on Mediated equilibria, their application in voting, a nd implementation [107,/108].

Other works on computational aspects of voting [152] 114].

Other topics

Work on cooperative games: communication complexity[[117]learning [118], and computa-
tion of power indices [4].

Work on argumentation [115].
Work on reputation systems [122].

Work on solution concepts for noncooperative games [121].
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Chapter 2

Preliminaries

In this chapter we shall formally introduce the mathematical de nitions and notations that will
serve us throughout this thesis. We may introduce some addibnal notations later, on an ad hoc
basis.

2.1 The Basics

set of alternatives A, where jAj = m. We denote alternatives by letters, usually usinga, b, ¢, X, vy,
and p. Agent indices usually appear in superscript, whereas altmative indices usually appear in
subscript.

Each agenti 2 N holds a quasi-orderR' over A, i.e. R' is a binary relation over A that satis es
re exivity, antisymmetry, transitivity and totality. Inf  ormally, R' is a ranking of the alternatives.
The setL = L(A) is the set of all such (linear) quasi-orders, so for ali 2 N, R' 2 L throughout.

preferences of a coalitionS N ; xRSy means that xR'y for all i 2 S.
We are now in a position to de nejin one stroke!|three centra | concepts.

De nition 2.1.1.
1. A social choice function (SCF) is a function f : LN I A.
2. A social welfare function (SWF) is a function f : LN I'L
3. A social choice correspondencgSCC) is a functionf : LN I 22 nf.g .
Most importantly, an SCF determines the outcome of the electon given the preferences of the
agents.
2.2 Common SCFs
In the section we describe some prominent SCFs that we shallehl with.
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2.2.1 Scoring Functions

The predominant|ubiquitous, even|SCF in political electi  ons is the Plurality function. Under
Plurality, each agent awards one point to the alternative it ranks rst, i.e., its most preferred
alternative. The alternative that accumulated the most points, summed over all agents, wins the
election. Another example of an SCF is theVeto rule: each agent \vetoes" a single alternative;
the alternative that was vetoed by the fewest agents wins theelection. Yet a third example is the
Borda rule, devised as early as 1770 by Jean-Charles de Borda: eveagent awardsm 1 points
to its top-ranked alternative, m 2 points to its second choice, and so forth|the least preferred
alternative is not awarded any points. Once again, the altenative with the most points is elected.

The abovementioned three SCFs all belong to an important fanly of SCFs known asscoring
functions. A scoring function can be expressed by a vector of parameter = h 1;:::; i, where
each | is a real number and 1 m. Each agent awards 1 points to its most-preferred
alternative, , to its second-most-preferred alternative, etc. Naturally, the alternative with the
most points wins. Under this uni ed framework, we can expres our three rules as:

Plurality : = h1;0;:::;0i.
Borda: =mm 1 m 2;:::;0i.
Veto: = hl;:::;1;0i.

Remark 2.2.1. Formally, scoring functions are de ned as SCCs, so that all #ernatives with
maximal score (there may be multiple such alternatives) areelected. In practice, in most cases we
will assume some method of tie-breaking in order to obtain SCB.

Example 2.2.2. Let us present an example to illustrate the di erences betwen di erent scoring

functions. This example is also meant to clarify some of the d nitions introduced earlier. Let the

set of agents beN = f 1;2; 3; 4g, and let the set of alternatives beA = fa;b; @. De ne a preference
pro le as follows:

Rl R2 R3 R4
a c C b
b a a a
c b b c

Under Plurality a has one point, b has one, andc has two, thus c is the winner. Under Borda,
a has 5 points,b has 3, andc has 4, hencea is the winner. Under Veto, a is again the winner since
it was not vetoed by any of the agents.

2.2.2 Single Transferable Vote and Plurality with Runo

We presently introduce two additional, related, SCFs.

Single Transferable Vote (STV) STV is an SCF that is actually used in political elections
around the world. More importantly, di erent organization s and pressure groups are strongly
advocating its use in elections in the United States and Unied Kingdom.

Under STV, the election proceeds inm 1 rounds. In each round, the alternative's score is the
number of agents that rank it highest among the remaining alernatives; the alternative with the
lowest score is eliminated, and the remaining alternativesadvance to the next round.
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Plurality with Runo This SCF is reminiscent of STV, but involves only two rounds. Only

two alternatives survive the rst round, and proceed to the second. In the second round, the two
alternatives that survived the rstface o ina pairwise election; the winner of the pairwise election
betweena and b is the alternative that is preferred to the other by a majority of agents.

2.2.3 Condorcet Consistent SCFs

As early as the 18th century the French mathematician and phiosopher, Marie Jean Antoine Nicolas
de Caritat, marquis de Condorcet, proposed a compelling cterion for selecting the winner of an
election. Condorcet proposed that the winner be the alternéive that beats every other alternative
in a pairwise election. Sadly, it is fairly easy to see that tte preferences of the majority may
be cyclic, hence aCondorcet winner does not necessarily exist. This unfortunate phenomenon is
known as the Condorcet paradox (see Black [14]).

Given this reality, di erent SCFs have been devised to satidy the property known as Condorcet
consistency. the SCF must elect a Condorcet winner if one exists. In this sction we discuss several
such functions.

Copeland The Copeland score of an alternative is the number of other d@érnatives it beats in
pairwise elections. Notice that if a Condorcet winner exiss, it must have a Copeland score oin 1,
whereas other alternatives have a score of at mogh 2 (since they are beaten by the Condorcet
winner). Hence, Copeland is Condorcet consistent.

Maximin ~ The Maximin function, also known as Simpson works as follows. For any two alter-
natives x and y, let

N(x;y)= jfi 2 N : xR'ygj
be the number of agents who prefex to y (given RN). The Maximin score of x is minygx N (X;y).
In words, the score of an alternative is the result of its wors pairwise election. The winner under
Maximin maximizes this minimum, hence the name of the functon.

A Condorcet winner must have a Maximin score of more thann=2, since it is preferred to any
other alternative by a majority of agents. On the other hand, a di erent alternative loses to the
Condorcet winner (if one exists) in a pairwise election, hene its Maximin score is smaller than
n=2. Therefore, Maximin is Condorcet consistent.

Dodgson and Young Charles Dodgson, better known by his pen name Lewis Caroll, &s a
mathematician and writer.[4 Dodgson proposed an SCF that chooses the alternative \clos¢' to

being a Condorcet winner. Formally, The Dodgson score of a gen alternative x, with respect to a
given preference pro leRN, is the least number of exchanges between adjacent alternaes in RN

needed to makex a Condorcet winner.

Example 2.2.3. For instance, letN = f1;2;3g, A = fa;b; @, and let RN be given by:

Rl RZ2 RS
a b a
b a c
C c b

!Dodgson famously authored \Alice's Adventures in Wonderland".
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In this example, the Dodgson score of is 0 (a is a Condorcet winner), b's score is 1, andc's is
3.

Young [154] raised a second option: measuring the distanceybagents. The Young score of x
with respect to RN is the size of the largest subset of agents such that is a Condorcet winner
with respect to these agents. If for every nonempty subset ohgentsx is not a Condorcet winner,
then its Young score is 0. In the pro le given in Example[2.2.3 the Young score ofa is 3, the score
of bis 1, and the score oft is 0.

2.3 Tournaments and Voting Trees

A tournament T on A is an orientation of the complete graph with vertex setA. In other words,
T is a complete and asymmetric relation overA. For a tournament T 2 T (A), we write aT bif the
edge between a paia;b2 A of alternatives is directed from a to b, or a dominates b. We denote
by T (A) the set of all tournaments on A.

In voting theory a tournament T is often used to represent the results of all possible pairnsie
elections given a pro le, whereaT b means that a beats b in a pairwise election. The following
seminal theorem gives an important relation between prefegnce pro les and tournaments.

Theorem 2.3.1 (McGarvey [94]). Let A be a set of alternatives. For every tournamenfT on A
there exists a set of agent®N and a preference pro le RN that inducesT.

Notice that the Copeland rule takes into account only the tournament induced by RN, and
essentially elects an alternative with maximum degree in tle tournament. Another important class
of functions from T (A) to A is known asvoting trees Informally, a voting tree over A is a binary
tree with leaves labeled by elements oA. Given a tournament T, a labeling for the internal nodes
is de ned recursively by labeling a node by the label of its clild that beats the other child according
to T (or by the unigue label of its children if both have the same ldel). The label at the root is
then deemed the winner of the voting tree given tournamentT. This de nition expressly allows an
alternative to appear multiple times in the leaves of a tree.

For example, assume that the alternatives area, b and ¢, and bTa cTbhand aTc. In the tree
given in Figure[2.1, b beats a and is subsequently beaten byc in the right subtree, while a beatsc
in the left subtree. a and c ultimately compete at the root, making a the winner of the election.

Figure 2.1: An example voting tree.

Formally, a voting tree on A is a structure = ( V;E; ) where (V;E) is a binary tree with root
r2V,and :V ! A isa mapping that assigns an element ofA to each leaf of /;E). Given a
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tournament T, a unique function "t : V ! A exists such that

(V) = “(v) if vis a leaf
T “(ug) if v has childrenu; and uy, and “(u1)T "(u2) or “(uz) = "(up)

We are interested in the label of the rootr under this labeling, which we call the winner of the tree

and denote by (T) = "1(r).

2.4 Manipulation and the G-S Theorem

For the rsttime in this chapter, we di erentiate between tw o layers in the agents' preferences: their
truthful preferences, which are the private information of the agents, and their reported preferences,
which are used as input to the SCF and therefore a ect the soal outcome. Once this distinction
is made, there is cause for concern since agents may report tuathful preferences in an attempt
to improve the outcome of the election; this phenomenon is kawn as manipulation. If multiple
agents try their hand at manipulating the election at the same time, the chosen alternative may be
one that is far from being socially desirable.

De nition 2.4.1.  Letf : LN 1 A be an SCF.f is strategyproof if for all RN 2 LN, all agents
i2N andallQ 2L, f(RV)R'f (Q";RN"9), where (Q'; RN"9) is identical to RN except for the
replacement ofR' by Q'.

In words, f is strategyproof if for any preference pro le RN, every agenti prefers (according to
R') the outcome when it reports its true preferences at least asnuch as the outcome resulting from
the report of any di erent ranking Q'. It is implicitly assumed here that a potential manipulator
has complete information about the ballots of the other agets, namely RN"9. This is essentially
a worst-case assumption: we would like the SCF to be strategypof even if the manipulator has
complete information.

We say that an SCFf is dictatorial if there exists adictator d 2 N such that for all RN, f (RN)
is the alternative ranked rst in RY. f is said to be nondictatorial if there is no such dictator.
The famous Gibbard-Satterthwaite (G-S) Theorem asserts that essentially, there is ho SCF that
is both strategyproof and nondictatorial.

Theorem 2.4.2 (Gibbard-Satterthwaite [60, 135]). Let f : LN I A be an SCF ontoA, jAj 3.
If f is strategyproof, thenf is dictatorial.
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Chapter 3

Approximability of Dodgson and
Young Elections

3.1 Introduction

One of the big questions in social choice theory is: given thereferences of the agents, which
alternative best re ects the social good? As mentioned in Setion 2.2, the Marquis de Condorcet
suggested the following intuitive criterion: the winner should be an alternative that beats every
other alternative in a pairwise election i.e., an alternative that is preferred to any other alternative
by a majority of the agents. However, a Condorcet winner migh not always exist.

In order to circumvent this situation, several researchershave proposed choosing an alternative
that is \as close as possible” to a Condorcet winner. Di erert notions of proximity can be con-
sidered, and vyield di erent SCFs. Two of these notions were pesented in Section’ZR: Dodgson's
rule measures the distance according to the number of exchges between adjacent alternatives,
whereas Young's rule measures the distance by agents.

Though these two SCFs sound appealing and straightforwardthey are notoriously complicated
to resolve. As early as 1989, Bartholdi, Tovey and Trick [9] lave shown that computing the Dodg-
son score isN P -complete, and that pinpointing a Dodgson winner isNP -hard. This important
paper was one of the rst to introduce complexity-theoretic considerations to social choice theory.
Hemaspaandra et al. [[66] re ned the abovementioned result ¥ showing that the Dodgson winner
problem is complete for 2 the class of problems that can be solved by (log n) queries to anN P

set. Subsequently, Rothe et al.|[132] proved that the Young winer problem is also complete for

p
2+

The abovementioned complexity results give rise to the ageta of approximately calculating an
alternative's score, under the Dodgson and Young schemes. his is clearly an interesting compu-
tational problem, as an application area of algorithmic tecniques.

However, from the point of view of social choice theory, it isnot immediately apparent that an
approximation of a SCF is satisfactory, since an \incorrect' alternative|in our case, one that is
not closest to a Condorcet winner|can be elected. Nevertheless, we argue that the use of such an
approximation is strongly motivated. Indeed, at least in the case of the Dodgson and Young rules,
the winner is an \approximation" in the rst place, in instan ces where no Condorcet winner exists.
Moreover, the approximation algorithm is equivalent to a new SCF, which is guaranteed to elect
an alternative that is not far from being a Condorcet winner. In other words, a perfectly sensible
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de nition of a \socially good" winner, given the circumstan ces, is simply the alternative chosen by
the approximation algorithm. Note that the approximation a Igorithm can be designed to satisfy
the Condorcet criterion, i.e., always elect a Condorcet wimer if one exists (this is always true for
an approximation of the Dodgson score, as the score of a Condmet winner is 0, and is indeed the
case here).

3.2 Approximability of Dodgson

In this section, we present the main result of the chapter: anLP-based randomized rounding
algorithm that gives an O(log m) approximation for the Dodgson score of an alternative. Letus
rst introduce some notation. Let a 2 A be a distinguished alternative, whose Dodgson score we
wish to compute. De ne the decit of a with respect to a 2 A, simply denoted def@) when the
identity of a is clear, as the number of additional agents that must ranka abovea in order for a
to beat a in a pairwise election. For instance, if 4 agents prefea to a and only one agent prefers
a to a, then def(a) = 2. If a beatsa in a pairwise election (namelya is preferred by the majority
of agents) then def@) = 0.

As a warm-up, we start by considering some trivial combinatoial algorithms. Recall that in
order to compute the Dodgson score of a given alternative ungkr some preference pro le, we must
perform the minimal number of exchanges between adjacent tdrnatives. In fact, clearly the only
type of exchanges to be considered are the ones that move thévgn alternative upward in some
ranking, at the expense of some other alternative. In other wards, we can simply talk about the
number of positions each agent pushes the given alternative

An approximation algorithm that immediately comes to mind i s the following greedy algorithm.

Algorithm 1
Input : An alternative a whose Dodgson score we wish to estimate, and a preference peo
RN 2LN,
Output : An approximation of the Dodgson score ofa .
The algorithm:
1. Let A%be the alternatives that are not beaten bya in a pairwise election underRN .
2. While A%6 ::

Choose somea 2 A arbitrarily.

Perform the minimal number of exchanges needed to makea beat a in a pairwise
election.

Recalculate A°
3. Return the number of exchanges performed.

Notice that step 2 in the while loop can be carried out e ciently. Indeed, it is su cient to
simply choose the defé) agents that require the smallest number of exchanges in orer to placea
above a, and perform these exchanges.

Proposition 3.2.1.  Algorithm 1 is an m-approximation algorithm for the Dodgson score.
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Proof. Consider the given preference proleRN: let a 2 A be the alternative that requires the
maximum number t of exchanges in order to havea beat a in a pairwise election. The Dodgson
score ofa is at leastt. On the other hand, each iteration of the algorithm's while loop clearly
performs at mostt exchanges, and there are at mosin iterations. O

Unfortunately, it is also easily seen that there are exampls on which Algorithm 1 gives an ( m)
approximation. We now turn our attention to a second simple combinatorial algorithm. The input
and output of the algorithm are the same as before.

Algorithm 2

1. Let A%be the alternatives that are not beaten bya in a pairwise election underRN .
2. While A%6 ;:

Move a upward by one position in the preferences of all the agents (olessa is already
ranked highest).

Recalculate A°
3. Return the number of exchanges performed.
Proposition 3.2.2.  Algorithm 2 is an n-approximation algorithm for the Dodgson score.

Proof. Consider the minimal sequence of exchanges that makes a Condorcet winner, and denote
the length of this sequence (which is, in facta 's Dodgson score) byt. For everyi 2 N, denote by
s; the position of a as a result of this sequence in the preferences of agen(where m is the top
ranking position, and 1 is the lowest ranking). Lets; be the position ofa in agenti's ranking after
t iterations of the algorithm's while loop. It is self evident that for all i 2 N, s; s;. Therefore,
after at most t iterations a certainly becomes a Condorcet winner, and the algorithm hak. We
conclude that the number of exchanges the algorithm makes iat mostt n. Ol

Algorithm 2's worst-case approximation ratio is also ( n). Indeed, it is easy to nd an example
where a needs only one exchange to become a Condorcet winner, but angie iteration of the
algorithm leads to ( n) exchanges.

3.2.1 The Randomized Rounding algorithm

Bartholdi et al. [9] provide an integer linear programming (ILP) formulation for the Dodgson
score. The number of constraints and variables in their progam depends solely on the number
of alternatives. Therefore, if the number of alternatives s constant, the program is solvable in
polynomial time using the algorithm of Lenstra [89]. Howeve, if the number of alternatives is not
constant, the LP is of gargantuan siz

Fortunately, it is easy to modify the abovementioned ILP to obtain a program of polynomial
size. As before, leta 2 A be the alternative whose score we wish to compute. Let the vaables of

!Note that there is also an e cient solution if the number of agents n is constant; indeed, brute force search
requires checkingO(m") possibilities.
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and a2 Anfa g, which depend on the given preference pro Ie;e}a =1i pushing a by | positions
in the ranking of agenti makesa gain an additional vote againsta (note that e]'a =0 forall j if
a R'a). Once again, let def@) be the de cit of a with respect to a, i.e., the number of agentsa

must gain in order to defeata in a pairwise election. The ILP that computes the Dodgson scee of
a is given by:

X
minimize j X

1) X .
subjectto 8i 2 N; xt =1 (3.2)

J X
8a2 Anfag; Xj g, def(a)
iij
8i2N;8 2f0;:::;m  1g; x| 20;1g

This ILP can be relaxed by requiring merely that 0 x} 1 for alli andj. The resulting
linear program (LP) can be solved e ciently [78].

We are now ready to present our randomized rounding algoritim. Its input and output are as
before.

Randomized Rounding Algorithm
1. Solve the relaxed LP given by [3.1) to obtain a solutionx.
2. Fork=1;:::; logm (where > 0 is a constant to be chosen later)

For all i 2 N, randomly and independently (from other agents and other iterations)
choose a valueX, such that X, = j with probability x;.

3. Foralli 2 N, set X/ =maxyX}.

4. Let X%be tBe solution that movesa upwards in the ranking of i by X | o positions; return
costX9) =" 15N Xnax -

We remark that if a is a Condorcet winner from the outset, clearly the algorithmwill calculate
a score of 0 (with probability 1). Therefore, if we de ned a new (randomized) SCF, which elects the
alternative with minimal score according to the algorithm, this SCF would satisfy the Condorcet
criterion.

Theorem 3.2.3. For any input a and RN with m alternatives, the randomized rounding algorithm
returns a 4 log m-approximation of the Dodgson score ofr  with probability at least 1/2.

The proof of the theorem is quite similar to the analysis of the randomized rounding algorithm
for Set Cover [145, pp. 120-122], with one prominent additioal argument, namely the application
of Lemmal3.2.3.

Proof of Theorem[3.2.3. Fix some iteration k of the algorithm's for loop. Let X1 = Xli(, i 2 N, be
independent discrete random variables such thaX ' = j with probability xj!. Consider the sequence
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of exchanges induced by the variableX ', i.e., each agenﬁlz N movesa upward by j places with
probability xj!. As a result of the constraint 8i 2 N; j x} =1, these are legal random variables.
Moreover, let X be th@, chosen sequence of exchanges, and denote the optimalctional solution

of the LP by OPT¢ = 4, j xJ!; it holds that

" #

X .
E[cost(X)] = E X' =OPT; : (3.2)
i2N

Now, x some alternative a 6 a . We wish to bound the probability that a does not beata
after the exchanges given byX are made inRN.

Let Y', i 2 N, be independent Bernoulli trials, such that Y! = 1i aR'a, and a is moved
above a in the preferences of agenti. In other words, Y' = 1 if agent i becomes an additional
agent that ranks a abovea as a result of the exchanges. We want to provide an upper boundn
Pr[ oy Y' < def(a)]. Denote

i€, =1

i : P . P
Notice tha}g Y' =1 with probability p', solg[ 1 Y'T=;p'. Moreover, by the constraint 8a 2
Anfag, j xjg, def(a), we havethat ;p' def(a). We now employ a deceivingly intuitive
but nontrivial result:

trials. Suppose thatE|[ iYi] is an integer. Then

" " ##
X X

Pr Yi<E Yi < 1=2 -

P .. P
Since def@) is an integer, andE[ ;Y']= ,p' def(a), it follows from the lemma that:

" #
X .
Pr[a not beaten in X]=Pr Y'< def(q) < 1=2 :

i
At this point, we choose the value of the constant to be such that 2 logm  4m. Note that if
m 4, we can choose 2. As in the algorithm, set X |, = max,X,. Denote by X °the induced

sequence of exchanges. It holds tha is not beaten in a pairwise election underX only if a is not
beaten under the exchanges obtained in each one of the logm individual iterations. Therefore,

logm 1
Pr[a not beaten in X7 <~ —
[ nX3< 3 am
By the union bound we get@
. : . 1
Pr[a is not a Condorcet winner in X9 m m - 1=4 : (3.3)

2Strictly speaking, we can usem 1 instead of m.
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. X
X pax = max X Xk
k k
and thus " X #
E X!ax E X, = logm E[X!] : (3.4)
k
Therefore, by the linearity of expectation,
" #
X .
E[cost(X 9] = E X ax
! " #
X .
logm E X1

= logm E[cost(X)]
= logm OPT;
logm OPT ;

where OPT is the Dodgson score of , i.e., the optimal integral solution to the ILP (3I).
By Markov's inequality we have that

Prlcost(X% > OPT 4 logm] 1=4 : (3.5)

We now apply the union bound once again on[(313) and[{3]5), andbtain that with probability
at least 1/2, a is a Condorcet winner underX %and, at the same time, cost(xc) OPT 4 logm.
This completes the proof of Theoreni3.Z.B. O

Note that it is possible to verify in polynomial time whether the output of the algorithm is, at
the same time, a valid solution (i.e.,a is a Condorcet winner) and a 4 logm-approximation (by
comparing with OPT¢). Therefore, it is possible to repeat the algorithm from scrtch to improve
the probability of success. The expected number of repetitins is at most 2.

3.2.2 A Matching Lower Bound

McCabe-Dansted [92] gives a polynomial-time reduction from lhe Minimum Dominating Set prob-
lem to the Dodgson score problem with the following property given a graph G with k vertices,
the reduction creates a preference pro le withn = ( k) agents andm = ( k%) alternatives, such
that the size of the minimum dominating set of G is bk ?sq (a )¢, where sg (a ) is the Dodgson
score of a distinguished alternativea 2 A. Since the Minimum Dominating Set problem is known
to be NP -hard to approximate to within logarithmic factors [129], it follows that the Dodgson
score problem is also hard to approximate to a factor of (logm). Due to the relation of Minimum

Dominating Set to Minimum Set Cover, using an inapproximability result due to Feige [53], the
explicit inapproximability bound can become % In m under the assumption that problems in
NP do not have quasi-polynomial-time algorithmsﬁ This means that our randomized rounding
algorithm is asymptotically optimal.

3Both inapproximability bounds have not been explicitly observed b y McCabe-Dansted.

25



3.2.3 Monotonicity

We have noted that conceptually our approximation algorithm can be used an SCF in it own right.
Therefore, as a short aside, we shall investigate whether isatis es some of the properties that are
considered desirable for an SCF.

Let us consider the monotonicity property, one of the major desiderata on the basis of which
SCFs are compared. Many di erent notions of monotonicity can be found in the literature; for our
purposes, a (score-based) SCF imonotonic if and only if pushing an alternative in the preferences
of the agents cannot worsen the score of the alternative, thiais, increase it when a lower score is
desirable (as in Dodgson), or decrease it when a higher scoiedesirable. All prominent score-based
SCFs (scoring functions, Copeland, Maximin) are monotonig it is straightforward to see that the
Dodgson and Young rules are monotonic as well.

We claim that our randomized rounding algorithm, or, more accurately, a slight variant thereof,
is monotonic. Indeed, consideg the variant of the algorithmwhere X %is the solution that moves a
upward in the ranking of i by Xli( positions rather than maxy X ; the cost of this solution is

X X .
cost(X 9 = X
k i2N

It is easy to verify (see [3:4)) that the exact same worst-casepproximation bound holds for this
variant as well (although in practice its approximation rat io would usually be signi cantly worse).

Now, consider a situation wherea is moved upwards in the preferences of the agents. It is
obvious that this decreases the value of OPT. In addition, for every k, we haveE ;X =
OPT:. Thereforep b¥3the linearity of expectation, the expected ost of the solution produced by
the algorithm E =, ,,y X\ decreases as well.

3.3 Approximability of Young

Recall that the Young score of a given alternativea 2 A is the size of the largest subset of agents
for which a is a Condorcet winner.

It is straightforward to obtain a simple ILP for the Young score problem. As before, leta 2 A
be the alternative whose Young score we wish to compute. Lethe variables of the program be
x 2f0;1gforalli 2 N;x =1i agent i isincluded in the subset of agents fom . De ne constants
e, 2f 1 1gforalli2 N anda2 Anfa g, which depend on the given preference pro leg, = 1
i agent i ranks a higher than a. The ILP that computes the Young score ofa is given by:

X
maximize X'
i2N X
subjectto 8a2 Anfag  x'é, 1 (3.6)
i2N

8i 2 N; x' 2f0;1g

The ILP (8.6) for the Young score is seemingly simpler than tre one for the Dodgson score,
given as [31). This might seem to indicate that the problem @n be easily approximated by similar
techniques. Therefore, the following result is quite surpising.
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Theorem 3.3.1. Itis NP -hard to approximate the Young score by any factor.

This result becomes more self-evident when we notice that th&oung score has the rare property
of being nonmonotonic as an optimization problem, in the folowing sense: given a subset of agents
that make a a Condorcet winner, it is not necessarily the case that a smégr subset of the agents
would satisfy the same property. This stands in contrast to many approximable optimization
problems, in which a solution which is worse than a valid soltion is also a valid solution. Consider
the Set Cover problem, for instance: if one adds more subset® a valid cover, one obtains a
valid cover. The same goes for the Dodgson score problem: if sequence of exchanges makes
a Condorcet winner, introducing more exchanges on top of theexisting ones would not undo this
fact.

In order to prove the inapproximability of the Young score, we de ne the following problem.

NonEmptySubset
Instance : An alternative a , and a preference proleRN 2 LN,
Question : Is there a nonempty subset of agent€€ N, C 6 ;, for which a is a Condorcet winner?

To prove Theorem[3.311, it is su cient to prove that NonEmpty Subset isSNP -hard. Indeed,
this implies that it is N P -hard to distinguish whether the Young score of a given altermtive is zero
or greater than zero, which directly entails that the score @nnot be approximated.

Lemma 3.3.2. NonEmptySubset is NP -complete.

Proof. The problem is clearly in NP ; a witness is given by a nonempty set of agents for whicla
is a Condorcet winner.

In order to show NP -hardness, we present a polynomial-time reduction from theN P -hard
Exact Cover by 3-Sets (X3C) problem [58] to our problem. An ingance of the X3C problem
includes a nite set of elementsU, jUj = n (where n is divisible by 3), and a collection S of 3-
element subsets olJ, S = fS;;:::;S¢g, such thatforevery 1 i Kk, S U andjS;j=3. The
guestion is whether the collectionS contains an exact coverfor U, i.e., a subcollectionS S of
sizen=3 such that every element ofU occurs in exactly one subset inS.

We next give the details of the reduction from X3C to NonEmpty Subset. Given an instance of
X3C, de ned by the set U and a collection of 3-element setsS, we construct the following instance
of NonEmptySubset.

De ne the set of alternatives asA = U [f ag[f a g. Let the set of agents beN = NO[ N
where N ®and N %®are de ned as follows. The setN %is composed ok agents, corresponding to the
k subsets inS, such that for all i 2 N agenti prefers the alternatives inU nS; to a , and prefers
a to all the alternatives in S; [f ag (i.e., UnS; R a R' S; [f ag).

Subset N %is composed ofy 1 agents who preferato a anda to U (i.e., forall i 2 N 00
aR a R' U).

We next show that there is an exact cover in the given instance there is nonempty subset of
agents for whicha is a Condorcet winner in the constructed instance.

Suciency : Let S be an exact cover by 3-sets ofJ, and let N N ©be the subset of agents
corresponding to the § subsetsS; 2S . We show that a is a Condorcet winner forC = N [ N 00

Since S is an exact cover, for allb 2 U there exists exactly one agent inN that prefers a to

band 3 1 agents inN that prefer bto a . In addition, all § 1 agents inN ®prefer a to b.

Therefore,a beatsbin a pairwise election.
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It remains to show that a beatsa in a pairwise election. This is true since all5 agents inN
prefer a to a, and there are only 3 1 agents inN %®who preferato a . It follows that a is a
Condorcet winner forN [ N
Necessity : Assume the given instance of X3C has no exact cover. We hav® tshow that there is
no subset of agents for whicha is a Condorcet winner. LetC N, C 6 ;,andletN = C\ N°
We distinguish between three cases.

Case I jN j = 0. It must hold that C\ N%86 ;. In this case, a loses toa in a pairwise
election, since all the agents inN ®prefera to a .
Case 2 0< jN j 5. Since there is no exact cover, the corresponding set cannot coverU.

Thus there existsb 2 U that is ranked higher than a by all agents in N . In order for a to beatb
in a pairwise election, C must include at leastjN j+ 1 agents from N % However, this means that
a beatsa in a pairwise election (sincea is ranked lower thana by jN | agents, and higher than
a by atleast jN j+ 1 agents). It follows that a is not a Condorcet winner for C.

Case 3:jN j> 3. Let us award each alternativeb2 A nfa g a point for each agent that ranks
it above a , and subtract a point for each agent that ranks it belowa . a is a Condorcet winner
i the score of every other alternative, counted this way, is negative. This implies that a is a
Condorcet winner only if for every subsetB A of alternatives, the total score of the alternatives
in B is at most j Bj.

We shall calculate the total score of the alternatives inU from the agents in N . Every agent
in N prefersa to 3 alternatives in U and prefersn 3 alternatives in U to a . Thus, every agent
in N contributes (n 3) 3=n 6 points to the total score of U. Summing over all the agents
in N , we have that the total score ofU from N isjN j(n 6). By jN j> 2, we have that

iN j(n 6) (% D+2 (n 6)=(% Hn 6

Recall that every agent in N®prefersa to all alternatives in U. However, sincejN% = 3 1,
agents from N %can only subtract (3 1)n from the total score of U. We conclude that the total
score ofU is at least 6. Since we can assume thglJj = n> GH a cannot beat all the alternatives
in U in pairwise elections. This concludes the proof. Ol

Theorem[3.3.] states that the Young score cannot be e ciently approximated to any factor. The
proof shows that, in fact, it is impossible to e ciently dist inguish between a zero and a nonzero
score. However, the proof actually shows more: it construa a family of instances, where it is
hard to distinguish between a score of zero and almostrd=3. Now, if one looks at an alternative
formulation of the Young score problem where all the scoresra scaled by an additive constant, it
is no longer true that it is hard to approximate the score to any factor; however, the proof still
shows that it is hard to approximate the Young score, even unér this alternative formulation, to
a factor of ( m).

3.4 Related Work

The agenda of approximating SCFs was recently pursued by Adn et al. [1], Coppersmith et al. [36],
and Kenyon-Mathieu and Schudy [77]. These works deal, direty or indirectly, with the Kemeny

4X3C is obviously tractable for a constant n, as one can examine all the familiesS® S of constant size in
polynomial time.
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SWEF, which chooses a ranking of the alternatives instead of aingle winning alternative. The
Kemeny rule picks the ranking that has the maximum number of ggreements with the agents' indi-
vidual rankings regarding the correct order of pairs of altenatives. Ailon et al. improve the trivial
2-approximation algorithm to an involved randomized algorithm that gives an 11/7-approximation;
Kenyon-Mathieu and Schudy further improve the approximation, and obtain a PTAS. Coppersmith
et al. show that the Borda ranking is a 5-approximation of the Kemeny ranking. Interestingly,
Klamler [BQ] discusses the relation between the Kemeny ruland an extension of Dodgson's rule.
However, Klamler shows that the alternative ranked rst by K emeny can appear anywhere in the
Dodgson ranking. This implies that approximation algorith ms for Kemeny cannot be leveraged to
approximate Dodgson.

Two recent works have directly put forward algorithms for th e Dodgson winner problem|([70, ©3].
Both papers independently build upon the same basic idea: ithe number of agents is signi cantly
larger than the number of alternatives, and one looks at a urfiorm distribution over the preferences
of the agents, with high probability one obtains an instanceon which it is trivial to compute the
Dodgson score of a given alternative. This directly gives ge to an algorithm with the property that
Homan and Hemaspaandral [70] calfrequently self-knowingly correct the algorithm knows when it
is de nitely correct, and the algorithm is able to give a de n ite answer with high probability (under
the assumption on the number of agents and alternatives). Havever, this is not an approximation
algorithm in the usual sense, since the algorithma priori gives up on certain instances, whereas an
approximation algorithm is judged by its worst-case guarankes. In addition, this algorithm would
be useless if the number of alternatives is not small compackto the number of agentsE

Betzler et al. [13] have investigated the parameterized comutational complexity of the Dodgson
and Young rules. The authors have devised a xed parameter gorithm for exact computation of
the Dodgson score, where the xed parameter is the \edit disaince", i.e., the number of exchanges.
Speci cally, if k is an upper bound on the Dodgson score of a given alternativen is the number
of agents, andm the number of alternatives, the algorithm runs in time O(2X nk + nm). Notice
that in general it may hold that k = ( nm). In contrast, computing the Young score is W|[2]-
complete; this implies that there is no algorithm that computes the Young score exactly, and whose
running time is polynomial in n; m and only exponential in k, where the parameterk is the number
of remaining votes. These results complement ours nicely, awe have also demonstrated that
computing the Dodgson score is in a sense easier than compngj the Young score, albeit in the
context of approximation.

More distantly related to our work is research that is concened with exactly resolving hard-
to-compute SCFs by heuristic methods. Typical examples inalde works regarding the Kemeny
rule [34] and the Slater rule [26].

Last but certainly not least, very recent subsequent work byCaragiannis et al. [21] has brought
an almost complete understanding of the approximability of the Dodgson and Young rules. They
have presented a deterministic algorithm that gives anO(log m) approximation ratio for the Dodg-
son score. They have also shown that the Dodgson ranking is éemely hard to approximate.
Speci cally, they have shown that it iB NP -hard to distinguish whether a given alternative is the
Dodgson winner or in the lastm O ( m) last positions in the ranking. Finally, Caragiannis et al.
have given a similar result for the Young ranking: it is hard to distinguish whether an alternative

5This would normally not happen in political elections, but can certainl y be the case in many other settings. For
instance, consider a group of agents trying to reach an agreement on a joint plan, when multiple alternative plans
are available.
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is in the rst O(IO m) positions, or is ranked last.

3.5 Discussion

The work presented here and its subsequent extension [21]v@ rise to a promising agenda, that of
studying the desirability of approximation algorithms as SCFs. Indeed, the deterministic approx-
imation algorithm for Dodgson presented in [21] is computatonally superior in every way to the
one presented here: it is combinatorial rather than LP-basedand deterministic rather than ran-
domized. However, we have argued that approximation algothms serve as new SCFs. Therefore,
it is necessary to compare the two algorithms in terms of thai social choice properties.

In the algorithmic mechanism design literature, the goal isusually to design approximation
algorithms that are strategyproof, namely agents cannot bae t by lying. However, the Gibbard-
Satterthwaite Theorem [60, |135] precludes strategyproof SFs. Therefore, other desiderata are
looked for in SCFs.

Interestingly, it turned out that a variation on our randomi zed rounding algorithm is mono-
tonic (see Section[3:Z13), whereas the deterministic algighm is not monotonic [21]. Hence, the
randomized rounding algorithm may be superior in terms of its social choice properties.

Still, there are other prominent social choice properties hat are often considered, such as
homogeneity (duplicating the electorate does not change the outcome). n addition, a stronger
notion of monotonicity is often considered in the literature: pushing a winning alternative cannot
change the outcome of the election. Dodgson itself is not martonic in this sense. Is it possible to
design an algorithm that approximates the Dodgson score ands monotonic in the stronger sense?
We elaborate on this point in Chapter [3.
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Chapter 4

Approximating Maximum Degree in a
Tournament by Binary Trees

4.1 Introduction

In this chapter we again tackle the problem of choosing the \lest" alternatives, this time from a
tournament, i.e., a complete and asymmetric (dominance) relation overa set of alternatives (see
Section[Z.3). Such a relation for example arises from pairge majority voting with an odd number
of voters and linear preferences, and hence tournaments aistimately connected to Voting Theory
and Social Choice Theory in general. In graph theoretic terrs, a tournament is an orientation of a
complete undirected graph, with a directed edge from a domiating alternative to a dominated one.
In the presence of cycles the concept of maximality is not wéide ned, and so-called tournament
solutions have been devised to take over the role of singlingut good alternatives. A prominent
such solution, known as the Copeland solution, selects thelt@rnatives with maximum (out-)degree
i.e., those that beat the largest number of other alternatives in a direct comparison. Notice that
this is a reinterpretation of the Copeland SCF as de ned in Chapter [2.

An interesting question concerns the implementation of a shution concept using a specic
procedure. We shall speci cally be interested in the well-krown class of procedures given byoting
trees. Recall (Section[Z.3) that a voting tree over a setA of alternatives is a binary tree with
leaves labeled by elements ofA. Given a tournament T, a labeling for the internal nodes is de ned
recursively by labeling a node by the label of its child that beats the other child according toT (or
by the unique label of its children if both have the same labéel. The label at the root is then deemed
the winner of the voting tree given tournament T. This de nition expressly allows an alternative
to appear multiple times at the leaves of a tree.

A voting tree over A is said to implement a particular solution concept if for every tournament
on A it selects an optimal alternative according to said solution concept. It has long been known
that there exists no voting tree implementing the Copeland lution, i.e., one that always selects
a vertex with maximum degree [102]. In this chapter, we ask a atural question from a computer
science point of view: \Is there a voting tree that approximates the maximum degree?" More
precisely, we would like to determine the largest value of , such that for any set A of alternatives,
there exists a tree , which for every tournament on A selects an alternative with at least times
the maximum degree in the tournament. We will address this qeestion both in the deterministic
model, where is a xed voting tree, and in the randomized model, where voting trees are chosen
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randomly according to some distribution.

4.2 The Mathematical Framework

Since in this chapter we do not have a set of agents, we denoterfconvenience the set of alternatives

tournaments and voting trees, and the necessary notations.

We call a voting tree  surjective if every alternative can be elected given an appropriate
tournament. Obviously, surjectivity corresponds to a very basic fairness requirement on the solution
implemented by a tree. Other authors therefore view surjecivity as an inherent property of voting
trees and de ne them accordingly (see, e.g., Moulin [102]). The sole reason we do not require
surjectivity by de nition is that our analysis will, on one o ccasion, use trees that are not necessarily
surjective.

Given a tournament T and an alternative i 2 A we denote bys; = si(T) = jfj 2 A :iTj gj the
degreeor (Copeland) score of i, i.e., the number of outgoing edges from this alternative, aitting T
when it is clear from the context.

A voting tree on A will be said to provide an approximation ratio of  (w.r.t. the maximum
degree) if

min L
T2T (A) Maxjz2a Si(T)

The above model can be generalized by looking atitndomizations over voting trees according
to some probability distribution. We will call a randomizat ion admissible if its support contains
only surjective trees. A distribution over voting trees wi |l then be said to provide a (randomized)
approximation ratio of  if

m E  [s(ml
T2T (A) Maxioa Si(T)

While we are of course interested in the approximation ratioachievable by admissible randomiza-
tions, it will prove useful to consider a specic class of ramlomizations that are not admissible,

namely those that choose uniformly from the set of all votingtrees with a given structure. Equiv-

alently, such a randomization is obtained by xing a binary t ree and assigning alternatives to the
leaves independently and uniformly at random, and will thus be called arandomized voting tree

4.3 Upper Bounds

In this section we derive upper bounds on the approximation atio achievable by voting trees, both
in the deterministic model and in the randomized model. We buld on concepts and techniques
introduced by Moulin [L02], and begin by quickly familiarizing the reader with these.

Given a tournament T on a setA of alternatives, we say thatC A 'is acomponen@ of T if for
allig;io2 Candj 2 AnC,i;Tj ifandonly if i,Tj. Fora componentC, denote by T¢ the subset of
tournaments that have C as a component. IfT 2 T¢, we can unambiguously de ne a tournament
Tc on (AnC)[f Cg by replacing the componentC by a single alternative. The following lemma
states that for two tournaments that di er only inside a part icular component, any tree chooses
an alternative from that component for one of the tournaments if and only if it does for the other.

Moulin [102] uses the term \adjacent set".
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Figure 4.1: Tournaments used in the proof of Theoreni’4.3]2 llustrated for k = 3. A voting tree is
assumed to select an alternative fromC;.

Furthermore, if an alternative outside the component is chsen for one tournament, then the same
alternative has to be chosen for the other. Laslier|[87] cadl a solution concept satisfying these
properties weakly composition-consistent

Lemma 4.3.1 (Moulin [L02]). Let A be a set of alternatives, a voting tree on A. Then, for all
proper subsetsC ( A, and for all T;T%2 T¢,

1. [Tc = TQ] implies [( T) 2 C if and only if ( T9 2 C], and
2. [Tc=T2and (T)2 AnC]implies[( T)= ( TI].

We are now ready to strengthen the negative result concernig implementability of the Copeland
solution [102] by showing that no deterministic tree can alvays choose an alternative that has a
degree signi cantly larger than 3=4 of the maximum degree.

Theorem 4.3.2. Let A be a set of alternatives,jAj = m, and let be a deterministic voting tree
on A with approximation ratio . Then, 3=4 + O(1=m):

Proof. For ease of exposition, we assumgAj = m = 3k + 1 for some odd k, but the same result
(up to lower order terms) holds for all values of m. De ne a tournament T comprised of three
componentsC;, C,, and Cg, such that for r = 1;2;3, (i) jC;j = k and the restriction of T to C,
is regular, i.e., eachi 2 C, dominates exactly (k 1)=2 of the alternatives in C;, and (ii) for all
i12Crandj 2 Cy mod 3)+1. iTj . Anillustration for k = 3 is given on the left of Figure [4.1.

Now consider any deterministic voting tree on A, and assume w.l.o.g. that (T) 2 C;.
De ne T%to be a tournament on A such that the restrictions of T and T°to B A are identical if
jB\ Cyj 1, and the restriction of T%to C, is transitive: in particular, there is i 2 C, such that for
anyi 6 j 2 Co, iTY. Anillustration for k = 3 is given on the right of Figure &1. By Lemma[Z.31,
(TY = ( T). Furthermore, TP satis es
(k 1) 3k 1

= and maxs; =2k 1 ;
i2A

S(r9 = k+ 2 2

and thus
S(TO) _ 3k 1 3(k l)+2_ 3 1

maxzas(T) 4k 2 4k 1) 4 2k 1) °
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We now turn to the randomized model. It turns out that one cannot obtain an approximation
ratio arbitrarily close to 1 by randomizing over large trees We derive an upper bound for the
approximation ratio by using similar arguments as in the deterministic case above, and combining
them with the minimax principle of Yao [153].

Theorem 4.3.3. Let A be a set of alternatives,jAj = m, and let  be a probability distribution
over voting trees onA with an approximation ratio of . Then, 5=6 + O(1=m):

The proof of this theorem is given in Appendix[A.J. We point out that the theorem holds in
particular for inadmissible randomizations.

4.4 A Randomized Lower Bound

A weak deterministic lower bound of ((log m)=m) can be obtained straightforwardly from a bal-
anced tree where every label appears exactly once. While keiced trees will be discussed in more
detail in Section[4.5, they become increasingly unwieldy wh growing height, and an improvement
of this lower bound or of the deterministic upper bound givenin the previous section currently
seems to be out of our reach. In the remainder of the chapter, & therefore concentrate on the
randomized model.

In this section we put forward our main result, a lower bound d 1=2, up to lower order terms,
for admissible randomizations over voting trees. Let us stge the result formally.

Theorem 4.4.1. Let A be a set of alternatives. Then there exists an admissible ralomization
over voting trees onA of size polynomial injAj with an approximation ratio of 1=2 O (1=m).

In addition to satisfying the basic admissibility requirement, the randomization also has the
desirable property of relying only on trees of polynomial ste. This clearly facilitates its use as a
computational procedure. To prove Theorem[4.4.]l, we make wsof a speci ¢ binary tree structure
known as caterpillar trees.

4.4.1 Randomized Voting Caterpillars

We begin by inductively de ning a family of binary trees that we refer to ask-caterpillars. The
1-caterpillar consists of a single leaf. Ak-caterpillar is a binary tree, where one subtree of the
rootis a (k 1)-caterpillar, and the other subtree is a leaf. Then, avoting k-caterpillar on A is a
k-caterpillar whose leaves are labeled by elements &.

It is straightforward to see that an upper and lower bound of 1=2 holds for the randomized
1-caterpillar, i.e., the uniform distribution over the m possible voting 1-caterpi||ar§. Indeed, such
a tree is equivalent to selecting an alternative uniformly & random. Since we have ,,s = 75 ,
the expected score of a random alternative isri  1)=2, whereas the maximum possible score is
m 1. This randomization, however, like other randomizationsover small trees that conceivably
provide a good approximation ratio, is not admissible and atually puts probability one on trees
that are not surjective. This leads to absurdities from a sodal choice point of view; for instance,
in a tournament where there are both aCondorcet winner, an alternative that beats every other,
and a Condorcet loser, which loses to every other alternative, the probabilities (under the above
inadmissible randomization) of electing the former and the latter are equal, namely I=m. In
contrast, any admissible randomization would elect a Condocet winner with probability 1 given
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a tournament where one exists, and would elect a Condorcet ker with probability O given a
tournament where one exists.

To prove Theorem[4.4.], we instead use the uniform randomiz#on over surjective k-caterpillars,
henceforth denotedk-RSC, which is clearly admissible. TheoreniiZ.4]1 can then beestated as a
more explicitjland slightly stronger|result about the k-RSC.

Lemma 4.4.2. Let A be a set of alternatives,T 2 T (A). For k 2 N, denote bypi(k) the probability
that alternative i 2 A is selected fromT by thek-RSC. Then, for every > 0 there existsk = k(m; )
polynomial in m and 1= such that

X

(k) m 1
RS 2
i2A

The lemma directly implies Theorem[4.4.1 by letting = 1 and recalling that the maximum
score ism 1. The remainder of this section is devoted to the proof of tht lemma. For the sake
of analysis, we will use the randomized-caterpillar, or k-RC, as a proxy to the k-RSC. We recall
that the k-RC is equivalent to a k-caterpillar with labels for the leaves chosen independenyl and
uniformly at random. In other words, it corresponds to the uniform distribution over all possible
voting k-caterpillars, rather than just the surjective ones.

Clearly the k-RC corresponds to a randomization that is not admissible. Incontrast to very
small trees, however, like the one consisting only of a singlleaf, it is straightforward to show that
the distribution over alternatives selected by the RC is vely close to that of the RSC.

Lemma 4.4.3. Let k m, and denote bypi(k) and pi(k), respectively, the probability that alterna-
tive i 2 A is selected by th&k-RC and by thek-RSC for some tournamentT 2 T (A). Then, for all
i 2 A,

. (k K) . m

VR R R

Proof. For all i 2 A, jpi(k) pi(k)j is at most the probability that the k-RC does not choose a
surjective tree. By the union bound, we can bound this probalility by

X 1 K
Pr[i does not appear inthek-RC] m 1 -
i2A

m
gem - H

O]

With Lemma at hand, we can temporarily restrict our attention to the k-RC. A direct
analysis of the k-RC, and in particular of the competition between the winner of the (k  1)-RC
and a random alternative, shows that for everyk, the k-RC provides an approximation ratio of at
least 1=3. It seems, however, that this analysis cannot be extendedat obtain an approximation
ratio of 1=2. In order to reach a ratio of 1=2, we shall therefore proceed by employing a second
abstraction. Given a tournament T, we de ne a Markov chain M = M (T) as follows The state

2Curiously, this chain bears resemblance to one previously used to e ne a solution concept called the Markov set
(see, e.g., Laslier [87]). However, only limited attention has been given to a formal analysis of this chain, concerning
properties which are di erent from the ones we are interested in.
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space of M is A, and its initial distribution © is the uniform distribution over . The transition
matrix P = P(T) is given by

We claim that the distribution () of M after k steps is exactly the probability distribution p(*1)
over alternatives selected by the k + 1)-RC. In order to see this, note that the 1-RC chooses an
alternative uniformly at random. Then, the winner of the k-RC is the winner of the (k 1)-RC if
the latter dominates, or is identical to, the alternative assigned to the other child of the root. This
happens with probability (s;+1) =m wheni is the winner of the k-RC. Otherwise the winner is some
other alternative that dominates the winner of the k-RC, and each such alternative is assigned to
the other child of the root with probability 1 =m.

We shall be interested in the performance guarantees givenybthe stationary distribution
of M. We rst show that M is guaranteed to converge to a unique such distribution, desite the
fact that it is not necessarily irreducible.

Lemma 4.4.4. Let T be a tournament. ThenM (T) converges to a unique stationary distribution.

Proof (sketch). Let A be a set of alternatives. We rst observe that any tournamentT 2 T (A) has
a unique strongly connected componentc(T) A, the top cycle of T, such that there is a directed
path in T from everyi 2 tc(T) to every j 2 A. Clearly, a is a recurrent state of M = M (T) if and

only if a2 tc(T). It follows that for every > O there existsk 2 N such that ;5 i(k) 1 .
Since the restriction of T to tc(T) is strongly connected, and since there is a positive probalhty
of going from any state ofM to the same state in one step, the restriction ofM to tc(T) is ergodic
and thus has a unique stationary distribution. Moreover, M is guaranteed to converge to this
distribution as soon as it has reached a state intc(T), which in turn happens with probability
tending to one as the number of steps tends to innity. Finally, it is easily veri ed that the
distribution which assigns probability zero to every i 2 tc(T) and equals the stationary distribution

of the restriction of M to tc(T) for every i 2 tc(T) is a stationary distribution of M. O

We are now ready to show that an alternative drawn from the staionary distribution will have
an expected degree of at least half the maximum possible degge.

Lemma 4.4.5. LetT 2T (A) be a tournament, the stationary distribution of M (T). Then
X s M 1
. (] 2 .
i2A

To analyze , we require the following lemma.

Lemma 4.4.6. Let T be a tournament, the stationary distribution of M (T). Then

2m 25y 1) f=1:
i=1
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Proof. Let 0 1

Then

i=1 i6] i=1

On the other hand, since is a stationary distribution,

_s+1 o 1 X
T om !
T
and thus X
j=(m s 1)
jiTj

Hence,g =(2m 2s; 1) 2, which completes the proof.
We are now ready to prove Lemmd 4.45.

Proof of Lemma[4.45. Foranyi 2 A,dene wy=m s

i

X X X
iSi + iwi =(m 1)
i i i
By the Cauchy-Schwarz inequality,
X S x s
(2w +1) (2w; +1)

P
Using LemmalZ4®, (2w; +1) 2 =1. Furthermore,

X
@wi+1)=2m? 2 "

and thus
' X p__
Qw; +1) m P
i
and P
X wo. o i
| [ 2 2
By combining (&.1) and (4.2) we obtain
X o M1
(] 2
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O
1. It then holds that
i=m 1 4.1)
x
(w; +1) 2
i
m = m?;
1=m
m 1
4.2
5 (4.2)
O



The last ingredient in the proof of Lemmal[4.4.2 and Theoreni44.1 is to show that for somek
polynomial in m, the distribution over alternatives selected by the k-RC, which we recall to be
equal to the distribution of M after k 1 steps, is close to the stationary distribution of M. In
other words, we want to show that for every tournament T, M (T) is rapidly mixing.@

Lemma 4.4.7. Let T be a tournament. Then, for every > 0 there existsk = k(m; ) polynomial

in m and 1=, such that for all K°>k and alli 2 A, j &7 j  where ® is the distribution
of M (T) after k steps and is the stationary distribution of M (T).

The proof of Lemmal4.4.T works by reversibilizing the transiion matrix of M and then bounding
the spectral gap of the reversibilized matrix via its condudance.

Proof of Lemmal[4.4.7. We make use of the fact that for every tournamentT 2 T (A) and every
alternative i 2 A with maximum degree, there exists a path of length at most twofrom i to any
other alternative. To see this, assume for contradiction that i 2 A has maximum degree, and
that j 2 A is not reachable fromi in two steps. ThenTi, and for all j92 A, iTj ®implies jTj ©
Thus, s; > s, a contradiction. This observation implies that at any given time, M either is in a
state corresponding to an alternative with maximum degree,or it will reach such a state within
two steps with probability at least 1=m?. It further implies that any alternative with maximum
degree is intc(A), de ned as in the proof of Lemmal[4.4.4. We recall that onceM reaches the top
cycle, it stays there inde nitely. Hence, for every > 0 there existsk polynomial in m and 1=,

such that for all k9> k and all i 2 tc(T), j i(ko) il =i i(ko)j , where the equality follows from
the fact that the support of is contained intc(T) (see the proof of LemmaZ4.4.4).

We further observe that is positive on tc(T), i.e., for all i 2 tc(T), ; > 0. Too see this,
consider the largest subset otc(T) that is assigned probability zero by , and assume that this
set is nonempty. Then, for to be a stationary distribution, no alternative in this subs et can
dominate an alternative in tc(T) but outside the subset, contradicting the fact that tc(T) is strongly
connected. By all the above, we can thus focus on the restri@din of M to tc(T). For notational
convenience, we henceforth assume w.l.o.g. tha¥l, rather than its restriction, is irreducible and
has a stationary distribution that is positive everywhere.

Conveniently, the state space of M has sizem, and all entries of its transition matrix P
are either 0 or polynomial in m. However, there exist tournaments T such that the stationary
distribution of M (T) has entries that are positive but exponentially small. Furthermore, things are
complicated by the fact that M is usually not reversible. We follow Fill [55] in de ning the time

reversal of P as o
iP@G;i) .

P(i;j)=

and the multiplicative reversibilization of P asM = M(P) = PP. Then, both P and P are
ergodic with stationary distribution , and M is a reversible transition matrix that has stationary
distribution as well. Denote by (M) the second largest eigenvalue 1. Then, by Theorem 2.7
of Fill [55],

a Bk CaMYN s (4.3)

3We might be slightly abusing terminology here, since the theory of rapi dly mixing Markov chains usually considers
chains with an exponential state space, which converge in time poly-logarithmic in the size of the state space. In our
case the size of the state space is onlyn, and the mixing rate is polynomial in m.
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wherek k= % P iJ i il isthe variation distance between a given probability mass function
and . Sincej j= m,itis su cient to show that (M) is polynomially bounded away from 1.

To this end, we will look at the conductancé of M , Which measures the ability of M to leave
any subset of the stafe space that has small weight under. For a nonempty|§ubset8 A, denote
S=AnSand s= ,,5 i;anddene Q(i;j)= iM(i;j) and Q(S;S) = izs;jsz(iij ). The
conductance ofM is then given by

- min Q(S;9)
S A: (S) 1=2 S

It is known from the work of Sinclair and Jerrum [140Q] that for a Markov chain reversible with
respect to a stationary distribution that is positive everywhere,

2
1 2 1(A) 1 7:
It thus su ces to bound polynomially away from 0. For any S with g 1=2 it holds that
P H H . .
QS;S)  Q(SS) . gpsies QG ) min Qi) ).

S 2s s 2 ipsjes i j  i2sj2s 2 |

In our case,
" #
X 1
Q(j)= P@r)P(r) iPEDPEN)+ PEDPGHT SLiPGED+ jPGHL
r2A
(4.4)

A crucial observation is that for every i 6 j, either P(i;j ) = 1=m or P(j;i) = 1=m, since either
iTj orjTi. Now, letig2 Sandjg2 S be the two alternatives for which the minimum above is
attained. If P(io;jo) =1=m, then by (4.4),

Qliosjo) m¥ _ 1
2 i, jo 2 i, jo 2m2 jo

whereas ifP (jo;ip) = 1 =m, then

Q(io;jo) 1 .
2 iy jo 2m? io'
In both cases, 1=(2m?), which completes the proof. Ol

We now have all the necessary ingredients in place.

Proof of Lemma[4.4.2 and Theorem{4.4.l.Let > 0. By Lemmal[443 and LemmaZ.4]7, there
exists k polynomial in m and 1= such that forall i 2 A, jp-(k) pi(k)j =(2 “2“ ) and jpi(k) il

=(2 7 ): By the triangle inequality, jpi(k) ij =7 :Now,
X X X X
iSi s, iopYs e si=
[ [ [ 2
Lemmal4.4.2 and thus Theoreni4.4]11 follow directly by Lemma ZL5. O

4The conductance is called Cheeger constant by Fill [55].
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Figure 4.2: Tournament structure providing an upper bound for the randomized k-caterpillar,
example form = 6 and = 1=5. A®and A%contain (1 )(m 1) and (m 1) alternatives,
respectively.

4.4.2 Tightness and Stability of the Caterpillar

It turns out that the analysis in the proof of Theorem £.4.1]is tight. Indeed, since we have seen
that the stationary distribution of M is very close to the distribution of alternatives chosen
by the k-RSC, it is su cient to see that  cannot guarantee an approximation ratio better than
1=2 in expectation. Consider a setA of alternatives, and a partition of A into three sets A0 A00
and fag such that jAG =1 )m 1)andjA’Y= (m 1) for some > 0. Further consider
a tournament T 2 T (A) in which a dominates every alternative in A° and is itself dominated by
every alternative in A% and for which the restriction of T to A°[ A%is regular. The structure of T
is illustrated in Figure
It is easily veri ed that the stagonary distribution of M (T) satis es

— jaTj | 1 1 .
M sa 1 m s, 1 (m 1)

and therefore,

X 1 (m 1) 1 m 1 m 1 1
iSi @ — 1) + +1 + Z+1:
S m ™ Y —m 2

i
P m, then the approximation

Furthermore, a has degree (1 )(m 1). If we choose, say, = 1=
ratio tends to 1=2 asm tends to in nity.
We proceed to demonstrate that the above tournament is a gemic bad example. Indeed,
Lemmal4.45 will be shown to possess the following stabilitproperty: in every tournament where
achieves an approximation ratio only slightly better than 1=2, almost all alternatives have degree
close tom=2, as it is the case for the example above. In particular, thisimplies that M either
provides an expected approximation ratio better than 1=2, or selects an alternative with score

around m=2 with very high probability.

Theorem 4.48. Let > 0, m 1=(2p|5). Let T be a tournament over a set oin alternatives,

the stationary distribution of M(T). If ; isi=(m 1)=2+ m, then
R

: . m 34 R—

i2A: S > > > m 4 m:

The details of the proof appear in Appendix[A.2.
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4.4.3 Second Order Degrees

So far we have been concerned with the Copeland solution, wtlh selects an alternative with
maximum degree. Recently, a related solution concept, sontienes referred to assecond order
Copeland has received attention in the social choice literature(se, e.g., Bartholdi et al. [8]). Given
a tournament T, this solution breaks Ei,es with respect to the maximum degre toward alternatives i
with maximum second order degree ;. sj. Second order Copeland is the rst rule, and one
of only two natural voting rules, known to be computationally easy to compute but di cult to
manipulate [€].

Interestingly, the same randomization studied in Sectior{44.7 also achieves a-32-approximation
for the second order degree.

Theorem 4.4.9. Let A be a set of alternatives,T 2 T (A). For k 2 N, let pi(k) denote the probability
that alternative i 2 A is selected by thek-RSC for T. Then, there existsk = k(m) polynomial in m

such that p @ p . .
P; PJ:lT] I gy (1 =m):
maxi2a .7 Si 2

Clearly, the sum of degrees of alternatives dominated by anlgernative i is at most m2 1 The
lower bound is then obtained from an explicit result about the second order degree of alternatives
chosen by thek-RSC. Along similar lines as in the proof of TheorenT4.41, it & ces to prove that
the stationary distribution of M (T) provides an approximation. The following lemma is the secad
order analog of Lemmd4.4.b.

Lemma 4.4.10. Let T be a tournament, the stationary distribution of M (T). Then,

i Sj —

X X m2 m
4 2

i2A T

It turns out that the technique used in the proof of Lemma 445, namely directly manipulating
the stationary distribution equations and applying Cauchy-Schwarz, does not work for the second
order degree. We instead formulate a suitable LP and bound tk primal by a feasible solution to
the dual. The proof of the lemma, which in turn implies Theorem 44,9, is given in Appendix[A.3.

We further point out that the analysis is tight. Indeed, the second order degree of any alter-
native in a regular tournament, i.e., one where each alternive dominates exactly (m 1)=2 other
alternatives, is (m 1)=2 (m 1)=2 = m?=4 m=2+1=4: Theorem[Z.Z3 itself is also tight, by the
example given in Sectiol 4.41.

45 Balanced Trees

In the previous section we presented our main positive restd, all of which were obtained using
randomizations over caterpillars. Since caterpillars aremaximally unbalanced, one would hope to
do much better by looking at balanced treesi.e., trees where the depth of any two leaves diers
by at most one. We briey explore this intuition. Consider a b alanced binary tree where each
alternative in a set A appears exactly once at a leaf. We will call such a tree @ermutation tree

on A. As we have already mentioned in the previous section, perntations trees provide a very
weak deterministic lower bound. Indeed, the winning alterrative must dominate the (log m)
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alternatives it meets on the path to the root, all of which are distinct. Since there always exists
an alternative with score at least (m 1)=2, we obtain an approximation ratio of ((log m)=m).
On the other hand, no voting tree in which every two leaves hae distinct labels can guarantee to
choose an alternative with degree larger than the height of lhe tree, so the above bound is tight.

More interestingly, it can be shown that no composition of pemutation trees, i.e., no tree
obtained by replacing every leaf of an arbitrary binary tree by a permutation tree, can provide a
lower bound better than 1=2. To see this, assume thatm is a power of 2, and consider a tree
as above. Let %be a specic permutation tree appearing as a subtree of , andconsider two
alternatives i and j assigned to the left and right subtree of © respectively. Dene C; A to be
the set obtained by taking all alternatives that appear in the left subtree of ®and replacingi by j .
Similarly, let C, A be the set of all alternatives but | that appearing in the right subtree of .
Now de ne a tournament T with three components C4, C,, and fig such that iTC,, C;TC,, and
C,Ti, and such that the restriction of T to Cj is transitive. Clearly {T) = i. Furthermore, for
every permutation tree  ®on A, %T) 2 C,[f ig, and thus ( T) = i. However,s; = m=2, while
some element ofC; attains the maximum degree ofm 1. Unfortunately, larger balanced trees
not built from permutation trees have so far remained elusie.

Can we obtain a better bound by randomizing? Intuitively, a randomization over large balanced
trees should work well, because one would expect that the wiring alternative dominate a large
number of randomly chosen alternatives on the way to the root Surprisingly, the complete opposite
is the case.

In the following, we call randomized perfect voting treeof height k, or k-RPT, a voting tree where
every leaf is at depthk and labels are assigned uniformly at random. This tree obviasly corresponds
to a randomization that is not admissible, but a similar result for admissible randomizations can
easily be obtained by using the same arguments as before.

Theorem 4.5.1. Let A be a set of alternativesjAj 5. For every K 2 N and > 0, there exists
KO K such that theK ®RPT provides an approximation ratio of at most O(1=m).

The proof of this theorem, given in Appendix [A.4], constructs a tournament consisting of a
3-cycle of components and shows that the distribution over akrnatives chosen by thek-RPT
oscillates between the di erent components ask grows.

In Appendix A.5lwe analyze higher order voting caterpillars obtained by replacing each leaf of
a caterpillar of su ciently large height by higher order cat erpillars of smaller order (in particular,
of order reduced by one). As in the case of th&k-RPT, this construction does not provide better
bounds but instead causes the approximation ratio to deterorate.

4.6 Related Work

In economics, the problem of implementation by voting treeswas introduced by Farquharson |[52],
and further explored, for example, by McKelvey and Niemi [94, Miller [98], Moulin [102], Herrero
and Srivastava [69], Dutta and Sen [[41], Srivastava and Trik [143], and Coughlan and Le Bre-
ton [37]. In particular, Moulin [102] has shown that the Copdand solution is not implementable by
voting trees if there are at least 8 alternatives, while Sriastava and Trick [143] have demonstrated
that it can be implemented for tournaments with up to 7 altern atives.

Laond et al. [82] have computed the Copeland measureof several prominent SCCs. In con-
trast to the (Copeland) approximation ratio considered in this chapter, the Copeland measure is
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computed with respect to the best alternative selected by tle correspondence, so strictly speaking
it is not a worst-case measure. More importantly, however, Leaond et al. [82] have studied prop-
erties of given correspondences, whereas we investigateetipossibility of constructing voting trees
with certain desirable properties. In this sense, our work $ algorithmic in nature, while theirs is
descriptive.

In theoretical computer science, the problem studied in ths chapter is somewhat reminiscent of
the problem of determining query complexity of graph propeties (see, e.g., Rosenberg [131], Rivest
and Vuillemin [130], Kahn et al. [74], King [79]). In the genaal model, one is given an unknown
graph over a known set of vertices, and must determine whethethe graph satis es a certain
property by querying the edges. The complexity of a propertyis then de ned as the height of the
smallest decision tree that checks the property. Voting trees can be interpreted as querying the
edges of the tournament in parallel, and in a way that seversf limits the ways in which, and the
extent up to which, information can be transferred between d erent queries.

In the area of computational social choice, which lies at theboundary of computer science and
economics, several authors have looked at the computation@roperties of voting trees and of various
solution concepts. For example, Lang et al.[[86] have charaerized the computational complexity
of determining di erent types of winners in voting trees. Procaccia et al. [126] have investigated
the learnability of voting trees, as functions from tournaments to alternatives (see Chapteid). In a
slightly di erent context, Brandt et al. [18]/have studied t he computational complexity of di erent
solution concepts, including the Copeland solution.

4.7 Discussion

Many interesting questions arise from our work. Perhaps themost enigmatic open problem in the
context of this chapter concerns tighter bounds for determnistic trees. Some results for restricted
classes of trees have been discussed in Section 4.5, but imgeal there remains a large gap between
the upper bound of 3=4 derived in Section 4.3 and the straightforward lower boundof ((log m)=m).

In the randomized model our situation is somewhat better. Neertheless, an intriguing gap
remains between our upper bound of 56, which holds even for inadmissible randomizations over
arbitrarily large trees, and the lower bound of 1=2 obtained from an admissible randomization over
trees of polynomial size. It might be the case that the heightof a k-RPT could be chosen carefully
to obtain some kind of approximation guarantee. For example one could investigate the uniform
distribution over permutation trees. The analysis of this type of randomization is closely related
to the theory of dynamical systems, and we expect it to be ratler involved.
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Chapter 5

The Learnabllity of Social Choice
Functions

5.1 Introduction

In this chapter, we consider the following setting: an entity, which we refer to as the designer,
has in mind an SCF (which may re ect the ethics of a society). We assume that the designer is
able, for each constellation of agents' preferences with wbh it is presented, to designate a winning
alternative (perhaps with considerable computational e ort). In particular, one can think of the
designer's representation of the SCF as a black box that matees preference pro les to winning
alternatives. This setting is relevant, for example, when adesigner has in mind di erent properties
it wants its function to satisfy; in this case, given a preference pro le, the designer can specify a
winning alternative that is compatible with these properti es.

We would like to nd a concise and easily understandable repesentation of the SCF the designer
has in mind. We refer to this process asautomated design of SCFs given a specication of
properties, or, indeed, of societal ethics, nd an elegant §F that implements the speci cation.
In this chapter, we do so by learning from examples. The desiter is presented with di erent
preference pro les, drawn according to a xed distribution. For each pro le, the designer answers
with the winning alternative. The number of queries presentd to the designer must intuitively be
as small as possible: the computations the designer has to g out in order to handle each query
might be complex, and communication might be costly.

Now, we further assume that the \target" SCF the designer hasin mind, i.e., the one given as
a black box, is known to belong to some familyF of SCFs. We would like to produce a SCF from
F that is as \close" as possible to the target function.

By \close" we mean close with respect to the xed distribution over preference pro les. More
precisely, we would like to construct an algorithm that recdves pairs of the form (preferences,
winner) drawn according to a xed distribution  over preferences, and outputs a scoring function,
such that the probability according to  that our scoring function and the target function agree is
as high as possible. We wish, in fact, to learn scoring funatins in the framework of the formal PAC
(Probably Approximately Correct) learning model; a concise introduction to this model is given in
Section[5.2.

In this chapter, we look at two options for the choice of F: the family of scoring functions,
and the family of voting trees (see Section$ 212 an@_2.3). Thee are natural choices, since both
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are broad classes of functions, and both have concise repesgations. ChoosingF as above, the
designer could in principle translate the possibly cumbersme, unknown representation of an SCF
into a succinct one that can be easily understood and compuik

Further justi cation for our agenda is given by noting that i t might be di cult to compute an
SCF on all instances, but it might be su cient to simply calcu late the election’s result on typical
instances. The distribution can be chosen, by the designer, to concentrate on such instees.

5.2 A Crash Course on Computational Learning Theory

In this section we give a very short introduction to the PAC model and the generalized dimension
of a function class. A more comprehensive (and slightly mordormal) overview of the model, and
results concerning the dimension, can be found in [103].

In the PAC model, the learner is attempting to learn a function f : Z ! Y, which belongs
to a classF of functions from Z to Y. The learner is given atraining set|a set fzp;:::;zg of
points in Z, which are sampled i.i.d. (independently and identically dstributed) according to a
distribution  over the sample spac&. is unknown, butis xed throughout the learning process.
In this chapter, we assume the \realizable" case, where a taget function f (z) exists, and the
given training examples are in fact labeled by the target furction: f(z;f (z«))gk-,. The error of
a function f 2 F is de ned as

err(f) = I;’r [f(z)6 f (2)]: (5.1)

> 0 is a parameter given to the learner that de nes theaccuracy of the learning process: we
would like to achieve err(h) . Notice that err(f ) = 0. The learner is also given anaccuracy
parameter > 0, that provides an upper bound on the probability that err( h) >

Prlerr(h) > ]<: (5.2)
We now formalize the discussion above:
De nition 5.2.1.

1. A learning algorithm L is a function from the set of all training examples to F with the
following property: given ; 2 (0O; 1) there exists an integers(; )[the sample complexity
such that for any distribution on X, if Z is a sample of size at leass where the samples are
drawn i.i.d. according to , then with probability at least 1 it holds that err( L(Z))

2. L is anecient learning algorithm if it always runs in time polynomial in 1 =, 1=, and the
size of the representations of the target function, of elemats in X, and of elements inY .

3. A function class F is (e ciently) PAC-learnable if there is an (e cient) learning algorithm
for F.

The sample complexity of a learning algorithm for F is closely related to a measure of the
combinatorial richness of the class known as the generalidedimension.

De nition 5.2.2. Let F be a class of functions fromZ to Y. We say F shatters S  Z if there
exist two functions f;g 2 F such that

1. Forallz2 S, f(z) 6 g(2).
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2. Forall S; S, there existsh 2 F such that forall z2 Si, h(z) = f(z), and forall z2 SnS;,
h(z) = 9(2).

De nition 5.2.3.  Let F be a class of functions from a seZ to a setY. The generalized dimension
of F, denoted by Dg(F), is the greatest integerd such that there exists a set of cardinality d that
is shattered by F .

Lemma5.2.4. [103, Lemma 5.1] LetZ andY be two nite sets and letF be a set of total functions
from Z to Y. If d= Dg(F), then 2¢ jFj

A function's generalized dimension provides both upper andower bounds on the sample com-
plexity of algorithms.

Theorem 5.2.5. [103, Theorem 5.1] Let F be a class of functions fromZ to Y of generalized
dimensiond. Let L be an algorithm such that, when given a set dflabeled example$ (z;f (z«)) gk
of somef 2 F, sampled i.i.d. according to some xed but unknown distribtion over the instance

space X, produces an outputf 2 F that is consistent with the training set. ThenL is an (; )-
learning algorithm for F provided that the sample size obeys:

s 1 (1+ 2+3)dIn2+In 1 (5.3)

where ; and » are the sizes of the representation of elements i@ and Y, respectively.

Theorem 5.2.6. [103, Theorem 5.2] Let F be a function class of generalized dimensiod 8.

Then any (; )-learning algorithm for F, where 1=8and < 1=4, must use sample size %
5.3 Learnability of Scoring Functions
Let be a vector of nonnegative real numbers such that | +41 forall 1l =1;:::;m 1. Let

f LN 1 A be the scoring function de ned by the vector , i.e., each agent awards | points
to the alternative it ranks in the I'th place, and the function elects the alternative with the most
points.

Since several alternatives may have maximal scores in an elfgon, we must adopt some method
of tie-breaking. Our method works as follows. Ties are brokerin favor of the alternative that was
ranked rst by more agents; if several alternatives have maxmal scores and were ranked rst by
the same number of agents, the tie is broken in favor of the alérnative that was ranked second by
more agents; and so ot

Let S, be the class of scoring functions withn agents andm alternatives. Our goal is to learn,
in the PAC model, some target functionf 2 S[}. To this end, the learner receives a training set
f(RY;f (RY)gk, where eachRY is drawn from a xed distribution over LN; let x;, = f (RR).
For the prole RY, we denote by j'fl the number of agents that rar&ed alternative x; in place I.

Notice that alternative X;'s score under the preference pro leR} is | ji;(l I.

1In case several alternatives have maximal scores and identical rankingseverywhere, break ties arbitrarily|say,
in favor of the alternative with the smallest index.
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5.3.1 E cient Learnability of Sh

Our main goal in this section is to prove the following theorem.
Theorem 5.3.1. For all n;m 2 N, the classS}, is e ciently PAC-learnable.

By Theorem [5.2.5, in order to prove Theorem[5.3.l it is su cient to validate the following
two claims: 1) that there exists an algorithm which, for any training set, runs in time polynomial
in n;m, and the size of the training set, and outputs a scoring funcion which is consistent with
the training set (assuming one exists); and 2) that the genealized dimension of the classS]), is
polynomial in n and m.

Remark 5.3.2. It is possible to prove Theorem[5.31 by using a transformathn between scoring
functions and sets of linear threshold functions. Indeed,tiis well-known that the VC dimension (the
restriction of the generalized dimension to boolean-valuedunctions) of linear threshold functions
over F4is d+ 1. In principle, it is possible to transform a scoring function into a linear threshold
function that receives (generally speaking) vectors of rakings of alternatives as input. Given a
training set of proles, we could transform it into a trainin g set of rankings and use a learning
algorithm.
However, we are interested in producing an accurate scorinfyinction according to a distribution

on preference pro les, which represents typical pro les. I is possible to consider a many-to-one
mapping between distributions over pro les and distributi ons over the abovementioned vectors of
rankings. Unfortunately, when this procedure is used, it isnontrivial to guarantee that the learned
SCF succeeds according to the original distribution . Moreover, this procedure seems to require
an increase in sample complexity compared to the analysis g&n below. Therefore, we proceed
with the more \direct" agenda outlined above and detailed bedow.

It is rather straightforward to construct an e cient algori thm that outputs consistent scoring
functions. Given a training set, we must choose the paramete of our scoring function in a way
that, for any example, the score of the designated winner is taleast as large as the scores of
other alternatives. Moreover, if ties between the winner am a loser would be broken in favor of
the loser, then the winner's score must be strictly higher than the loser's. Our algorithm, given
as Algorithm 537, simply formulates all the constraints as linear inequalities, and solves the
resulting linear program. The rst part of the algorithm is m eant to handle tie-breaking. Recall
that x;, = f (RY).

A linear program can be solved in time that is polynomial in the number of variables and
inequalities; it follows that Algorithm 531k running ti me is polynomial in n, m, and the size of
the training set.

Remark 5.3.3. Notice that any vector with a polynomial representation can be scaled to an
equivalent vector of integers which is also polynomially r@resentable. In this case, the scores are
always integral. Thus, instead of using a strict inequality in the LP's rst set of constraints, we
can use a weak inequality with an additive term of 1.

Remark 5.3.4. Although the transformation between learning scoring fundions and learning linear

threshold functions mentioned in Remark[5.3.2 has some dralacks as a learning method, results
on the computational complexity of learning linear threshdd functions can be leveraged to obtain
computational e ciency. Indeed, well-known algorithms such as Winnow [90] suit this purpose.
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Algorithm 5.3.1  Given a training set, the algorithm returns a scoring function which is consistent
with the given examples, if one exists.
for k 1:::tdo

Xk
for all x; 6 x;, do . Xj, is the winner in example k
k k
Jk j
lo minfl: | 60g
if , < Othen . Ties are broken in favor ofx;
Xk Xk [f Xjg
end if
end for
end for

return a feasible solution to the following linear program:

. .P k P k
8k; 8Xj 2Xk,P| {(k;l | p {(I +1
8k; 8Xj 2 X; Lol | Lol
8l=1;:::;m 1 1+1
8l; | 0

Remark 5.3.5. Algorithm 5.3.1 can also be used to check, with high probabity, if the SCF the
designer has in mind is indeed a scoring function, as descrol (in a di erent context) by Kalai [75]
(we omit the details here). This further justi es the settin g in which the SCF the designer has in
mind is known to be a scoring function.

So, it remains to demonstrate that the generalized dimensio of Sf}, is polynomial in n and m.
The following lemma shows this.

Lemma 5.3.6. The generalized dimension of the clasS, is at most m:
Do(Sp)  m:

Proof. According to De nition 5.2.3, we need to show that any set of @rdinality m + 1 cannot be
shattered by S|,. Let S = fR’Q‘ grkn:ll be such a set, and leth; g be the two social choice functions
that disagree on all preference pro les inS. We shall construct a subsetS; S such that there is
no scoring functionf that agrees with h on S; and agrees withg on Sn S;.
Let us look at the rst preference pro le from our set, RY. We shall assume without loss of
generality that h(RY) = x4, while g(R}) = x», and that in RY ties are broken in favor ofx;. Let
be some parameter vector. If we are to havé(RY) = f (RY}), it must hold that

i;l I %;I s (5.4)
whereas if we wantedf to agree with g we would want the opposite:

%;I | < %;I (5-5)



More generally, we de ne, with respect to the pro le Rl’z‘, the vector X as the vector whose
I'th coordinate is the di erence between the number of times the winner under h and the winner
under g were ranked in thel'th place:?

k k .
h(Re)  9(Ri)" (5.6)

Now we can concisely write necessary conditions fof agreeing with h or g, respectively, by
writing: 3

K 0 (5.7)
K 0 (5.8)

Notice that each vector X has exactly m coordinates. Since we haven + 1 such vectors (corre-
sponding to them + 1 proles in S), there must be a subset of vectors that is linearly dependemn
We can therefore express one of the vectors as a linear comhition of the others. Without loss of
generality, we assume that the rst pro le's vector can be written as a combination of the others
with parameters , not all O:

1= K K (5.9)
k=2
Now, we shall construct our subsetS; of preference pro les, on whichf agrees withh, as follows:

Si=fk2f2:::;;m+1g: ¢ Og (5.10)

Suppose, by way of contradiction, thatf agrees withh on RE for k 2 S;, and with g on the
rest. We shall examine the value of !

X+l X X
= k = k + k 0 (5.11)
k=2 k2S; k2S[f 1g

The last inequality is due to the construction of Si|whenever | is negative, the sign of K
is non-positive (f agrees withg), and whenever  is positive, the sign of ¥ iS non-negative
(agreement with h).

Therefore, by equation (5.5), we have thatf (R}) 6 x, = g(RY). However, it holds that 1 2 S,
and we assumed thatf agrees withg outside S;|this is a contradiction. O

Theorem 5.3.1 is thus proven. The upper bound on the generaed dimension ofSf, is quite
tight: in the next subsection we show a lower bound ofm 3.

5.3.2 Lower Bound for the Generalized Dimension of Sh

Theorem 5.2.6 implies that a lower bound on the generalizedichension of a function class is directly
connected to the complexity of learning it. In particular, a tight bound on the dimension gives us
an almost exact idea of the number of examples required to lea a scoring function. Therefore, we
wish to bound D (Sf},) from below as well.

*There is some abuse of notation here; ifh(RY ) = x| then by fz,, we mean .
3In all pro les except RY , we are indi erent to the direction in which ties are broken.
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Theorem 5.3.7. Foralln 4, m 4, Dg(S}) m 3

Proof. We shall produce an example set of sizen 3 which is shattered by S[},. De ne a preference
pro le RIN ,for1 =3;:::;m 1, as follows. For alll, the agents 1:::;n 1 rank alternative x; in
placej, i.e., they vote le}szi R{xm. The preferencesR}' (the preferences of agenh in pro le

RN) are de ned as follows: alternative x; is ranked in placel, alternative x; is ranked in place
| +1; the other alternatives are ranked arbitrarily by agent n. For example, if m =5, n = 6, the
preference pro le RY is:

Ri R3 R} R R3 R}
X1 X1 X1 X1 X1 X3
X2 X2 X2 X2 X2 Xg
X3 X3 X3 X3 X3 X2
Xqa Xq4 X4 X4 X4 X1
X5 X5 Xz X5 X5 Xg

Lemma 5.3.8. For any scoring function f with 1= 5> 2 3 it holds that:

(
X1 1= 1+
f (RN)=
(R X2 1= 141

Proof. We shall rst verify that x, has maximal score.x,'s scoreis atleast 1) ,=(n 1) ;.
Letj 3;Xj'sscoreisatmostf 1) 3+ 1. Thus,thedierenceisatleast(n 1)( 1 3) 1.
Since 1= , 2 3 thisisatleast(n 1)( 1=2) 1 > 0, where the last inequality holds for
n 4.

Now, under preference pro IeRlN ,X1'sscoreisfi 1) 1+ |4 andxp'sscoreisfi 1) 1+ .
If | = |+, the two alternatives have identical scores, butx; was ranked rst by more agents
(in fact, by n 1 agents), and thus the winner isx;. If | > |41, then X»'s score is strictly
higher|hence in this case x» is the winner. O

Armed with Lemma 5.3.8, we will now prove that the setleN (e is shattered by Sh. Let 1
besuchthat 1= 1 231=2 1= =21 and ?besuchthat 1= 3 21>21>
>2 1. Bythelemma, forall1=3;:::;m  1,f +(RN) = xq,and f 2(RN) = x,.

and f (R,N) = xp forall | 2 T. Indeed, con gure the parameters suchthat = ,> 2 3, and
| = 141 i 12 T. The result follows directly from Lemma 5.3.8. O

5.4 Learnability of Voting Trees

Recall that a voting tree on A is a binary tree with leaves labeled by alternatives. To detemine
the winner of the election with respect to a tournament T, one must iteratively select two siblings,
label their parent by the winner according to T, and remove the siblings from the tree. This process
is repeated until the root is labeled, and its label is the wimer of the election (see Section 2.3 for
a formal de nition).

In addition, recall that a preference prole RN of a set of agentsN induces a tournament
T 2 T (A) as follows: aTb (i.e., a dominates b) if and only if a majority of agents prefer a to b.
Thus, a voting tree is in particular an SCF. However, for the purposes of this section (and similarly
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to Chapter 4) it is su cient to regard voting trees as functio nsf : T(A) ! A, that is, we will
disregard the set of agents and simply consider the dominarmcrelation T on A. We shall hereinafter
refer to functionsf : T(A) ! A aspairwise SCFs

Let us therefore denote the class of voting trees ovan alternatives by Vi, ; we emphasize the the
class depends only om. We would like to know what the sample complexity of learning functions
in Vi, is. To elaborate a bit, since we think of voting trees as funcions from T to A, the sample
space isT .

5.4.1 Large Voting Trees

In this section, we will show that in general, the answer to the above question is that the complexity
is exponential in m. We will prove this by relying on Theorem 5.2.6; the theorem mplies that in

order to prove such a claim, it is su cient to demonstrate tha t the generalized dimension ofVy, is
at least exponential in m. This is the task we presently turn to.

Theorem 5.4.1. Dg(Vm) is exponential in m.
Proof. Without loss of generality, we let m = 2k +2. We will associate every distinct binary vector

theorem, we will show that Vi, shatters this setS of size X.
Let the set of alternatives be:

A= fa b xt;x3 x5 xD xikg
For every vectorv 2 f 0, 1gk, de ne a tournament T, as follows: fori = 1;:::;k, if vi = 0, we

Let f be the constant function b, i.e., a voting tree which consists of only the nodeb; let g be
the constant function a. We must prove that for every S; S, there is a voting tree such that
b wins for every tournament in S; (in other words, the tree agrees withf), and a wins for every
tournament in SnS; (the tree agrees withg). Consider the tree in Figure 5.1, which we refer to as
the i'th 2-gadget

Figure 5.1: 2-gadget

~ With respect to this tree, b wins a tournament T, 2 Si v; = j. Indeed, if v = |, the
X! T,bT,x! !, and in particular bbeatsx !; if v 6 j, then x;* ' T,bT,x!, sob loses tox; '

Let v 2 f 0;1g¢. We will now use the 2-gadget to build a tree whereb wins only the tournament
Ty 2 S, and loses every other tournament inS. Consider a balanced tree such that the deepest
nodes in the tree are in fact 2-gadgets (as in Figure 5.2). As Here, b wins in the i'th 2-gadget i
vi = j. We will refer to this tree as a v-gadget.

4The relations described above are not complete, but the way they are completed is of no consequence.
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2-gadge

Figure 5.2: v-gadget

Now, notice that if b wins in each of the 2-gadgets (and this is the case in the tourrmaent
Ty), then b is the winner of the entire election. On the other hand, letvO & v, i.e., there exists

xi0 wins in the i'th 2-gadget. xi0 proceeds to win the entire election, unless it is beaten in soe stage
by some other alternative x’| |[but this must be also an alternative that beats b, as it survived the
I'th 2-gadget. In any case,b cannot win the election.

Consider the small extension, in Figure 5.3, of thev-gadget, which (for lack of a better name)
we call the v-gadget*.

Figure 5.3: v-gadget*

Recall that, in every tournament in S, a beats any alternative x} but loses tob. Therefore, by
our discussion regarding thev-gadget, b wins the election described by thev-gadget* only in the
tournament TV; for any other tournament in S, alternative a wins the election.

We now present a tree and prove that it is as required, i.e., inany tournament in Si, b is the
winner, and in any tournament in SnS;, a prevails. Let us enumerate the tournaments inSs:

Let Ty, 2 S;. What is the result of this tournament in the election described by this tree? First,
note that b prevails in the vj-gadget*. The only alternatives that can reach any level aboe the
gadgets area and b, and b always beatsa. Therefore, b proceeds to win the election. Conversely,
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entire election.
We have shown thatV,, shatters S, thus completing the proof. O

Remark 5.4.2. Even if we restrict our attention to the class of balanced voing trees (corresponding
to a playo schedule), the dimension of the class is still expnential in m. Indeed, any unbalanced
tree can be transformed to an identical (as an SCF) balancedree. If the tree's height ish, this can

be done by replacing every leaf at depthd < h, labeled by an alternative a, by a balanced subtree
of heightd h in which all the leaves are labeled bya. This implies that the class of balanced trees
can shatter any sample which is shattered byw,,.

Remark 5.4.3. The proof we have just completed, along with Lemma 5.2.4, im}y that the number
of di erent pairwise SCFs that can be represented by trees isdouble exponential in m, which
highlights the high expressiveness of voting trees.

5.4.2 Small Voting Trees

In the previous section, we have seen that in general, a larggumber of examples is needed in order
to learn voting trees in the PAC model. This result relied on the number of leaves in the trees
being exponential in the number of alternatives. However, mn many realistic settings one can expect
the voting tree to be compactly represented, and in particuhr one can usually expect the number
of leaves to be at most polynomial inm. Let us denote by Vr(nk) the class of voting trees overm
alternatives, with at most k leaves. Our goal in this section is to prove the following therem.

Theorem 5.4.4. Dg Vr(nk) = O(klogm + klogk).

This theorem implies, in particular, that if the number of le avesk is polynomial in m, then
the dimension oer(nk) is polynomial in m. In turn, this implies by Lemma 5.2.5 that the sample
complexity of V,(nk) is only polynomial in m. In other words, given a training set of size polynomial
in m, 1= and 1=, any algorithm that returns some tree consistent with the training set is an
(; )-learning algorithm for V,%k).

To prove the theorem, we require the following straightfornard lemma.
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Lemma 5.4.5. er(nk)j k mK Cy 1, where Cy is the k'th Catalan number, given by

Proof. The number of voting trees with exactly k leaves is at most the number of binary tree
structures multiplied by the number of possible assignmers of alternatives to leaves. The number
of assignments is clearly bounded bymk. Moreover, it is well known that the number of rooted
ordered binary trees with k leaves is the k 1) Catalan number. So, the total number of voting
trees with exactly k leaves is bounded bynk Cy 1, and the number of voting trees with at most
k leaves is at mostk mK Cy 1: O

We are now ready to prove Theorem 5.4.4.
Proof of Theorem 5.4.4. By Lemma 5.4.5, we have that
vk mk C 1
Therefore, by Lemma 5.2.4:

De(VE))  logjv¥j = O(klogm + k logk):

5.4.3 Computational Complexity

In the previous section, we have restricted our attention tovoting trees where the number of leaves
is polynomial in k. We have demonstrated that the dimension of this class is pginomial in m, which
implies that the sample complexity of the class is polynomi&in m. Therefore, any algorithm that
is consistent with a training set of polynomial size is a suitble learning algorithm (Theorem 5.2.5).

It seems that the signi cant bottleneck, especially in the setting of automated SCF design
(nding a compact representation for a SCF that the designer has in mind), is the number of
gueries posed to the designer, so in this regard we are satisd that realistic voting trees are
learnable. Nonetheless, in some contexts we may also be imésted in computational complexity:
given a training set of polynomial size, how computationaly hard is it to nd a voting tree which
is consistent with the training set?

In this section we explore the above question. We will assuméereinafter that the structure
of the voting tree is known a priori. This is an assumption that we did not make before, but
observe that, at least for balanced trees, Theorems 5.4.1 a@n5.4.4 hold regardless. We shall try to
determine how hard it is to nd an assignment to the leaves whth is consistent with the training
set. We will refer to the computational problem as Tree-SAT (pun intended).

De nition 5.4.6.  In the Tree-SAT problem, we are given a binary tree, where some of the leaves
are already labeled by alternatives, and a training set thatconsists of pairs {j X, ), where Tj 2T
and xj; 2 A. We are asked whether there exists an assignment of alternates to the rest of the
leaves which is consistent with the training set, i.e., for dl j, the winner in T; with respect to the
tree is x;; .
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Figure 5.5: Time to nd a satisfying assignment

Notice that in our formulation of the problem, some of the leaves are already labeled. However,
it is reasonable to expect any e cient algorithm that nds a ¢ onsistent tree, given that one exists,
to be able to solve theTree-SAT problem. Hence, anNP -hardness result implies that such an
algorithm is not likely to exist. This is actually the case.

Theorem 5.4.7. Tree-Sat is NP -complete.

Despite Theorem 5.4.7, whose proof is delegated to AppendiB.1, it seems that in practice,
solving the Tree-Sat problem is sometimes possible; we shall empirically demotrste this.

Our simulations were carried out as follows. Given a xed tree structure, we randomly assigned
alternatives (out of a pool of 32 alternatives) to the leavesof the tree. We then used this tree to
determine the winners in 20 random tournaments over our 32 dérnatives. Next, we measured the
time it took to nd some assignment to the leaves of the tree (ot necessarily the original one)
which is consistent with the training set of 20 tournaments. We repeated this procedure 10 times
for each number of leaves irf 4; 8; 16; 32; 64g, and took the average of all ten runs.

The problem of nding a consistent tree can easily be represged as a constraint satisfaction
problem, or in particular as a SAT problem. Indeed, for everynode, one simply has to add one
constraint per tournament which involves the node and its two children. To nd a satisfying
assignment, we used the SAT solver zCha. The simulations wee carried out on a PC with a
Pentium D (dual core) CPU, running Linux, with 2GB of RAM and a 2.8GHz clock speed.

We experimented with two di erent tree structures. The rst is seemingly the simplest: the
caterpillar trees de ned in Chapter 4. The second is intuitively the most complicated: a balanced
tree. Notice that, given that the number of leaves isk, the number of nodes in both cases isk 1.
The simulation results are shown in Figure 5.5.

In the case of balanced trees, it is indeed hard to nd a consient tree. Adding more sample
tournaments would add even more constraints and make the tdsharder. However, in most elections
the number of alternatives is usually not above several dozg and the problem may still be solvable.
Furthermore, the problem is far easier with respect to catepillars (even though the reduction in
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Theorem 5.4.7 builds trees that are \almost caterpillars"). Therefore, we surmise that for many
tree structures, it may be practically possible (in terms of the computational e ort) to nd a
consistent assignment, even when the input is relatively lege, while for others the problem is quite
computationally hard even in practice.

5.5 On Learning SCFs \Close" to Target Functions

Heretofore, we have concentrated on learning SCFs that arerflown to be either scoring functions
or voting trees. In particular, we have assumed that there isa scoring function or a voting tree
that is consistent with the given training set.

In this section, we push the envelope by asking the followingjuestion: given examples that are
consistent with some general SCF, is it possible to learn a seing function or a small voting tree
that is \close" to the target function?

Mathematically we are in asking whether there exist target Fsf such that ming »sn err(f ),
or minf oy () err(f) (polynomial k), is large. This of course depends on the underlying distribition

. In the rest of this section, the implicit assumption is that is the simplest nontrivial distribution
over pro les, namely the uniform distribution. Neverthele ss, the uniform distribution usually does
not re ect real preferences of agents; this is an assumptionve are making for the sake of analysis.
In light of this discussion, the de nition of distance between SCFs is going to be the fraction of
preference pro les on which the two functions disagree.

De nition 5.5.1. an SCFf : LN ! Aisan -approximation of an SCFgi f and g agree on an
-fraction of the possible preference pro les:

fRN 2LN £ (RN) = g(RV)g (mhH":

In other words, the question is: given a training setf (RE i f (RJ-N Yk, wheref : LN 1 A is some
SCF, how hard is it to learn a scoring function or a voting treethat -approximatesf, for that
is close to 1?

It turns out that the answer is: it is impossible. We shall rs t give an extreme example for the
case of scoring functions. Indeed, there are SCFs that disage with any scoring function on almost
all of the preference pro les; if the target function f is such a function, it is impossible to nd, and
of course impossible to learn, a scoring function that is \cbse" to f .

In order to see this, consider the following SCF that we call ipped veto: each agent awards
one point to the alternative it ranks last; the winner is the alternative with the most points. This
function is of course not reasonable as a preference aggréiga method, but still|it is a valid SCF.

Proposition 5.5.2. Let f be a scoring function. Thenf is at most a 1=m-approximation of
ipped veto.

Proof. Let RN be a preference pro le such thatf (RN) = ipped veto( RN) = x , for somex 2 A.
DeneasetBgn L N as follows: each pro le in the set is obtained by switching tre place of an
alternative x 2 A, x 6 x , with the place of x , in the ordering of each agent that did not rank
x last.> For a preference prole RY 2 Bgn that was obtained by switching x with x , clearly the
winner under ipped veto is still x , as this function takes into account only alternatives ranked

51t cannot be the case that all agents ranked x last, by our tie-breaking assumption.
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last. In addition, under f , the score ofx in RY is at least as large as the score of in RN (agents
that have not switched the two alternatives are ones that rark x last, and the score of the other
alternatives remains unchanged); hencéd (RY) = x. It follows that for any preference pro le in
Bgrn, f and ipped veto do not agree.

We claim that for any two preference proles R} and RY on whichf and ipped veto agree,
it holds that By \ Bgy = ;. Indeed, assume that there eX|stsRN 2 Bgy \ BRg . Assume rst
that the winner in both pro lesis x . It cannot be the case that the same alternative was switched
with x in order to obtain RN from both R} and RY |that would imply R} and RY are identical.
Therefore, assume w.l.0.g. thatx; was switched with x in R) (only in the rankings of agents that
did not rank x last), and x» was switched withx in RQ . But this means that both x; and x, are
winners in RN under f (by the fact that x was a winner in both RY and R} )]a contradiction.

In addition, in any two preference pro les R) and R} such that

f (RY)= ipped veto( R}Y) = x ;

and
f (RY)= ipped veto( RY) = x ;

it holds that BRQ‘ \ BRQ = ;, as ipped veto electsx in all proles in BR¥ , but elects x in all
prolesin Bgy.

It follows that for every preference pro le on which f and ipped veto agree, there are at least
m 1 distinct pro les on which the two SCFs disagree; this proves the proposition. Ol

We shall now formulate our main result for this Section. The theorem states that almost every
SCF cannot be approximated by a factor better than % by any small family of SCFs. We shall
subsequently see that the theorem holds for small voting tres as well as scoring functions.

Theorem 5.5.3. Let F, be a family of SCFs of size exponential im and m, and let ; > 0.
For large enough values oh and m, at least a(1  )-fraction of the SCFsf :L" 'f Xq;:::;XmQ
satisfy the following property: no SCF inF [, is a (1=2+ )-approximation of f .

Proof. We will surround each SCFf 2 F [ with a \ball" B (f), which contains all the SCFs for
which f is a (1=2+ )-approximation. We will then show that the union of all these balls covers at
most a -fraction of the set of the space of SCFs. This implies that forat least a (1  )-fraction
of the SCFs, no scoring function is a (£2 + )-approximation.

For a given f , what is the size ofB(f )? As there are (m!)" possible preference pro les, the ball
contains functions that do not agree with f on at most (1=2  )(m!)" preference pro les. For a
pro le on which there is disagreement, there arem options to set the image under the disagreeing
function.® Therefore,

- , (mh" =2 (myn.
BOI g ymyn mt : (5.12)

How large is this expression? LeB{f) be the set of all SCFs that disagree withf on exactly

5This way, we also take into account SCFs that agree with f on more than (1=2+ )(m!)" pro les.
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(1=2+ )(m"" preference pro les. It holds that

B = <1=z(+m !;(m!)n (m )=z m"
(m!)n + =2(mnH"
= myn (M DT (5.13)
(m!)n =2(mH".
a= oy ™

where the last inequality holds for a large enoughm. But since the total number of SCFs, m(m)"
is greater than the number of functions in Bqf ), we have:

n (m)" 1=2(m1"
mm>™  BY ) = mpr M,
B(f) B() (myn @=2 myn m ' (5.14)
@=2 ymyr M '
Therefore
m(m!)" @ )(myn
B(f) e - m : (5.15)
If the union of balls is to cover at least a -fraction of the set of SCFs, we must havejF
m( (mH? m(m)" . equivalently, it must hold that jFnj m (M) However, by the
assumption jF 1 j is only exponential in n and m (rather than double exponential), so for large
enough values ofn and m, the above condition does not hold. Ol

Notice that the number of distinct voting trees with k leaves, as SCFd : LN 1 A where
jAj = m, is bounded from above for any number of agents by the expression given in Lemma 5.4.5,
namely k mX Cy ;. Therefore, we have as a corollary from Theorem 5.5.3:

Corollary 5.5.4. For large enough values ofi and m, almost all SCFs cannot be approximated by
V(k), k polynomial in m, to a factor better than %

In order to obtain a similar corollary regarding scoring functions, we require the following
lemma, which may be of independent interest.

Lemma 5.5.5. There exists a polynomialp(n; m) such that for alln;m 2 N, jSnj 2r(nm),

Proof. It is true that there are an in nite number of ways to choose the vector that de nes a
scoring function. Nevertheless, what we are really interegd in is the number of distinct scoring
functions. For instance, if 1=2 2 thenf 1 f ., i.e., the two vectors de ne the same SCF.

It is clear that two scoring functions f 1 andf - are distinct only if the following condition holds:
there exist two alternatives X;,; Xj, 2 C, and a preference pro leRN, such that f 1(RN) = Xj, and
f 2(RN) = x,. This holds only if there exist two alternatives xj, and x;, and a preference pro le
RN such that under 1, Xj,'s score is strictly greater than x;,'s, and under », either x;,'s score is
greater or the two alternatives are tied, and the tie is broken in favor of x;,.

Now, assumeRN induces rankings j, and j,. The conditions above can be written as

X 1 X 1
jul i izl 0 (5.16)
[ [
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i R (5.17)
| |
where the inequality is an equality only if ties are broken infavor of xj,, i.e., if o =minfl: ;. 6
j219, then j 4 < J'z;l-7
Let = ji  j.- Asinthe proof of Lemma 5.3.6, (5.16) and (5.17) can be conaidy rewritten
as

>0 2, (5.18)

where the inequality is an equality only if the rst nonzero p osition in iS negative.

In order to continue, we opt to reinterpret the above discusson geometrically. Each pointin R™
corresponds to a possible choice of parameters Now, each possible choice of is the normal to a
hyperplane. These hyperplanes partition the space into céd: the vectors in the interior of each cell
agree on the signs of dot products with all vectors . More formally, if ; and » are two points
in the interior of a cell, then for any vector >0, 2> 0. By equation (5.18),
this implies that any two scoring functions f 1 and f 2, where ! and 2 are in the interior of the
same cell, are identical.

What about points residing in the intersection of several cds? These vectors always agree with
the vectors in one of the cells, as ties are broken accordingdtrankings induced by the preference
pro le, i.e., according to the parameters that de ne our hyp erplanes. Therefore, the points in the
intersection can be conceptually annexed to one of the cells

So, we have reached the conclusion that the number of distiricscoring functions is at most
the number of cells. Hence, it is enough to bound the number otells; we claim this number is
exponential in n and m. Indeed, each is an m-vector, in which every coordinate is an integer in
the setf n; n+1;:::;n 1;ng. Itfollows that there are at most (2n+1) ™ possible hyperplanes.
It is known [42] that given k hyperplanes in d-dimensional space, the number of cells is at most
O(k9). In our case,k (2n+1)™ and d = m, so we have obtained a bound of:

m?2
(@n+1)™™ (@)™ = 2093 T = pm?log3n, (5.19)
O

Remark 5.5.6. This lemma implies, according to Lemma 5.2.4, that there exsts a polynomial
p(n; m) such that for all n;m 2 N, Dg(S,) p(n; m). However, we have already obtained a tighter
upper bound of m.

Finally, using Theorem 5.5.3 and Lemma 5.5.5 we obtain:

Corollary 5.5.7.  For large enough values oh and m, almost all SCFs cannot be approximated by
S, to a factor better than 3.

Remark 5.5.8. Proposition 5.5.2 can seemingly be circumvented by removigthe requirement that

in a scoring function de ned by a vector , +1 for all I. Indeed, ipped veto is essentially

a scoring function with , =1 and |, =0 for all | 6 m. However, the constant SCF that always

elects the same alternative has the same inapproximabilityratio, even when this property of scoring

functions is not taken into account. Moreover, Corollary 55.7 also holds when scoring functions
are not assumed to satisfy this property.

"W.l.o.g. we disregard the case where |, = |,; the reader can verify that taking this case into account multiplies
the nal result by an exponential factor at most.
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5.6 Related Work

Currently there exists a small body of work on learning in ecmomic settings. Kalai [75] explores
the learnability (in the PAC model) of rationalizable choic e functions. These are functions which,
given a set of alternatives, choose the element that is maxia with respect to some linear order.
Similarly, PAC learning has been applied to computing utility functions that are rationalizations
of given sequences of prices and demands [12].

Another prominent example is the paper by Lahaie and Parkes§3], which considers preference
elicitation in combinatorial auctions. The authors show that preference elicitation algorithms can
be constructed on the basis of existing learning algorithms The learning model used, exact learning,
di ers from ours (PAC learning).

Conitzer and Sandholm [29] have studied automated mechanis design, in the more restricted
setting where agents have quasi-linear preferences. They @pose automatically designing a truthful
mechanism for every preference aggregation setting. Howey, they nd that, under two solution
concepts, even determining whether there exists a determistic mechanism that guarantees a cer-
tain social welfare is anN P -complete problem. The authors also show that the problem istactable
when designing a randomized mechanism. In more recent worl]], Conitzer and Sandholm put
forward an e cient algorithm for designing deterministic m echanisms, which works only in very
limited scenarios. In short, our setting, goals, and method are completely di erent|in the general
voting context, even framing computational complexity questions is problematic, since the goal
cannot be speci ed with reference to expected social welfax.

5.7 Discussion

It turns out (Corollaries 5.5.4 and 5.5.7) that many SCFs camot be approximated, neither by
using scoring functions nor by small voting trees. Howeverthis negative result relied implicitly on
assuming a uniform distribution over pro les. More importa ntly, it might be the case that some
of the important families of SCFs can be approximated by scang functions or small voting trees.
Therefore, we do not rule out at this point the application of our approach to designing general
SCFs by directly learning scoring functions or small votingtrees that approximate them.

We mention two directions for future research. First, imagine the following scenario: the
designer has in mind a huge voting tree, and would like to knowwhether there exists a smaller
voting tree that implements the same social choice function The same goes for scoring functions,
e.g., the designer might have in mind a scoring function withhuge values for components of the
vector . This is a setting closely related to ours, but our results donot hold in the alternative
setting.

Second, it might prove interesting to study the learnability of larger families of SCFs that
have a concise representation. One compelling example isdhclass ofgeneralized scoring functions
recently proposed by Xia and Conitzer [147].
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Chapter 6

Strategyproof Regression Learning

6.1 Introduction

Following the rise of the Internet as a computational platform, machine learning problems have
become increasingly dispersed, in the sense that di erent @rts of the training set may be controlled
by di erent computational or economic entities.

A Motivating Example. Consider an Internet search company trying to improve the pefor-
mance of their search engine by learning a ranking functionrbm examples. The ranking function is
the heart of a modern search engine, and can be thought of as aapping that assigns a real-valued
score to every pair of a query and a URL. Some of the large Interet search companies currently
hire Internet users, which we hereinafter refer to as \expets"”, to manually rank such pairs. These
rankings are then pooled and used to train a ranking function Moreover, the experts are chosen in
a way such that averaging over the experts' opinions and inteests presumably pleases the average
Internet user.

However, dierent experts may have dierent interests and a di erent idea of the results a
good search engine should return. For instance, take the aniguous query \Jaguar", which has
become folklore in search engine designer circles. The tomswer given by most search engines for
this query is the website of the luxury car manufacturer. Knowing this, an animal-loving expert
may decide to give this pair a disproportionately low score,hoping to improve the relative rank of
websites dedicated to the Panthera Onca. An expert who is an aomobile enthusiast may counter
this measure by giving automotive websites a much higher sge than is appropriate. From the
search company's perspective, this type of strategic maniplation introduces an undesired bias in
the training set.

Setting.  Our problem setting falls within the general boundaries ofstatistical regression learning
Regression learning is the task of constructing a real-valug function f based on a training set of
examples, where each example consists of an input to the fution and its corresponding output.
In particular, the example (x;y) suggests that f (x) should be equal toy. The accuracy of a
function f on a given input-output pair ( x;y) is de ned using a loss function™. Popular choices of
the loss function are the squared loss, (f (x);y) = (f (x) y)?, or the absolute loss," (f (x);y) =
if (X) yj. We typically assume that the training set is obtained by sanpling i.i.d. from an underlying
distribution over the product space of inputs and outputs. The overall quality of the function
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constructed by the learning algorithm is de ned to be its expected loss, with respect to the same
distribution.

We augment this well-studied setting by introducing a set of strategic agents Each agent holds
as private information an individual distribution over the input space and values for the points
in the support of this distribution, and measures the quality of a regression function with respect
to this data. The global goal, on the other hand, is to do well wth respect to the average of
the individual points of view. A training set is obtained by eliciting private information from the
agents, who may reveal this information untruthfully in ord er to favorably in uence the result of
the learning process.

Relation to Voting Theory. Mechanism designis a sub eld of economics that is concerned with
the question of how to incentivize agents to truthfully report their private information, also known
as their type. Given potentially non-truthful reports from t he agents, a mechanism determines a
global solution, and possibly additional monetary transfas to and from the agents. A mechanism
is said to be strategyproof if it is always in the agents' best interest to report their tr ue types,
and e cient if the solution maximizes social welfare (i.e. minimizes tle overall loss). Our goal in
this chapter will be to design and analyze strategyproof ande cient mechanisms for the regression
learning setting.

The common assumption in the mechanism design literature ighat agents have quasi-linear
preferences, that is, money is available. However, this chier mostly focuses on obtaining strate-
gyproofness resultavithout payments (see Nisan et al. [136] for an overview of results on mechams
design without money). So, the agents are essentially votig on a set of functions. We will see
that it is possible to obtain strategyproofness despite theGibbard-Satterthwaite Theorem [60, 135],
since in our setting the agents cannot express all possiblénear preferences over the alternatives,
hence the G-S Theorem does not hold.

It should be noted that strategyproofness is essential for btaining any learning theoretic
bounds. Otherwise, all agents might reveal untruthful information at the same time, in a co-
ordinated or uncoordinated way, causing the learning probém itself to be ill-de ned.

6.2 The Mathematical Framework

In this section we formalize the regression learning proble described in the introduction and cast
it in the framework of game theory. Some of the de nitions are illustrated by relating them to
the Internet search example presented in Section 6.1. Note that the learning-theoretic model is
somewhat di erent than the one discussed in Chapter 5, sincehat chapter dealt with (multi-)
classi cation and in this chapter we deal with regression larning.

We focus on the task of learning a real-valued function over annput space X. In the Internet
search example,X would be the set of all query-URL pairs, and our task would be tolearn the

running example would be the set of all experts. For each agen 2 N, let o, be a function from X

to R and let ; be a probability distribution over X. Intuitively, o; is what agenti thinks to be
the correct real-valued function, while ; captures the relative importance that agenti assigns to
di erent parts of X. In the Internet search example, o, would be the optimal ranking function

according to agenti, and ; would be a distribution over query-URL pairs that assigns higher
weight to queries from that agent's areas of interest.
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Let F be a class of functions, where every 2 F is a function from X to the real line. We
call F the hypothesis spaceof our problem, and restrict the output of the learning algorithm to
functions in F. We evaluate the accuracy of eacf 2 F using aloss function™ : R R! R;.
For a particular input-output pair ( X;y), we interpret “(f (x);y) as the penalty associated with
predicting the output value f (x) when the true output is known to be y. As mentioned in the
introduction, common choices of ™ are the squared loss; (; ) =( )2, and the absolute loss,
()= j- The accuracy of a hypothesisf 2 F is de ned to be the average loss of over
the entire input space. Formally, de ne the risk associated by agent with the function f as

riski(f) = Ex ; “(f(X);0i(x))

Clearly, this subjective de nition of hypothesis accuracy allows for di erent agents to have signif-
icantly di erent valuations of di erent functions in F, and it is quite possible that we will not be
able to please all of the agents simultaneously. Instead, ougoal is to satisfy the agents inN on
average. DeneJ to be a random variable distributed uniformly over the elements of N. Now
de ne the global risk of a function f to be the average risk with respect to all of the agents, namef

riskn (F) = E[risk; (f)]

We are now ready to state our learning-theoretic goal formaly: we would like to nd a hypothesis
in F that attains a global risk as close as possible to infr risky (F).

Even if N is small, we still have no explicit way of calculating risky (f ). Instead, we use an
empirical estimate of the risk as a proxy to the risk itself. For eachi 2 N, we randomly samplem
points independently from the distribution ; and request their respective labels from agent. In
this way, we obtain the labeled training setS; = f(Xi; ; y1j )g/%; . Agenti may label the points in S
however it sees t, and we therefore say that ageni controls (the labels of) these points. We usually
denote agenti's \true" training set by Sj = f(xjj;yj)gl,, wherey; = oi(xj). Alf}er receiving
labels from all agents inN, we de ne the global training set to be the multiset S= ,, Si.

The elicited training set S is presented to a regression learning algorithm, which in reirn
constructs ahypothesisf~2 F . Each agent can in uencef™by modifying the labels it controls. This
observation brings us to the game-theoretic aspect of our séhg. For all i 2 N, agenti's private

each agent then consists of all possiblealues for the labels it controls. In other words, agenti
reports a labeled training setS;. We sometimes useS ; as a shorthand for S n Sj, the strategy
pro le of all agents except agenti. The space of possible outcomes is the hypothesis spaEe and
the utility of agent i for an outcome f~is determined by its risk risk;(f). More precisely, agenti

that it does this with full knowledge of the inner workings of our regression learning algorithm, and
name the resulting game thelearning game
Notice that under the above formalism, a regression learnig algorithm is in fact a social choice

function, which maps the types of the agents to a hypothesisOne of the simplest and most popular
regression learning techniques iempirical risk minimization (ERM). The empirical risk associated
with a hypothesis f , with respect to a sample S, is denoted by risk(f; S) and de ned to be the
average loss attained byf on the examples inS, i.e.

A 1 X

risk(f;S) = S fx)y)

(x;y)28
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An ERM algorithm nds the empirical risk minimizer f* within F. More formally,

f* = argmin risk(f;S) :
foF

A large part of this chapter will be dedicated to ERM algorith ms. For some choices of loss function
and hypothesis class, it may occur that the global minimizerof the empirical risk is not unique,
and we must de ne an appropriate tie-breaking mechanism.

Since our strategy is to useri’ék(f; S) as a surrogate for rislg (f ), we need ri’ék(f; S) to be an
unbiased estimator of risky (f ). A particular situation in which this can be achieved is when all
agentsi 2 N truthfully report ~y; = oi(xj) for all j. It is important to note that truthfulness
need not come at the expense of the overall solution qualityThis can be seen by a variation of the
well-known revelation principle. Indeed, assume that for a gven mechanism and given true inputs
there is an equilibrium in which some agents report their inputs untruthfully, and which leads to an
outcome that is strictly better than any outcome achievable by a strategyproof mechanism. Then
we can design a new mechanism that, given the true inputs, siolates the agents' lies and yields
the exact same output in equilibrium.

6.3 Degenerate Distributions

We begin our study by focusing on a special case, where eacheaqy is only interested in a single
point of the input space. Even this simple setting has intereting applications. Consider for example
the problem of allocating tasks among service providers, g. messages to routers, jobs to remote
processors, or reservations of bandwidth to Internet prowilers. Machine learning techniques are
used to obtain a global picture of the capacities, which in tun are private information of the
respective providers. Regression learning provides an apppriate model in this context, as each
provider is interested in an allocation that is as close as pssible to its capacity: more tasks mean
more revenue, but an overload is clearly undesirable.

A concrete economic motivation for this setting is given by Rerote and Perote-Pena [110]. The
authors consider a monopolist trade union in some sector thiahas to set a common hourly wage for
its members. The union collects information about the hoursof work in each rm versus the rm's
expected pro tability, and accordingly sets a single secteial wage per hour. The hours of work
are public information, but the expected pro tability is pr ivate. Workers that are more pro table
might have an incentive to exaggerate their pro tability in order to increase the hourly common
wage.

More formally, the distribution ; of agenti is now assumed to be degenerate, and the samp8
becomes a singleton. LetS = f(x;;yi)gL; denote the set of true input-output pairs, where now
yi = 6i(Xj), and S; = f(X;;Vi)g is the single example controlled by agenti. Each agent selects an
output value ¥, and the reported (possibly untruthful) training set S = f(xi;w)gL; is presented
to a regression learning algorithm. The algorithm construds a hypothesisf~and agenti's cost is
the loss

riski(f) = Ex  "(F(x);6i(x)) = "(Fxi);yi)

on the point it controls, where " is a prede ned loss function. Within this setting, we examine the
game-theoretic properties of ERM.

As noted above, an ERM algorithm takes as input a loss functio ~ and a training set S,
and outputs the hypothesis that minimizes the empirical risk on S according to *. Throughout
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this section, we write ' = ERNF ; *; S) as shorthand for arg mirg o ri’s\k(f;‘;S ). We restrict our
discussion to loss functions of the form (; )= (] i), where :R; ! R is a monotonically
increasing convex function, and to the case wher€ is a convex set of functions. These assumptions
enable us to cast ERM as a convex optimization problem, whichare typically tractable. Most
choices of” and F that do not satisfy the above constraints may not allow for camputationally
e cient learning, and are therefore less interesting.

We prove two main theorems: if is a linear function, then ERM is group strategyproof; if on
the other hand grows faster than any linear function, and given minimal corditions on F, ERM
is not strategyproof.

6.3.1 ERM with the Absolute Loss

In this section, we focus on the absolute loss function. Inded, let © denote the absolute loss,
“(a;b) = ja b, and let F be a convex hypothesis class. Becauseis only weakly convex, there
may be multiple hypotheses inF that globally minimize the empirical risk and we must add a
tie-breaking step to our ERM algorithm. Concretely, conside the following two-step procedure:

1. Empirical risk minimization: calculate

r = min risk(f;S):
f 2F

2. Tie-breaking: return
/= argmin kf k;
f2F :riSk(f;S)=r
R
wherekf k? = f 2(x) dx.

Our assumption that F is a convex set implies that the set of empirical risk minimizrsff 2 F :
ri’s\k(f;S) = rg is also convex. The functionkf k is a strictly convex function and therefore the
output of the tie-breaking step is uniquely de ned.

For example, imagine that X is the unit ball in R" and that F is the set of homogeneous linear
functions, of the form f (x) = hw;xi, wherew 2 R". In this case, Step 1 above can be restated as
the following linear program:

1 X0

min i s.t. 8i hw;xji i i and vy; hw;xji i
PP L A—. i i Yi i Yi i i

i=1

The tie-breaking step can then be written as the following qualratic program with linear constraints:

argmin  kwk- st ; ij=r and
2RM;wW2R"
8 hw;xii i i and y; hw;x;i i

In our analysis, we only use the fact thatkf k is a strictly convex function of f . Any other strictly
convex function can be used in its place in the tie-breaking sp.

The following theorem states that ERM using the absolute los function has excellent game-
theoretic properties. Maore precisely, it is group strategyroof: if a member of an arbitrary coalition
of agents strictly gains from a joint deviation by the coalition, then some other member must strictly
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lose. It should also be noted that in our case any mechanism wWiout payments satis es individual
rationality: if some agent does not provide values for its pat of the sample, then ERM will simply
return the best t for the points of the other agents, so no agent can gain by not taking part in the
mechanism.

Theorem 6.3.1. Let N be a set of agentsS = ] jon S; a training set such thatS; = fx;;y;g for all
i 2 N, and let | be degenerate ak;. Let * denote the absolute loss,(a;b) = ja b, and letF be a
convex hypothesis class. Then, ERM minimizing over F with respect to S is group strategyproof.

We prove this theorem below, as a corollary of the following nore explicit result.

Proposition 6.3.2. Let § = f(xi;%)gl; and S = f(x;;y)g2, be two training sets on the same
set of points, and letf"= ERNF;; 8) and "= ERNF;; S). If f 6 f~then there existsi 2 N such

that 95 6 ¥ and “(F(xi); %) <~ (F(xi); ).

Proof. Let U be the set of indices on whichS and S disagree, i.e.U = fi : ¥ 6 yig. We prove the
claim by proving its counter-positive, i.e. we assume that’ (f(x;);9) “(f(xi);¥) for all i 2 U,
and prove that ' We begin by considering functions of the formf (x)= f{x)+(1 )f’\(x)
and proving that there exists 2 (0; 1] for which

risk(f? S)  risk(f 8) = riSk(f ;S) risk(f ;98) : (6.1)

For everyi 2 U, our assumption that “(f(x;): %)  “(f(x;);$;) implies that one of the following
four inequalities holds:

xi) %< fxi) xi) %> f(xi) (6.2)
g i) (i) R CONRAC) (6.3)

Furthermore, we assume without loss of generality thatyr- = f1{x;) for all i 2 U. Otherwise, we
could simply changey-to equal f{x;) for all i 2 U without changing the output of the learning
algorithm. If one of the two inequalities in (6.2) holds, we st

RACY)
xi)  f(xi)

and note that ; 2 (0;1] andf ,(x;) = 4i. Therefore, for every 2 (0; ;] it holds that either
v f ) <fx) or w9 f(xi)>fx)
Setting ¢ = j¥ ¥, we conclude that for all in (0; ],
(iiw) (i) = 6 and
(F (xi)iw)  (F (xi)ig) = G
Alternatively, if one of the inequalities in (6.3) holds, we have that either
% oy ) i) o ooy f () fx)

Setting j=1land ¢ = j ¥ ¥j, we once again have that (6.4) holds for all in (0; ;]. Moreover,
if we choose =minij,y i, (6.4) holds simultaneously for alli 2 U. (6.4) also holds trivially for

(6.4)
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all i 62U with ¢ = 0. (6.1) can now be obtained by summing both of the equalities in (6.4) over
all i.

Next, we recall that F is a convex set and thereford 2 F . Sincef" minimizes the empirical
risk with respect to S over F, we speci cally have that

risk(f? 8)  risk(f ;%) : (6.5)
Combining this inequality with (6.1) results in
risk(f? S)  risk(f ;S) : (6.6)
Since the empirical risk function is convex in its rst argument, we have that
risk(f :S) risk(frS) + (1 )risk(f} S) : (6.7)

Replacing the left-hand side above with its lower bound in (66) yields risk(f? S)  risk(f7 S). On
the other hand, we know that f~ minimizes the empirical risk with respect to S, and speci cally
risk(fr S)  risk(f* S). Overall, we have shown that

risk(f? S) = risk(fTS) = min risk(f; S) : (6.8)

Next, we turn our attention to kf'k and kf’k. We start by combining (6.8) with (6.7) to get
risk(f ;S)  risk(f' S). Recalling (6.1), we have that risk(f ;8)  risk(f® 8). Once again us-
ing (6.5), we conclude thatrisk(f ;38) = risk(f} 8). Although f*andf both minimize the empirical
risk with respect to 8, we know that f* was chosen as the output of the algorithm, and therefore it
must hold that

kfk kf k: (6.9)

Using convexity of the norm, we havekf k kfk + (1 )kf'k. Combining this inequality
with (6.9), we get kf'k k fk. On the other hand, (6.8) tells us that both f* and f~ minimize
the empirical risk with respect to S, whereasf~is chosen as the algorithm output, sokfk k fk.
Overall, we have shown that

kfk = kfk = min kfk : (6.10)
f 2F :1riSk(f; S)= risk(f7S)

In summary, in (6.8) we showed that both f* and f~minimize the empirical risk with respect to S,
and therefore both move on to the tie breaking step of the algdthm. Then, in (6.10) we showed
that both functions attain the minimum norm over all empiric al risk minimizers. Since the norm
is strictly convex, its minimum is unique, and therefore f°  f O

To understand the intuition behind Proposition 6.3.2, as wdl as its relation to Theorem 6.3.1,
assume that S represents the true preferences of the agents, and thaS represents the values
revealed by the agents and used to train the regression funin. Moreover, assume thatS 6 S.
Proposition 6.3.2 states that one of two things can happen. Eher ' fie. revealing the values
in S instead of the true values in 8 does not a ect the result of the learning process. In this
case, the agents might as well have told the truth. Or,f* and ™ are di erent hypotheses, and
Proposition 6.3.2 tells us that there must exist an agenti who lied about its true value and is
strictly worse o due to his lie. Clearly, agent i has no incentive to actually participate in such a
lie. This said, we can now proceed to prove the theorem.
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Proof of Theorem 6.3.1. Let S = f(X;;y;)g2, be a training set that represents the true private
information of a set N of agents and letS = f(x;; y)g},; be the information revealed by the agents
and used to train the regression function. LetC N be an arbitrary coalition of agents that have
conspired to decrease some of their respective losses byrgiabout their values. Now de ne the
hybrid set of values where

yi ifi2C

foralli2 N, ¢ = v otherwise

and let § = f(x;;%)g", . Finally, let '= ERNF;"; §) and "= ERNF;"; S).

If f* f then the members of C gain nothing from being untruthful. Otherwise, Proposi-
tion 6.3.2 states that there exists an agenti 2 N such that ¥ 6 ¥; and “(f(x;); ) < (F(x;); ).
From ¥ 6 ¥; we conclude that this agent is a member ofC. We therefore have thaty} = y; and
‘(f’\(xi);yi) < T (f1xj);y;). This contradicts our assumption that no member of C loses from
revealing S instead of 8. We emphasize that the proof holds regardless of the valuesvealed by
the agents that are not members ofC, and we therefore have group strategyproofness. O

6.3.2 ERM with Other Convex Loss Functions

We have seen that performing ERM with the absolute loss is stategyproof. We now show that the
same is not true for most other convex loss functions. Spectally, we examine loss functions of the
form “(; )= (] i), where :R; ! R is a monotonically increasing strictly convex function
with unbounded subderivatives. Unbounded subderivativesmean that cannot be bounded from
above by any linear function.

For example, can be the function ( )= 9, whered is a real number strictly greater than
1. A popular choice isd = 2, which induces the squared loss, (; ) = ( )2, The following
example demonstrates that ERM with the squared loss is not stategyproof.

Example 6.3.3. Let * be the squared loss functionX = R, and F the class of constant function
over X. Further let S; = f(x1;2)g and S; = f(x2;0)g. On S, ERM outputs the constant function
f’\(x) 1, and agent 1 su ers loss 1. However, if agent 1 reports its Mae to be 4, ERM outputs
f(x) 2, with loss of O for agent 1.

For every x 2 X, let F(x) denote the set of feasible valuesat x, formally de ned as F (x) =
ff(x): f 2Fg. SinceF is a convex set, it follows that F (x) is either an interval on the real line,

We then say that F is full on a multiset X = fx1;:::;xpg 2 X" if F(X) = F(X1) F (Xn).
Clearly, requiring that F is not full on X is a necessary condition for the existence of a training set
with points X where one of the agents gains by lying. Otherwise, ERM will t any set of values
for the points with an error of zero. For an example of a functon class that is not full, consider
any function classF on X, jFj 2, and observe that there have to existf,;f, 2 F and a point
Xo 2 X such that f1(xp) 6 f2(Xg). In this case, F is not full on any multiset X that contains two
copies ofxy.

In addition, if jFj =1, then any algorithm would trivially be strategyproof irr espective of the
loss function. In the following theorem we therefore considr hypothesis classe$ of size at least
two which are not full on the set X of points of the training set.
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Theorem 6.3.4. Let : Ry ! R be a monotonically increasing strictly convex function wih

unbounded subderivatives, and de ne the loss function(; ) = (] j). Let F be a convex
hypothesis class that contains at least two functions, andet X = fx1;:::;xpg 2 X" be a multiset
such that F is not full on X. Then there existys;:::;y¥n 2 R such that, if S = ]2y S with

Si = f(Xi;Vi)g, i is degenerate atx;, and ERM is used, there is an agent who has an incentive to
lie.

An example for a function not covered by this theorem is givenby ( ) =In(1+ E( )), which
is both monotonic and strictly convex, but has a derivative bounded from above by 1. We use the
subderivatives of , rather than its derivatives, since we do not require to be di erentiable.

As before, we actually prove a slightly stronger and more exlicit claim about the behavior of
the ERM algorithm. The formal proof of Theorem 6.3.4 follows as a corollary below.

Proposition 6.3.5. Let and” be as de ned in Theorem 6.3.4 and letF be a convex hypothesis
class. LetS = f(x;;9)g", be a training set, where; 2 F (x;) for all i, and de ne f*= ERNF;; S).
For eachi 2 N, one of the following conditions holds:

1. (%) = 4.

2. There existsy; 2 R such that, if we dene S = S [f (xi;y)g and f~ = ERNF;";S),
() ) < (i) ).

To prove the above, we rst require a few technical results, viich we state in the form of three
lemmas. The rst lemma takes the perspective of ageni and considers the case where truth-telling
results in a function " such that f'\(xi) > ¢, i.e. agenti would like the ERM hypothesis to map x;
to a somewhat lower value. The second lemma then states thathiere exists a lie that achieves this
goal. The gap between the claim of this lemma and the claim of Tieorem 6.3.5 is a subtle one:
merely lowering the value of the ERM hypothesis does not neasarily imply a lowering of the loss
incurred by agenti. It could be the case that the lie told by agenti causedf’\(xi) to become too
low, essentially overshooting the desired target value andncreasing the loss of agent. This point
is resolved by the third lemma.

Lemma 6.3.6. Let *, F, § and f* be as de ned in Theorem 6.3.5 and leti 2 N be such that
f(x;) > ¢i. Then for all f 2 F for which f (xj) f(xi), and for all y 2 R such thaty ¥, the
datasetS= S | [f (x;;y)g satis es risk(f; S)  risk(f® S).

Proof. Let f 2 F be such thatf (x;) f\(x;), let y 2 R be such thaty ¢, and dene S =
S i[f (Xi;y)g. We now have that

risk(f; S) = risk(f; S i)+ “(f (xi); %)
risk(f; S)  (F (xi); i) + " (F (xi); ) (6.11)
risk(f; §)  (F(xi) g+ (F(xi) w)

Using the fact that " is the empirical risk minimizer with respect to 8, we can get a lower bound
for the above and obtain

risk(f; S)  risk(f? 8)  (F(xi) 9+ (Fxi) w) :
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The term ri's\k(f’;\ 8) on the right hand side can again be rewritten using (6.11), esulting in
risk(f; S)  risk(f S)+ () ¢ (i) w) (Foxa) g+ (Fxi) ow)

Denoting a = f(x;) ¥, b= f(xi) w,c=f(xi) ¥, andd= f(xj) W, we can rewrite the
above as
risk(f; S)  risk(S)+ (@ (B O+ (d) : (6.12)

Noting that b, ¢, and d are all greater than a, and that b+ ¢ 2a=d a, we use convexity of
to obtain

_ b a c a c a b a
@+ = g @+t @+ 57— @+ ;— @
(b aa+(c a)d N (c aa+(b a)d
d a d a
_ (b+c 2a)a+(c a)(d a)
- d a
(c+ b 2a)a+(b a)(d a)
d a
= @+ (:
Combining this inequality with (6.12) concludes the proof. O

Lemma 6.3.7. Let °, F, 8 and " be as de ned in Theorem 6.3.5 and leti 2 N be such that
f\(x;) > ;. Then there existsy; 2 R such that if we deneS = § |[f (xi;yi)gandf = ERNF;";S),
then f(x;) < f(x;).

Proof. Let i be such that f’\(xi) 6 4; and assume without loss of generality thatf’\(xi) > ¢. Since
% 2 F (x;), there exists a function f °2 F such that f {x;) = 4;. Now de ne

_ MSK(FOS ) rSk(fiS ) + 1 (6.13)

(xi)  fAx;)

It holds, by de nition, that riSk(f ¢ 8) > risk(f> §) and that “(f (x;); %) < (f(x;); i), and therefore
the numerator of (6.13) is positive. Furthermore, our assunption implies that the denominator of
(6.13) is also positive, so is positive as well.

Since has unbounded subderivatives, there exists > 0 large enough such that the subderiva-
tive of at is greater than . By the de nition of the subderivative, we have that

for all ; ()+( ) () : (6.14)
De ning ¥; = f qx;) and S= S i [f (xi;¥i)g, we have that
)y = Fx) o ow) = ()
and therefore
risk(f%S) = risk(f®S )+ “(FAxi);w) = risk(f®sS )+ () : (6.15)

71



We further have that

(xiw) = (i) ow) = () fa)+ )
Combining (6.14) with the fact that f\(x;) fqx;) > 0, we get ( )+(f(xi) fqx;)) as a lower
bound for the above. Plugging in the de nition of from (6.13), we obtain

(oa)w)  ()+risk(FAS ) risk(f S )+ 1
and therefore,

risk(f? S) = risk(f? S i)+ “(f(xi);v) ( )+ risk(f®8 ) +1
Comparing the above with (6.15), we get
risk(f? S) > risk(f®s) :

We now use Lemma 6.3.6 to extend the above to ever§ 2 F for which f(x;)  f(x;), hamely,
we now have that any suchf satis es ri’ék(f; S) > ri’ék(f ¢ S). We conclude that the empirical risk
minimizer f~must satisfy f{x;) < f(x;). O

Lemma 6.3.8. Let " and F be as de ned in Theorem 6.3.5, letS = f(x;;¥)g"; be a dataset, and
leti 2 N be an arbitrary index. Then the functiong(y) = f (x;), wheref = ERNF; ;S [f (Xi;y¥)Q0),
is continuous.

Proof. We rst restate ERM as a minimization problem over vectors in R™. De ne the set of

G = f(xy);::;f(xm) :f2F

Our assumption that F is a convex set implies thatG is a convex set as well. Now, de ne the
function X
L(viy) = “(viW+  (vj:¥%);  wherev =(vg;iiivm)
j6i

Finding f 2 F that minimizes the empirical risk with respect to the dataset S ; [f (X;;¥)g is
equivalent to calculating miny g L(Vv;¥y). Moreover, g(y) can be equivalently de ned as the value
of the i'th coordinate of the vector in G that minimizes L(Vv; ).

To prove that g is continuous at an arbitrary point ¥ 2 R, we show that for every > 0 there
exists > Osuchthatify2 [y ;y+ ]Jtheng(y)2[g(y) ;9(y)+ ]. Forthis,letyand > O
be arbitrary real numbers, and de ne

u = argmin L(v;y) :
v2G
Since " is strictly convex in its rst argument, so is L. Consequently, u is the unique global
minimizer of L. Also de ne
G = fv2G:jv Uuj g:

Assume that is small enough thatG is not empty (if no such exists, the lemma holds trivially).
Note that u 62 Gfor any value of > 0. De ne G to be the closure ofG and let

= inf L(v;yY) L(u;y :
v2G
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Since is strictly convex and has unbounded subderivatives, the leel-sets ofL (v;¥y), as a function
of v, are all bounded. Therefore, there existsw 2 G that attains the in mum above. More

precisely,w is such that L(w;y) L(u;y) = . Using uniqueness of the minimizeru, as well as
the fact that w 6 u, we conclude that > 0. We have proven that if v 2 F is such that
L(viy) < L(uy + (6.16)

thenjvi ujj < . It therefore su ces to show that there exists > O suchthatify2 [y ; y+ ]
then the vector v 2 G that minimizes L(v;y) satis es the condition in (6.16).

Since " is convex in its second argument,” is also continuous in its second argument. Thus,
there exists > O such thatforally2 [y ; y+ ]itholds that both

Uiy < (uiy)+ =2 and CT(wiy) < (wisyp+t =2
wherew = argmin g L(v;y). Therefore,
L(u;y) <L (u;y)+ =2 and L(w;p¥) <L (w;y)+ =2 :

Finally, since w minimizes L(v;y), we haveL(w;y) L(u;y). Combining these three inequalities
yields the condition in (6.16). O

We are now ready to prove Proposition 6.3.5, and then Theoren6.3.4.

Proof of Proposition 6.3.5. If f(x;) = 4; for all i 2 N, we are done. Otherwise leti be an index
for which f’\(xi) 6 4; and assume without loss of generality thatf’\(xi) > ¢;. Using Lemma 6.3.7,
we know that there existsyr 2 R such that if we dene S= S ;| [f (x;;y)g and f°= ERNF;"; S),
then f %satis es f(x;) > f {x;).

We consider the two possible cases: eithef(x;) > f 4x;) ¢, and therefore “(f(xi); %) >
Y(FAx;); %) as required. Otherwise,f’\(xi) > ¢ >f {x;). Using Lemma 6.3.8, we know thatf (x;)
changes continuously withyy, wheref = ERNF;™;S i [f (Xi;¥i)g). Relying on the elementary
Intermediate Value Theorem, we conclude that for somey 2 [¥;y] it holds that f, the empirical
risk minimizer with respect to the dataset S  [f (Xj;Y)Q), satis es f (Xj) = 4;. Once again we have

NUCORDENUCOR D! O

satls ed by the output of the ERM algorlthm on S. Usmg Proposition 6.3.5 we conclude that this
agent has an incentive to lie. Ol

It is natural to ask what happens for loss functions that are sublinear in the sense that they
cannot be bounded from below by any linear function with strictly positive derivative. A property of
such loss functions, and the reason why they are rarely usedh ipractice, is that the set of empirical
risk minimizers need no longer be convex. It is thus unclear bw tie-breaking should be de ned
in order to nd a unigue empirical risk minimizer. Furthermo re, the following example provides a
negative answer to the question of general strategyproofres of ERM with sublinear loss.

Example 6.3.9. We demonstrate that ERM is not strategyproof if “(a;b) = P ja b and F
is the class of constant functions overR. Let S = f(x1;1);(X2;2);(x3;4);(X4;6)g and S =
f(X1;1); (X2; 2); (X3;4); (X4; 4)g. Clearly, the local minima of ri’s\k(f; S)and ri’s\k(f; S) have the form
f(x) ywhere (Xj;y) 2 S or (xj;y) 2 S, respectively, for somei 2 f 1; 2; 3;49. The empirical risk
minimizer for S is the constant function f1(x) 2, while that for S |§f2(x) 4. Thus, agent 4
can declare its value to be 4 instead of 6 to decrease its losoi 2 to
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(a) Truthful dataset. (b) Manipulated dataset.

Figure 6.1: An illustration of Example 6.4.1, which shows that ERM is not strategyproof when
agents have uniform distributions over their samples.

6.4 Uniform Distributions Over the Sample

We now turn to settings where a single agent holds a (possiblynondegenerate distribution over the
input space. However, we still do not move to the full level ofgenerality. Rather, we concentrate
on a setting where for each agent, ; is the uniform distribution over the sample points X,
j=1 ;m. While this setting is equivalent to curve tting with multi ple agents and may be
mterestlng in its own right, we primarily engage in this sort of analysis as a stepping stone in our
guest to understand the learning game. The results in this setion will function as building blocks
for the results of Section 6.5.

Since each agent 2 N now holds a uniform distribution over its samplg we can simpy assume
that its cost is its average empirical loss on the samplerisk(f7S;) = 1=m J - (i ):yi)- The

mechanism's goal is to minimizerisk(f7S). We stress at this point that the results in this section
also hold if the the samples of the agents dier in size. This $ of course true for the negative
results, but also holds for the positive ones. As we move to tis more general setting, truthfulness
of ERM immediately becomes a thorny issue even under absoletloss. Indeed, the next example
indicates that more sophisticated mechanisms must be usedtachieve strategyproofness.

Example 6.4.1. Let F be the class of constant functions overRK, N = f1; 29, and assume
the absolute loss function is used. LetS; = f(1;2);(2;2);(3;1)g and S, = f(4;1);(5;1); (6; 2)0.
The global empirical risk minimizer (according to our tie-breaking rule) is the constant function
f1(x) 1 with riSk(f1;S1) = 2=3. However, if agent 1 declaresS; = f(1;2); (2; 2); (3; 2)g, then the
empirical risk minimizer becomesf»(x) 2, which is the optimal t for agent 1 with ri’s\k(fz; Sp) =
1=3. Figure 6.1 illustrates this example.

6.4.1 Mechanisms with Payments

One possibility to overcome the issue that became manifesni Example 6.4.1 is to consider mech-
anisms that not only return an allocation, but can also transfer payments to and from the agents
based on the inputs they provide. A famous example for such a gyment rule is the Vickrey-
Clarke-Groves (VCG) mechanism [146, 25, 62]. This mechanismatarts from an e cient allocation
and computes each agent's payment according to the utility & the other agents, thus aligning the
individual interests of each agent with that of society.

In our setting, where social welfare equals the total empircal risk, ERM generates a function,
or outcome, that maximizes social welfare and can thereforde directly augmented with VCG
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payments. Given an outcomef’, each agenti has to pay an amount of ri’s\k(f’;\ S ). In turn, the
agent can receive some amounh;(S ;) that does not depend on the values it has reported, but
possibly on the values reported by the other agents. It is welknown [62], and also easily veri ed,
that this family of mechanisms is strategyproof: no agent ismotivated to lie regardless of the other
agents' actions. Furthermore, this result holds for any los function, and may thus be an excellent
solution for some settings.

In many other settings, however, especially in the world of he Internet, transferring payments
to and from users can pose serious problems, up to the extenhat it might become completely
infeasible. The practicality of VCG payments in particular has recently also been disputed for
various other reasons [133]. Perhaps most relevant to our wk is the fact that VCG mechanisms
are in general susceptible to manipulation by coalitions ofagents and thus not group strategyproof.
It is therefore worthwhile to explore which results can be oltained when payments are disallowed.
This will be the subject of the following section.

6.4.2 Mechanisms without Payments

In this section, we restrict ourselves to the absolute lossunction. When ERM is used, and for
the special case covered in Section 6.3, this function was eWwn to possess incentive properties
far superior to any other loss function. This fuels hope that similar strategyproofness results
can be obtained with uniform distributions over the samples even when payments are disallowed.
This does not necessarily mean that good mechanisms withoupayments cannot be designed for
other loss functions, even in the more general setting of ths section. We leave the study of such
mechanisms for future work.

ERM is e cient , i.e. it minimizes the overall loss and maximizes social wéhre. In light of
Example 6.4.1, we shall now sacri ce e ciency for strategyproofness. More precisely, we seek strat-
egyproof or group strategyproof mechanisms which are at thesame time approximately e cient .
We should stress that the reason we resort to approximations not to make the mechanism compu-
tationally tractable, but to achieve strategyproofness without payments, like we had in Section 6.3.

Example 6.4.1, despite its simplicity, is surprisingly robust against many conceivably truthful
mechanisms. The reader may have noticed, however, that thealues of the agents in this example
are not\individually realizable": in particular, there is no constant function which realizesagent 1's
values, i.e. ts them with a loss of zero. In fact, agent 1 bends from revealing values which are
consistent with its individual empirical risk minimizer. T his insight leads us to design the following
simple but useful mechanism, which we will term \project-and- t":

Input: A hypothesis classF and asampleS=17S;, S X R
Output: A function f 2 F .
Mechanism:

1. For eachi 2 N, let f; = ERNF; S)).

2. Dene S = f(xi1;fi(xi1);:::; Xim ; fi(Xim)) 0.

3. Return f

ERNB), whereS=1]1;S.

In other words, the mechanism calculates the individual emjical risk minimizer for each agent
and uses it to relabel the agent's sample. Then, the relabetk samples are combined, and ERM
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is performed. It is immediately evident that this mechanism achieves group strategyproofness at
least with respect to Example 6.4.1.

More generally, it can be shown that the mechanism is group sategyproof whenF is the class
of constant functions over RX. Indeed, it is natural to view our setting through the eyes of voting
theory: agents entertain (weak) preferences over a set of @rnatives, i.e. the functions in F. In
the case of constant functions, agents' preferences are whs known as single-plateau[101]: each
agent has an interval of ideal points minimizing its individual empirical risk, and moving away from
this plateau in either direction strictly decreases the aget's utility. More formally, let aj;a, be
constants such that the constant functionf (x) a minimizes an agent's empirical risk if and only
if a2 [a;;ar]. If az and a4 satisfy az <as a; oraz >as ap, then the agent strictly prefers
the constant function a4 to the constant function az. As such, single-plateau preferences generalize
the class of single-peaked preferences. For dealing with gjle-plateau preferences, Moulin [101]
de nes the class of generalized Condorcet winner choice fations, and shows that these are group
strategyproof.

When F is the class of constant functions and is the absolute loss, the constant function equal
to a median value in a sampleS minimizes the empirical risk with respect to S. This is because
there must be at least as many values below the median value asre above, and thus moving
the t upward (or downward) must monotonically increase the sum of distances to the values. Via
tie-breaking, project-and- t essentially turns the single-plateau preferences into single-peaked ones,
and then chooses the median peak. Once again, group strategsoofness follows from the fact that
an agent can only change the mechanism's output by increasmits distance from its own empirical
risk minimizer.

Quite surprisingly, project-and- t is not only truthful but a Iso provides a constant approxima-
tion ratio when F is the class of constant functions or the class of homogenesuinear functions
over R, i.e. functions of the form f (x) = a x. The class of homogeneous linear functions, in
particular, is important in machine learning, for instance in the context of Support Vector Ma-
chines [138].

Theorem 6.4.2. Assume thatF is the class of constant functions oveRX, k 2 N, or the class of
homogeneous linear functions oveR. Then project-and- t is group strategyproof and 3-e cient.

The proof of Theorem 6.4.2 is delegated to Appendix C.1. A simle example shows that the 3-
e ciency analysis given in the proof is tight. We generalize this observation by proving that, for
the class of constant or homogeneous linear functions andriespective of the dimension ofX, no
truthful mechanism without payments can achieve an e ciency ratio better than 3. It should be
noted that this lower bound holds for any choice of pointsx;; . The proof of Theorem 6.4.3 appears
in Appendix C.2.

Theorem 6.4.3. Let F be the class of constant functions oveR* or the class of homogeneous
linear functions over R¥, k 2 N. Then there exists no strategyproof mechanism without payments
thatis (3 )-ecientforany > 0, even whenjNj = 2.

Let us recapitulate. We have found a group strategyproof and3-e cient mechanism for the class
of constant functions overRK and for the class of homogeneous linear functions ové®. A matching
lower bound, which also applies to multi-dimensional homogeeous linear functions, shows that this
result cannot be improved upon for these classes. It is natwal to ask at this point if project-and- t
remains strategyproof when considering more complex hypdiesis classes, such as homogeneous
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linear functions over R¥, k 2, or linear functions. An example serves to answer this quéi®n in
the negative.

Example 6.4.4. We demonstrate that project-and-t is not strategyproof when F is the class of
linear functions over R. Let S; = f(0;0);(4;1)g and S; = f(1;1);(2;0)g. SinceS; and S, are
individually realizable, the mechanism simply returns the empirical risk minimizer, which is f (x) =
x=4 (this can be determined by solving a linear program). It further holds that risk(f; S,) = 5=8. If,
however, one consider$, = f(1;1);(2; 1)g and the sameS;, then the mechanism returnsf{x) = 1.
Agent 2 bene ts from this lie as risk(f7S,) = 1 =2.

It is also possible to extend this example to the case of hom@meous linear functions overR?
by xing the second coordinate of all points at 1, i.e. mapping eachx 2 R to x°= (x;1) 2 R?.
Indeed, the value of a homogeneous linear functiofi(x) = ha;bi x on the point (x,1) is ax + b.

Is there some other mechanism which deals with more complexyipothesis classes and provides
a truthful approximation? We conjecture that the answer is \ no". Some justi cation for this
conjecture is given in Appendix C.3.

Conjecture 6.4.5. Let F be the class of homogeneous linear functions ov&, k 2, and assume
that m = jS;jj 3. Then any mechanism that is strategyproof (in ex-post Nash eglibrium) and
surjective must be a dictatorship.

Conceivably, dictatorship would be an acceptable solutionif it could guarantee approximate
e ciency. A simple example shows that unfortunately this is not the case.

Example 6.4.6. Consider the class of homogeneous linear functions ovd®?, N = f1; 29. Let
S; = f(h0;1i;0);(M0O+ ; 1i;0)gand S, = f(h; 1i;1); (hl+ ; 1i;1)g for some > 0. Any dictatorship
has an empirical risk of 2. On the other hand, the function f (x1;X2) = X1 has empirical risk =2.
The e ciency ratio increases arbitrarily as  decreases.

6.5 Arbitrary Distributions Over the Sample

In Section 6.4 we established several positive results in #hsetting where each agent cares about a
uniform distribution on its portion of a global training set . In this section we extend these results
to the general regression learning setting de ned in Sectin 6.2. More formally, the extent to which
agenti 2 N cares about each point inX will now be determined by the distribution function i,
and agenti controls the labels of a nite set of points sampled accordiig to ;. Our strategy in this
section will consist of two steps. First, we want to show that under standard assumptions on the
hypothesis classF and the number m of samples, each agent's empirical risk on the training se§;
estimates its real risk according to ;. Second, we intend to establish that, as a consequence, our
strategyproofness results are not signi cantly weakened \Wwen we move to the general setting.
Abstractly, let  be a probability distribution on X and let G be a class of real-valued functions
from X to [0;C]. We would like to prove that for any > 0 and > O there existsm 2 N such

1 X0
Pr forall g2 G, Ex [g(X)] o a(Xi) 1 (6.17)

i=1

77



To establish this bound, we use standarduniform convergencearguments. A speci ¢ technique is
to show that the hypothesis classG has bounded complexity. The complexity ofG can be measured
in various di erent ways, for example using the pseudo-dimemion [112, 63], an extension of the
generalized dimension (de ned in Chapter 5) to real-valued lypothesis classes, or the Rademacher
complexity [11]. If the pseudo-dimension ofG is boundeg by a constant, or if the Rademacher
complexity of G with respect to an m-point sample is O(" m), then there indeed existsm such
that (6.17) holds.

More formally, assume that the hypothesis clas$ has bounded complexity, choose> 0, > O,
and consider a sampleS; of sizem = (log(1 = )= 2) drawn i.i.d. from the distribution ; of any
agenti 2 N. Then we have that

Pr forall f 2F, risk;(f) ri's\k(f;Si) 1 : (6.18)
In particular, we want the events in (6.18) to hold simultaneously for all i 2 N, i.e.
forall f 2F, risky(f) riSk(f;S) ; (6.19)

Using the union bound, this is the case with probability at least 1 n .

We now turn to strategyproofness. The following theorem imgies that mechanisms which do
well in the setting of Section 6.4 are also good, but slightlyless so, when arbitrary distributions
are allowed. Speci cally, given a training set satisfying 6.18) for all agents, a mechanism that is
strategyproof in the setting of Section 6.4 becomes-strategyproof, i.e. no agent can gain more
than by lying, no matter what the other agents do. Analogously, a goup strategyproof mechanism
for the setting of Section 6.4 becomes-group strategyproof, i.e. there exists an agent in the coation
that gains less than . Furthermore, e ciency is preserved up to an additive factor of . We wish
to point out that -equilibrium is a well-established solution concept, the unerlying assumption
being that agents would not bother to lie if they were to gain an amount as small as . This concept
is particularly appealing when one recalls that can be chosen to be arbitrarily small.

Theorem 6.5.1. Let F be a hypothesis class, some loss function, andS = ] S; a training set
such that for allf 2F andi 2 N, jriski(f) risk(f;S;)j =2, and jrisky (f) risk(f;S)j =2.
Let M be a mechanism with or without payments.

1. If M is (group) strategyproof under the assumption that each age's cost is risk(f7S ), then M
is -(group) strategyproof in the general regression setting.

2. If M is -e cient under the assumption that the mechanism's goal is © minimize risk(f7S),
M (S) = f7, then risky (f) argming o risky (f) +

Proof sketch. We will only prove the rst part of the theorem, and only for (i ndividual) strate-
gyproofness. Group strategyproofness as well as the secopdrt of the theorem follow from similar
arguments.

Leti 2 N, and let & (S;j) be the utility of agent i when S is reported and assuming a uniform
distribution over S;. Denoting by f~the function returned by M given S, we have

th(S) = risk(fFSi)+ pi(S) ;

where S; is the training data of agent i with the true labels set by ¢;. If M is a mechanism without
payments, p; is the constant zero function. SinceM is strategyproof for the uniform distribution,
#(Si:S i) i (S;S i) holds for all §.
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On the other hand, let u; denote agenti's utility function with respect to distribution ;, i.e.
ui(S) = riski(f) + pi(S)

wheref~is as above. Thenjui(S) t(S)j = jrisk;(f) ri’s\k(f”,*Si)j. By assumption, this expression
is bounded by =2. Similarly, with respect to i's true values S;, if M (Si;S ;) = f, then

jui(Si;S 1) e(Si;S )i = jriski(f)  risk(f}Si)j =2 :
It follows that for any S,
ui(S) ui(Si;S i)  wm(S)+ > i (Si;S i) >
OJ

As discussed above, the conditions of Theorem 6.5.1 are satd with probability 1 when F
has bounded dimension andn = (log(1 = )=2). As the latter expression depends logarithmically
on 1= , the sample size only needs to be increased by an additive fime of (log( n)= 2) to achieve
the stronger requirement of (6.19).

Let us examine how Theorem 6.5.1 applies to our positive redts. Since ERM with VCG
payments is strategyproof and e cient under uniform distri butions over the samples, we obtain -
strategyproofness and e ciency up to an additive factor of when it is used in the general learning
game, i.e. with arbitrary distributions. This holds for any loss function *. The project-and- t
mechanism is -group strategyproof in the learning game whenF is the class of constant functions
or of homogeneous linear functions oveR, and 3-e cient up to an additive factor of . This is true
only for the absolute loss function.

6.6 Related Work

Previous work in machine learning has investigated the relted problem of learning in the presence of
inconsistent and noisy training data, where the noise can beither random [91, 61] or adversarial [76,
20]. Barreno et al. [6] consider a speci c situation where mehine learning is used as a component
of a computer security system, and account for the possibity that the training data is subject to

a strategic attack intended to in Itrate the secured system. In contrast to these approaches, we do
not attempt to design algorithms that can tolerate noise, but instead focus on designing algorithms
that discourage the strategic addition of noise.

Closely related to our work is that of Perote and Perote-Pena[110]. The authors essentially
study the setting where each agent controls one point of theriput space, in a framework that
is not learning-theoretic. In addition, they only consider linear regression, and the input space is
restricted to be the real line. For that setting, the authors put forward a class of truthful estimators.
Rather than looking at the approximation properties of said estimators, they are instead shown
to be Pareto-optimal, i.e. there exist no regression lines tht are weakly better for all agents, and
strictly better for at least one agent.

Our work is also related to the area ofalgorithmic mechanism designintroduced in the seminal
work of Nisan and Ronen [105]. Algorithmic mechanism desigrstudies algorithmic problems in a
game-theoretic setting where the di erent participants cannot be assumed to follow the algorithm
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but rather act in a sel sh way. It has turned out that the main ¢ hallenge of algorithmic mech-
anism design is the inherent incompatibility of generic truthful mechanisms with approximation
schemes for hard algorithmic problems. As a consequence, stoof the current work in algorithmic
mechanism design focuses on dedicated mechanisms for hartbplems(see, e.g., [88]). What dis-
tinguishes our setting from that of algorithmic mechanism design is the need forgeneralization to
achieve globally satisfactory results on the basis of a smbhumber of samples. Due to the dynamic
and uncertain nature of the domain, inputs are usually assured to be drawn from some underlying
xed distribution. In addition, as noted above, many of our r esults focus on a setting without
payments, in stark contrast to the vast majority of work on al gorithmic mechanism design.

Subsequent work by Meir et al. [97] has extended our resultsat the realm of classi cation. This
work focuses on the almost degenerate concept class that dains only two functions: the constant
positive function, that labels the entire input space positively, and the constant negative hypothesis.
Even with respect to this class the problems are nontrivial; Meir et al. have obtained matching
upper and lower bounds in this setting, both for deterministic mechanisms and for randomized
mechanisms. For an overview and more information on the relton between the work described in
this chapter and the work of Meir et al. [97], the reader is reérred to Procaccia [113].

6.7 Discussion

The positive results in this chapter are a rare example of mdranism design without money [136].
Essentially, the results of Section 6.4 hold in a setting whee the preferences of the agents are single
peaked. One of the main contributions of our work, besides imoducing the agenda of studying
incentives in machine learning, is the the concept of approxnation in mechanism design without
money: we sacri ce absolute e ciency in order to obtain strategyproofness.

The results presented in this chapter, together with the resilts of Meir et al. [97], seem to
be merely the tip of the iceberg. First, we still have a very limited understanding of incentives
in regression learning and classi cation. Second, there & many other machine learning models
waiting to be explored, e.g., clustering.
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Frequency of Manipulation In
Elections
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Chapter 7

Junta Distributions

7.1 Introduction

In Section 1.1.1 we have surveyed at length the work on the copiexity of manipulation in elec-
tions. Recall that in general, the agenda is to circumvent tre Gibbard-Satterthwaite Theorem (see
Theorem 2.4.2) by appealing to computational complexity aguments. Indeed, given a preference
pro le, although a manipulation may exist in theory, in prac tice nding a lie that improves the
election's outcome might be a computationally hard problem

The vast majority of papers in this line of research deal withworst-case complexity of manipula-
tion. Worst-case complexity, however, is not a fully satisfactory barrier against manipulation. What
we would really like to know is whether it is possible to desig reasonable (from a Social Choice
point of view) SCFs such that potential manipulators would usually|in typical settings| nd it
hard to solve the manipulation problem.!

The notions and results that we discuss in this chapter werechronologically, the rst attempt
to investigate the complexity of manipulation under a typical-case mindset rather than a worst-
case one. Ideally, one could hope that some of the prominent(3-s, that are known to be hard to
manipulate in certain settings, would be frequently hard to manipulate under typical distributions.
The main result of this chapter can be interpreted as implying that this is not the case with respect
to coalitional manipulation under Scoring Functions.

To be more precise, let us formulate the coalitional manipuhtion problem, as introduced in
Conitzer et al. [35].

De nition 7.1.1. In the Coalitional Weighted Manipulation (CWM) problem under an
SCFf, we are given a set of alternativesA, a set of agentsN, and a weightw; 2 R, for each agent
i 2 N. We are also given a subset of agentsl N, a preference proleRN for these agents, and
a preferred alternative p 2 A. We are asked whether it is possible to complet®N to a prole RN
for all the agents, such thatf (RN) = p.

A short discussion is in order. Denotekl = N nN. N is interpreted as the set of truthful agents,
whereasN is the set of potential manipulators. The manipulators havecomplete information about
the ballots of the truthful agents, and are trying to coordinate their votes (that is, complete the
preference pro le) in a way that makes their favorite alternative p win the election.

We do not suggest, however, that worst-case complexity of manipulation i s no longer relevant. Worst-case
hardness of manipulation is a desirable property in an SCF, and complexity of manipulation it is still one of the
prominent tools for comparing di erent SCFs with respect to their computational properties.
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The issue of weights is one we have not discussed before. Indhweighted setting, an agent with
weight w counts asw agents voting identically. In the context of this chapter, this is well-de ned
even if w is an arbitrary nonnegative number. Indeed, since the SCFs & discuss are anonymous
(indi erent to the identity of the agents) and based on scores, the number of points an agent with
weight w awards is simply multiplied by w. For example, under Plurality an agent with weight 1/2
would award half a point to its favorite alternative. Weight ed voting can be justi ed as relevant in
di erent political or computational settings.

Finally, let us compare the formulation of the problem with t he formal de nition of manipulation
given in Section 2.4. The computational question is not wheler the manipulators can change their
votes in a way that improves the outcome, but whether they cancast their votes in a way that makes
p win. The former formulation seems much more natural in the catext of coalitional manipulation,
as each manipulator may have di erent preferences.

Crucially, Conitzer et al. [35] proved the following theorem.

Theorem 7.1.2 (Conitzer et al. [35]). CWM under Borda and Veto is NP -hard, even when the
number of alternatives is only 3.

Our purpose in this chapter is to provide analytical evidene that, despite the theorem, Borda
and Veto (an, in general, Scoring Functions) can frequentlybe manipulated by weighted coalitions
in typical settings. The immediate question that comes to mind is: \What are the typical settings?"
In other words, which distributions over the instances of CWM should we investigate? In order to
tackle these questions, we shall develop a mathematical fraework that is based on the concept of
Junta distributions.

7.2 The Mathematical Framework

Let us rst introduce a variation on the CWM problem that we sh all study. This version, called
SCWM, is especially tailored for Scoring Functions, and itsanalysis is more straightforward. Given
an instance of CWM, let , = { be the score of alternativea 2 A based onRN. Given RN let

| be the score ofa based on the rst i manipulators in K, according to some xed enumeration
of K and ballots for the manipulators. Denote n = jNj, A = jNj; then 7 is the overall score of
alternative a.

De nition 7.2.1. In the Scoring Coalitional Weighted Manipulation (SCWM) problem
under a scoring functionf , we are given a set of alternativesA, and a set of agentaN. We are also
given a subset of agentdN N, a weight w; 2 R, for each agenti 2 K, where Nl = N nN, the
total score 5 the agents inN award to each alternativea 2 A, and a preferred alternative p 2 A.

We are asked whether it is possible nd a ballotRN such that B > 1 for all alternatives a 6 p.

So, the main di erence between CWM (under scoring functiony and SCWM is that we do not
require that there actually exist RN that induces , for all a. Our requirement that Q > 1
for all alternatives a 2 A nfpg in fact does not limit generality when compared with CWM, as
an equivalent assumption is implicitly made in the results &oout CWM under scoring functions,
namely the unique winner or adversarial tie-breaking assumption.

We describe a distribution over the instances of a problem asa collection of distributions

= f non2n, Where  is a distribution over the instances x such that jxj = n. The major

guestion, when de ning a framework that involves frequencyof manipulation, is according to which
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distribution over the instances of the manipulation problem the frequency should be measured. Our
approach is to analyze problems whose instances are distiiited with respect to a distribution that
focuses on hard instances of the coalitional manipulation pblem. Ideally, we would like to de ne
the distribution in a way that if one manages to produce an algrithm that can usually manipulate
instances according to this distinguished \di cult" distr ibution, it would follow that the same
algorithm would usually succeed when the instances are digbuted with respect to other typical
distributions. This ideal is very ambitious, and we shall nat formally demonstrate that it is achieved,
but rather provide some analytical evidence suggesting thiait might be plausible.

De nition 7.2.2. Let = f ,hon2n be a distribution over the possible instances of a decision
problem L. is aJunta distribution if and only if ~ has the following properties:

1. Hardness: The restriction ofL to is the problem whose possible instances are only:

fx:jxj=nn L(x)> 0g:
n2N

Deciding this restricted problem is still NP -hard.

2. Balance: There exist a constant > 1 andK 2 N suchthatforalln K:

1 Pry [L(X) =\yes"] 1 1:

3. Dichotomy: for all n and instancesx such that jxj = n:

n(x) 2PV (x)=0:

Assuming L is speci cally the SCWM problem under a scoring function f , we also require:
4. Neutrality: Let a;b6 p be two alternatives, and 2 R. Then

Pr[a= ]:XPrn[ b= |

5. Renement: Let x be an instance such thatjxj = n and »(x) > O; if all manipulators i 2 ]
voted identically (i.e. R' = R for all i;j 2 N), then p would not be elected.

The name \Junta distribution" comes from the idea that in such a distribution, relatively few
\powerful" and di cult instances represent all the other pr oblem instances. Alternatively, our
ideal is to have a few problematic distributions (the family of Junta distributions) represent other
distributions with respect to frequency of manipulation.

The exact choice of properties is of extreme importance (andnay be arguable). We shall brie y
explain our choices.

The rst three properties are formulated in a general way that applies to any decision problem.
Hardness is meant to ensure that the Junta distribution contains hard instances. Balance guarantees
that a trivial algorithm that always accepts, or always rejects, has a signi cant chance of failure.
The dichotomy property helps in preventing situations where the distribution gives a (positive but)
negligible probability to all the hard instances, and a high probability to several easy instances.
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We now examine the properties that are speci ¢ to the coalitional manipulation problem. Neu-
trality focuses the attention on distributions that are nat ural from a social choice point of view,
where no alternative isa priori preferred to another. This property is also important from a com-
putational point of view, as instances where some alternaties have signi cantly higher initial scores
than other alternatives are easier to decide.

Finally, re nement is less important than the other four pro perties, but seems to help in con-
centrating the probability on hard instances.

We presently introduce the last building blocks of our mathamatical framework. The next term
is a well-known one in the theory of average-case complexity.

De nition 7.2.3. A distributional problem is a pair hL; i whereL is a decision problem and is
a distribution over the set f0; 1g of possible inputs.

Informally, an algorithm is a heuristic polynomial time alg orithm for a distributional problem
if it runs in polynomial time, and fails only on a small fracti on of the inputs. We now give a formal
de nition; this de nition is inspired by Trevisan [144].

De nition 7.2.4. Let L be a decision problem and lethL; i be a distributional problem. An
algorithm ALG is a deterministic heuristic polynomial time algorithm for h; i if ALG always
runs in polynomial time, and there exists a polynomial g of degree at least 1 andK 2 N such that
foralln K:
1
XPrn[ALG(x) 6 L(X)] ) (7.1)

The following statement we take to be self-evident. Fix some soring function f , and let ALG
be an algorithm for SCWM under f. Now, suppose ALG is a heuristic polynomial time algorithm
for SCWM under f with respect to most typical distributions  over the instances of the problem.
Then SCWM under f is frequently tractable.

Unfortunately, showing that an algorithm is a heuristic pol ynomial time algorithm with respect
to \most typical distributions” currently seems out of our r each. We are able, though, to devise
an algorithm that is a heuristic polynomial time algorithm f or SCWM under f with respect to one
distribution, which, incidentally, is a Junta distributio n. We suggest that this can be interpreted
as evidence that the our algorithm also does well with respedo other typical distributions.

7.3 Formulation, Proof, and Justi cation of Main Result

Recall that under Borda and Veto, CWM is NP -hard, even with 3 alternatives. We would like
to discuss a family of scoring functions that includes Bordaand Veto, but does not include, e.g.,
Plurality.

Denition 7.3.1.  Let f be a scoring function with parameters = h 1;:::; mi. We say that f is
sensitivei 3 2 m 1> m =0 (notice the strict inequality on the right hand side).

Since Borda and Veto are examples of sensitive scoring furions, we would like to know how

resistant this family of SCFs is with respect to coalitional manipulation. Our main result is as
follows:
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Theorem 7.3.2. Let f be a sensitive scoring function, and assume the number of alinatives m
is constant. Then there exists a distribution = (f) that is a Junta distribution with respect to
SCWM under f , and an algorithm that is a heuristic polynomial time algorithm for SCWM under
f with respect to

Intuitively, the instances of SCWM that are hard are those that require a very specic parti-
tioning of the agents in Kl to subsets, where each subset votes unanimously. These iasices are
rare under any typical distribution; this insight will ulti mately yield the theorem.

The following proposition generalizes theorems of Conitzeet al. [35] regarding Borda and Veto,
and justi es our focus on the family of sensitive scoring furctions. A stronger version of Proposi-
tion 7.3.3 has been independently proven by Hemaspaandra @nHemaspaandra [65]. Nevertheless,
we include our proof, since it will be required in proving the hardness property of the Junta distri-
bution we shall design.

Proposition 7.3.3. Let f be a sensitive scoring function. Then CWM underf is NP -hard, even
with 3 alternatives.

The proof will require:

De nition 7.3.4.  In the Partition  problem, we are given a set of integer$k;g; 1;:...t4, SUMMINg
to 2K, and are asked whether a subset of these integers sum 6.

It is well-known that Partition  is NP -complete.

Proof of Proposition 7.3.3. We reduce an arbitrary instance of Partition  to the following CWM
instance. There are 3 alternatives,a, b, and p. In N, there areK (4 1 2 ;) 1 agents voting
aRIbRip,andK (4 1 2 ,) 1 agents votingbR aR!p. In K, for every k; there is an agenti with
weight 2( 1+ 2)kj. Observe that from N, both aandbget (K4 1 2 2) 1)( 1+ 2) points.

Assume rst that a partition exists. Let the agents i in K in one half of the partition vote
pR'aR'b, and let the other half vote pR'bR'a. By this vote, a and b each have

(KM@ 1 22 1(1+ 2)+2K( 1+ 2) 2=( 1+ 2)@4K 1 1)

points, while phas ( 1+ 2)4K ; points; thus there is a manipulation.

Conversely, assume that a manipulation exists. Clearly thee must exist a manipulation where
all the agents in Nl vote either pR'aR'bor pR'bR'a, because the manipulators do not gain anything
by not placing p at the top under a scoring function. In this ballot, p has ( 1 + 2)4K ; points,
while a and b already have K(4 1 2 ) 1)( 1+ 2) points from N. Therefore, a and b must
gain less than (2 ;K +1)( 1+ ») points from the agents in N. Each agent corresponding tok;
contributes 2( 1 + ) 2kj points; it follows that the sum of the k; corresponding to the agents
voting pR'aR'bis less thanK + 51—, and likewise for the agents votingpR'bR'a. Equivalently, the
sum can be at mostK , since allk; are integers and we can assume without loss of generality tha

2 1. In both cases the sum must be at mosK ; hence, this is a patrtition. Ol

Since an instance of CWM can be translated into an instance oSCWM in the obvious way, we
have:

Corollary 7.3.5. Let f be a sensitive scoring function. Then SCWM underf is NP -hard, even
with 3 alternatives.
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7.3.1 A Junta Distribution

For ease of exposition, we slightly abuse notation from thigoint in the chapter onwards, denoting
n = = jNj (rather than n = jNj), and assuming the number of alternatives ism +1 rathegthan m
(sojAnfpgj = m). Further, we assumef is a sensitive scoring function, and denotéV = ,, ¢ W;.

Consider a distribution  (f) = = f ,0On2n Over the instances of SCWM inf where each |,
is induced by the following sampling algorithm:

1. Fix a polynomial g= q(n).

2. 8i 2 N': Randomly and independently choosew; 2 [0;1] (up to O(n) bits of precision, i.e., in
intervals of 1=24("),

3. 8a2 Anfpg: Randomly and independently choose 42 [( 1 2)W; W] (up to O(n) bits
of precision).

Remark 7.3.6. Although the distribution is in fact discrete | the weights, for example, are

the sake of clarity.

We assume that , = 0, i.e., all agents in N rank p last. This assumption does not limit
generality. If it holds for an alternative a that 5 p, then alternative a will surely lose, since
the manipulators all rank p rst. Therefore, if , > 0, we may simply normalize the scores by
subtracting , from the scores of all alternatives. This is equivalent to ow assumption.

Remark 7.3.7. We feelthat is perhaps the natural distribution with respect to which coalitional
manipulation in scoring functions should be studied. Even f one disagrees with the exact de nition
of a Junta distribution, should still satisfy many reasonable conditions one could mduce.

We shall, of course, (presently) prove that the distribution possesses the properties of a Junta
distribution.

Lemma 7.3.8. Let f be a sensitive scoring function, and assumen is constant. Then is a
Junta distribution with respect to SCWM under f .

Before proving the proposition, let us formulate a basic reslt from probability theory that we
shall require. Informally, the lemma states that the average of independent identically distributed
(i.i.d.) random variables is almost always close to the expetation.

X and E[Xj]= . Then for any > 0, it holds that:
P a2
1. P L X + ] e “C 2
P P -
2. Pr{i i) X ] e ST 7

where e is the base of the natural logarithm.
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Proof of Lemma 7.3.8. We rst observe that neutrality is obviously satis ed, and d ichotomy holds
by Remark 7.3.6.

The proof of the Hardness property relies on the reduction fom Partition  in Proposition 7.3.3.
The reduction generates instancex of CWM in f with 3 alternatives, where W =4( 1+ 2K,
and

a= pb=(K@ 1 22 D(1+ 22=( 1 22W ( 1+ 2);
for someK that originates in the Partition  instance. These instances satisfy

(1 2W a b W

It follows that  (x) > O (after scaling down the weights)?

We now prove that has the balance property. If foralla2 Anfpg, a> ( 1 2=m)W,
then clearly there is no manipulation, since at least W points are given by the agents inX' to
the undesirable alternativesA n fpg. This happens with probability at least mim

On the other hand, consider the situation where for alla 2 A nfpg,

m2 1

2 W (7.2)

a < 1
this occurs with probability at least ﬁ Intuitively, if the manipulators could distribute their
votes in such a way that eacha 2 A nfpg is ranked last in exactly 1=m-fraction of the votes, this
would be a successful manipulation: eacla 2 A nfpg would gain at most an additional mTl oW
points. Unfortunately, this is usually not the case, but the following condition is su cient for a
successful manipulation (assuming Condition (7.2) holds) Partition the manipulators to m disjoint

subsetsNy;:::; N (w.l.o.g. of sizen=m), and denote by W; the total weight of the votes in Iﬁj.
The condition is that for all j 2f1;:::;mg
1 1I=m) 1=2 n=m W; (@A +1=m) 1=2 n=m: (7.3)

This condition is su cient, because if the agents in IQJ- all rank a 2 A nfpg last, the fraction of the
agents inN' that gives a points is at most:
(m 1)(1+1=m) o om? 1
(m 1)A+1=m)+1 1=m m2+m 2

Hence the number of pointsa gains from the manipulators is at most:
2 2

m 1 m 1

e < :

i m 2 2 2 oW 1W a

Furthermore, by Lemma 7.3.9 and the fact that the expected tdal weight of n=m agents is 2 n=m,

the probability that Condition (7.3) holds is at least 1  2e 3 Since m is a constant, this
probability is larger than 1=2 for a large enoughn.

Finally, it can easily be seen that has the re nement property: if all manipulators rank p rst
and a2 Anfpgsecond, thenp gets 1W points, andagets ;W+ 5 points. But o (1 2)W,

n n
hence 7 a- O

2|t seems the reduction can be generalized for a larger number of alternatives. The hard instances are the
ones where all undesirable alternatives but two have approximately ( 1 2)W initial points, and two problematic
alternatives have approximately (1 m =2)W points. These instances have a positive probability under
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Algorithm 7.3.1  Decides SCWM
1. procedure Greedy (; w;p)

2: forall a2 A do . Initialization

3: g a

4: end for

5. fori=1to ndo . All agents in K
6: Sort Anfpgby 't Lt L1 Lt

7: agenti votespR'ayR'a;R' R'an

8: for j =1to mdo . Update score
9: B & T Wi

10: end for

11: b bl+w g

12: end for

13: if argmaxy,, 5 5 = fpgthen . p wins
14: return true

15: else

16: return false

17: end if

18: end procedure

7.3.2 A Heuristic Polynomial Time Algorithm

We now present our greedy algorithm for SCWM under scoring functions. The algorithm is imag-
initively called Greedy , and given as Algorithm 7.3.1. We enumerate the agents il by setting
Nl = f1;:::;ng, and we denote their weights byw = hw1;:::;wyi, and their initial scores (based

The agents inN', according to their given order, each rankp rst, and the rest of the alternatives
in an order inversely proportional to their current score: the alternative with lowest score is ranked
second, the alternative with second lowest score is rankechird, and so on. Greedy accepts if and
only if p wins under this ballot.

This algorithm, designed speci cally for scoring functions, is a realization of an abstract greedy
algorithm: at each stage, agenti ranks the alternatives in A nfpg in an order that minimizes the
highest score that anya 2 A nfpg obtains after the current vote. If there is a tie among severa
permutations, the agent chooses the option such that the semd highest score is as low as possible,
etc. In any case, every manipulator always ranksp rst. In fact, Greedy can be considered a
generalization of the greedy algorithm given by Bartholdi & al. [3].

We now set our sights on proving that Algorithm 7.3.1 is a heuistic polynomial time algorithm
for SCWM under sensitive scoring functions with respect to

Lemma 7.3.10. |If there existsio 2 N, during the execution of Greedy , and two distinct alter-
natives a;b2 A nfpg such that _ _

[ > (7.4)
then for alli ipitholdsthatj L 9.

Proof. The proof is by induction on i. The base of the induction is given by equation (7.4). Assume
that j 4 b 2, and without loss of generality } b- By the algorithm, agent i + 1 ranks b
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higher than a, and therefore:

AR ) (7.5)
Sincep is always ranked rst, and the weight of each agent is at most 1 b gains at most » points.
Therefore: ‘ '

A S (7.6)
Combining equations (7.5) and (7.6) completes the proof. Ol

Lemma 7.3.11. Leta;b2 Anfpg be two distinct alternatives, and suppose that there existg 2 N]
suchthat 2 [°,andi; ipsuchthat ;' J. Thenforalli ijitholdsthatj ; i 2.

Proof. Assume that there existsig such'that go ibo, andi; ig such that ibl gl; w.l.o.g.i1 >
io (otherwise at stageio it holds that ° = [, and then we nish by Lemma 7.3.10). Then there

must be i, 2 K such thatip i2<izand 2 2 but (2 2" Since the weight of
each agent is at most 1,b gains at most » points from agent i, + 1. Hence the conditions of
Lemma 7.3.10 hold fori,, which implies that for all i i j 'a |'O] 2. In particular i1 i,
hence the lemma follows. O

Lemma 7.3.12. Let f be a sensitive scoring function, and assumesGreedy errs on a \yes"
instance of SCWM under f, i.e. Greedy returns false. Then there isd 2 f2;:::;mg, and a

subset of alternativesD = fas;:::;aqg, such that:
xd X1 . xd xd
(W g) G 20 W m+2 | (W 4): (7.7)
j=1 j=1 j=1 j=1

Proof. For the inequality on the right hand side, for any d alternatives, gven if all agents in Kt
rank them last in every vote, the total points distributed am ong them isW jd:1 m+2 j. Suppose
for contradiction that this inequality does not hold, then t here must be some alternativea; that
gains at least W a, points from the manipulators, implying that this alternati ve has at least

1W points. However, p also has at most ;W points, and we assumed that there is a successful
manipulation; this is a contradiction.

For the inequality on the left hand side, assume the algoritm erred. Then fori; 2 N, there
is an alternative a; such that j,;l 1W (w.l.o.g. only one alternative passes this threshold
Agent iy did not rank aj last, since n+1 = 0, and thus ranking an alternative last gives it no
points. We have that there is another alternative a, such that: 1o ' lo 1. By Lemma 7.3.11,

28 2, and thus 3 1W 2. If these alternatives were not always ranked last by the
agents of N0 there must be another alternative az who was ranked strictly higher by some agent
in I\’TO, w.l.0.g. higher than a,. Therefore, we have from Lemma 7.3.11 that: gg f,;; 2, and so
az has a total of at least ;W 2 , points.

By inductively continuing the above reasoning, we obtain a sibset D of d alternatives (possibly
d = m), who were always ranked in thed last positions by the agents inKt® and for a it holds that:

g? 1W (I 1) ,. Therefore, the total points a gained from NOis at least 1 I » a -
Since the total points distributed by the agents in K °to the d last alternatives is W° jdzl m+2
we have:

X1 xd xd
( 1W aj) @ 2) w?o m+2 | W m+2 |
j=1 j=1 j=1 j=1
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which yields the left inequality in the formulation of the le mma. O

Lemma 7.3.13. Let f be a sensitive scoring function and letm be a constant. ThenGreedy is
a deterministic heuristic polynomial time algorithm for SCWM under f with respect to

Proof. It is obvious that if the given instance has no successful mapulation, then the greedy
algorithm would indeed answer that there is no manipulation, since the algorithm is constructive
(it actually selects speci ¢ votes for the manipulators).

We wish to bound the probability that there is a manipulation and the algorithm erred. By
Lemma 7.3.12, a necessary condition for this to occur is as spi ed in Equation (7.7), or equiva-
lently:

xd xd dd 1 xd xd xd
W 1 W m+2 j ( 2 ) 2 a; W 1 W m+2 j- (78)
=1 =1 =1 =1 =1

In this case the algorithm may err; but what |spthe probability of (7.8) holding? Fix a subset
D = faj;:::;agg A of sized 2 f2;:::;mg. =1 aj is a random variable that takes values
in [d( 1 2)W,dP1W] By condltlonlng on the values of 5, j = 1;:::;d 1, we have that

the probability of szl a; taking values in some interval [; ] is at most the probability of 4,

taking a value in an interval of size , Which is at most W (T W since 4, is uniformly

distributed. By Lemma 7.3.9, W < n=4 with probability at most (n) = e 8. On the other hand,
if W n=4, then (7.8) holds for D with probability at most

a“id, _dd 1) 2dd 1) 1
W (1 W 2W n a°(n)’

for some polynomialg®. We complete the proof by showing that (7.1) holds:
Pr [Greedy (x) 8 SCWM(x)] PrfW n=4~ (9D As:it: jDj 2" (7.8))]+Pr[ W <n=4]
X n
X 1

Pm M

D AijDj 2
1
poly n

The last inequality follows from the assumption that m = O(1). O

Clearly, Theorem 7.3.2 directly follows.

7.3.3 The Greedy Algorithm and the Uniform Distribution

In the previous subsection we have seen that Algorithm 7.3.1is a heuristic polynomial time al-
gorithm with respect to our Junta distribution . We have suggested that the algorithm also
does well with respect to other distributions. In this subsection we support this claim by showing
that Algorithm 7.3.1 is also a heuristic polynomial time algorithm with respect to the uniform
distribution over instances of SCWM.

For the sake of consistency with previous results, we shallansider a uniform distribution over
votes that may produce unfeasible ballots. Nevertheless, quivalent results can be obtained for
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feasible (discrete) distributions over votes, and in fact g¢neralizations of some of these results are
obtained in Chapter 8. So, in this section we assume that eactruthful agent i 2 N, wherejNj = n,
awards each alternativea 2 A, including p, a score independently and uniformly distributed in
[0; 1]. Further, we assume that the votes are unweighted; this dog not limit the generality of our
results, since we use lower bounds that depend only on the tat weight of the manipulators in K
(Where, as before, we denotgilj = h = n); the individual weights are of no consequence.

We distinguish between two cases in our results, dependingnothe ratio between the number of
truthful agents n and the number of manipulators n:

1. n:p n < 1=qg(n) for some polynomial g of degree at least 1.
2. n=p n > ¢ (logn) for some polynomial g of degree at least 1.

The middle ground that is not covered by the two cases remainan open problem. Before we
tackle the rst case, we require a lower bound of sorts on the pobability that an instance of SCWM
is very easy to decide. Since the manipulators il can award an alternative at most 1n points,
the manipulators cannot make an alternative a beat another alternative b if | a> 1n. In
particular, if for every two alternatives a and bitholdsthat j 5 > 1n, then the manipulators
cannot a ect the outcome of the election. Moreover, Algorithm 7.3.1 always decides such an instance
correctly: if , < ,forsomea?2 Anfpg, then the instance is a \no" instance, and in this case the
algorithm never errs; and if , > 4 forall a2 A nfpg, then the instance is a \yes" instance, and
any vote of the manipulators is su cient to make p win. We have obtained the following Lemma:

Lemma 7.3.14. Consider an instance of SCWM where for alla;b2 A, | 4 b > 1n. Then
the instance is a \yes" instance i , > 4 for all alternatives a 2 A nfpg, and the instance is
correctly decided by Algorithm 7.3.1.

This Lemma, together with the Central Limit Theorem, yields the rst result.

Proposition 7.3.15. Let the number of alternativesm be a constant. Then Algorithm 7.3.1 is
a heuristic polynomial tH’ne algorithm with respect to the unform distribution over instances of
SCWM which satisfyn="n < 1=q(n) for some polynomialg(n) of degree at least 1.

The proof of this proposition, given Lemma 7.3.14, is basicdy a special case of Theorem 8.2.3
given in Chapter 8, and thus is omitted at this point.

Moving on to the second case, we require the following lemmawhich is not superceded by the
results of Section 8:

Lemma 7.3.16. Let = m and consider an instance of SCWM where for alla;b 2 A,
j a © < n. Then this instance is a \yes" instance, and is correctly dedded by Algorithm 7.3.1.

Proof. Obviously, it is su cient to prove that the algorithm constr uctively nds a successful ballot
that makes p win. Let A° A nfpg be the set of undesirable alternatives that had maximal scoe
among the alternatives in A n fpg at some stage during the execution of the algorithm, where by
stage we mean an iteration of the while loop in lines 5{12. Fomally:

A= fb2 Anfpg: 9i2f0;:::;n 1gs:t: {):mgx Lo

By the algorithm, at any stage some alternative from A®is ranked last by an agent inN, i.e., is
given O points; the other alternatives in A% receive at any stage at most » points. Therefore, the
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total number of points the alternatives in A°receive from the manipulators is at most @ 1) »n,
wherejAq = d. Consequently, if [ is the score of alternativea when the algorithm terminates,

X X

a at(d 1) on

a2A0 a2A0
Let ag 2 argmaxy,po a, anda; 2 argmaxgsao 5. By Lemma 7.3.11, when the algorithm terminates
it holds that the scores of all alternatives in A% are within , of one another. Therefore:

X X

5 a+(d 1) on Bodh+(d Don (d (A o)
a2A0 a,;6a2A0
Through some algebraic manipulations, we obtain:

n d 1 d 1 m m
a, a, t n q 2 + 2 a, T N

Now, we have that:

pa (p* 1n) a, mn:l 2 n+mT1 2
2 m m
n 2(m+1)n m+1 2 n m+1 2
2 m
Xm+1) " m+1 2
>0

The second transition follows from the assumption that , a, n, the third transition from
the fact that ; 2, and the last transition holds for a large enoughn. O

Proposition 7.3.17.  Let the number of alternativesm be a constant. Then Algorithm 7.3.1 is
a heuristic polynomial tﬂne algorithm with respect to the uriform distribution over instances of
SCWM which satisfyn="n > g (log n) for some polynomialq of degree at least 1.

Proof. Let = m By Lemma 7.3.16, the probability that the algorithm does not err is at
least:
Pr[8a;b2 A; | 4 b<n]=1 Pr[9a;b2 Asit: , b> N

By the union bound:
X
Pr[9a;b2 Asit: 4 b> N Pr[ a b> N

a;b2 A

Fix a;b2 A, and let X; be S; S|, where S}, is the score given to an alternativea by agent
i 2 N (as opposed to |, which was the total score ofa based on the rst i manipulators in K.
The X; are i.i.d. random variables with expectation 0, which take \alues in [ 1; 1]. Applying
Lemma 7.3.9 to these variables, we obtain:

mn #
1 X n on ()2 W2
Pla b nl=Pr — X EX]+_— e "Gz =g "%
i=1
where %is some constant. The result follows from the fact thatm is constant and our assumption
regarding the relation betweenn and n. Ol
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7.4 Related Work

It is possible to identify two main approaches among the premusly few papers on frequency of
manipulation: an algorithmic approach and a descriptive agproach. In this section we describe
at length (at least compared to Section 1.1.1) three papers @ncerned with the algorithmic ap-
proach, whereas in Chapter 8 we discuss the descriptive-omiéed papers. Note that the papers we
shall discuss were published after the (conference versioof the) article on which this chapter is
based [119].

Zuckerman et al. [155] extended the results presented in tlsi chapter. Indeed, they did not
continue the investigation of Junta distributions, but rat her built upon the basic mathematical idea
of characterizing the error windows of algorithms for CWM, that is understanding the instances on
which an algorithm errs. Note, for example, that this is in fact what our Lemma 7.3.13 is about.
Zuckerman et al. did not assume a constant number of alternaties, and managed to achieve rather
precise bounds on the error windows of algorithms for CWM unar Borda, Maximin, and Plurality
with Runo . With respect to Borda, Zuckerman et al. investig ated the greedy algorithm given in
this chapter as Algorithm 7.3.1. Their algorithm for Maximi n is an immediate generalization of
the greedy algorithm, but the algorithm for Plurality with R uno is based on completely di erent
ideas. Their bounds on error windows also translate to appreimation results when it comes to the
unweighted coalitional manipulation problem.

Ercelyi et al. [46] discussed the notion of Junta distributions at length. They showed that the
idea of Junta distributions, when applied to the SAT problem, is not su cient to classify hard-to-
decide distributions. In more detail, they demonstrated that SAT has a Junta distribution and a
heuristic polynomial time algorithm with respect to this di stribution. On the other hand, SAT is
believed to be hard under many typical distributions. Howeer, the distribution de ned by Erclyi
et al. only satis es the rst three properties of a Junta dist ribution, as the last two are specic
to coalitional manipulation. Therefore, their work is somewhat inconclusive when it comes to the
application of Junta distributions to CWM.

Finally, an interesting approach to frequency of manipulation was presented by Conitzer and
Sandholm [33]. They noticed that an election instance can benanipulated e ciently if it satis es
two properties: weak monotonicity|a property that is alway s satis ed by many prominent SCFs|
and another, more arguable property: the manipulators mustbe able to make one ofexactly two
alternatives win the election. Conitzer and Sandholm empiically showed that the second property
holds with high probability in di erent standard SCFs. This empirical validation was carried out
only with respect to small coalitions of agents and skewed ditributions over election instances.

7.5 Discussion

The basic idea behind this chapter is that Junta distributions are in some way representative
of other typical distributions over instances of CWM, and therefore the existence of a heuristic
polynomial time algorithm with respect to a Junta distribut ion over instances of CWM suggests
that the problem is frequently easy under typical distributions. While this conclusion is certainly
arguable at this point, we feel that the de nitions presented in this chapter do give a compelling
mathematical framework in which frequency of manipulation can be studied.

Some evidence to the validity of our approach, which can peraps be thought of as a \sanity
check", was presented in Section 7.3.3. This section desay a short discussion. Why is the uniform
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distribution interesting? For example, if there are few maripulators relative to nonmanipulators, it

is intuitively clear that the manipulators would rarely be a ble to a ect the outcome of the election.
Hence, the trivial algorithm, that only looks at the ballots cast by N and answers \yes" if and
only if p wins based on these ballots, is a heuristic polynomial time lgorithm with respect to the
uniform distribution. However, the nontrivial aspect of Section 7.3.3 is that the greedy algorithm,
that is not tailor made for the uniform distribution (in cont rast to the above trivial algorithm),

still succeeds with high probability.

The next chapter, Chapter 8, generalizes and proves the abevstatement that the trivial algo-
rithm succeeds with high probability. The results in Chapter 8 imply that this is true for a very
large range of typical distributions that, naturally, does not include our Junta distribution. We
feel that this constitutes more evidence to suggest that Juta distributions are especially hard to
decide.
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Chapter 8

The Fraction of Manipulators

8.1 Introduction

In Chapter 7 we presented and discussed an algorithmic appexh to the question of frequency
of coalitional manipulation, via the concepts of Junta distributions and heuristic polynomial time
algorithms. In particular, we have characterized the behavor of the greedy algorithm with respect
to a Junta distribution. However, it might seem more natural to investigate the performance of
algorithms with respect to speci c typical distributions, such as the uniform distributions.

In this chapter, we take a descriptive approach to frequencyof manipulation. We show that,
under some assumptions, deciding the coalitional manipulton problem can trivially be accom-
plished with high probability of success, simply by comparhg the humber of manipulators and the
number of nonmanipulators (\truthful agents"). Indeed, if the fraction of manipulators (out of the
total number of agents) is small, the manipulators can rarey in uence the outcome of the election
at all. On the other hand, if the fraction is large, the manipulators can often change the outcome.
As in Chapter 7, the results in this chapter only hold for scoring functions (see Section 2.2.1) and
a constant number of alternativesm.

More precisely, an instance of CWM (see De nition 7.1.1) is aclosed instanceif the manipulators
cannot a ect the outcome of the election. Formally:

De nition 8.1.1. An instance of CWM under f is a closed instance if there existsa 2 A such
that for every RN 2L ’Q, f (RN) = a. An instance that is not a closed instance is called aropen
instance.

Naturally, knowing whether an instance is closed goes a longvay towards deciding CWM.
For example, a closed instance is a \yes" instance if and onlyf the distinguished alternative in
De nition 8.1.1 is the preferred alternative p.

Since we will mostly be interested in whether instances of CWI are open or closed, the only
parameters of the problem that are not given are the votes of he nonmanipulators RN, and the
weights of the agents. However, as in [33], we prove su cientconditions for openness/closedness
that depend only on the total weight of the manipulators; the individual weights of the manipulators
are of no importance. Therefore, weights are a nonissue, aritlis su cient to consider distributions
over the possible votes of the nonmanipulators inN .
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8.2 Fraction of Manipulators is Small

As in Chapter 7, we denoten = h = jNj, and n = jNj. In tBis section we shall demonstrate that
when the fraction of manipulators is small, that is n = o( n), then usually instances of CWM
are closed. This result holds for all scoring functions, andequires only weak assumptions on the
distribution of votes.

Given an instance of CWM under a scoring functionf , consider the scores of alternatives based
only on the votes of the nonmanipulatorsN . If there is an alternative whose score is higher than
the score of others by more than 1n, then the instance is surely closed: even if all manipulatcs
ranked this alternative last and another alternative rst, the dierence in scores would decrease
by at most 1n, which is not enough to close the gap. Further, denote byS! the score given to
altqf,native abyi2 N. Now, the total score, based on the votes oN, of alternative a 2 A is given
by i,y Sa- We have established the following su cient condition for closedness:

Lemma 8.2.1. Consider an instance of CWM under a scoring function with paameters . Let
S}, be the score given to alte|g1ativea_2 Apby the agenti 2 N. If there exists an alternative a 2 A
such that for allb2 Anfag, 5y Si ion S, > 1N, then the instance is closed.

Let ' be a distribution over the lgj\llot R_i of agenti 2 N; denote the joint distribution over the
votes of the manipulators by N = ~.,, '. Tinduces a random variableS},, which determines
the points agenti awards to alternative a 2 A.

Example 8.2.2. Let the f be Borda, andm = 3: each agent awards 2 points to its rst choice,
1 point to its second choice, and 0 points to its last. If 'is the uniform distribution, then for all
a2 A, Sl is 2 with probability 3, 1 with probability 3, and 0 with probability 3.

We are now ready to present our result.

Theorem 8.2.3. Letf be a scoring function with parameters , and assume that the number of
manipulators and nonmanipulators satis es:

n= o(Io n).

Let ' be thecﬁiistribution of agenti 2 N over the possible votes witim = O(1) alternatives, and
denote N = ion |- Let S, foreachi 2 N and a2 A, be random variables, induced by the',

which determine the score of alternativea from agenti. Assume that the distributions over votes
satisfy:

(d1) There exists a constant > 0 such that for alli 2 N and a;b2 A, < Var[S, S]]
(d2) The ' are independently distributed.
Then the probability that an instance is closed converges th as the number of agents grows.

The proof relies heavily on the central limit theorem. For our purposes, this theorem implies
that the probability that a sum of random variables obtain va lues in a very small segment is very
small, as long as the variance of the random variables is noezo.

Theorem 8.2.4 (Central Limit Theorem) . [54] Let



be a sequence of independent discrete random variables. Feachi, denote the mean and variance

of X' by ' and ', respectively, and assume that ', ' f'1 | and thatjXij K for some
constant K and all i. T2hen for < 3
PF X PF i til 1 z x2
Prd < 1=l Pti'fl < 91 pzj e zdx:
|

i=1
Proof of Theorem 8.2.3. By Lemr2na 8.2.1 we have:

3
X X
Prlinstance is closed] Pr 49a2 A sit: 8b2 Anfag; S, S,> ind
2 i2N i2N 3
X X
Pr48a2 A;b2 Anfag, S| S, > 1nd
N
5 i2N i2N 3
X - X
=1 Pr49a2 A;b2 Anfags:it: 0 S, S, ind:
N
i2N i2N
Now, by the union bound, we have that
2 3 2 3
X X X X X
Pr49a2 A;b2 Anfags:t: 0 Sy S, ind Pr40 S, S, ind°
N N
i2N i2N aéb i2N i2N
o | - (8.1)
Fix two a&;ernatiyeslg 2A,b2 ﬁnfag, and denoteX' = S; S Let '= E[X'], '=Var[X'].
Notice that  ;,\ Si ion SLb= oy X'. In addition, observe that by assumption (d1) < ',

andthus 5y i '_]!!11 . Finally, forall i 2 N, jX ] 1. Therefore, we may apply Theorem 8.2.4
to the variables X'.

421, X z 421, P'2N ! P'2|\L,xi P'ZN | i P'2N iz
i — i i i o i
EJ 0 | X 1n -—PL qu%:::T g Pﬁ;;;ﬁ, g PigggT
i2N i2N i2N i2N
P i P i
Z g _iz2n Z ¢, i
N1 pl p 12N i e %dx p 12N i 1dx = G]—p:ln Piln =0 prL
' 2 paizn peizN _ i n n
P i2n i2N
Plggging this result into (8.1), we have that
X X n n
Pr49a2 A;b2 Anfags:it: 0 S S, in® m(m 1) O p= = o} P=
N
i2N i2N

where the second transition follows from the fact thatm is constant. Rolling back, we have that

. . n
Prlinstance is closed] 1 O %
N

Under the assumption that n = o(IO n), this expression converges to 1 as the number of agents
grows. O
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8.3 Fraction of Manipulators is Large

In this subsection, we tackle a setting where the number of maipulators is large, i.e.,n = ! (p n),
but not exceedingly so, i.e.,n = o(n). The mathematical techniques we use here di er from the
ones applied in Section 8.2.

As before, we characterize instances of the manipulation mblem in scoring functions. Crucially,
in the current setting, the manipulators may often have enowgh power to sway the outcome of the
election. Therefore, we require a su cient condition for th e openness of a manipulation instance.

Lemma 8.3.1. Consider an instance of the coalitional manipulation probém in a scoring function

with parameters , and assumen m. Let S} be the score given tq_,alternativg by the agenti 2 N.

Let A A such that for any two glternativesg; b2 A?it holds that  ;,\ Si ion Sp< L™ N,

and for any a2 Aand b2 A% ., Sk ion S, 0. Then the manipulators can make any
alternative in A° win.

rst, & mod (m 1) last, and the ?ther Qlternatives in some arbitrary order. Each alternative other

than p is ranked last by at least —" manipulators, and the rest of the manipulators award it at

most 1 points. Therefore, ljhe dijgrence in the points awarded by the manipulators to p and any

other alternative is at least m” 7 (1 m) L= n, where the inequality holds whenever

n m. O

Our theorems regarding the current setting are weaker than he ones in Section 8.2, in the sense
that the votes of the agents are (independent and) identicdly distributed. The following theorem
di erentiates two cases: if there are at least two alternatives whose expected score is at least as
large as that of any other alternative, then the instance is @en; otherwise, the instance is closed.
Intuitively, whenever the rst case holds, one of the alternatives with a large expected score will
surely win, but the manipulators are powerful enough to decile between them. However, if there
is an alternative whose expected score is greater than thatfoany other, even a large fraction of
manipulators cannot prevent this alternative from winning.

Theorem 8.3.2. Let f be a scoring function with parameters , and assume that the number of
manipulators and nonmanipulators satis es:

n=1 (pﬁ) and n = o(n).

Let ' be theéiistribution of agenti 2 N over the possible votes witim = O(1) alternatives, and
denote N = T, . Let Sl, for eachi 2 N and a2 A, be random variables, induced by the',

which determine the score of alternativea from agenti. Assume that the distributions over votes
satisfy:

(d2) The ' are independently distributed
(d3) The ' are identically distributed.

Let A= fa2 A: 8b2 Anfag; E[S!] E[Sl]g be the subset of alternatives with maximum
expected score.
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1. If jAY 2, then the probability of drawing an open instance converge® 1 as the number of
agents grows.

2. If jAG =1 then the probability of drawing a closed instance convergds 1 as the number of
agents grows.

Proof. For part 1, assumejA§ 2. Using Lemma 8.3.1 and denoting = -1, and also applying
Lemma 8.2.1, we obtain:

Pr[Instance is open] Pr[a2 A can be made to wini a2 A9
N N

20 1 0 13
X X X X
Pr4@ga;b2 A® S| Si<nA~nr@a2A%2AnA% Sl Sl > 1nA>S
20 i2N i2N 1 i2N i2N
X X
=1 Pr4@oa;b2 A°s:it: S| Sl nA
N
0 i2N i2N 13
X X
_ @a2A%b2 AnA’sit: S| Si nAS
i2N i2N
(8.2)

Now, it holds that:

2 3 2 3
X X ) X X X .
Pr49a;b2 A%sit: S} S, nod Pr4 s S, ndS
N N
5 i2N i2N 5 a:l02A30 iéN i2N
X X . . X _ .
= P4 (s, §) E4 (S, s+ nb (8:3)
a;bzAON i2N i2N

on( D
n n2 n2

iAY (AY 1) e@v? m(m 1) ‘" =0 e 'n

for some constant ; > 0. The rst transition follows from the union bound, the second from the
fact that all alternatives in A% have maximum expected score and the linearity of expectatio, and
the third from Cherno 's bounds (Lemma 7.3.9, where we use tle fact that the di erence between
the scores given to two alternatives by an agent is in the rang [ 1; 1], and that the S. are
iid. fora xed a2 Aifthe ' arei.i.d.).
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Further, we have that:

2 3 2 3
X X X X X
Pr49a2 A%b2 AnA%sitt S| S, ind Pr4 s| S, ind
N N
. . N o N .
2 i2N |2§ 3a2 ,bzanA i2N 3 i2N 13
X X X X
= Pré (s, s E4 (Sy spd @E4 (s; s  unAS
a2 A%b2 AnA0 § i2N i2N i2N
0 f2
2n I’ln 1n
jAf mjAY) e 07 =0 e "
(8.4)

The rst transition follows from the union bound. The third t ransition is entailed by Cherno 's
bounds (Lemma 7.3.9), where Cis a constant such thatE[S;, S]] C°foralla2 A%b2 AnAOl?
The last transition follows from the assumption that n = o(n); 2 > 0 is a constant.
Combining (8.2), (8.3), and (8.4), and applying the union baund, we get:
2

Pr[The instance is open] 1 O e '™ +0 e 2"
N

When n = ! (p n), this expression converges to 1 as the number of agents grew
For part 2, assumeA%= fag. By Lemma 8.3.1, we have:

2 3
x X
Pr[instance is closed] Pr48b2 A nfag; S, S,> 1nd
N N . .
2 i2N i2N 3 (8.5)
X X
=1 Pr49b2 Anfagst: S} S, ind°
N
i2N i2N
Similarly to (8.4), it holds that
2 3
X . X
F;r49b2 Anfags:t: S, S, ind 0 M)
i2N i2N

Plugging this into (8.5) gives the desired result.
O

The next corollary establishes a useful connection betweethe proof of Theorem 8.3.2 and the
decision of the coalitional manipulation problem.

Corollary 8.3.3. Under the conditions of Theorem 8.3.2, if A® is the set of alternatives with
maximum expected score, then with probability that conveas to 1 it holds that any alternative from
A% can be made to win, and no other alternative can be made to win.
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Algorithm 8.4.1  Deciding the coalitional manipulation problem in scoring functions via the frac-
tion of manipulators. The input is an instance drawn according to a distribution over the votes of
the nonmanipulators; p is the preferred alternative of the manipulators.
1:if n= o n) then . Theorem 8.2.3
2: choose arbitrary vote RN for manipulators
3 a f(RN) . a is the winner under the arbitrary vote
4 if p= athen
5: return true
6: else
7
8
9

return false

: end if
 elseif n="1( n)andn= o(n) then . Theorem 8.3.2
10: if p has maximum expected scorghen
11: return true
12: else
13: return false
14: end if D
15: else .n=( n)orn=( n)
16: return ?
17: end if

8.4 Algorithmic Implications

Consider Algorithm 8.4.1, which instantly decides instanes of the coalitional manipulation problem,
drawn according to some distribution, on the basis of the rato between the number of manipulators
n and nonmanipulators n. Theorems 8.2.3 and 8.3.2 directly imply that for any distribution that
satis es assumptions (d1), (d2), and (?)3), Algorithm 8.4.1 is almost never wrong when the number
of agents is large. Indeed, whem = o(' n), Theorem 8.2.3 asserts that instances are almost always
closed|and therr?fore p can be made to win i p wins for any arbitrary vote of the manipulators.
In casen = ! (" n), Corollary 8.3.3 states that it is usually true that the man ipulators can only
make alternatives with maximal expected score win the elegon.

But how restrictive are the assumptions (d1), (d2), and (d3)? Assumption (d1) requires
that there exist a constant > 0 such that for all i 2 K and distinct alternatives a;b 2 A,

< Var[S} Sg)]. This is certainly a condition that seems very reasonable:the demand is that
according to the distribution of each agent, there are no twoalternatives that always have the same
di erence in scores. That is, we simply require a seemingly rimimal element of randomness in the
votes. Granted, requiring that the votes of the nonmanipulaors be distributed i.i.d.|the union
of assumptions (d2) and (d3)|is a much stricter assumption. Nevertheless, we argue below that
interesting distributions satisfy all three assumptions.

First, itis obvious that the i.i.d. uniform distribution sa tis es all three assumptions. Speci cally,
the probability of an agent casting a speci ¢ ballot is 1=m!, and this holds for every possible ranking.
This avor of the uniform distribution is sometimes known as the Impartial Culture Assumption
(see, e.g., Slinko [141]).

1t is safe to state that such a constant ° exists, as we assumed thatE[S;, Si] > 0, and D is (implicitly) a
distribution that is dependent only on the number of alternatives m, and not on the number of agents.
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As a second example, we shall consider the family of distritions that Conitzer and Sandholm
used to obtain empirical evidence regarding the nonexistete of SCFs that are frequently hard to
manipulate [33]; these distributions are due to the Marquisde Condorcet himself. The starting
point is that there is a \correct" ranking of alternatives Q, and agents disagree with this ranking
over pairs of alternatives with probability g. More formally, the probability of an agent casting a
vote R is proportional to

qt RA@ gmm H=2 (RQ). (8.6)

where ( R;Q) is the number of pairs of alternatives on whose relative raking R and Q agree.
The parameter g can take values in [E2; 1]: if =1 then the agents always agree with the correct
ranking, and if g = 1=2 then agents vote randomly. Of course, the expression in (8) above has to
be normalized in order to obtain a probability distribution .

Proposition 8.4.1. Let m = O(1). Condorcet's distribution with any 0.5 q < 1 satis es (d1),
(d2), and (d3).

Proof. By de nition, the distribution satis es (d2) and (d3), so it is su cient to prove that (d1)
is satised. Leti 2 N, a;b2 C, and let 9> 0 be a constant such that dividing the expression
in (8.6) by Ovyields a probability distribution. Let Q be the \correct" ranking of alternatives,
and consider the restriction of Q to all alternatives other than a;b. Now, let R1 be the expansion
of this ranking such that a is ranked rst and b last, and let R, be the expansion such thatb is
ranked rst and a is ranked last. Under R; it holds that S; S{) = 1 m, While under R» it
holds that Sg Sl‘:, = m 1. Therefore, with respect to at least one ofR1 and Ry, it is true that
j(Sk S E[S, Sk 1 mlw.l.o.g. with respect to R;. By the construction of R, this
ranking can di er from Q only on pairs of alternatives which includeaorb,i.e., ( R1;Q) 2(m 1).

; m (M 2)(m 1
Therefore, Prfi's ballot R' is R1] " V@ o z
To conclude, we have obtained:

) _ ,
; denote this (constant) expression by .

Var[Sh S{l=E[(Sh S EIS, SiDA PR =R (1 m? (1 m*
Il

Finally (and crucially), the Junta distribution presented in Chapter 7 satis es (d2) and (d3)
but not (d1): the votes of the nonmanipulators are distribut ed in an interval which is proportional
to the number of manipulators, and thus the variance can be vey small in terms of the number
of nonmanipulators n. This of course makes the distribution harder to manipulate otherwise
Theorem 8.2.3 could have been used to decide instances difimted with respect to our Junta
distribution.

8.5 Related Work

Recall that in Section 7.4 we have discussed a number of worksn frequency of manipulation
in elections. Those works were algorithmic in nature, and tlerefore more related to the results
presented in Chapter 7. In this section we describe some paperegarding frequency of manipulation
that we categorize asdescriptive rather than algorithmic.

Previous work in economics has independently recognized &t when the fraction of manipulators
is small, manipulation is rarely possible [5, 141]. Howeverthese papers consider only variations
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on the uniform distribution over possible ballots; this is plausible from the point of view of the
economist, but in computer science we are interested in the &havior of the problem under a range of
typical distributions; indeed, nding an SCF that is freque ntly hard to manipulate even under one
typical distribution would be an accomplishment. Addition ally, unlike the abovementioned work,
we present our results and their implications from a computdional point of view. In particular,
the formulation of the manipulation problem that we consider is the one generally accepted in
computer science.

A very interesting extension of our work was presented by Xiaand Conitzer [147]. They de ne
a class of SCFs that they callGeneralized Scoring Functions A generalized scoring function trans-
forms the vote of each agent to a vector of scores of lengtk, for some xed k, then sums the vectors
generated by the agents coordinate-wise, and applies a furich on the nal vector to determine the
winner of the election. This class of SCFs captures almost hlconceivable anonymous SCFs (i.e.
those SCFs that disregard the identity of the agents), and irdeed includes all the prominent SCFs
mentioned in Chapter 2.2. The authors demonstrate that our results, namely Theorems 8.2.3 and
8.3.2, hold for all generalized scoring functions rather tlan just scoring functions. The assumptions
that they use are basically identical to ours. Hence, their esults hold under the same class of
distributions, but for a signi cantly larger variety of SCF s.

Friedgut et al. [57] proposed another fascinating directim, albeit in the context of manipulation
by a single agent rather than a coalition. They suggested thathe probability, over choices of
random preference pro les, that a manipulator would be ableto improve the outcome of the election
by a random ballot is non-negligible. Interestingly, the probability of success depends on the
distance of the given SCF from dictatorship, that is, the fraction of preference pro les on which
the function must be rede ned in order to make it a dictatorship. All prominent SCFs are far
from being a dictatorship, implying that the probability of success is signi cant. Unfortunately,
the results of Friedgut et al. only hold for m = 3. Xia and Conitzer [148] extended the results
of Friedgut et al. to any constant number of alternatives, but added additional, rather restrictive,
assumptions with respect to the SCF.

8.6 Discussion

Our results are satis ed by a wide spectrum of distributions over votes. Still, there remain gray
areas, even when considering distributions tBat satisfy dlthree conditions: Theorems 8.2.3 and
8.3.2 do not apply to situations wheren = (~ n) or n = ( n). The latter case, wheren = ( n),
does not seem very interesting: it is quite clear that when tle number of manipulators is that large,
the manipulat(brs can usually determine the outcome of the adction. However, the former case,
wheren = (' n), persists as a wide-open question (in our work as well as in t extension by
Xia and Conitzer [147]). In fact, if a distribution which can not be frequently manipulated were to
exist (especially in the context ofpscoring functions), ourbelief is that the distribution would be
over instances that satisfyn = (" n).

To conclude, there are two ways to interpret our results. A pasitive interpretation would be that
a distribution that is frequently hard to manipulate exists , and the results may simply help focus
the search for such a distribution. Interpreted negatively, these results strengthen the case against
the existence of SCFs and distributions that are frequentlyhard to manipulate. Indeed, our results,
and even more so the subsequent results of Xia and Conitzemniply that the manipulation problem
under many SCFs can usually be trivially decided, with respet to a wide range of distributions.
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Chapter 9

Conclusions

We shall use this chapter to succinctly lay out our view of thefuture of the eld of Computational
Voting Theory. A lot of the work in Social Choice Theory has concentrated on impossibility results.
Similarly, a lot of the previous work in Computational Votin g Theory has focused on computational
hardness results. These results can sometimes be interpezt positively, e.g., in the context of
hardness of manipulation, but are usually negative, e.g.,n the context of winner determination,
computing possible and necessary winners, etc.

We believe, on the other hand, that the focus should be using amputer science techniques
and notions to obtain novel positive results in Voting Theory. This understanding is perhaps
what initiated the research on using computational hardnes to preclude manipulation [8], but it is
now becoming quite clear that this agenda cannot necessayilbe justi ed in practice, as discussed
in Chapter 7. In the following we outline two promising new agendas that are related to the
work presented in this thesis and exemplify the above discuson, that is, using computer science
paradigms (in particular, approximation) to obtain positi ve results in voting theory.

Approximation in mechanism design without money. We have noted in Section 6.7 that
one of the main contributions of our work on strategyproof learning is the notion of approximation
in mechanism design without money. In settings where the prierences of the agents are restricted,
the Gibbard-Satterthwaite Theorem [60, 135] does not hold. Hnce, it is possible to achieve strat-
egyproof mechanisms.

For instance, imagine the paradigmatic example of single-paked preferences. The agents have
ideal points on the real line, which represent, e.g., theirdcations or where they live. The mechanism
must choose a point, e.g., a location for a grocery store. Theost of each agent is its distance from
the chosen location. The preferences of the agents are congpély encoded by their ideal point, so
it is su cient to report these points. Notice that the mechan ism that always chooses the leftmost
reported point is strategyproof. However, it does not make alot of sense in terms of the social
welfare, that is, the total cost of the agents. On the other hand, choosing the median point is also
strategyproof, and it can be easily veri ed that this soluti on minimizes the total cost.

Let us now complicate this situation. We now wish to select two points (e.g., select two locations
for facilities). The utility of an agent is its distance to th e closest facility. Schummer and Vohra [136]
have asked whether there are strategyproof mechanisms in b setting. One strategyproof solution
is placing the facilities at the leftmost reported point and the rightmost reported point, but this is
very far from minimizing the total cost. On the other hand, it can be veri ed that choosing the
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locations that minimize the total cost is not strategyproof.

Now we are exactly on the boundary between social choice ancbmputer science: social choice
theory does not have tools to deal with this situation. We sugest that a computer scientist
should naturally ask: given the above setting (with two facility locations to be selected), is there
a mechanism that is strategyproof andapproximates the minimum total cost? Similar questions
can be asked when the goal is to minimize the maximum cost, rdter than the total cost. In this
case, even placing one facility optimally is not strategypoof. In very recent and ongoing work with
Moshe Tennenholtz, we have obtained some preliminary answe to these questions.

More generally, the same agenda can be applied to many mechiam design settings that are
computationally tractable. Such settings were previouslydisregarded by computer scientists since
the VCG mechanism [146, 25, 62] can be applied to obtain stragyproofness while maximizing
social welfare. An example is the shortest path network domen brie y considered by Nisan and
Ronen in their seminal paper [105]. However, and cruciallythe transfer of payments is infeasible in
many (most?) multi-agent settings, especially in extremelydistributed Internet environments. Once
again, it is possible to ask: is there a strategyproof solutn without payments that approximates
the social welfare, or some other target function? In other wrds, we can sacri ce optimality in
terms of our optimization goal in order to gain strategyproofness.

Approximation algorithms as SCFs. Many previous works demonstrate that it is hard to
compute the outcome of the election under various SCFs (e.g.[66, 132, 127]). Nevertheless,
many of the hard-to-compute score-based SCFs can be approximed. Chapter 3 presented a
randomized rounding approximation algorithm for Dodgson's rule. We noted that more recent
work on the problem includes a deterministic approximationalgorithm with the same approximation
ratio of O(log m). These can be considered positive, encouraging results:hile it is computationally
intractable to elect the alternative closest to being a Condrcet winner, it is possible to elect an
alternative that is quite close.

Nevertheless, such results open a window to many intereston issues. If approximation algo-
rithms are to be used as SCFs, they must satisfy at least somef the desirable properties SCFs are
expected to satisfy. We mention several important propertes below:

Anonymity : The identities of the agents are disregarded.
Neutrality : The identities of the alternatives are disregarded.

Monotonicity : Improving the position of an alternative in a preference pro le without chang-
ing the order of the other alternatives cannot hurt the improved alternative, that is, if it was
a winner in the original pro le it would also be a winner under the improvement.

Homogeneity. Duplicating the electorate does not change the outcome oftte election?

Designing algorithms that satisfy these properties while &hieving a good approximation ratio
for the score under a hard-to-compute SCF seems to be a conceptlly novel and nontrivial agenda.

! Anonymity must be assumed in order for this de nition to be sound.
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Appendix A

Omitted Proofs and Results for
Chapter 4

A.1 Proof of Theorem 4.3.3

Proof. Reformulating the minimax principle for voting trees, an upper bound on the worst-case
performance of the best randomized tree on a seA of alternatives is given by the performance of
the best deterministic tree with respect to some probability distribution over tournaments on A.

As in the proof of Theorem 4.3.2, we assume for ease of expaeit that jAj = m =3k + 1 for
some oddk, and de ne a tournament T as a cycle of three regular component£s, C,, and Cs,
each of sizek. Further de ne three new tournaments Ty, T, and T3 such that for r = 1;2; 3, the
restrictions of T and T, to B A are identical if B\ C;j 1, and the restriction of T, to C;
is transitive. Let be any deterministic tree on A. Combining both statements of Lemma 4.3.1,
there existsi 2 f 1;2;3g such that forr =1;2;3, ( T;) 2 C;. In particular, selects an alternative
with score at most k=2 1=2 for two of the three tournaments T,. Now consider a tournamentT
drawn uniformly from fTq; T»; T3g. By the above,

E [s(m] (2Bk=2 1=2)+(2k 1))=83=5k=3 2=3  and maxs; =2k 1;

i2A
and thus
E [scnl 5 2 5k 1H+3_5 1
max2a Si 6k 3 6k 1) 6 2Kk 1)
In particular, this ratio tends to 5 =6 ask tends to in nity. O

A.2 Proof of Theorem 4.4.8

We shall require two lemmata. The rst one is a \geometric" version of the Cauchy-Schwarz
inequality. The second one is a well-known result about the sguence of degrees of a tournament,
which we state without proof.
Lemma A.2.1. Leta=(as;:::;am)2 R™, b=(by;:::;bn) 2 R™. Then,
¥ a b ° fandony it kak Kbk
— — = if and only i abh=(1 <)ka :
_, kak Kbk | v ah=l 3
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Proof.

oaoob fo 0 M@ Xm0 a b
. kak  kbk . kak? - kbk? - kak kbk
i=1 i=1 i=1 =1
a b _ B
b kKl Tt 2
0 ab=(1 E)kak Kbk: O
i=1
O
Lemma A.2.2 (Moo|n_, [100]). s1  s2 Sm is the degree sequence of a tournament if and
only ifforall k m, ;s %. O

Proof of Theoremp4.4.8. Denewi=m s 1, 4 = p2wi +1,and b = IOZwi +1 . By the

gssumption that ; isi = mTl + m and by (4.1) in the proof of Lemma 4.4.5, we have that
;aib =(1 2)m. Sincekak = m and, by Lemma 4.4.6,kbk = 1, we have

X
aib=(1 2)kak kbk:

By Lemma A.2.1,

— — =4
: kak Kbk
Denoting °=4 ,
X piZWi T p_ 2 .
s 2w +1 = N
: m
By simplifying and rearranging, we get
X 1 2 a
| @wi+1) i — =" (A1)
Now let 0= 97{ and
1 00
B= i2A: § — >— .
m m

We claim that jBj  %n. Assume for contradiction that jBj > °n. Then, by Lemma A.2.2,

X m X m m j Bj
Si = Si ;
. 2 , 2 2
i2B i2B
and X
o n m m j Bj _ jBj

i2B



We thus have

X 1 2 Prox "o Bigei 1) o
_ _ _ o 2_ a
Clewird) i g @D o 2B 2y o=
i2B i2B
contradicting (A.1). The rst inequality holds because j ; 1=mj> °%m for all i 2 B, the last
one follows from the assumption thatjBj > %n.
It now suces to show that for all i 2 B, s; T (3 9%2)m, i.e., that B contains all

alternatives with degree signi cantly di erent from m=2.
Leti 2 AnB. Since is a stationary distribution,

X
(m s 1)= i
j i

At most  %n of the alternatives dominated by i can be inB, and thus

' 0 1 00
(si ?n) moom
m s 1 1 5 :
= 4+
m m

It should be noted that this holds even ifs;  %n < 0. By rearranging and simplifying,
(m s e+ % @ % m% %

and thus

m
Sj E + O?n:

On the other hand,

and therefore
s+ ®+ 1 (1 9mi ”
(m Si 1) 1 00

m

The last implication is true becausei dominates at mosts; alternativ(%s outside B, and the overall
probability assigned to alternatives in B isat most1 (1 °9mlT. Now,

(m s Q@ % s@+ F+m@® (%:

Thus, for m 092

m 3.
S| zé?n.[]
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A.3 Proof of Lemma 4.4.10

Proof. Fix some tournament T 2 T (A), and consider the degrees; in T. The minimum expected
second order degree of an alternative drawn according to thatationary distribution of M (T) is
given by the following linear program with variables ;:

1
X X
min @ gA
oA -
i T X
s.t 8; (m s 1); i =0;
X jiiTj
i =1,
i2A
8; ;i O

The dual is the following program with variables x; and y:

max
Y X X

S.t. 8i; (m si 1)x; Xj + Sj Yy
jTi juT]

By weak duality, any feasible solution to the dual provides alower bound on the optimal
assignment to the primal. Consider the assignmeni; = s; to the dual. The maximum feasible
value of y given this assignment is the minimum over the left hand side 6the constraints. We
claim that for any i, the value of the left hand side is at leastm?=4 m=2. Indeed, for alli,

X X X
(m s 1 s) ( s)+ s§=(m s 1( s)+ s
T T i6i

=(m s D(s)+ D s

=m?=2 m=2 s(m s)
m2=4 m=2

A.4 Proof of Theorem 4.5.1

To prove the theorem, we will show that given a tournament corsisting of a 3-cycle of components,
the distribution over alternatives chosen by the k-RPT oscillates between the di erent components
ask grows. This is made precise in the following lemma.

Lemma A.4.1. Let A be a set of alternatives,T 2 T (A) containing three componentsC;, i =1;2; 3,
such that for all alternativesa 2 Cj and b2 C mog 3)+1, @aTh For i =1;2;3 and k 2 N, denote

by pi(k) the probability that the k-RPT selects an alternative from C;.

If for some K 2 N and > 0, p{’ 2 12, then there existsK °> K such thatp{<? =2

andp(zKo) 1 P-
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Proof. The event that some alternative from C; is chosen by a perfect tree of heighk + 1 can be
decomposed into the following two disjoint events: either @ element from C; appears at the left
child of the root, and an element from C; or C(; moq 3)+1 at the right child, or an element from C;
appears at the right child and one fromC; moq 3)+1 at the left. Thus, for all k > 0,

) 4+ k)

(k+1 k
+)_p() o

k k k k k
(k) () CRRCIPIE . (A2)

b t Bimod 3+1 TP P(imod 341 T P (i mod 3)+1

It should be noted that (A.2) is independent of the structure of T inside the di erent components,
but only depends on the relationship between them.

Now, consider the largest, possibly empty, setS = fK;K +1;K +2;:::;g such that for all
k 2S, p(lk) + p(zk) 1=2. It then holds for all k 2 S that 2p(k) + 2p(k) 1, and, by (A.2), that

p(1k+1) p(k) p&K) 2 12: thatis, p(k) is weakly decreasing for indices irs, and since we assumed

p(K) 2 12 we have that p(k+1) 2 Pforallk2sS. Slncep(k) < 0:5and p(k) 0:5, we have that
forall k2 S, p(k) + 2p(k) > 1:3. Hence, we conclude by (A.2) that for allk 2 S, p; D 1.3 p(zk).
ChoosingK 1 to be the smallest integer such thatK; K and K; 2 S, we have that p(lKl)

and p(Kl) 1=2. Also, by (A 2), forall i=1;2;3and allk 2 N, p(k+1) 2pi(k). ChoosingL 12
such that 2 (L+D 2 L wehave forallk = Kq;::::Kq+ bL=2c 1,
d L=2e
pg.k) 2bL=2C 1 2 2 p7=2: (A3)

By the assumption that 2 12, this also implies for all suchk that pl 2 7.
We now claim that K%= K;+ bL=2c 1is as required in the statement of the lemma. Indeed,
by applying (A.2), we have

1,1
p(3K1+1) — (Kl)(p(Kl) +2p(Kl)) §(§+2 6) 0:258
and thus
py = plt ) (p ) o pl iy 0:258(0258 +2 ©) < 0:08:
Finally,
py ' = pfr*? (p{+*? 1+ 2pf1*2)  0:08(0:08 + 2 ©) < 0:0077

Now, fork = K1 +3;:::; K+ bi=2c 2, p{*™  pl9(0:0077+2 €) < p{=25, sincepl is strictly
decreasing for these values df.

It also follows directly from the above discussion that

K K1+3 - - -
pg % p(3 1#3) (o b= 4 5 5 (p Sybl=2c 4 -5 Sbl=2c+1S,
For L 12, 2 5=2c+15 o (L+2) =2 e therefore have thatp(Ko) =2, while p(KO) P~y
by (A.3). Furthermore, since p(KO) 1 (p(Ko) + p(3KO)) p(KO) 1 p*. O

We will now prove a stronger version of Theorem 4.5.1.

Lemma A.4.2. For k 2 N, denote by | the distribution corresponding to thek-RPT. Then, for
every setA of alternatives, jAj 5, there exists a tournamentT 2 T (A) such that for everyK 2 N
and > 0, there existsK® K such that
E  ds(n] 1+
maxio A Si m 2
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Proof of Lemma A.4.2 and Theorem 4.5.1. Let m 5, and de ne a tournament as in the statement

transitive.

We rst show that there exists K g such that, using the notation of Lemma A.4.1,p(1K°) 2 12 |f
m 22, this holds trivially for K g =0, since the uniform distribution selects each alternative with
probability 1=m 2 2. For m< 2 2, the claim is easily veri ed using a computer simulation.

Now, by Lemma A.4.1, there existsK ; such that pgKl) 2 Bandpi“” 1 2 & Renaming

the components and applying Lemma A.4.1 again, there has to»ast K, such that p(ZKZ) 2 14
and p{? 1 2 1322 Another application yields K 3 satisfying p{“® 2 B andp{*® 1 2 7.
(K9

Iteratively applying the lemma in this fashion, we get that t here existsKk © K such that 9]
1 O%for 9= =(m 3). In this case, the approximation ratio is at most

L 9+ °(m 2)_ 1+

O
m 2 m 2

A.5 Composition of Caterpillars

In Section 4.5 we studied the ability of randomizations overbalanced trees to improve the lower
bound of Section 4.4, with somewhat unexpected results. A dérent approach to improve the
randomized lower bound is to take a tree structure that provides a good lower bound, and construct
a more complex tree by composing several trees of this type téorm a new structure. Since a
particular randomized tree chooses alternatives accordigp to some probability distribution, this
technique is conceptually closely related to probability anpli cation as commonly used in the area
of randomized algorithms.

In our case, the obvious candidate to be used as the basis foné composition is the RSC, both
because it provides the strongest lower bound so far, and baase it can conveniently be analyzed
using the stationary distribution of a Markov chain. We will thus focus onhigher order caterpillar
trees obtained by replacing each leaf of a caterpillar of su ciently large height by higher order
caterpillars with order reduced by one.

To analyze the behavior of these higher order caterpillars n a particular tournament T, we
again employ a Markov chain abstraction.

Given a tournament T, we inductively de ne Markov chains M = M (T) for k 2 N as follows:
for all k, the state space ofM ¢ is A. The initial distribution and transition matrix of M 1 are given
by those of M as de ned in Section 4.4.1. Fork > 1, the initial distribution of M is given by the
stationary distribution (K 1) of M 1, which can be shown to exist and be unique using similar
arguments as in Section 4.4.1. Its transition matrix Py = Py(T) is de ned as

8 P L
e
Pe(ij)=_ [P if jTi
"0 if iTj .

The class of tournaments used in Section 4.4.2 to show tigh&ss of our analysis of ordinary
caterpillars can also be used to show that the approximatiorratio cannot be improved signi cantly
by means of higher order caterpillars of small order. Perhap more surprisingly, a di erent class of
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tournaments can be shown to cause the stationary distributon of M to oscillate ask increases,
leading to a deterioration of the approximation ratio. This phenomenon is similar to the one
witnessed by the proof of Theorem 4.5.1.

Theorem A5.1. Let A be a set of alternatives,jAj 6, and let K 2 N. Then there exists a
tournament T 2 T (A) and k 2 N such thatK k K +5 and the stationary distribution () of
M k(T) satis es
X 3
g > .

T m 2

|
Proof. Consider a tournament T with three components C;, 1 i 3 such that C;TC; if j =
(i mod 3) +1 (as in the proof of Theorem 4.5.1).

Fori=1;2;3andk 2 N, denote by pi(k) the probability that an alternative from C; is chosen
from the stationary distribution of M. In particular, de ne py = jCjj=m. Since pi(°> > 0 forall i,

and sinceT is strongly connected,pi(k) > QO foralliandall k2 N.
Then, for all k 2 N andi =1;2;3, and taking the subsequent index modulo three,

k+1 k k+1 k k+1
pD =@ pl)p + plptet,
and thus
(k)
(k+1) _ P " (k+1) .
pi - (k) pi+1
Pi+2

Taking two steps, replacing pi('ji'l) , and simplifying, we get

(k+2) _ Pi(k+1) (k+2) _ Pi(k+1) pi(fil) (k+2) _ pi(k+1) p|(|4(-?l_ pi(gl) pi(SZ) _ pfli)l pffﬁz)
Ll g e T ghpoptkey
and thus
s _ o s
i el |
Analogously,
Py P A5
R |
Summing (A.4) and (A.5) and adding one,
o+ pla? + o5+ p + 0%
P o)
and thus
o = oY

ChoosingT such that jC;j = jCyj =1 and jC3j = m 2, it holds for all k that

6k+a) _ (© _ M 2
P1 P3 m
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and, since the sole vertex inC; has degree 1,

xn
Kk m 2
i(6 +4) s,
i=1

Observing that the sole vertex in C, has degreem 2 completes the proof.
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Appendix B

Omitted Proofs for Chapter 5

B.1 Proof of Theorem 5.4.7

Proof. It is obvious that Tree-SAT 2 NP . In order to show NP -hardness, we present a reduction
from 3SAT . In this problem, one is given a conjunction of clauses, whereach clause is a disjunction
of three literals. One is asked whether the given formula hasa satisfying assignment. It is common
knowledge that 3SAT is NP -complete.

For each clausej, we de ne a tournament T; as some tournament that satis es the following
restrictions:

1. Ijl, Ij2 and Ij3 beat any other alternative among the alternativesx;;: X;.

2. aloses toljl, Ij2 and I, but beats any other alternative among the alternativesx;;: x;.
In addition, all tournaments in our instance of Tree-SAT satisfy the following conditions:

1. bbeats any alternative which corresponds to a literal, but lcses toa.

2. Foralli=1;:::;m, : Xj beatsx;.

3. ¢ loses tox; and : xj, and beats any other alternative.

Finally, for each tournament, we require the winner to be alternative b. We now proceed to
construct the given (partially assigned) tree. We start, asin the proof of Theorem 5.4.1, by de ning
a gadget which we call aliteral gadget illustrated in Figure B.1.

In this subtree, two leaves are already assigned withx;j and ¢;. Now, with respect to any of
the tournaments we de ned, if we assign: x; to the last leaf, then : x; proceeds to beatc;, and
subsequently beatsx;. If we assignx; to the third leaf, then x; beats ¢; and wins the election. If
we assign any other alternative, that alternative is defeaed by ¢;, which in turn is beaten by x;.
To conclude the point, either x; or : X; survives the gadget;: X; survives i it is assigned to the
third leaf.
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Figure B.1: Literal gadget.

Given these literal gadgets, we can assume without loss of gerality that we can construct a
tree such that in some of the leaves the only possible assigrents arex; or : Xx;; we shall mark these
leaves byx; : : Xj. The complete (partially labeled) tree in the constructed Tree-SAT instance is
described in Figure B.2.

Figure B.2: The reduction.

We now prove that this is indeed a reduction. We rst have to show that if the given 3SAT
instance is satis able, there is an assignment to the leavesf our tree (i.e., choices of; or : x;) such
that, for each of the m tournaments, the winner is b. Consider some satisfying assignment to the
3SAT instance, and apply the assignment to the above tree. Now, awsider some tournamentT; .
At least one of the literals I}, I}, or I5 must be true; as these three literals beat all other literalsin the
tournament T;, one of these three literals reaches the competition versus, and wins; subsequently,
this literal loses to alternative b. Therefore, b is the winner of the election. Since this is true for

In the other direction, consider an instance of3SAT which is not satis able. Fix some assign-
ment to the leaves of the tree; the corresponding assignmertb the 3SAT instance is not satisfying.
Therefore, there is somg such that I);15; and 15 are all false. This implies that in T; some other
literal other than these three reaches the top of the tree to ompete againsta, and loses. Sub-
sequently, a competes againstb and wins, making a the winner of the election with respect to
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tournament T;. Hence, this is not an assignment which is consistent with dltournaments|but
this is true with respect to any assignment. Ol

118



Appendix C

Omitted Proofs and Results for
Chapter 6

C.1 Proof of Theorem 6.4.2

Proof. We shall rst prove the theorem for the case whenF is the class of constant functions over
RX (Steps 1 and 2), and then extend the result to homogeneous lear functions overR (Step 3).
We have already shown truthfulness, and therefore directlyturn to approximate e ciency. In the
following, we denote the empirical risk minimizer by f (x) a, and the function returned by
project-and-t by f(x) a.

Step L:jfy; © yy; agj %,rnm andjfy; @ y; agj %nm. Let y; denote the projected
values of agenti. As noted above, whenF is the class of constant functions, the mechanism in fact
returns the median of the valuesyy, and thus

ifyy oy ag znm: (C.»H

Furthermore, since for all j, y; is the median of the original valuesy;; of agenti, it must hold that
at least half of these values are smaller than their correspading original value, i.e.

. o1 .
ifyi:y agj §Jf Yi - Yy ag : (C.2)

Combining Equations C.1 and C.2, we obtainjf y; : yj agj %nm. By symmetrical arguments,
we get that jf y;j © y; agj zhm.

Step 2: 3-e ciency for constant functions. Denote d = ja a j, and assume without loss of
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generality that a <a . We now have that

. 1 X .
risk(f; S) = el N R
0’ 1
1 X X X
= o (a yj)+ (yi a)+ (i aA
0 iy oa ijra<yj a ij oy >a 1
1 X X X
- (@ ¥j)+ d+ (d+(y;  a)A
0 by a ija<yj a iy >a 1
1 X X L .
= om (@ vyj)+ (vi a)+ijfi;j ry; >agj dA
iy oa ity >a

We now bound the last expression above by replacingf i;j : y; > agj with its upper bound %nm
derived in Step 1 and obtain

0 1
A 1 o X X 3
. - . , b A
risk(f;S) @._ @ yj)+ (vj a)+ ,nm d
iy a ity >a
Similarly, 0 1
_ 1 X X
isk(f ;8) @ (d+(a y;)+ (i a)A
by a i 1y >a
and using Step 1,
0 1
risk(f ;S) le X (@a yj)+ X (yi a)+ 1m oA
’ nm i)t i 4
iy a ity >a

Since two of the expressions in the upper bound fori’§k(f; S) and the lower bound for ri’ék(f ;' S)
are identical, it is now self-evident that riSk(f; S )=risk(f ;S) 3.

Step 3: Extension to homogeneous linear functions oveR. We describe a reduction from the
case of homogeneous functions ovdR to the case of constant functions overR. Given a sampleS,
we create a sampleS® by mapping each example X;y) 2 S to jxj copies of the example X;y=x).%
Let f1 be the homogeneous linear function de ned byf;(x) = a X, and let f, be the constant
function de ned by f,(x) = a. Itis now straightforward to show that ri's\k(fl; S)= ri's\k(fz; s9, and
that project-and- t chooses f; when given the class of homogeneous linear functions ard if and
only if it choosesf, when given the class of constant functions ands®. O

C.2 Proof of Theorem 6.4.3

We rst require a technical result. For this, assume that F is the class of constant functions over
RK let N = f1; 29, and x some truthful mechanism M.

Here we assume that the valuesx are integers, but it is possible to deal with noninteger values by assigning
weights.
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Lemma C.2.1. Letqg;t2 N, and dene m=2t 1. Then there exists a sampleS de ned by

such thaty y°=29andM(S) y 2orM(S) yo+ 1.

Proof. We perform an induction on g. For g =0, we simply sety = 1 and y°= 0. Now, let S be
a sample as in the formulation of the lemma, and leta = M (S), i.e. a is the constant function
returned by M given S. We distinguish two di erent cases.

Case 1:lfa y 1=2, let S°such that S = S; and

Notice that y (2y® y) = 2(y y9, so the distance between the values has doubled. Denote
a’= M (S9. Due to truthfulness of M, it must hold that “(a%y9 “(a;y9 29 3. Otherwise,
if agent 2's true type was S,, he would bene t by saying that his type is in fact SS. Therefore,
a y 2ora® y0 29+ 3)=2y0 y+ 2.

Case 2:1f a  y%+ }, let SPsuch that S9 = S, and

Analogously to Case 1, the induction step follows from truthfulness ofM with respectto agent1. [

Proof of Theorem 6.4.3. Consider the sampleS as in the statement of the lemma, and assume
without loss of generality that M(S) = a vy % Otherwise, symmetrical arguments apply. We
rst observe that if M is approximately e cient, it cannot be the case that M (S) >y. Otherwise,

let S°be the sample such thatS9 = S; and

and denotea®= M (S9Y. Then, by truthfulness with respect to agent 2, *(a%y%  “(a;y9. It follows
that a®6 y, and thereforerisk(a® S9 > 0. Sincerisk(y; S9 = 0, the e ciency ratio is not bounded.
Now let S%be such that S3°= S,, and

i.e. agent 1 hast points at y andt 1 points at y Let a%®°= M (S%. Due to truthfulness, it
must hold that “(a®®y) = “(a;y), since agent 1's empirical risk minimizer with respect to koth
S and S®is y. Since we already know thaty 3 a y, we getthata® vy 3, and thus
risk(a9 s% gi: g (29 1). On the other hand, the empirical risk minimizer on S%is y° and
risk(y%S% 1529, The e ciency ratio riSk(a®®S%=risk(y% S% tends to 3 ast and g tend to
in nity.

We will now explain how this result can be extended to homogeaous linear functions overRK.
For this, de ne the sample S by

Si=ftht L1,0;:::;0i;(t 1)y);(h;0;:::;0i;ty)g and
S;=fht 1;0;:::;0i;(t  1)yY;(h; 0;:::;0i;ty%g :
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As with constant functions, a homogeneous linear function @ ned by a satis es ri’s\k(a; Sp) =
jai yj, and risk(a;Sy) = jai yY. Therefore, we can use similar arguments to the ones above to
show that there exists a sampleS with y y°= 29, and if a = M (S) for some truthful mechanism
M, theny % ag yory® a; yo+ % As before, we complete the proof by splitting the
points controlled by agent 1, i.e. by considering the sampleS® where S = fht  1,0;:::;0i; (t
1)y9; (f; 0;:::; 00 ty)g. O

C.3 Justi cation of Conjecture 6.4.5

In order to justify the conjecture, it will be instructive to once again view the hypothesis clas§
as a set of alternatives. The agents' types induce a preferee order over this set of alternatives.
Explicitly, agent i weakly prefers functionf; to function f, if and only if ri's\k(fl; Si) ri’s\k(fz; S).
A mechanism without payments is a social choice function frm the agents' preferences oveF to
F.

Recall that the Gibbard-Satterthwaite Theorem (Theorem 2.4.2) asserts that every truthful
social choice function from the set ofall linear preferences over some seh of alternatives to A
must be dictatorial , in the sense that there is some agentl such that the social outcome is always
the one most preferred byd. Observe that this theorem does not directly apply in our ca®, since
agents' preferences are restricted to a strict subset of albossible preference relations oveF .

For the time being, let us focus on homogeneous linear funatnsf over R, k 2. This class is
isomorphic to R¥, as every such function can be represented by a vecter2 RK suchthat f (x) = a x.
Let R be a weak preference relation oveR¥, and let P be the asymmetric part of R (i.e. aPalif
and only if aRa%and not a®Ra). R is called star-shapedif there is a unique pointa 2 R such that
foralla2 Rkand 2 (0;1),a P( a +(1 )a)Pa. In our case preferences are clearly star-shaped,
as for anya;a®2 Rk and any sampleS, risk(( a+(1  )a%;S)= riSk(a;S)+(1  )risk(a® S).

A preference relationR over R™ is called separableif for every j, 1 j m,all x;y 2 R™, and
all aj;g 2 R,

x j;ai R j;gi ifandonlyif hy j;&iRh ;i ;

where X j;aji = IXq;::0X) 1,8;Xj+15:::; Xmi. The following example establishes that in our
setting preferences are not separable.

Example C.3.1. Let F be the class of homogeneous linear functions ove®, and dene S; =
f(ht; 1i;0)g. Then agent 1 prefersh 1;1i to h 1;2i, but also prefersh 2;2i to h 2;1i.

Border and Jordan [15] investigate a setting where the set oflternatives is RK. They give
possibility results for the case when preferences are stahaped and separable. On the other hand,
whenk 2 and the separability criterion is slightly relaxed, in a way which we will not elaborate
on here, then any truthful social choice function must necesarily be dictatorial.

Border and Jordan's results also require surjectivity: the social choice function has to be onto
RK.2 While this is a severe restriction in general, it is in fact vay natural in our context. If
all agents have values consistent with some functiorf , then the mechanism can have a bounded
e ciency ratio only if its output is the function f (indeed, f has loss 0, while any other function
has strictly positive loss). Therefore, any approximately e cient mechanism must be surjective.

2Border and Jordan [15] originally required unanimity, but their theorem s can be reformulated using surjectiv-
ity [142].
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The above discussion leads us to believe that there is no triful approximation mechanism
for homogeneous linear functions oveRK for any k 2. Conjecture 6.4.5 simply formalized this
statement.

123



Bibliography

[1] N. Ailon, M. Charikar, and A. Newman. Aggregating inconsistent information: Ranking and
clustering. In Proceedings of the 37th Annual ACM Symposium on the Theory o€omputing
(STOC), pages 684{693, 2005.

[2] N. Alon. Ranking tournaments. SIAM Journal of Discrete Mathematics, 20(1{2):137{142,
2006.

[3] N. Alon and J. H. Spencer. The Probabilistic Method. Wiley and Sons, 1992.

[4] Y. Bachrach, E. Markakis, A. D. Procaccia, J. S. Rosenschin, and A. Saberi. Approximating
power indices. In Proceedings of the 7th International Joint Conference on Atonomous
Agents and Multi-Agent Systems (AAMAS), pages 943{950, 2008.

[5] E. Baharad and Z. Neeman. The asymptotic strategyproofess of scoring and Condorcet
consistent rules. Review of Economic Design4:331{340, 2002.

[6] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygr. Can machine learning be
secure? InProceedings of the 1st ACM Symposium on Information, Computr and Commu-
nications Security (ASIACCS), pages 16{25, 2006.

[7] J. Bartholdi and J. Orlin. Single Transferable Vote resists strategic voting. Social Choice
and Welfare, 8:341{354, 1991.

[8] J. Bartholdi, C. A. Tovey, and M. A. Trick. The computatio nal di culty of manipulating an
election. Social Choice and Welfare 6:227{241, 1989.

[9] J. Bartholdi, C. A. Tovey, and M. A. Trick. Voting schemes for which it can be di cult to
tell who won the election. Social Choice and Welfare 6:157{165, 1989.

[10] J. Bartholdi, C. A. Tovey, and M. A. Trick. How hard isiitt o control an election. Mathematical
and Computer Modelling 16:27{40, 1992.

[11] P. L. Bartlett and S. Mendelson. Rademacher and Gaussimacomplexities: Risk bounds and
structural results. Journal of Machine Learning Research 3:463{482, 2003.

[12] E. Beigman and R. Vohra. Learning from revealed prefenece. In Proceedings of the 7th ACM
Conference on Electronic Commerce (ACM-EC), pages 36{42, 2006.

[13] N. Betzler, J. Guo, and R. Niedermeier. Parameterized amputational complexity of Dodgson
and Young elections. InProceedings of the 11th Scandinavian Workshop on AlgorithrTheory
(SWAT) , 2008.

124



[14] D. Black. Theory of Committees and Elections Cambridge University Press, 1958.

[15] K. Border and J. Jordan. Straightforward elections, uranimity and phantom voters. Review
of Economic Studies 50:153{170, 1983.

[16] S. Brams, D. M. Kilgour, and W. Zwicker. The paradox of multiple elections. Social Choice
and Welfare, 15:211{236, 1998.

[17] F. Brandt and F. Fischer. Computing the Minimal Covering Set. Mathematical Social Sci-
ences 2008. To appear.

[18] F. Brandt, F. Fischer, and P. Harrenstein. The computational complexity of choice sets.
In Proceedings of the 11th Conference on Theoretical Aspects &ationality and Knowledge
(TARK) , pages 82{91, 2007.

[19] F. Brandt, F. Fischer, P. Harrenstein, and M. Mair. A computational analysis of the Tourna-
ment Equilibrium Set. In Proceedings of the 23rd AAAI Conference on Arti cial Intellige nce
(AAAI) , pages 38{43, 2008.

[20] N. H. Bshouty, N. Eiron, and E. Kushilevitz. PAC learnin g with nasty noise. Theoretical
Computer Science 288(2):255{275, 2002.

[21] I. Caragiannis, J. A. Covey, M. Feldman, C. M. Homan, C. Kaklamanis, N. Karanikolas, A. D.
Procaccia, and J. S. Rosenschein. On the approximability oDodgson and Young elections.
In Proceedings of the 20th Annual ACM-SIAM Symposium on Discre¢ Algorithms (SODA),
pages 1058{1067, 2009.

[22] J. R. Chamberlin and P. N. Courant. Representative delberations and representative deci-
sions: Proportional representation and the Borda rule. American Political Science Review
77(3):718{733, 1983.

[23] Y. Chevaleyre, P. E. Dunne, U. Endriss, J. Lang, M. Lemafre, N. Maudet, J. Padget,
S. Phelps, J. A. Rodrguez-Aguilar, and P. Sousa. Issues in mltiagent resource allocation.
Informatica, 30:3{31, 2006.

[24] Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. A shot introduction to Computational
Social Choice. INSOFSEM 2007: Theory and Practice of Computer Sciencevolume 4362 of
Lecture Notes in Computer Science pages 51{69. Springer-Verlag, 2007.

[25] E. H. Clarke. Multipart pricing of public goods. Public Choice 11:17{33, 1971.

[26] V. Conitzer. Computing Slater rankings using similarities among candidates. InProceedings
of the 21st AAAI Conference on Atrti cial Intelligence (AAAI) , pages 613{619, 2006.

[27] V. Conitzer. Eliciting single-peaked preferences usim comparison queries. InProceedings
of the 6th International Joint Conference on Autonomous Agets and Multi-Agent Systems
(AAMAS) , pages 408{415, 2007.

[28] V. Conitzer and T. Sandholm. Vote elicitation: Complexity and strategyproofness. In Pro-
ceedings of the 18th AAAI Conference on Arti cial Intelligence (AAAI) , pages 392{397, 2002.

125



[29] V. Conitzer and T. Sandholm. Complexity of mechanism dsign. In Proceedings of the 18th
Annual Conference on Uncertainty in Arti cial Intelligence (UAI) , pages 103{110, 2002.

[30] V. Conitzer and T. Sandholm. Universal voting protocol tweaks to make manipulation hard.
In Proceedings of the 18th International Joint Conference on Ati cial Intelligence (IJCAI) ,
pages 781{788, 2003.

[31] V. Conitzer and T. Sandholm. An algorithm for automatic ally designing deterministic mech-
anisms without payments. In Proceedings of the 3rd International Joint Conference on Au
tonomous Agents and Multi-Agent Systems (AAMAS) pages 128{135, 2004.

[32] V. Conitzer and T. Sandholm. Communication complexity of common voting rules. In
Proceedings of the 6th ACM Conference on Electronic Commer (ACM-EC), pages 78{87,
2005.

[33] V. Conitzer and T. Sandholm. Nonexistence of voting rués that are usually hard to manip-
ulate. In Proceedings of the 21st AAAI Conference on Arti cial Intellige nce (AAAI) , pages
627{634, 2006.

[34] V. Conitzer, A. Davenport, and H. Kalagnanam. Improved bounds for computing Kemeny
rankings. In Proceedings of the 21st AAAI Conference on Atrticial Intellige nce (AAAI) ,
pages 620{626, 2006.

[35] V. Conitzer, T. Sandholm, and J. Lang. When are electios with few candidates hard to
manipulate? Journal of the ACM, 54(3):1{33, 2007.

[36] D. Coppersmith, L. Fleischer, and A. Rudra. Ordering by weighted number of wins gives
a good ranking for weighted tournaments. InProceedings of the 17th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 776{782, 2006.

[37] P. J. Coughlan and M. Le Breton. A social choice functionimplementable via backward
induction with values in the ultimate uncovered set. Review of Economic Design4:153{160,
1999.

[38] A. Davenport and J. Kalagnanam. A computational study of the Kemeny rule for preference
aggregation. In Proceedings of the 19th AAAI Conference on Atrti cial Intellige nce (AAAI) ,
pages 697{702, 2004.

[39] O. Dekel, F. Fischer, and A. D. Procaccia. Incentive cormpatible regression learning. In
Proceedings of the 19th Annual ACM-SIAM Symposium on Discre¢ Algorithms (SODA),
pages 277{286, 2008.

[40] S. Dobzinski and A. D. Procaccia. Frequent manipulabitty of elections: The case of two
voters. In Proceedings of the 4th International Workshop on Internet aad Network Economics
(WINE) , pages 653{664, 2008.

[41] B. Dutta and A. Sen. Implementing generalized Condorcesocial choice functions via back-
ward induction. Social Choice and Welfare 10:149{160, 1993.

[42] H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of EATCS Monographs
on Theoretical Computer Science Springer, 1987.

126



[43] E. Elkind and H. Lipmaa. Hybrid voting protocols and hardness of manipulation. In Algo-
rithms and Computation, volume 3827 ofLecture Notes in Computer Science (LNCS) pages
206{215. Springer-Verlag, 2005.

[44] E. Elkind and H. Lipmaa. Small coalitions cannot manipuate voting. In Financial Cryptog-
raphy and Data Security, volume 3570 ofLecture Notes in Computer Science (LNCS) pages
285{297. Springer-Verlag, 2005.

[45] E. Ephrati and J. S. Rosenschein. A heuristic techniqudor multiagent planning. Annals of
Mathematics and Atrti cial Intelligence , 20:13{67, 1997.

[46] G. Ercklyi, L. A. Hemaspaandra, J. Rothe, and H. Spakowski. On approximating optimal
weighted lobbying, and frequency of correctness versus amage-case polynomial time. In
Fundamentals of Computation Theory volume 4639 ofLecture Notes in Computer Science
(LNCS), pages 300{311. Springer-Verlag, 2007.

[47] P. Faliszewski. Nonuniform bribery. In Proceedings of the 7th International Joint Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS) pages 1569{1572, 2008.

[48] P. Faliszewski, E. Hemaspaandra, , and L. A. Hemaspaamd. The complexity of bribery
in elections. In Proceedings of the 21st AAAI Conference on Arti cial Intellige nce (AAAI) ,
pages 641{646, 2006.

[49] P. Faliszewski, E. Hemaspaandra, L. A. Hemaspaandra,ral J. Rothe. Llull and Copeland
voting broadly resist bribery and control. In Proceedings of the 22nd AAAI Conference on
Arti cial Intelligence (AAAI) , pages 724{730, 2007.

[50] P. Faliszewski, E. Hemaspaandra, , and H. Schnoor. Cofsnd voting: Ties matter. In
Proceedings of the 7th International Joint Conference on Adonomous Agents and Multi-
Agent Systems (AAMAS), pages 983{990, 2008.

[51] P. Faliszewski, E. Hemaspaandra, L. A. Hemaspaandra,ral J. Rothe. Copeland voting fully
resists constructive control. In Proceedings of the 4th International Conference on Algorihmic
Aspects in Information and Management (AAIM) , pages 165{176, 2008.

[52] R. Farquharson. Theory of Voting. Yale University Press, 1969.

[53] U. Feige. A threshold of Inn for approximating set cover. Journal of the ACM, 45(4):643{652,
1998.

[54] W. Feller. Introduction to Probability Theory and its Applications , volume 1, page 254. John
Wiley, 3rd edition, 1968.

[55] J. A. Fill. Eigenvalue bounds on convergence to statioarity for nonreversible Markov chains,
with an application to the exclusion process. The Annals of Applied Probablity, 1(1):62{87,
1991.

[56] F. Fischer, A. D. Procaccia, and A. Samorodnitsky. A newperspective on implementation
by voting trees. In Proceedings of the 10th ACM Conference on Electronic Commee (ACM-
EC), 2009. To appear.

127



[57] E. Friedgut, G. Kalai, and N. Nisan. Elections can be marpulated often. In Proceedings of
the 49th Symposium on Foundations of Computer Science (FOQS$Spages 243{249, 2008.

[58] M. R. Garey and D. S. Johnson. Computers and Intractability: a Guide to the Theory of
NP-Completeness W. H. Freeman and Company, 1979.

[59] S. Ghosh, M. Mundhe, K. Hernandez, and S. Sen. Voting fomovies: The anatomy of a
recommender system. InProceedings of the 3rd Annual Conference on Autonomous Ages
(AGENTS) , pages 434{435, 1999.

[60] A. Gibbard. Manipulation of voting schemes. Econometrica, 41:587{602, 1973.

[61] S. A. Goldman and R. H. Sloan. Can PAC learning algorithirs tolerate random attribute
noise? Algorithmica, 14(1):70{84, 1995.

[62] T. Groves. Incentives in teams.Econometrica, 41:617{631, 1973.

[63] D. Haussler. Decision theoretic generalization of thdPAC model for neural net and other
learning applications. Information and Computation, 100(1):78{150, 1992.

[64] T. Haynes, S. Sen, N. Arora, and R. Nadella. An automatedneeting scheduling system that
utilizes user preferences. IProceedings of the 1st Annual Conference on Autonomous Agés
(AGENTS) , pages 308{315, 1997.

[65] E. Hemaspaandra and L. A. Hemaspaandra. Dichotomy for eting systems. Journal of
Computer and System Sciencesr3(1):73{83, 2007.

[66] E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe. Exdanalysis of Dodgson elections:
Lewis Carroll's 1876 voting system is complete for parallehccess to NP.Journal of the ACM,
44(6):806{825, 1997.

[67] E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe. Anyae but him: The complexity of
precluding an alternative. Arti cial Intelligence , 171(5{6):255{285, 2007.

[68] E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe. Hybd elections broaden complexity-
theoretic resistance to control. In Proceedings of the 20th International Joint Conference on
Arti cial Intelligence (IJCAI) , pages 1308{1314, 2007.

[69] M. Herrero and S. Srivastava. Decentralization by mulistage voting procedures.Journal of
Economic Theory, 56:182{201, 1992.

[70] C. Homan and L. A. Hemaspaandra. Guarantees for the suess frequency of an algorithm
for nding Dodgson election winners. In Proceedings of the 31st International Symposium on
Mathematical Foundations of Computer Science (MFCS) pages 528{539, 2006.

[71] O. Hudry. A note on \Banks winners in tournaments are di cult to recognize" by G. J.
Woeginger. Social Choice and Welfare 23:113{114, 2004.

[72] O. Hudry. Improvements of a branch and bound method to conpute the Slater orders of
tournaments. Technical report, ENST, 2006.

128



[73] K. Jogdeo and S. Samuels. Monotone convergence of bin@hprobabilities and a generaliza-
tion of Ramanujan's equation. Annals of Mathematical Statistics, 39:1191{1195, 1968.

[74] J. Kahn, M. Saks, and D. Sturtevant. A topological approach to evasivenessCombinatorica,
4:297{306, 1984.

[75] G. Kalai. Learnability and rationality of choice. Journal of Economic Theory, 113(1):104{117,
2003.

[76] M. Kearns and M. Li. Learning in the presence of malicios errors. SIAM Journal on
Computing, 22(4):807{837, 1993.

[77] C. Kenyon-Mathieu and W. Schudy. How to rank with few errors. In Proceedings of the 39th
Annual ACM Symposium on the Theory of Computing (STOC), pages 95{103, 2007.

[78] L. Khachiyan. A polynomial algorithm in linear program ming. Soviet Mathematics Doklady
20:191{194, 1979.

[79] V. King. Lower bounds on the complexity of graph properties. In Proceedings of the 20th
Annual ACM Symposium on the Theory of Computing (STOC), pages 468{476, 1988.

[80] C. Klamler. The Dodgson ranking and its relation to Kemeny's method and Slater's rule.
Social Choice and Welfare 23(1):91{102, 2004.

[81] K. Konczak and J. Lang. Voting procedures with incomplde preferences. InProceedings of
the 2nd Multidisciplinary Workshop on Advances in Prefererce Handling (M-PREF), 2005.

[82] G. Laond, J. F. Laslier, and M. Le Breton. The Copeland measure of Condorcet choice
functions. Discrete Applied Mathematics 55:273{279, 1994.

[83] S. Lahaie and D. C. Parkes. Applying learning algorithns to preference elicitation. In
Proceedings of the 5th ACM Conference on Electronic Commer (ACM-EC) , pages 180{188,
2004.

[84] J. Lang. Logical preference representation and combatorial vote. Annals of Mathematics
and Arti cial Intelligence , 42(1):37{71, 2004.

[85] J. Lang. Vote and aggregation in combinatorial domainswith structured preferences. In
Proceedings of the 20th International Joint Conference on Aticial Intelligence (IJCAI) ,
pages 1366{1371, 2007.

[86] J. Lang, M.-S. Pini, F. Rossi, K. B. Venable, and T. Walsh. Winner determination in sequen-
tial majority voting. In Proceedings of the 20th International Joint Conference on Ati cial
Intelligence (IJCAI) , pages 1372{1377, 2007.

[87] J.-F. Laslier. Tournament Solutions and Majority Voting . Springer, 1997.

[88] D. Lehmann, L. I. O'Callaghan, and Y. Shoham. Truth revelation in rapid, approximately
e cient combinatorial auctions. Journal of the ACM, 49(5):577{602, 2002.

[89] H. W. Lenstra. Integer programming with a xed number of variables. Mathematics of
Operations Research 8:538{548, 1983.

129



[90] N. Littlestone. Learning quickly when irrelevant attr ibutes abound: A new linear-threshold
algorithm. Machine Learning, 2:285{318, 1988.

[91] N. Littlestone. Redundant noisy attributes, attribut e errors, and linear-threshold learning
using Winnow. In Proceedings of the 4th Annual Workshop on Computational Leaing
Theory (COLT) , pages 147{156, 1991.

[92] J. C. McCabe-Dansted. Approximability and computational feasibility of Dodgson's rule.
Master's thesis, University of Auckland, 2006.

[93] J. C. McCabe-Dansted, G. Pritchard, and A. M. Slinko. Approximability of Dodgson's rule. In
Proceedings of the 1st International Workshop on Computatinal Social Choice (COMSOC)
pages 331{344, 2006.

[94] D. C. McGarvey. A theorem on the construction of voting paradoxes. Econometrica, 21:
608{610, 1953.

[95] R. D. McKelvey and R. G. Niemi. A multistage game represatation of sophisticated voting
for binary procedures. Journal of Economic Theory, 18:1{22, 1978.

[96] R. Meir, A. D. Procaccia, and J. S. Rosenschein. A broadepicture of the complexity of
strategic behavior in multi-winner elections. In Proceedings of the 7th International Joint
Conference on Autonomous Agents and Multi-Agent Systems (AAMS), pages 991{998, 2008.

[97] R. Meir, A. D. Procaccia, and J. S. Rosenschein. Strategproof classi cation under constant
hypotheses: A tale of two functions. InProceedings of the 23rd AAAI Conference on Atrti cial
Intelligence (AAAI) , pages 126{131, 2008.

[98] N. Miller. A new solution set for tournaments and majority voting: Further graph theoretical
approaches to the theory of voting. Americal Journal of Political Science, 24:68{96, 1980.

[99] B. L. Monroe. Fully proportional representation. American Political Science Review 89(4):
925{940, 1995.

[100] J. W. Moon. Topics on Tournaments. Holt, Reinhart and Winston, 1968.

[101] H. Moulin. Generalized Condorcet-winners for single paked and single-plateau preferences.
Social Choice and Welfare 1(2):127{147, 1984.

[102] H. Moulin. Choosing from a tournament. Social Choice and Welfare 3:271{291, 1986.
[103] B. K. Natarajan. Machine Learning: A Theoretical Approach. Morgan Kaufmann, 1991.

[104] N. Nisan. Introduction to mechanism design (for compter scientists). In N. Nisan, T. Rough-
garden, E. Tardos, and V. Vazirani, editors, Algorithmic Game Theory, chapter 9. Cambridge
University Press, 2007.

[105] N. Nisan and A. Ronen. Algorithmic mechanism designGames and Economic Behavior35
(1{2):166{196, 2001.

130



[106] K. O azer and G. Tur. Morphological disambiguation b y voting constraints. In Proceedings of
the 8th Conference of the European Chapter of the Associatiofor Computational Linguistics
(EACL) , pages 222{229, 1997.

[107] B. Peleg and A. D. Procaccia. Mediators enable truthflivoting. Discussion paper 451, Center
for the Study of Rationality, The Hebrew University of Jerusalem, 2007.

[108] B. Peleg and A. D. Procaccia. Implementation by mediatd equilibrium. Discussion paper
466, Center for the Study of Rationality, The Hebrew University of Jerusalem, 2007.

[109] D. Pennock, E. Horvitz, and L. Giles. Social choice thery and recommender systems: Anal-
ysis of the axiomatic foundations of collaborative ltering. In Proceedings of the 17th AAAI
Conference on Arti cial Intelligence (AAAI) , pages 729{734, 2000.

[110] J. Perote and J. Perote-Pena. Strategy-proof estimats for simple regression.Mathematical
Social Sciences47:153{176, 2004.

[111] M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh. Incomgdeteness and incomparability in
preference aggregation. IrProceedings of the 20th International Joint Conference on Ati cial
Intelligence (IJCAI) , pages 1464{1469, 2007.

[112] D. Pollard. Convergence of Stochastic Processe$pringer-Verlag, 1984.

[113] A. D. Procaccia. Towards a theory of incentives in mache learning. SIGecom Exchanges7
(2), 2008.

[114] A. D. Procaccia. A note on the query complexity of the Cadorcet winner problem. Infor-
mation Processing Letters 2008. To appear.

[115] A. D. Procaccia and J. S. Rosenschein. Extensive-formrrgumentation games. InProceedings
of the 3rd European Workshop on Multi-Agent Systems (EUMAS) pages 312{322, 2005.

[116] A. D. Procaccia and J. S. Rosenschein. The distortion focardinal preferences in voting. In
Proceedings of the 10th International Workshop on Cooperate Information Agents (CIA) ,
volume 4149 ofLecture Notes in Computer Science (LNCS) pages 317{331. Springer-Verlag,
2006.

[117] A. D. Procaccia and J. S. Rosenschein. The communicath complexity of coalition formation
among autonomous agents. InProceedings of the 5th International Joint Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS) pages 505{512, 2006.

[118] A. D. Procaccia and J. S. Rosenschein. Learning to id¢ify winning coalitions in the PAC
model. pages 673{675, 2006.

[119] A. D. Procaccia and J. S. Rosenschein. Junta distribuibns and the average-case complexity
of manipulating elections. Journal of Arti cial Intelligence Research , 28:157{181, 2007.

[120] A. D. Procaccia and J. S. Rosenschein. Average-case ttability of manipulation in elections
via the fraction of manipulators. In Proceedings of the 6th International Joint Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS) pages 718{720, 2007.

131



[121] A. D. Procaccia and J. S. Rosenschein. A computationatharacterization of multiagent
games with fallacious rewards. InProceedings of the 6th International Joint Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS) pages 1152{1159, 2007.

[122] A. D. Procaccia, Y. Bachrach, and J. S. Rosenschein. Gsip-based aggregation of trust in
decentralized reputation systems. InProceedings of the 20th International Joint Conference
on Arti cial Intelligence (IJCAIl) , pages 1470{1475, 2007.

[123] A. D. Procaccia, M. Feldman, and J. S. Rosenschein. Appximability and inapproximability
of dodgson and young elections. Discussion paper 466, Cent®r the Study of Rationality,
The Hebrew University of Jerusalem, 2007.

[124] A. D. Procaccia, J. S. Rosenschein, and G. A. Kaminka. @ the robustness of preference
aggregation in noisy environments. InProceedings of the 6th International Joint Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS) pages 416{422, 2007.

[125] A. D. Procaccia, J. S. Rosenschein, and A. Zohar. Multivinner elections: Complexity of
manipulation, control and winner-determination. In Proceedings of the 20th International
Joint Conference on Arti cial Intelligence (IJCAI) , pages 1476{1481, 2007.

[126] A. D. Procaccia, A. Zohar, Y. Peleg, and J. S. Rosenscire Learning voting trees. In
Proceedings of the 22nd AAAI Conference on Arti cial Intellige nce (AAAI) , pages 110{115,
2007.

[127] A. D. Procaccia, J. S. Rosenschein, and A. Zohar. On theomplexity of achieveing propor-
tional representation. Social Choice and Welfare 30(3):353{362, 2008.

[128] A. D. Procaccia, A. Zohar, Y. Peleg, and J. S. Rosenschre The learnability of voting rules.
Arti cial Intelligence , 2009. In press.

[129] R. Raz and S. Safra. A sub-constant error-probability lev-degree test, and sub-constant error-
probability PCP characterization of NP. In Proceedings of the 29th Annual ACM Symposium
on the Theory of Computing (STOC), pages 475{484, 1997.

[130] R. Rivest and S. Vuillemin. On recognizing graph propeies from adjacency matrices. The-
oretical Computer Science 3:371{384, 1976.

[131] A. L. Rosenberg. The time required to recognize propéies of graphs: A problem. SIGACT
News 5(4):15{16, 1973.

[132] J. Rothe, H. Spakowski, and J. Vogel. Exact complexityof the winner problem for Young
elections. Theory of Computing Systems 36(4):375{386, 2003.

[133] M. Rothkopf. Thirteen reasons the Vickrey-Clarke-Growes process is not practicalOperations
Research 55(2):191{197, 2007.

[134] T. Sandholm, K. Larson, M. Andersson, O. Shehory, and FTohme. Coalition structure
generation with worst case guaranteesArti cial Intelligence , 111(1{2):209{238, 1999.

[135] M. Satterthwaite. Strategy-proofness and Arrow's comlitions: Existence and correspondence
theorems for voting procedures and social welfare function Journal of Economic Theory,
10:187{217, 1975.

132



[136] J. Schummer and R. V. Vohra. Mechanism design without money. In N. Nisan, T. Roughgar-
den, E. Tardos, and V. Vazirani, editors, Algorithmic Game Theory, chapter 10. Cambridge
University Press, 2007.

[137] I. Segal. The communication requirements of social aice rules and supporting budget sets.
Journal of Economic Theory, 136:341{378, 2007.

[138] J. Shawe-Taylor and N. Cristianini. Support Vector Machines and other Kernel Based Learn-
ing Methods Cambridge University Press, 2000.

[139] G. Sigletos, G. Paliouras, C. Spyropoulos, and M. Hatapoulos. Combining information
extractions systems using voting and stacked generalizadh. Journal of Machine Learning
Research 6:1751{1782, 2005.

[140] A. Sinclair and M. Jerrum. Approximate counting, uniform generation, and rapidly mixing
Markov chains. Information and Computation, 82:93{133, 1989.

[141] A. Slinko. How large should a coalition be to manipulaé an election? Mathematical Social
Sciences 47(3):289{293, 2004.

[142] Y. Sprumont. Strategyproof collective choice in ecoamic and political environments. The
Canadian Journal of Economics 28(1):68{107, 1995.

[143] S. Srivastava and M. A. Trick. Sophisticated voting rules: The case of two tournaments.
Social Choice and Welfare 13:275{289, 1996.

[144] L. Trevisan. Lecture notes on computational complexy, 2002. Lecture 12.
[145] V. V. Vazirani. Approximation Algorithms. Springer, 2001.

[146] W. Vickrey. Counter speculation, auctions, and compttive sealed tenders. Journal of
Finance, 16(1):8{37, 1961.

[147] L. Xia and V. Conitzer. Generalized Scoring Rules andhe frequency of coalitional manip-
ulability. In Proceedings of the 9th ACM Conference on Electronic Commer (ACM-EC),
pages 109{118, 2008.

[148] L. Xia and V. Conitzer. A su cient condition for voting rules to be frequently manipulable. In
Proceedings of the 9th ACM Conference on Electronic Commer (ACM-EC), pages 99{108
2008.

[149] L. Xia and V. Conitzer. Determining possible and necesary winners under common vot-
ing rules given partial orders. In Proceedings of the 23rd AAAI Conference on Atrti cial
Intelligence (AAAI) , pages 196{201, 2008.

[150] L. Xia, J. Lang, and M. Ying. Sequential voting rules ard multiple elections paradoxes.
In Proceedings of the 11th Conference on Theoretical Aspects &ationality and Knowledge
(TARK) , pages 279{288, 2007.

[151] L. Xia, J. Lang, and M. Ying. Strongly decomposable voing rules on multiattribute domains.
In Proceedings of the 22nd AAAI Conference on Arti cial Intellige nce (AAAI) , pages 776{
781, 2007.

133



[152] L. Xia, V. Conitzer, A. D. Procaccia, and J. S. Rosenschin. Complexity of unweighted
manipulation under some common voting rules. InProceedings of the 2nd International
Workshop on Computational Social Choice (COMSOC) 2008. To appear.

[153] A. C. Yao. Probabilistic computations: Towards a uni ed measure of complexity. InProceed-
ings of the 17th Symposium on Foundations of Computer Scierc(FOCS), pages 222{227,
1977.

[154] H. P. Young. Extending Condorcet's rule. Journal of Economic Theory, 16:335{353, 1977.

[155] M. Zuckerman, A. D. Procaccia, and J. S. Rosenschein. I§orithms for the coalitional ma-
nipulation problem. In Proceedings of the 19th Annual ACM-SIAM Symposium on Discreg¢
Algorithms (SODA), pages 277{286, 2008.

134



	Introduction
	A Broad Overview of Computational Voting Theory
	Structure and Overview of Results
	Prerequisites
	Bibliographic Notes

	Preliminaries
	The Basics
	Common SCFs
	Tournaments and Voting Trees
	Manipulation and the G-S Theorem

	I Elections and Approximation
	Approximability of Dodgson and Young Elections
	Introduction
	Approximability of Dodgson
	Approximability of Young
	Related Work
	Discussion

	Approximating Maximum Degree in a Tournament by Binary Trees
	Introduction
	The Mathematical Framework
	Upper Bounds
	A Randomized Lower Bound
	Balanced Trees
	Related Work
	Discussion


	II Elections and Computational Learning
	The Learnability of Social Choice Functions
	Introduction
	A Crash Course on Computational Learning Theory
	Learnability of Scoring Functions
	Learnability of Voting Trees
	On Learning SCFs ``Close'' to Target Functions
	Related Work
	Discussion

	Strategyproof Regression Learning
	Introduction
	The Mathematical Framework
	Degenerate Distributions
	Uniform Distributions Over the Sample
	Arbitrary Distributions Over the Sample
	Related Work
	Discussion


	III Frequency of Manipulation in Elections
	Junta Distributions
	Introduction
	The Mathematical Framework
	Formulation, Proof, and Justification of Main Result
	Related Work
	Discussion

	The Fraction of Manipulators
	Introduction
	Fraction of Manipulators is Small
	Fraction of Manipulators is Large
	Algorithmic Implications
	Related Work
	Discussion

	Conclusions

	Appendix
	Omitted Proofs and Results for Chapter 4
	Proof of Theorem 4.3.3
	Proof of Theorem 4.4.8
	Proof of Lemma 4.4.10
	Proof of Theorem 4.5.1
	Composition of Caterpillars

	Omitted Proofs for Chapter 5
	Proof of Theorem 5.4.7

	Omitted Proofs and Results for Chapter 6
	Proof of Theorem 6.4.2
	Proof of Theorem 6.4.3
	Justification of Conjecture 6.4.5



