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Abstract

Strategyproof classification deals with a setting
where a decision-maker must classify a set of in-
put points with binary labels, while minimizing
the expected error. The labels of the input points
are reported by self-interested agents, who might
lie in order to obtain a classifier that more closely
matches their own labels, thus creating a bias in the
data; this motivates the design of truthful mech-
anisms that discourage false reports. Previous
work [Meir et al., 2008] investigated both decision-
theoretic and learning-theoretic variations of the
setting, but only considered classifiers that belong
to a degenerate class.
In this paper we assume that the agents are inter-
ested in a shared set of input points. We show
that this plausible assumption leads to powerful re-
sults. In particular, we demonstrate that variations
of a truthful random dictator mechanism can guar-
antee approximately optimal outcomes with respect
to any class of classifiers.

1 Introduction

There are many settings in which one has to make a deci-
sion based on empirical information arriving from multiple
sources. When the data sources are rational agents that are
affected by the final decision, the agents may act in a strate-
gic, non-cooperative manner in an attempt to increase their
own utility at the expense of the social good.

We assume that the final decision assumes the form of a
binary classifier, which assigns a positive or negative label to
each point of the input space. The choice of classifier may be
limited, due to external constraints, to a fixed class of classi-
fiers that we refer to as the concept class, e.g., linear separa-
tors over the input space.

We consider two interrelated settings. The first setting is
decision-theoretic; a decision must be made based on data re-
ported by multiple self-interested agents. The agents are con-
cerned with the binary labels of a set of input points. The util-
ity of an agent with respect to a given decision (i.e., a given
classifier) is the number of points on which the label provided
by the classifier agrees with the agent’s own label. The goal

of the decision-maker is to choose a classifier that maximizes
the social welfare—the sum of utilities.

The second setting is learning-theoretic, a variation of the
standard Supervised Classification problem. Samples are
drawn from an unknown distribution over the input space, and
are then labeled by experts. A classification mechanism re-
ceives the sampled data as input, and outputs a classifier. Un-
like the standard setting in machine learning (but similarly to
our first setting), the experts are assumed to be self-interested
agents, and may lie in order to increase their utility.

In both settings the decision-maker (or mechanism, or
learning algorithm) aims to find a classifier that classifies the
available data as well as possible. However, the agents may
misreport their labels in an attempt to influence the final de-
cision in their favor. The result of a decision-making process
based on such biased data may be completely unexpected and
difficult to analyze. A truthful learning mechanism eliminates
any such bias and allows the decision-maker to select a clas-
sifier that best fits the reported data, without having to take
into account the hidden interests of the agents.

Previous work on strategyproof classification. The fore-
going model of strategyproof classification was recently pre-
sented by Meir et al. [2008]. Their paper can be seen as only
a preliminary step towards an understanding of incentives in
classification, as they investigate a degenerate concept class
that is restricted to exactly two classifiers: the one that clas-
sifies all the points as positive, and the one that classifies all
the points as negative. Put another way, the decision-maker
has only two possible decisions. In contrast, in most classi-
fication settings the concept class—the set of decisions that
can be made—is far richer.

The assumption of shared inputs. Our main conceptual
contribution in this paper is the assumption of shared inputs.
In the decision-theoretic setting, this means that the agents
share the same set of input points, and only disagree on the
labels of these points. In the learning-theoretic setting, the
assumption implies that the agents are interested in a common
distribution over the input space, but, once again, differ with
respect to the labels.

The model of Meir et al. [2008] did not address the issue of
shared inputs. However, as the two possible classifiers were
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constant, the identity of the input points (i.e., their location)
was irrelevant—only their labels mattered. Hence, the set-
ting of Meir et al. is in fact a very special case of our setting,
even though we assume shared inputs. Furthermore, this as-
sumption allows us to obtain inclusive results with respect to
any concept class. We feel that in many environments the
requirement of shared inputs is satisfied; below we give one
such example.

Shared inputs: A motivating example. Let us consider
the following example which involves learning in a non-
cooperative environment under the shared input assumption.
A large organization is trying to fight the congestion in an in-
ternal email system by designing a smart spam filter. In order
to train the system, managers are asked to review the last 1000
emails sent to the “all employees” mailing list (hence, shared
inputs) and classify them as either “work-related” (positive
label) or “spam” (negative label). Whereas the managers
will likely agree on the classification of some of the mes-
sages (e.g., “Buy Viagra now!!!” or “Christmas Bonus for
all employees”), it is likely that others (e.g., “Joe from the
Sales department goes on a lunch break”) would not be unan-
imously classified. Moreover, as each manager would like
to filter most of what he sees as spam, a manager might try
to compensate for the “mistakes” of his colleagues by mis-
reporting his real opinion in some cases. For example, the
manager of the R&D department, believing that about 90%
of the Sales messages are utterly unimportant, might classify
all of them as spam in order to reduce the congestion. The
manager of Sales, suspecting the general opinion of her de-
partment, might do the exact opposite to prevent her emails
from being filtered.

Overview of our results. As in [Meir et al., 2008], we wish
to design classification mechanisms that achieve a good out-
come in the face of strategic behavior. By “good outcome”
we mean that the output of the mechanism provides an ap-
proximation of the optimal solution. We would also like our
mechanisms to be strategyproof (SP), that is, the agents must
not be able to benefit from lying.

We begin by investigating mechanisms for the decision-
theoretic setting (Section 2). We first show that, even under
the shared input assumption, SP deterministic mechanisms
cannot guarantee a sublinear approximation ratio. We then
consider randomized mechanisms in the weighted case, in
which the decision mechanism may value some agents more
than others. Surprisingly, and in contrast to the above, we
show that choosing a dictator at random according to agents’
weights provides an approximation ratio of three in expecta-
tion. If all weights are equal, then the approximation is shown
to be slightly better. We emphasize that these results hold
with respect to any concept class.

In the learning-theoretic setting (Section 3), designing
strategyproof mechanisms is virtually impossible, since there
is an additional element of randomness introduced by sam-
pling the input space. We therefore relax the strategyproof-
ness requirements, and instead investigate each of two incom-
parable strategic assumptions: that agents do not lie if they

cannot gain more than ε, and that agents always use a dom-
inant strategy if one exists with respect to a specific sample.
We show that under either assumption, our randomized mech-
anism of Section 2 can be run directly on sampled data, while
maintaining a bounded expected error. Our theorems give a
connection between the number of samples and the expected
error of the mechanism.

An important remark is that in the strategyproof classifi-
cation setting, standard economic money-based mechanisms
such as the Vickrey-Clarke-Groves mechanism (see, e.g.,
[Nisan, 2007]) can be used to obtain good results. However,
this setting admits strategyproof mechanisms that do well
even without assuming money. Achieving our goals with-
out resorting to payments is highly desirable, since often pay-
ments cannot be made due to legal or ethical considerations.
Moreover, in internet environments payments are notoriously
difficult to implement, due to banking and security issues.
Hence, we consider approximation mechanisms that do not
require payments.

Due to their length, most proofs are omitted, but can be
found online in [Meir, 2008, Chapter 5].

Related work. Apart from [Meir et al., 2008], which was
discussed above, the work most closely related to ours is the
paper by Dekel et al. [2008]. Their work focused on regres-
sion learning, where the labels are real numbers and one is
interested in the distances between the mechanism’s outputs
and the labels. Except for this very significant difference,
the settings that we study and our goals are very similar to
theirs. Dekel et al. provided upper and lower bounds on the
approximation ratio achieved by supervised regression mech-
anisms in this model. Notably, some of our bounds resemble
the bounds in their regression setting. Moreover, similar intu-
itions sometimes apply to both settings, although it seems the
results of one setting cannot be analytically mapped to the
other. Dekel et al. also concentrate on mechanisms without
payments, but their results hold only with respect to very spe-
cific function classes (as they do not assume shared inputs;
see, e.g., Theorems 4.1 and 4.2 of [Dekel et al., 2008]).

Another rather closely related work has results of a neg-
ative flavor. Perote and Perote-Peña [2003] put forward a
model of unsupervised clustering, where each agent controls
a single point in R

2 (i.e., its reported location). A clustering
mechanism aggregates these locations and outputs a partition
and a set of centroids. They show that if every agent wants to
be close to some centroid, then under very weak restrictions
on the clustering mechanism there always exists a beneficial
manipulation, that is, there are no reasonable (deterministic)
clustering mechanisms that are SP. The same authors have
also investigated linear regression in a strategic setting [Per-
ote and Perote-Peña, 2004].

There is a significant body of work on learning in the face
of noise, where the noise can be either random or adversarial
(see, e.g., [Bshouty et al., 2002; Dalvi et al., 2004]). How-
ever, in that research the goal is to do well in the face of
noise, rather than provide incentives in a way that prevents
the dataset from being manipulated in the first place.

For additional relevant references, the reader is encour-
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Figure 1: An instance with shared inputs. Here, X = R
2,

C is the class of linear separators over R
2, and n = 3. The

input points X of all three agents are identical, but the labels,
i.e., their types, are different. The best classifier from C with
respect to each Si is also shown (the arrow marks the posi-
tive halfspace of the separator). Only the rightmost dataset is
realizable.

aged to consult previous papers on strategyproof learning set-
tings [Dekel et al., 2008; Meir et al., 2008].

2 The Decision-Theoretic Setting

In this section we analyze our decision-theoretic setting,
where the dataset is fixed and no generalization takes place.
We start by introducing this section’s model and notations.

Let X be an input space, which we assume to be either
a finite set or some subset of R

d. A classifier or concept c
is a function c : X → {+,−} from the input space to the
labels {+,−}. A concept class C is a set of such concepts.
For example, the class of linear separators over R

d is the set
of concepts that are defined by the parameters a ∈ R

d and
b ∈ R, and map a point x ∈ R

d to + if and only if a·x+b ≥ 0.
Denote the set of agents by I = {1, . . . , n}, n ≥ 2. The

agents are interested in a (finite) set of m input points X ∈
Xm. In this paper we assume that X is shared among the
agents, that is, all the agents are equally interested in each
input point in X . This plausible assumption, as we shall see,
allows us to obtain surprisingly strong results. Naturally, the
points in X are common knowledge.

Each agent has a private type: its labels for the points in
X . Specifically, agent i ∈ I holds a function Yi : X →
{+,−}, which maps every point x ∈ X to the label Yi(x) that
i attributes to x. Each agent i ∈ I is also assigned a weight
wi, which reflects its relative importance; by normalizing the
weights we can assume that

∑
i∈I wi = 1. Let

Si = {〈x, Yi(x)〉 : x ∈ X}
be the partial dataset of agent i, and let S = 〈S1, . . . , Sn〉
denote the complete dataset. Si is said to be realizable w.r.t. a
concept class C if there is c ∈ C which perfectly separates the
positive samples from the negative ones. If Si is realizable for
all i ∈ I , then S is said to be individually realizable. Figure 1
shows an example of a dataset with a shared set of points X .

We use the common 0-1 loss function (also employed by
Meir et al. [2008]) to measure the error. The risk, or negative
utility, of agent i ∈ I with respect to a concept c is simply
the relative number of errors that c makes on its dataset. For-
mally,

Ri(c, S) =
1
m

∑

〈x,y〉∈Si

�c(x) �=y� =
1
m

∑

x∈X

�c(x) �=Yi(x)� ,

where �A� denotes the indicator function of the boolean
expression A. Note that Si is realizable if and only if
minc∈C Ri(c, S) = 0. The global risk is defined as

RI(c, S) =
∑

i∈I

wi · Ri(c, S)

=
1
m

∑

i∈I

∑

x∈X

wi · �c(x) �= Yi(x)� .

A deterministic mechanism M receives as input a dataset
S (and the weights of the agents), and outputs a classifier c ∈
C. Note that Ri(M(S), S) for all i ∈ I and RI(M(S), S)
are well-defined. A randomized mechanism returns a random
variable ĉ taken from C, and we are interested in the expected
risk. Formally,

Ri(M(S), S) = E [Ri(ĉ, S)|S] ,

and the global risk is defined analogously.
We measure the quality of the outcome of a mechanism

using the notion of approximation. A mechanism is said to
be an α-approximation mechanism if for every dataset S,

RI(M(S), S) ≤ α · OPT ,

where OPT = minc∈C RI(c, S).
We emphasize that the real labels of the input points are

private information, and an agent may report different labels
than the ones indicated by Yi. We denote by Y i : X →
{+,−} the reported labels of agent i. We also denote by
Si = {〈x, Y i(x)〉 : x ∈ X} the reported partial dataset of
agent i, and by S = 〈S1, . . . , Sn〉 the reported dataset.

Strategyproofness implies that reporting the truthful types
is a dominant strategy for all agents. Formally, for a dataset
S and i ∈ I , let S−i be the complete dataset without the
partial dataset of agent i. A (deterministic or randomized)
mechanism M is strategyproof (SP) if for every dataset S,
for every i ∈ I , and for every Si,

Ri(M(S), S) ≤ Ri(M(Si, S−i), S) .

We remark that for randomized mechanisms, this is strate-
gyproofness in expectation. Interestingly, this notion of strat-
egyproofness is sufficient for our lower bounds, but our upper
bounds also hold with respect to strategyproofness in domi-
nant strategies, that is, an agent cannot gain from lying re-
gardless of the random outcome of the mechanism.

Notice that we do not allow mechanisms to make pay-
ments. Since we are essentially interested in maximizing
the social welfare, an optimal truthful mechanism can be
obtained using VCG payments (see, e.g., [Nisan, 2007]).
However, achieving strategyproofness without payments is
far more desirable (for the reasons outlined in the introduc-
tion). Therefore, we adopt the approach of previous work on
strategyproof learning [Dekel et al., 2008; Meir et al., 2008],
and sacrifice the optimality of the solution in order to achieve
strategyproofness without payments.

2.1 Deterministic Mechanisms

We start by examining an extremely simple deterministic
mechanism. However, despite its simplicity, its analysis is
nontrivial.
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For any dataset S, we define by ERM(S) ∈ C the Em-
pirical Risk Minimizer of S (following the conventions of
the learning theory literature), i.e., the concept that achieves
OPT, the minimum risk on S. Formally,

ERM(S) = argminc∈C
∑

〈x,y〉∈S

�c(x) �= y� .

Our mechanism simply lets the heaviest agent dictate which
concept is chosen.
Mechanism 1 (Heaviest Dictator). Let h ∈ I be a heaviest
agent, h ∈ argmaxi∈Iwi. Return ERM(Sh).

If more than one ERM exists, return one of them arbitrarily.
The mechanism is clearly SP: the heaviest dictator h has no
interest in lying, since its best concept is selected; all other
agents are simply ignored, and therefore have no reason to lie
either. We have the following result.
Theorem 2.1. Let |I| = n. For every concept class C, Mech-
anism 1 is an SP (2n− 1)-approximation mechanism.

Unfortunately, this bound is tight, i.e., there is an exam-
ple in which the ratio is exactly 2n − 1. An approximation
ratio that increases linearly with the number of agents is not
very appealing. However, it turns out that using determin-
istic mechanisms we cannot do better with respect to every
concept class, as the following theorem states.
Theorem 2.2. Let |I| = n. There exist concept classes for
which any deterministic SP mechanism has an approximation
ratio of at least Ω(n), even if all the weights are equal.

The proof of this theorem is quite nontrivial. The key in-
gredient is an application of the Gibbard-Satterthwaite im-
possibility theorem (see, e.g., [Nisan, 2007]), but since the
theorem requires that agents be able to report any ranking
of the alternatives, an elaborate mapping between our setting
and the theorem’s setting is required.

Theorem 2.2 implies that Mechanism 1 is asymptotically
optimal as a generic mechanism that applies to any concept
class. However, for specific concept classes one can obvi-
ously do much better. For example, recall that the paper of
Meir et al. [2008] focuses on the concept class C = {c+, c−},
which contains only the constant positive concept and the
constant negative concept. With respect to this concept
class, Meir et al. provided a deterministic SP 3-approximation
mechanism (and also showed that this bound is tight).

2.2 Randomized Mechanisms

In order to break the lower bound given by Theorem 2.2, we
employ a simple randomization. Strikingly, we will see that
this randomization yields a constant approximation ratio with
respect to any concept class (under our assumption of shared
inputs, of course).
Mechanism 2 (Weighted Random Dictator). For each i ∈
I , select agent i with probability wi. Return ERM(Si).

This mechanism is clearly SP. Our main results are the fol-
lowing two theorems.
Theorem 2.3. For every concept class C, Mechanism 2 is an
SP 3-approximation mechanism. Moreover, if S is individu-
ally realizable, then 2-approximation is guaranteed.

We give a very rough proof sketch, which in particular as-
sumes that the set of input points X does not contain two
copies of an input point x ∈ X , but this assumption can be
relaxed. For the detailed proof, see [Meir, 2008].

Proof sketch of Theorem 2.3. Let X be a fixed set of input
points, and let H the set of all functions h : X → {−,+}. We
define the distance between two functions h, h′ ∈ H as the
number of input points that they label differently; formally:

d(h, h′) =
1
m

∑

x∈X

�h(x) �= h′(x)� .

For every c ∈ C, there is a single function hc ∈ H such that
∀x ∈ X (hc(x) = c(x)). For simplicity, we slightly abuse
notation by using c instead of hc. We denote by ci the best
concept with respect to agent i, i.e., ci = ERM(Si). We also
denote ERM(S) by c∗.

We show that d is reflexive, non-negative, symmetric and
satisfies the triangle inequality. Further, the following prop-
erties also hold for the distance d:

∀c ∈ C,∀i ∈ I (d(Yi, c) = Ri(c, S)) . (1)
In particular, it follows that d(Yi, ci) = 0 if Si is realizable,

and that ∀i, j ∈ I (d(ci, Yj) = Rj(ci, S)).

∀i ∈ I
(
ci = argminc∈Cd(c, Yi)

)
. (2)

∑

i∈I

wiRI(ci, S) =
∑

i

∑

j

wiwjd(ci, Yj) . (3)

∑

i

∑

j

wiwjd(Yi, Yj) ≤ 2 · OPT . (4)

Using these properties, we analyze the risk of the mecha-
nism, which randomizes the dictator:

RI(M(S), S) =
∑

i∈I

wiRI(ci, S) =
∑

i

∑

j

wiwjd(Yi, cj)

≤
∑

i

∑

j

wiwj(d(Yi, Yj) + d(Yj , cj)) .

In the individually realizable case, the second term equals 0,
and hence

RI(M(S), S) ≤
∑

i

∑

j

wiwjd(Yi, Yj) ≤ 2 · OPT .

Otherwise,

RI(M(S), S) ≤
∑

i

∑

j

wiwj(d(Yi, Yj) + d(Yj , c
∗))

=
∑

i

∑

j

wiwjd(Yi, Yj)+
∑

j

wjd(Yj , c
∗)

∑

i

wi

≤ 2 · OPT +
∑

j

wjd(Yj , c
∗)

= 2 · OPT +
∑

j

wjRj(c∗, S)

= 2 · OPT + RI(c∗, S) = 3 · OPT .
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Theorem 2.4. Let |I| = n, and assume all agents have equal
weights. For every concept class C, Mechanism 2 is an SP
(3− 2

n )-approximation mechanism (2− 2
n when S is individ-

ually realizable).

The proof is similar to the proof of Theorem 2.3, but is
somewhat more involved, since a careful analysis is required
to tighten the bound in Equation (4). Similar intuition also
accounts for Theorem 2.1.

It is possible to show that the analysis of Mechanism 2 is
tight. Indeed, for every concept class of size at least two, there
is an example where the approximation ratio yielded by the
mechanism is exactly 3− 2

n , even when the agents have equal
weights. If weights are allowed, for every ε > 0 an example
that provides a lower bound of 3− ε can be constructed using
only two agents.

It is natural to ask whether better SP mechanisms exist.
For specific concept classes, the answer to this question is
positive. For example, Meir et al. [2008] designed a random-
ized SP 2-approximation mechanism for the concept class
C = {c+, c−}. They further showed the following theorem.

Theorem 2.5 (Meir, Procaccia and Rosenschein [2008]).
For all ε > 0, there are no randomized SP (2 − ε)-
approximation mechanisms for C = {c+, c−}, even if there
are only 2 agents with equal weight.

This negative result can be easily extended to any con-
cept class of size at least two (even with shared inputs). We
conclude that for any nontrivial concept class C and for any
dataset with shared inputs S, the worst-case approximation
ratio of the best randomized SP mechanism has to lie between
2 and 3. The exact value may depend on the characteristics
of C and S.

3 The Learning-Theoretic Setting

In this section we leverage the upper bounds that were at-
tained in the decision-theoretic setting to obtain results in a
machine-learning framework. That is, we present a learning
mechanism that guarantees a constant approximation of the
optimal risk in expectation, even in the face of strategic be-
havior.

In contrast to the previous setting where the input was a
fixed dataset, in instances of the learning problem the type of
an agent i ∈ I is defined by a function Yi : X → {+,−} that
assigns a label to every point of the input space.1 Reinter-
preting our shared input assumption in the learning-theoretic
setting, we assume that all agents have the same probability
distribution D over X , which reflects the relative importance
that the agents attribute to different input points; the distribu-
tion D is common knowledge.

Let us now redefine the notion of risk. The risk of a con-
cept is computed with respect to D, as the expected relative
number of errors. Specifically,

Ri(c) = Ex∼D [�c(x) �= Yi(x)�] ,

1Our results also hold in a more general model, where agents
have distributions over the labels, but we use this simpler formula-
tion for ease of exposition.

and
RI(c) =

∑

i∈I

wiRi(c) .

Following the standard assumption in machine learning,
we have no direct access toD, nor can agents report the func-
tion Yi; our mechanisms can only sample from D and ask the
agents for their labels. Put another way, whereas in Section 2
we had a set of shared inputs X , in our current setting this
shared set of inputs is sampled from D.

Our goal is, once again, to design mechanisms with low
risk. However, constructing an SP mechanism that learns
from sampled data is nearly impossible (see [Dekel et al.,
2008; Meir et al., 2008] for further discussion). Hence, we
weaken the SP requirement, and analyze the performance of
our mechanisms under each of the following two assump-
tions.

1. The ε-truthfulness assumption: Agents do not lie if they
gain at most ε from lying.

2. The rationality assumption: Agents will always use a
strategy that is guaranteed to minimize their risk in situ-
ations where such a strategy exists.

The former approach was taken by Dekel et al. [2008],
whereas a variation on the latter approach was adopted by
Meir et al. [2008]. Notice that the two assumptions are incom-
parable. The latter assumption may seem to be weaker than
the former, but the latter assumption implies that an agent will
definitely lie if this proves beneficial. Hence, we study both
assumptions under our setting of shared inputs.

3.1 The ε-Truthfulness Assumption

An ε-strategyproof mechanism is one where agents cannot
gain more than ε by lying. We show below that, similarly to
Dekel et al. [2008], the results of Section 2 can be employed
to obtain a mechanism that is “usually” ε-strategyproof. We
focus on the following mechanism.

Mechanism 3.

1. Sample m input points i.i.d. fromD (denote the sampled
points by X).

2. Ask each agent i ∈ I to label X according to Yi; this
produces a dataset S.

3. Run Mechanism 2 on S (using given weights), and return
the output.

We wish to formulate a theorem that asserts that, given
enough samples, the expected risk of Mechanism 3 is rel-
atively small under the ε-truthfulness assumption. The ex-
act number of samples needed depends on the combinatorial
richness of the function class; this is usually measured using
some notion of dimension, such as the VC dimension (see,
e.g., [Kearns and Vazirani, 1994]). For instance, the VC di-
mension of the class of linear separators over R

d is d+1. We
do not dwell on this point too much, and instead assume that
the dimension is bounded.

Theorem 3.1. Let |I| = n, and let C be a concept class with
bounded dimension. Let ε > 0, and assume that agents are
truthful when they cannot gain more than ε by lying. Then
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given any distribution D, the expected risk of Mechanism 3 is
at most 3 · OPT + ε, where

OPT = inf
c∈C

RI(c) .

Under these assumptions, the number of samples required by
the mechanism is polynomial in 1

ε and log n.

The expectation is taken over the randomness of sampling
and the randomness of Mechanism 2. In order to prove the
theorem, one must establish a result in the spirit of Theo-
rem 5.1 of [Dekel et al., 2008]: given δ and enough sam-
ples (whose number m also depends on δ), with probability
at least 1 − δ none of the agents can gain more than ε by
lying, and also (assuming the agents are truthful) the mecha-
nism yields an approximation ratio close to three. The theo-
rem then follows by taking a small enough δ.

3.2 The Rationality Assumption

We presently state an alternative assumption regarding the
strategic behavior of the agents. Consider a mechanism that
samples a set of input points X and then executes a mecha-
nism M on the labeled dataset (e.g., Mechanism 3). Infor-
mally, we assume that each agent uses a dominant strategy, if
one exists. We emphasize that although a dominant strategy
is a specific labeling of the dataset, it minimizes the agent’s
private risk with respect to the entire distribution, rather than
the number of errors on its sampled dataset. We make no as-
sumptions regarding the agent’s action in the case where there
are no dominant strategies.

More formally, our rationality assumption states the fol-
lowing: for each agent i ∈ I , if there is a labeling Y i of X ,
such that for any S−i, Ri(M(Si, S−i)) is minimized (where
Si is X labeled by Y i), then agent i would report Y i. We
once again consider the performance of Mechanism 3.

Theorem 3.2. Let |I| = n, and let C be a concept class with
bounded dimension. Let ε > 0, and assume that agents al-
ways use a dominant strategy when one exists. Then given
any distribution D, the expected risk of Mechanism 3 is at
most 3 · OPT + ε, where

OPT = min
c∈C

RI(c) .

Under these assumptions, the number of samples required by
the mechanism is polynomial (only) in 1

ε .

Interestingly, the alternative assumption improved the sam-
ple complexity: the number of required samples no longer de-
pends on n, only on 1

ε . In a somewhat counter-intuitive way,
the rationality assumption provides us with better bounds
without using the notion of truthfulness at all. This can be ex-
plained by the fact that a rational (i.e., self-interested) label-
ing of the dataset is a better proxy to an agent’s real type than
a truthful labeling. Indeed, this strange claim is true since
the sampling process might produce a set of points X that
represents the agent’s distribution in an inaccurate way.2

2Note that the revelation principle does not apply here, since the
agents do not report their full preferences.

4 Discussion

The focus of this paper has been the design of strategyproof
mechanisms that yield an approximation ratio, without al-
lowing payments. This approach is part of an emerging
agenda which we call approximate mechanism design with-
out money [Procaccia and Tennenholtz, 2009], and stands in
contrast to most existing work on algorithmic mechanism de-
sign, where payments are ubiquitous. The second author and
colleagues are currently working on several other instances of
this agenda.

There are two main avenues for expanding our understand-
ing of strategyproof classification. One is to drop the assump-
tion of shared inputs and observe how it affects the general
case and particular concept classes (e.g., linear separators),
and we are already taking some steps in this direction. The
other is to investigate alternative formulations of the strate-
gyproof classification setting, such as different loss functions.
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