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A well-studied approach to the design of voting rules views them as maximum likelihood estimators; given

votes that are seen as noisy estimates of a true ranking of the alternatives, the rule must reconstruct the

most likely true ranking. We argue that this is too stringent a requirement, and instead ask: How many

votes does a voting rule need to reconstruct the true ranking? We define the family of pairwise-majority

consistent rules, and show that for all rules in this family the number of samples required from the Mallows

noise model is logarithmic in the number of alternatives, and that no rule can do asymptotically better (while

some rules like plurality do much worse). Taking a more normative point of view, we consider voting rules

that surely return the true ranking as the number of samples tends to infinity (we call this property accuracy

in the limit); this allows us to move to a higher level of abstraction. We study families of noise models that

are parametrized by distance functions, and find voting rules that are accurate in the limit for all noise

models in such general families. We characterize the distance functions that induce noise models for which

pairwise-majority consistent rules are accurate in the limit, and provide a similar result for another novel

family of position-dominance consistent rules. These characterizations capture three well-known distance
functions.

Categories and Subject Descriptors: I.2.6 [Computing Methodologies]: Artificial Intelligence—Learning;

J.4 [Computer Applications]: Social and Behavioral Sciences—Economics
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1. INTRODUCTION

Social choice theory studies the aggregation of individual preferences towards a collective
choice. In one of the most common models, both the individual preferences and the collective
decision are represented as rankings of the alternatives. A voting rule1 takes the individual
rankings as input and outputs a social ranking.

One can imagine many different voting rules; which are better than others? The popular
axiomatic approach suggests that the best voting rules are the ones that satisfy intuitive
social choice axioms. For example, if we replicate the votes, the outcome should not change;
or, if each and every voter prefers one alternative to another, the social ranking should
follow suit. It is well-known though that natural combinations of axioms are impossible to
achieve [Arrow 1951], hence the axiomatic approach cannot give a crisp answer to the above
question.

1More formally known in this context as a social welfare function.
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A different — in a sense competing — approach views voting rules as estimators. From
this viewpoint, some alternatives are objectively better than others, i.e., the votes are sim-
ply noisy estimates of an underlying ground truth. One voting rule is therefore better
than another if it is more likely to output the true underlying ranking; the best voting
rule is a maximum likelihood estimator (MLE) of the true ranking. This approach dates
back to Marquis de Condorcet, who also proposed a compellingly simple noise model: each
voter ranks each pair of alternatives correctly with probability p > 1/2 and incorrectly
with probability 1 − p, and the mistakes are i.i.d.2 Today this noise model is typically
named after Mallows [1957]. Probability theory was still in its infancy in the 18th Century
(in fact Condorcet was one of its pioneers), so the maximum likelihood estimator in the
Mallows model — the Kemeny rule — had to wait another two centuries to receive due
recognition [Young 1988]. More recently, the MLE approach has received some attention in
computer science [Conitzer and Sandholm 2005; Elkind et al. 2010; Procaccia et al. 2012;
Mao et al. 2013], in part because its main prerequisite (underlying true ranking) is naturally
satisfied by some of the crowdsourcing and human computation domains, where voting is
in fact commonly used [Procaccia et al. 2012; Mao et al. 2013].

As compelling as the MLE approach is, there are many different considerations in choosing
a voting rule, and insisting that the voting rule be an MLE is a tall order (there is only one
MLE per noise model); this is reflected in existing negative results [Conitzer and Sandholm
2005; Elkind et al. 2010]. We relax this requirement by asking: How many votes do promi-
nent voting rules need to recover the true ranking with high probability? In crowdsourcing
tasks, for example, the required number of votes directly translates to the amount of time
and money one must spend to obtain accurate results. Taking one step further and adopt-
ing a more normative viewpoint, we ask: Which voting rules are guaranteed to return the
correct ranking given an infinite number of samples from Mallows’ model? Finally, at the
highest level of abstraction we consider general classes of noise models, and seek similar
guarantees with respect to any noise model in one of these classes.

1.1. Our contribution

In Section 3 we focus on the Mallows model. We define the class of pairwise-majority
consistent (PM-c) rules. Intuitively, if there is a ranking σ of the alternatives such that
for every pair of alternatives a majority of voters agree with σ on their comparison then
a PM-c rule must return σ. The Kemeny rule is a PM-c rule, and so are several other
prominent voting rules. Our main result for this section is that to output the true ranking
with probability 1 − ǫ any PM-c rule requires only a logarithmic number of samples in 1/ǫ
and m, where m is the number of alternatives. We also establish a matching lower bound
that holds for any voting rule. Among other results, we show that a similar bound does
not hold for the plurality rule — the most ubiquitous among voting rules — and indeed it
requires an exponential number of samples.

Section 4 is an interlude of sorts. Instead of quantifying the required number of samples,
we consider a relaxed guarantee that we call accuracy in the limit: a voting rule should
return the correct ranking given an infinite number of samples. We view this as a normative
property, and in this sense we are connecting the axiomatic approach with the estimation
approach. In the Mallows model accuracy in the limit is easy to satisfy. Clearly, it is satisfied
by all PM-c rules in light of the abovementioned result, but we also show that it is satisfied by
all rules that belong to another novel class — position-dominance consistent (PD-c) rules.
Roughly speaking, PD-c rules focus on the exact positions in which alternatives appear
in the individual rankings, rather than pairwise comparisons, and are disjoint from PM-c
rules. We show that all PD-c rules are also accurate in the limit under the Mallows model.
While we view accuracy in the limit as a normative constraint, asking for a voting rule

2Intuitively, if a ranking is not obtained because of cycle formation, the process is restarted.
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to be accurate in the limit only for the Mallows model is perhaps asking too little. In the
Mallows model the probability of a ranking decreases, but in a specific way (exponentially),
as its Kendall-Tau (KT) distance from the true ranking increases; this distance function
measures the number of disagreements on pairs of alternatives. We want the voting rules to
be accurate in the limit with respect to any noise model that is similarly monotonic with
respect to the KT distance, and show that this is indeed the case with respect to all PM-c
and PD-c rules.

At the highest level of abstraction, we wish to extend our results to noise models that
are derived from a variety of distance functions. We define the family of majority-concentric
(MC) distances and prove the following characterization result: All PM-c rules are accurate
in the limit with respect to any noise model that is monotonic with respect to a distance
function d if and only if d is MC. Similarly, we define the family of position-concentric (PC)
distances and prove an analogous results for PD-c rules and PC distances. To verify that
these results are indeed very general, we prove that three popular distance functions are
both MC and PC.

1.2. Related work

The theme of quantifying the number of samples that are required to uncover the truth
plays a central role in a recent paper by Chierichetti and Kleinberg [2012]. They study a
setting with a single correct alternative and noisy signals about its identity. Focusing on
a single voting rule — the plurality rule — they give an upper bound on the number of
votes that are required to pinpoint the correct winner. They also prove a lower bound that
applies to any voting rule and suggests that plurality is not far from optimal. Interestingly,
under the Mallows model we show that plurality is far worse than all PM-c rules, but note
that we consider rules that output a ranking while Chierichetti and Kleinberg [2012] study
rules that output a single winner.

Our initial results regarding the Kemeny rule are related to the work of Braverman and
Mossel [2008]. Given samples from the Mallows model, they aim to compute the Kemeny
ranking; this problem is known to be NP-hard. They focus on circumventing the complexity
barrier by giving an efficient algorithm that computes the Kemeny ranking with arbitrarily
high probability. In contrast, we ask: How many samples do PM-c rules (including Kemeny)
need to reconstruct the true ranking?

There is a significant body of literature on MLEs and parameter estimation for
noise models over rankings that generalize Mallows’ model [Fligner and Verducci 1986;
Critchlow et al. 1991; Lu and Boutilier 2011]. In particular, the classic paper by Fligner
and Verducci [1986] analyzes extensions of the Mallows model with distance functions from
two families: those that are based on discordant pairs (including the KT distance) and
those that are based on cyclic structure. Critchlow et al. [1991] introduce four categories of
noise models; they also define desirable axiomatic properties that noise models should sat-
isfy, and determine which properties are satisfied by the different categories. Many papers
analyze other random models of preferences, e.g., the Plackett-Luce model [Liu 2011], the
Thurstone-Mosteller model [Pfeiffer et al. 2012], or the random utility model [Azari et al.
2012].

Somewhat further afield, a recent line of work in computational social choice studies
the distance rationalizability of voting rules [Meskanen and Nurmi 2008; Elkind et al. 2009,
2010; Boutilier and Procaccia 2012]. Voting rules are said to be distance rationalizable if
they always select an alternative or a ranking that is “closest” to being a consensus winner,
under some notion of distance and some notion of consensus. Among these papers, the one
by Elkind et al. [2010] is the most closely related to our work; they observe that the Kemeny
rule is both an MLE and distance rationalizable, and ask whether at least one of several
other common rules has the same property (the answer is “no”).
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2. PRELIMINARIES

We consider a set A of m alternatives. Let L(A) be the set of votes (which we may think
of as rankings or permutations), where each vote is a bijection σ : A → {1, 2, . . . , m}.
Hence, σ(a) is the position of alternative a in σ. In particular, σ(a) < σ(b) denotes that a
is preferred to b under σ; we alternatively denote this by a ≻σ b. A vote profile (or simply
profile) π ∈ L(A)n consists of a set of n votes for some n ∈ N.

2.1. Voting rules

A deterministic voting rule is a function r : ∪n≥1L(A)n → L(A) which operates on a vote
profile and outputs a ranking. First, note that we define the voting rule to output a ranking
over alternatives rather than a single alternative; such functions are also known as social
welfare functions in the literature. Second, in contrast to the traditional notation, we define
a voting rule to operate on any number of votes, which is required to analyze its asymptotic
properties as the number of votes grows. We consider randomized voting rules which are
denoted by r : ∪n≥1L(A)n → D(L(A)) where D(·) denotes the set of all distributions over
an outcome space. We use Pr[r(π) = σ] to denote the probability of rule r returning ranking
σ given profile π. The following voting rules (or families of voting rules) play a key role in
the paper.

(Positional) Scoring Rules. A scoring rule is given by a scoring vector α = (α1, . . . , αm)
where αi ≥ αi+1 for all i ∈ {1, . . . , m} and α1 > αm. Under this rule for each vote σ and
i ∈ {1, . . . , m}, αi points are awarded to the alternative σ−1(i), that is, α1 points to the first
alternative, α2 points to the second alternative, and so on. The alternative with the most
points overall is selected as the winner. We naturally extend this to output the ranking
where alternatives are sorted in the descending order of their total points. Our results
on positional scoring rules hold irrespective of the tie-breaking rule used. Special scoring
rules include plurality with α = (1, 0, 0, . . . , 0), Borda count with α = (m, m − 1, . . . , 1),
the veto rule with α = (1, 1, . . . , 1, 0), and the harmonic rule [Boutilier et al. 2012] with
α = (1, 1/2, . . . , 1/m).

The Kemeny Rule. Given a profile π = (σ1, . . . , σn) ∈ L(A)n, the Kemeny rule selects
a ranking σ ∈ L(A) that minimizes

∑n
i=1 dKT (σ, σi), where dKT is the Kendall tau (KT)

distance defined as

dKT (σ1, σ2) = |{(a, b)| ((a ≻σ1
b) ∧ (b ≻σ2

a)) ∨ ((b ≻σ1
a) ∧ (a ≻σ2

b))}|.

In words, the KT distance between two rankings is their number of disagreements over
pairs of alternatives, and informally it is equal to the minimum number of adjacent swaps
required to convert one ranking into the other. We give special attention to the Kemeny
rule with uniform tie-breaking — the randomized version of the Kemeny rule where ties
are broken uniformly, i.e., each ranking in arg minσ∈L(A)

∑n
i=1 dKT (σ, σi) is returned with

equal probability.

2.2. Noise models and distances

We assume that there exists a true hidden order σ∗ ∈ L(A) over the alternatives. We denote
the alternative at position i in σ∗ by ai, i.e., σ∗(ai) = i.

Our noise models are parametrized by distance functions over rankings. A function d :
L(A) × L(A) → R≥0 is called a distance function if for every σ, σ′, τ ∈ L(A) it satisfies:
(1) d(σ, σ′) ≥ 0, (2) d(σ, σ′) = 0 if and only if σ = σ′, (3) d(σ, σ′) = d(σ′, σ), and (4)
d(σ, σ′) ≤ d(σ, τ) + d(τ, σ′). We assume that our distance functions are right-invariant: the
distance between any two rankings does not change if the alternatives are relabeled, which is
a standard assumption. A right-invariant distance function is fully specified by the distances
of all rankings from any single base ranking.
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We consider three popular distance functions in this paper: the Kendall tau (KT) dis-
tance (which we have defined above), the footrule distance, and the maximum displacement
distance. We investigate the KT distance in detail in Section 3. Definitions of the other
distance functions are given in the full version of the paper.3

A noise model defines the probability of observing a ranking given an underlying true
ranking, i.e., Pr[σ|σ∗] for all σ, σ∗ ∈ L(A). In Section 3, we focus on a particular noise model,
known as the Mallows model [Mallows 1957], which is widely used in machine learning and
statistics. In this model, a ranking is generated given the true ranking σ∗ as follows. When
two alternatives a and b with a ≻σ∗ b are compared, the outcome is consistent with the
true ranking, i.e., a ≻ b, with a fixed probability 1/2 < p < 1. Every two alternatives are
compared in this manner, and the process is restarted if the generated vote has a cycle (e.g.,
a ≻ b ≻ c ≻ a). It is easy to check that the probability of drawing a ranking σ, given that
the true order is σ∗, is proportional to

p(m

2 )−dKT (σ,σ∗) · (1 − p)dKT (σ,σ∗),

which upon normalization gives

Pr[σ|σ∗] =
ϕdKT (σ,σ∗)

Zm
ϕ

,

where ϕ = (1 − p)/p < 1 and Zm
ϕ is the normalization factor which is independent of the

true ranking σ∗ (see, e.g., [Lu and Boutilier 2011]). Let pi,j denote the probability that the
alternative at position i in the true ranking (ai) appears in position j in a random vote , so

pi,j =
∑

σ∈L(A)|σ(ai)=j

Pr[σ|σ∗].

Let qi,k =
∑k

j=1 pi,j . Votes are sampled independently, so the probability of observing a

profile π = (σ1, . . . , σn) ∈ L(A)n is Pr[π|σ∗] =
∏n

i=1 Pr[σi|σ∗]. We note that this model is
equivalent to the Condorcet noise model.

3. SAMPLE COMPLEXITY IN MALLOWS’ MODEL

We first consider the Mallows model and analyze the number of samples needed by dif-
ferent voting rules to determine the true ranking with high probability; we use this
sample complexity as a criterion to distinguish between voting rules or families of vot-
ing rules. For any (randomized) voting rule r, integer k ∈ N and ranking σ ∈ L(A),
let Accr(k, σ) =

∑

π∈L(A)k Pr[π|σ] · Pr[r(π) = σ] denote the accuracy of rule r with

k samples and true ranking σ, that is, the probability that rule r returns σ given k
samples from Mallows’ model with true ranking σ. We overload the notation by letting
Accr(k) = minσ∈L(A) Accr(k, σ). In words, given k samples from Mallows’ model, rule r
returns the underlying true ranking with probability at least Accr(k) irrespective of what
the true ranking is. Finally, we denote Nr(ǫ) = min{k | Accr(k) ≥ 1 − ǫ}, which is the
number of samples required by rule r to return the true ranking with probability at least
1 − ǫ . Informally, we call Nr(ǫ) the sample complexity of rule r.

We begin by showing that for any number of alternatives m and any accuracy level ǫ,
the Kemeny rule (with uniform tie-breaking) requires the minimum number of samples
from Mallows’ model to determine the true ranking with probability at least 1 − ǫ. It is
already known that the Kemeny rule is the maximum likelihood estimator (MLE) for the
true ranking given samples from Mallows’ model. Formally, given a profile π = (σ1, . . . , σn)

3The full version is available from http://www.cs.cmu.edu/~arielpro/papers.html.
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from Mallows’ model, the MLE estimator of the true ranking is

arg max
σ∈L(A)

Pr[π|σ] = arg max
σ∈L(A)

n
∏

i=1

ϕ−dKT (σi,σ)

Zm
ϕ

= arg min
σ∈L(A)

n
∑

i=1

dKT (σi, σ),

where the expression on the right hand side is a Kemeny ranking. While at first glance
it may seem that this directly implies optimal sample complexity of the Kemeny rule, we
give an example in the full version of the paper of a noise model where the MLE rule does
not have optimal sample complexity. However, we show that for the Mallows model, the
Kemeny rule is optimal in terms of sample complexity. The proof is given in the full version
of the paper.

Theorem 3.1. The Kemeny rule with uniform tie-breaking has the optimal sample
complexity in Mallows’ model, that is, for any number of alternatives m and any ǫ > 0,
NKEM(ǫ) ≤ Nr(ǫ) for every (randomized) voting rule r.

Now that we know that the Kemeny rule has the optimal sample complexity, a natural
question is to determine how many samples it really requires. Instead of analyzing the
sample complexity of the Kemeny rule particularly, we consider a family of voting rules
(which includes the Kemeny rule itself) such that each rule in this family has the same
asymptotic sample complexity as that of the Kemeny rule.

3.1. The family of PM-c rules

Our family of voting rules crucially relies on the standard concept of pairwise-majority
graph (PM graph). Given a profile π ∈ L(A)n, the PM graph of π is the directed graph
G = (V, E), where the alternatives are the vertices (V = A) and there is an edge from
alternative a to alternative a′ if a is preferred to a′ in a (strong) majority of the rankings
of π. Formally, (a, a′) ∈ E if |{σ ∈ π|a ≻σ a′}| > |{σ ∈ π|a′ ≻σ a}|. Note that there may be
pairs of alternatives such that there is no edge in the PM graph in either direction (if they
are tied), but there can never be an edge in both directions. A PM graph can also have
directed cycles. When a PM graph is complete (i.e., there is an edge between every pair of
alternatives) and acyclic, there exists a unique σ ∈ L(A) such that there is an edge from a
to a′ if and only if a ≻σ a′. In this case, we say that the PM graph reduces to σ.

Definition 3.2 (Pairwise-Majority Consistent Rules). A deterministic voting rule r is
called pairwise-majority consistent (PM-c) if r(π) = σ whenever the PM graph of π re-
duces to σ. For randomized voting rules, we require that Pr[r(π) = σ] = 1.

To the best of our knowledge this family of rules is novel. Note though that an acyclic
and complete PM graph is similar to — and in some sense an extension of — having a
Condorcet winner. A Condorcet winner is an alternative that beats every other alternative
in a pairwise election. It is easy to check that if such an alternative exists, then it is unique
and it is a source in the PM graph with m−1 outgoing edges and no incoming edges. Thus,
profiles where the PM graph reduces to a ranking necessarily have a Condorcet winner. In
addition, they have a second alternative with m − 2 outgoing edges and only 1 incoming
edge, a third alternative with m − 3 outgoing edges and 2 incoming edges, and so on.

Theorem 3.3. The Kemeny rule, the Slater rule, the ranked pairs method, Copeland’s
method, and Schulze’s method are PM-c.

The definitions of these rules and the proof of the theorem appear in the full version of the
paper. Note that all the rules in Theorem 3.3 are Condorcet consistent when they output a
single alternative. If we take any Condorcet consistent method, apply it on a profile, remove
the winner from every vote in the profile, apply the method again on the reduced profile,
and keep repeating this process, then the extended rule that outputs the alternatives in the
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order of removal is always a PM-c rule. In contrast, Copeland’s method in Theorem 3.3 is
extended by sorting the alternatives by their Copeland scores.

We now proceed to prove that any PM-c rule requires at most a logarithmic number
of samples in m (the number of alternatives) and 1/ǫ to determine the true ranking with
probability at least 1 − ǫ. First, we introduce a property of distance functions that will
be used throughout the paper. For any σ ∈ L(A) and a, b ∈ A, define σa↔b to be the
ranking obtained by swapping a and b in σ. That is, σa↔b(c) = σ(c) for any c ∈ A \ {a, b},
σa↔b(a) = σ(b) and σa↔b(b) = σ(a).

Definition 3.4 (Swap-Increasing Distance Functions). An integer-valued distance func-
tion d is called swap-increasing if for any σ∗, σ ∈ L(A) and alternatives a, b ∈ A such that
a ≻σ∗ b and a ≻σ b, we have d(σa↔b, σ∗) ≥ d(σ, σ∗) + 1, and if σ∗(b) = σ∗(a) + 1 (a and b
are adjacent in σ∗) then d(σa↔b, σ∗) = d(σ, σ∗) + 1.

The following lemma is a folklore result; we reconstruct its proof in the full version of the
paper for the sake of completeness.

Lemma 3.5. The Kendall tau (KT) distance is swap-increasing.

We are now ready to analyze the sample complexity of PM-c rules.

Theorem 3.6. For any given ǫ > 0, any PM-c rule determines the true ranking with
probability at least 1 − ǫ given O(log(m/ǫ)) samples from Mallows’ model.

Proof. Let σ∗ denote the true underlying ranking. We show that the PM graph of a
profile of O(log(m/ǫ)) votes from Mallows’ model reduces to σ∗ with probability at least
1 − ǫ. It follows that any PM-c rule would output σ∗ with probability at least 1 − ǫ.

Let π ∈ L(A)n denote a profile of n samples from Mallows’ model. For any a, b ∈ A,
let nab denote the number of rankings σ ∈ π such that a ≻σ b. Hence, nab + nba = n for
every a, b ∈ A. The PM graph of π reduces to σ∗ if and only if for every a, b ∈ A such that
a ≻σ∗ b, we have nab − nba ≥ 1. Hence, we want an upper bound on n such that

Pr [∀a, b ∈ A, a ≻σ∗ b ⇒ nab − nba ≥ 1] ≥ 1 − ǫ.

For any a, b ∈ A with a ≻σ∗ b, define δab = E[(nab − nba)/n]. Let pa≻b denote the
probability that a ≻σ b in a random sample σ. Then, by linearity of expectation, we have
δab = pa≻b − pb≻a. Thus,

Pr [nab − nba ≤ 0] = Pr

[

nab − nba

n
≤ 0

]

≤ Pr

[∣

∣

∣

∣

nab − nba

n
− E

[

nab − nba

n

]∣

∣

∣

∣

≥ δab

]

≤ 2 · e−2·δ2
ab

·n ≤ 2 · e−2·δ2
min·n,

where the third transition is due to Hoeffding’s inequality and in the last transition δmin =
mina,b∈A:a≻σ∗ b δab. Applying the union bound, we get

Pr [∃a, b ∈ A, {(a ≻σ∗ b) ∧ (nab − nba ≤ 0)}] ≤

(

m

2

)

· 2 · e−2·δ2
min·n ≤ m2 · e−2·δ2

min·n

It is easy to check that the right-most quantity above is at most ǫ when n ≥ 1
2·δ2

min

·log
(

m2

ǫ

)

.

To complete the proof we need to show that δmin = Ω(1), that is, it is lower bounded by a
constant independent of m. This is quite intuitive since the process of generating a sample
from Mallows’ model maintains the order between every pair of alternatives with a constant
probability p > 1/2. However, the fact that we restart the process if a cycle is formed makes
the probabilities as well as this analysis a bit more involved. For any a, b ∈ A such that
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a ≻σ∗ b, we have

δab = pa≻b − pb≻a =
∑

σ∈L(A)|a≻σb

Pr[σ|σ∗] −
∑

σ∈L(A)|b≻σa

Pr[σ|σ∗]

=
∑

σ∈L(A)|a≻σb

(Pr[σ|σ∗] − Pr[σa↔b|σ∗]) =
∑

σ∈L(A)|a≻σb

ϕdKT (σ,σ∗) − ϕdKT (σa↔b,σ∗)

Zm
ϕ

≥
∑

σ∈L(A)|a≻σb

ϕdKT (σ,σ∗) · (1 − ϕ)

Zm
ϕ

= (1 − ϕ) · pa≻b = (1 − ϕ) ·

(

1 + δab

2

)

, (1)

where the third transition follows since σ ↔ σa↔b is a bijection between all rankings where
a ≻ b and all rankings where b ≻ a, the fifth transition follows using ϕ < 1 and Lemma 3.5,
and the last transition follows by the equalities pa≻b − pb≻a = δab and pa≻b + pb≻a = 1.
Solving Equation (1), we get δab ≥ (1 − ϕ)/(1 + ϕ) for all a, b ∈ A with a ≻σ∗ b. Hence,
δmin ≥ (1 − ϕ)/(1 + ϕ), as required. (Theorem 3.6)

We have seen that PM-c rules have logarithmic sample complexity; it turns out that no
rule can do better, i.e., we prove a matching lower bound that holds for any randomized
voting rule.

Theorem 3.7. For any ǫ ∈ (0, 1/2], any (randomized) voting rule requires Ω(log(m/ǫ))
samples from Mallows’ model to determine the true ranking with probability at least 1 − ǫ.

Proof. Consider any voting rule r. Assume Accr(n) ≥ 1 − ǫ for some n ∈ N. We
want to show that n = Ω(log(m/ǫ)). For any σ ∈ L(A), we have Accr(n, σ) ≥ 1 − ǫ.
Consider an arbitrary σ ∈ L(A), and let N (σ) = {σ′ ∈ L(A)|dKT (σ′, σ) = 1} denote the
set of all rankings at distance 1 from σ. Then, for any ranking σ′ ∈ N (σ) and any profile
π = (σ1, . . . , σn) ∈ L(A)n, we have

Pr[π|σ] =

n
∏

i=1

ϕdKT (σi,σ)

Zm
ϕ

≥
n

∏

i=1

ϕdKT (σi,σ′)+1

Zm
ϕ

= ϕn · Pr[π|σ′], (2)

where the second transition holds since for any τ ∈ L(A),

dKT (τ, σ) ≤ dKT (τ, σ′) + dKT (σ, σ′) = dKT (τ, σ′) + 1

due to triangle inequality of distance functions. Now,

Accr(n, σ) =
∑

π∈L(A)n

Pr[π|σ] · Pr[r(π) = σ] =
∑

π∈L(A)n

Pr[π|σ] · (1 − Pr[r(π) 6= σ])

= 1 −
∑

π∈L(A)n

Pr[π|σ] · Pr[r(π) 6= σ]

≤ 1 −
∑

π∈L(A)n

Pr[π|σ] ·





∑

σ′∈N (σ)

Pr[r(π) = σ′]





≤ 1 −
∑

σ′∈N (σ)

∑

π∈L(A)n

ϕn · Pr[π|σ′] · Pr[r(π) = σ′]

= 1 − ϕn ·
∑

σ′∈N (σ)

Accr(n, σ′) ≤ 1 − ϕn · (m − 1) · (1 − ǫ),

where the fifth transition follows by changing the order of summation and Equation (2),
and the last transition follows since Accr(n) ≥ 1 − ǫ and |N (σ)| = m − 1. Thus, to achieve
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an accuracy of at least 1 − ǫ, we need ϕn · (m − 1) · (1 − ǫ) ≤ ǫ, and the theorem follows by
solving for n. (Theorem 3.7)

3.2. Scoring rules may require exponentially many samples

While Theorems 3.6 and 3.7 show that every PM-c rule requires an asymptotically optimal
(and in particular, logarithmic) number of samples to determine the true ranking with
high probability, some classical voting rules such as plurality fall short. In particular, we
establish that plurality requires at least exponentially many samples to determine the true
ranking with high probability. Since plurality relies on the number of appearances of various
alternatives in the first position, our analysis crucially relies on the probability of different
alternatives coming first in a random vote, i.e., pi,1.

Lemma 3.8. pi,1 = ϕi−1/
(

∑m
j=1 ϕj−1

)

for all i ∈ {1, . . . , m}.

Proof. Recall that ai denotes the alternative at position i in the true ranking σ∗. First
we prove that for any i ∈ {1, . . . , m − 1}, we have pi+1,1 = ϕ · pi,1. To see this,

pi,1 − pi+1,1 =

∑

σ∈L(A)|σ(ai)=1 ϕdKT (σ,σ∗) −
∑

σ∈L(A)|σ(ai+1)=1 ϕdKT (σ,σ∗)

Zm
ϕ

=

∑

σ∈L(A)|σ(ai)=1

(

ϕdKT (σ,σ∗) − ϕdKT (σai↔ai+1
,σ∗)

)

Zm
ϕ

=
∑

σ∈L(A)|σ(ai)=1

ϕdKT (σ,σ∗) · (1 − ϕ)

Zm
ϕ

= (1 − ϕ) · pi,1,

where the second transition follows since σ ↔ σai↔ai+1
is a bijection between the set of

all rankings where ai is first and the set of all rankings where ai+1 is first, and the third
transition follows due to Lemma 3.5. Hence, pi,1 − pi+1,1 = (1 − ϕ) · pi,1, which implies
that pi+1,1 = ϕ · pi,1. Applying this repeatedly, we have that pi,1 = p1,1 · ϕi−1, for every
i ∈ {1, . . . , m}. Summing over 1 ≤ i ≤ m and observing that

∑m
i=1 pi,1 = 1, we get the

desired result. (Lemma 3.8)

Lemma 3.8 directly implies that the probability of sampling votes in which am−1 or am

(the two alternatives that are ranked at the bottom of σ∗) are at the top is exponentially
small, hence plurality requires an exponential number of samples to “see” these alterna-
tives and distinguish between them. However, what makes the proof more difficult is that
in theory the tie-breaking scheme may help plurality return the true ranking; indeed it
is known that the choice of tie breaking scheme can significantly affect a rule’s perfor-
mance [Obraztsova et al. 2011]. However, we show that here this is not the case, i.e., our
lower bound works for any natural (randomized) tie-breaking scheme.

Theorem 3.9. For any ǫ ∈ (0, 1/4], plurality (with any possibly randomized tie-breaking
scheme that depends on the top-ranked alternatives of the input votes) requires Ω((1/ϕ)m)
samples from Mallows’ model to output the true ranking with probability at least 1 − ǫ.

Proof. We first note that instead of operating on a profile π ∈ L(A)n, plurality (and
its tie-breaking scheme) operates on the vector of its plurality votes v ∈ An (we call it
a top-vote) which consists of the top-ranked alternatives of the different votes of π. The
probability of observing a top-vote v given a true ranking σ∗ is the sum of the probabilities
of observing profiles whose top-vote is v; we denote this by Pr[v|σ∗]. The accuracy of the
plurality rule (denoted PL) with n samples on a true ranking σ can now equivalently be
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written as

AccPL(n, σ) =
∑

v∈An

Pr[v|σ] · Pr[PL(v) = σ]. (3)

Fix ǫ ∈ (0, 1/4] and suppose we have AccPL(n) ≥ 1 − ǫ, i.e., AccPL(n, σ) ≥ 1 − ǫ for
all σ ∈ L(A). We want to show that n = Ω((1/ϕ)m). Let the set of alternatives be A =
{a1, . . . , am}. Consider two distinct rankings: σ1 = (a1 ≻ . . . ≻ am−2 ≻ am−1 ≻ am) and
σ2 = (a1 ≻ . . . ≻ am−2 ≻ am ≻ am−1) (where the last two alternatives are swapped

compared to σ1). Let Â = A \ {am−1, am}. We can decompose Equation (3) into two parts:

(i) a summation over v ∈ Ân (when plurality does not “see” alternatives am−1 and am);

denote this by f(σ), and (ii) a summation over v ∈ An \ Ân (when plurality “sees” at least
one of them); denote this by g(σ).

For any v ∈ Ân, we have Pr[v|σ1] = Pr[v|σ2]. To see this, observe that in any profile
π with top-vote v we can swap alternatives am−1 and am in all the votes to obtain (the
unique) profile π′ which importantly also has top-vote v and Pr[π|σ1] = Pr[π′|σ2]. Summing
over all profiles with top-vote v, this yields Pr[v|σ1] = Pr[v|σ2]. Therefore, we have

f(σ1) + f(σ2) =
∑

v∈Ân

Pr[v|σ1] · (Pr[PL(v) = σ1] + Pr[PL(v) = σ2]) ≤
∑

v∈Ân

Pr[v|σ1] ≤ 1.

Further,

g(σ1) =
∑

v∈An\Ân

Pr[v|σ1] · Pr[PL(v) = σ1] ≤
∑

v∈An\Ân

Pr[v|σ1],

where the right hand side is the probability that at least one of the two alternatives am−1

and am comes first in at least one vote. Let ti,j denote the number of votes in which
alternative ai appears in position j. Then we have

g(σ1) ≤ Pr[(tm−1,1 > 0) ∨ (tm,1 > 0)] ≤ Pr[tm−1,1 > 0] + Pr[tm,1 > 0],

where the last transition is due to the union bound.
The probability that alternative am−1 appears first in a vote is pm−1,1. Therefore, the

probability that it appears first in at least one vote is at most n ·pm−1,1 by the union bound.
Similarly, Pr[tm,1 > 0] ≤ n · pm,1. Therefore, g(σ1) ≤ n · (pm−1,1 + pm,1). In the same way,
we can obtain g(σ2) ≤ n · (pm−1,1 + pm,1). Finally, using the bounds obtained on f and g,
we have

AccPL(n, σ1) + AccPL(n, σ2) = (f(σ1) + f(σ2)) + g(σ1) + g(σ2) ≤ 1 + 2 · n · (pm−1,1 + pm,1).

We assumed that AccPL(n, σ) ≥ 1 − ǫ for every σ ∈ L(A). Therefore, we need 1 + 2 · n ·
(pm−1,1 + pm,1) ≥ 2 · (1 − ǫ), i.e.,

n ≥
1 − 2 · ǫ

2 · (pm−1,1 + pm,1)
≥

1

8 · pm−1,1
=

∑m−1
j=0 ϕj

8 · ϕm−2
≥

1

8 · ϕm−2
,

where the second transition follows since ǫ ∈ (0, 1/4] and pm,1 < pm−1,1, and the third
transition follows by Lemma 3.8. Thus, plurality requires Ω((1/ϕ)m) samples to output the
true ranking with high probability. (Theorem 3.9)

Since the exponential lower bound for plurality in Theorem 3.9 is missing a dependence on
ǫ, it is in general incomparable to the logarithmic upper bound of PM-c rules in Theorem 3.6.
However, the current bounds do show that plurality requires doubly exponentially more
samples (asymptotically in m) compared to PM-c rules for any fixed ǫ. Plurality has terrible
performance because it ranks alternatives by just observing their number of appearances

152



Proceedings Article

in the first positions of the input votes. In contrast, consider the veto rule that essentially
ranks alternatives in the ascending order of their number of appearances at the bottom of
input votes. By symmetry we have pm,m = p1,1 and pm−1,m = p2,1, both of which are lower
bounded by constants due to Lemma 3.8. Hence, veto requires only constantly many samples
to distinguish between am−1 and am. Nevertheless, it is difficult for both plurality and veto
to distinguish between alternatives am/2 and am/2+1 that are far from both ends. Certain
scoring rules, such as Borda count or the harmonic scoring rule, take into consideration
the number of appearances of an alternative at all positions. We show that a positional
scoring rule that gives different weights to all positions and does not give some position
exponentially higher weight than any other position would require only polynomially many
samples. The proof is given in the full version of the paper.

Theorem 3.10. Consider a positional scoring rule r given by scoring vector
(α1, . . . , αm). For i ∈ {1, . . . , m − 1}, define βi = αi − αi+1. Let βmax = maxi<m βi and
βmin = mini<m βi. Assume βmin > 0 and let β∗ = βmax/βmin. Then for any ǫ > 0, rule r
requires O((β∗)2 · m2 · log(m/ǫ)) samples to output the true ranking with probability at least
1 − ǫ.

While Theorem 3.10 shows that scoring rules such as Borda count and the harmonic rule
have polynomial sample complexity, it does not apply to scoring rules such as plurality and
veto since they have βmin = 0. Note that in Borda count all βi’s are equal, hence it is the
rule with the lowest possible β∗ = 1.

4. MOVING TOWARDS GENERALIZATIONS

Section 3 focused on Mallows’ model and sample complexity. In Section 5 we will consider
a much higher level of abstraction, including much more general noise models and infinitely
many samples. This section serves as a mostly conceptual interlude where we gradually
introduce some new ideas.

4.1. From finite to infinitely many samples and the family of PD-c rules

While the exact or asymptotic sample complexity — as analyzed in Section 3 — can help us
distinguish between various voting rules, here we take a normative point of view and argue
that voting rules need to meet a basic requirement: given infinitely many samples, the rule
should be able to reproduce the true ranking with probability 1. Formally, a voting rule r
is accurate in the limit for a noise model G if given votes from G, limn→∞ Accr(n) = 1.

For Mallows’ model, achieving accuracy-in-the-limit is very easy. Theorem 3.6 shows that
given O(log(m/ǫ)) samples, every PM-c rule outputs the true ranking with probability
at least 1 − ǫ. Thus, every PM-c rule is accurate in the limit for Mallows’ model. While
plurality requires at least exponentially many samples to determine the true ranking with
high probability (Theorem 3.9), a matching upper bound (up to logarithmic factors) can
trivially be established showing that plurality is accurate in the limit for Mallows’ model
as well. In fact, it can be argued that all scoring rules are accurate in the limit for Mallows’
model. We prove a more general statement by introducing a novel family of voting rules
that generalizes scoring rules and showing that all rules in this family are accurate in the
limit for Mallows’ model.

Definition 4.1 (Position-Dominance). Given a profile π = (σ1, . . . , σn) ∈ L(A)n, alter-
native a ∈ A and j ∈ {1, . . . , m − 1}, define sj(a) = |{i : σi(a) ≤ j}|, i.e., the number of
votes in which alternative a is among first j positions. For a, b ∈ A, we say that a position-
dominates b if sj(a) > sj(b) for all j ∈ {1, . . . , m − 1}. The position-dominance graph (PD
graph) of π is defined as the directed graph G = (V, E) where alternatives are vertices
(V = A) and there is an edge from alternative a to alternative b if a position-dominates b.
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The concept of position-dominance is reminiscent of the notion of first-order stochastic
dominance in probability theory: informally, a random variable (first-order) stochastically
dominates another random variable over the same domain if for any value in the domain
the former random variable has higher probability of being above the value than the latter
random variable. Also note that position-dominance is a transitive relation; for alternatives
a, b, c ∈ A if a position-dominates b and b position-dominates c, then a position-dominates
c. However, it is possible that for some alternatives a, b ∈ A, neither a position-dominates b
nor b position-dominates a. Thus, the PD graph is always acyclic, but not always complete.
When the PD graph is complete, it reduces to a ranking, similarly to the case of the PM
graph.

Definition 4.2 (Position-Dominance Consistent Rules). A deterministic voting rule r is
called position-dominance consistent (PD-c) if r(π) = σ whenever the PD graph of profile
π reduces to ranking σ. For randomized voting rules, we require that Pr[r(π) = σ] = 1.

This novel family of rules captures voting rules that give higher preference to alternatives
that appear at earlier positions. It is quite intuitive that all positional scoring rules are
PD-c because they score alternatives purely based on their positions in the rankings and
give higher weight to alternatives at earlier positions (a similar observation has been made
in [Elkind and Erdélyi 2012] in a slightly different context). PD-c rules also capture another
classical voting rule — the Bucklin rule. The definition of the Bucklin rule and the proof of
Theorem 4.3 appear in the full version of the paper.

Theorem 4.3. All positional scoring rules and the Bucklin rule are PD-c rules.

It is easy to argue that all PD-c rules are accurate in the limit for Mallows’ model. Let
σ∗ be the true ranking and ai be the alternative at position i in σ∗. If we construct a
profile by sampling n votes from Mallows’ model, then E[sj(ai)] = n · qi,j . Recall that qi,j

is the probability of alternative ai appearing among the first j positions in a random vote.
Clearly in Mallows’ model, qi,j > ql,j for any i < l. Therefore, as n → ∞, we will have
Pr[sj(ai) > sj(al)] = 1 for all j ∈ {1, . . . , m − 1} and i < l. Hence, the PD graph of the
profile would reduce to σ∗ (so any PD-c rule will output σ∗) with probability 1 as n → ∞.
We conclude that all PD-c rules are accurate in the limit for Mallows’ model.

4.2. PM-c rules are disjoint from PD-c rules

In Theorem 3.3 we saw various classical voting rules that are PM-c, and Theorem 4.3
describes well-known voting rules that are PD-c. At first glance, the definitions of PM-c
and PD-c may seem unrelated. However, it turns out that no voting rule can be both PM-c
and PD-c. To show this we give a carefully constructed profile where both the PM graph
and the PD graph are acyclic and complete, but they reduce to different rankings. Hence,
a rule that is both PM-c and PD-c must output two different rankings with probability 1,
which is impossible. For our example, let A = {a, b, c} be the set of alternatives. The profile
π consisting of 11 votes is given below.

4 votes 2 votes 3 votes 2 votes
a b b c
b a c a
c c a b

It is easy to check that the PM graph of π reduces to a ≻ b ≻ c and the PD graph of π
reduces to b ≻ a ≻ c. Thus, we have the following result.

Theorem 4.4. No (randomized) voting rule can be both PM-c and PD-c.

The theorem is not entirely surprising, as it is known that there is no positional scoring
rule that is Condorcet consistent [Fishburn 1974]. Note that in addition to PM-c rules and
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PD-c rules, we can construct numerous simple rules that are also accurate in the limit for
Mallows’ model, such as the rule that ranks alternatives according to their most frequent
position in the input votes and the rule that outputs the most frequent ranking.

4.3. Generalizing the noise model

While being accurate in the limit for Mallows’ model can be seen as a necessity for voting
rules, the assumption that the noise observed in practice would perfectly (or even approx-
imately) fit Mallows’ model is unrealistic. For example, Mao et al. [2013] show that, in
certain real-world scenarios, the noise observed is far from what Mallows predicts. While
voting rules cannot be expected to have low sample complexity in all types of noise models
that arise in practice, it is reasonable to expect them to be at least accurate in the limit for
such noise models. Indeed, it is not hard to construct voting rules that are accurate in the
limit for Mallows’ model but not for other reasonable noise models.

Unfortunately, it is not clear what noise models can be expected to arise in practice and
little attention has been given to characterizing reasonable noise models in the literature.
To address this issue we impose a structure, parametrized by distance functions, on the
noise models to make them well-behaved. As noted in Section 1.2, this approach is related
to the work of Flinger and Verducci [1986], but we further generalize the structure of the
noise model by removing their assumption of exponentially decreasing probabilities.

Definition 4.5 (d-Monotonic Noise Models). Let σ∗ denote the true underlying ranking.
Let d : L(A) × L(A) → R≥0 be a distance function over rankings. A noise model is called
monotonic with respect to d (or d-monotonic) if for any σ, σ′ ∈ L(A), d(σ, σ∗) < d(σ′, σ∗)
implies Pr[σ|σ∗] > Pr[σ′|σ∗] and d(σ, σ∗) = d(σ′, σ∗) implies Pr[σ|σ∗] = Pr[σ′|σ∗].

In words, given a distance function d we expect that rankings closer to the true ranking
would have higher probability of being observed. Note that Mallows’ model is monotonic
with respect to the KT distance. Any noise model that arises in practice can be expected to
be monotonic, and we require that a voting rule be accurate in the limit for any monotonic
noise model.

Definition 4.6. A voting rule r is called monotone-robust with respect to distance func-
tion d (or d-monotone-robust) if r is accurate in the limit for all d-monotonic noise models.

We saw that all PM-c and PD-c rules are accurate in the limit for Mallows’ model. In
fact, it can be shown that they are accurate in the limit for all dKT -monotonic noise models,
i.e., they are dKT -monotone-robust. However, we omit the proof as the theorem will follow
from the even more general results of Section 5.

Theorem 4.7. All PM-c and PD-c rules are dKT -monotone-robust.

5. GENERAL CHARACTERIZATIONS

For any given distance function d, we proposed d-monotonic noise models in an attempt to
capture noise models that may arise in practice. However, until now we only focused on one
specific distance function — the KT distance. Noise models parametrized by other distance
functions have been studied in the literature starting with Mallows [1957] himself. In fact,
all our previous proofs relied only on the fact that the KT distance is swap-increasing and
Theorem 4.7 can also be shown to hold when the KT distance is replaced by any swap-
increasing distance. Alas, among the three most popular distance functions that we consider,
only the KT distance is swap-increasing.

In this section we ask whether the families of PM-c and PD-c rules are monotone-robust
with respect to distance functions other than swap-increasing distances. We fully character-
ize all distance functions with respect to which all PM-c and/or all PD-c rules are monotone-
robust. Given any distance function d, it is easy to construct an equivalent integer-valued
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distance function d′ such that properties like d-monotone-robustness, MC and PC (the latter
two are yet to be introduced) are preserved. Thus, without loss of generality we henceforth
restrict our distance functions to be integer-valued.

5.1. Distances for which all PM-c rules are monotone-robust

We first characterize the distance functions for which all PM-c rules are monotone-robust.
This leads us to the definition of a rather natural family of distance functions, which may
be of independent interest.

Definition 5.1 (Majority-Concentric (MC) Distances). For any distance function d,
ranking σ ∈ L(A) and integer k ∈ N ∪ {0}, let N k(σ) = {τ ∈ L(A)|d(τ, σ) ≤ k} be the set
of all rankings at distance at most k from σ. Furthermore, for any alternatives a, b ∈ A,
let N k

a≻b(σ) = {τ ∈ N k(σ)|a ≻τ b}. A distance function d is called majority-concentric

(MC) if for any σ ∈ L(A) and a, b ∈ A such that a ≻σ b, |N k
a≻b(σ)| ≥ |N k

b≻a(σ)| for every
k ∈ N ∪ {0}.

Consider a ranking σ and imagine concentric circles around σ where the kth circle from
the center represents the neighbourhood N k(σ). Then, the MC criterion requires that for
every pair of alternatives, a (weak) majority of rankings in each neighbourhood (which can
be viewed as a set of votes) agree with σ, hence the name majority-concentric.

There is an alternative and perhaps more intuitive characterization of MC distances.
Fix any MC distance d, base ranking σ and alternatives a, b ∈ A such that a ≻σ b. Let
La≻b(A) = {τ ∈ L(A)|a ≻τ b} denote the set of all rankings where a ≻ b and let Lb≻a(A) =
L(A)\La≻b(A). Let us sort all rankings in both sets in increasing order of their distance from
σ, and map the ith ranking (in the sorted order) in La≻b(A) to the ith ranking in Lb≻a(A).
We can show that this mapping takes every ranking to a ranking at equal or greater distance
from σ. We call such a mapping weakly-distance-increasing with respect to σ. To see this,
suppose for contradiction that (say) the ith ranking of La≻b(A) at distance k from σ is

mapped to the ith ranking of Lb≻a(A) at distance k′ < k from σ. Then clearly, |N k′

a≻b(σ)| < i

and |N k′

b≻a(σ)| ≥ i, which is a contradiction since we assumed the distance to be MC. In
the other direction, again fix any distance d, σ ∈ L(A) and a, b ∈ A such that a ≻σ b.
Suppose there exists a bijection f : La≻b(A) → Lb≻a(A) that is weakly-distance-increasing
with respect to σ. Then for any k ∈ N ∪ {0} we have N k

b≻a(σ) ⊆ {f(τ)|τ ∈ N k
a≻b(σ)}, so

|N k
a≻b(σ)| ≥ |N k

b≻a(σ)|. If this holds for every σ ∈ L(A) and a, b ∈ A such that a ≻σ b, then
the distance is MC. In conclusion, we have proved the following lemma.

Lemma 5.2. A distance function d is MC if and only if for every σ ∈ L(A) and every
a, b ∈ A such that a ≻σ b, there exists a bijection f : La≻b(A) → Lb≻a(A) which is weakly-
distance-increasing with respect to σ.

We are now ready to prove our first main result of this section: the distance functions
with respect to which all PM-c rules are monotone-robust are exactly MC distances.

Theorem 5.3. All PM-c rules are d-monotone-robust for a distance function d if and
only if d is MC.

Proof. First, we assume that d is MC and show that all PM-c rules are d-monotone-
robust. Specifically, consider any d-monotonic noise model G; we wish to show that all PM-c
rules are accurate in the limit for G. Let σ∗ be an arbitrary true ranking and a, b ∈ A be
two arbitrary alternatives with a ≻σ∗ b.

Using Lemma 5.2, there exists an injection f : La≻b(A) → Lb≻a(A) which is weakly-
distance-increasing with respect to σ∗. Hence, for every σ ∈ La≻b(A), d(σ, σ∗) ≤ d(f(σ), σ∗),
so Pr[σ|σ∗] ≥ Pr[f(σ)|σ∗] since G is d-monotonic. Crucially, σ∗ ∈ La≻b(A) and d(σ∗, σ∗) =
0 < d(f(σ∗), σ∗), so Pr[σ∗|σ∗] > Pr[f(σ∗)|σ∗]. Recall that f is a bijection, hence its range
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is the whole of Lb≻a(A). By summing over all σ ∈ La≻b(A), we get

Pr[a ≻ b|σ∗] =
∑

σ∈La≻b(A)

Pr[σ|σ∗] >
∑

σ∈La≻b(A)

Pr[f(σ)|σ∗]

=
∑

σ∈Lb≻a(A)

Pr[σ|σ∗] = Pr[b ≻ a|σ∗].

It follows that given infinitely many samples from G, there would be an edge from a to b
in the PM graph with probability 1. Since this holds for all a, b ∈ A, the PM graph would
reduce to σ∗ with probability 1. Therefore, any PM-c rule would output σ∗ with probability
1, as required.

In the other direction, consider any distance function d that is not MC. We show that
there exists a PM-c rule that is not accurate in the limit for some d-monotonic noise model
G. Since d is not MC, there exists a σ∗ ∈ L(A), an integer k and alternatives a, b ∈ A with
a ≻σ∗ b such that |N k

a≻b(σ∗)| < |N k
b≻a(σ∗)|. Now we construct the noise model G as follows.

Let M = maxσ∈L(A) d(σ, σ∗) and let T > M (we will set T later). Define a weight wσ for

each ranking σ as follows: if d(σ, σ∗) ≤ k (i.e., σ ∈ N k(σ∗)), then wσ = T − d(σ, σ∗) else
wσ = M − d(σ, σ∗). Now construct G by assigning probabilities to rankings proportionally
to their weights, i.e., Pr[σ|σ∗] = wσ/

∑

τ∈L(A) wτ . First, by the definition of M and the fact

that T > M , it is easy to check that G is indeed a probability distribution and that G is
d-monotone.

Next, we set T such that Pr[a ≻ b|σ∗] < Pr[b ≻ a|σ∗]. Since the probabilities are pro-
portional to the weights, we want to obtain:

∑

σ∈L(A)|a≻σb wσ <
∑

σ∈L(A)|b≻σa wσ. Let

|N k
a≻b(σ∗)| = l, hence |N k

b≻a(σ∗)| ≥ l + 1. Now, on the one hand,

∑

σ∈La≻b(A)

wσ ≤
∑

σ∈N k

a≻b
(σ∗)

T +
∑

σ∈La≻b(A)\N k

a≻b
(σ∗)

M ≤ l · T + m! · M.

On the other hand,
∑

σ∈Lb≻a(A)

wσ ≥
∑

σ∈N k

b≻a
(σ∗)

(T − k) +
∑

σ∈Lb≻a(A)\N k

b≻a
(σ∗)

0 ≥ (l + 1) · (T − k).

Now we set T such that (l + 1) · (T − k) > l · T + m! · M , i.e., T > (l + 1) · k + m! · M . Noting
that l + 1 ≤ m! and k ≤ M , we can achieve this by simply setting T = 2 · m! · M .

Since we have obtained Pr[a ≻ b|σ∗] < Pr[b ≻ a|σ∗] under G, given infinitely many
samples there would be an edge from b to a in the PM graph with probability 1. Therefore,
with probability 1 the PM graph would not reduce to σ∗. We can easily construct a PM-c
rule r that outputs a ranking σ whenever the PM graph reduces to σ, and outputs an
arbitrary ranking with b ≻ a when the PM graph does not reduce to any ranking. With
probability 1, such a rule would output a ranking where b ≻ a. Hence, r is not accurate in
the limit for G, as required. (Theorem 5.3)

5.2. Distances for which all PD-c rules are monotone-robust

We next characterize the distance functions for which all PD-c rules are monotone-robust.
This leads us to define another natural family of distance functions.

Definition 5.4 (Position-Concentric (PC) Distances). For any ranking σ ∈ L(A), integer
k ∈ N ∪ {0}, integer j ∈ {1, . . . , m − 1} and alternative a ∈ A, let Sk

j (σ, a) = {τ ∈

N k(σ)|τ(a) ≤ j} be the set of rankings at distance at most k from σ where alternative a
is ranked in the first j positions. A distance function d is called position-concentric (PC)
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if for any σ ∈ L(A), j ∈ {1, . . . , m − 1}, and a, b ∈ A such that a ≻σ b, we have that
|Sk

j (σ, a)| ≥ |Sk
j (σ, b)| for all k ∈ N ∪ {0}, and strict inequality holds for some k ∈ N ∪ {0}.

While MC distances are defined by matching aggregate pairwise comparisons of alterna-
tives in every circle that is centered on the base ranking, PC distances focus on matching
pairwise comparisons of aggregate positions of alternatives in every concentric circle. Simi-
larly to Lemma 5.2 for MC distances, PC distances also admit an equivalent characteriza-
tion. We use this equivalence and show that PC distances are exactly the distance functions
with respect to which all PD-c rules are monotone-robust. The proofs appear in the full
version of the paper.

Let Sj(a) = {σ ∈ L(A)|σ(a) ≤ j} denote the set of all rankings where alternative a is
ranked among the first j positions. Call a distance function d : X → Y distance-increasing
with respect to a ranking σ if d(f(τ), σ) ≥ d(τ, σ) for every τ ∈ X (i.e., d is weakly-distance-
increasing) and strict inequality holds for at least one τ ∈ X.

Lemma 5.5. A distance function d is PC if and only if for every σ ∈ L(A), every a, b ∈
A such that a ≻σ b and every j ∈ {1, . . . , m − 1}, there exists a bijection f : Sj(a) → Sj(b)
which is distance-increasing with respect to σ.

Theorem 5.6. All PD-c rules are d-monotone-robust for a distance function d if and
only if d is PC.

We proved that MC and PC are exactly the distance functions with respect to which all
PM-c rules and all PD-c rules, respectively, are monotone-robust. If a distance function d
is both MC and PC, then it follows that all PM-c as well as all PD-c rules are d-monotone-
robust. On the other hand, if d is not MC (resp., not PC), then there exists a PM-c rule
(resp., a PD-c rule) that is not d-monotone-robust. We therefore have the following corollary.

Corollary 5.7. All rules in the union of PM-c rules and PD-c rules are d-monotone-
robust for a distance function d if and only if d is both MC and PC.

Fix any true ranking σ∗ ∈ L(A) and alternatives a, b ∈ A such that a ≻σ∗ b. Consider any
swap-increasing distance function d. By definition, the mapping which maps every ranking
σ with a ≻σ b to the ranking σa↔b increases the distance by at least 1. Therefore it is
clearly weakly-distance-increasing with respect to σ∗. Such a mapping is also a bijection
from La≻b(A) to Lb≻a(A). Using Lemma 5.2, it follows that d is MC. While the mapping is
also a bijection from Sj(a) to Sj(b), it may decrease the distance on σ ∈ Sj(a) where b ≻ a.
Using additional arguments, however, it is possible to show that d is PC as well. The proof
of the following lemma is given in the full version of the paper.

Lemma 5.8. Any swap-increasing distance function is both MC and PC.

Corollary 5.7 and Lemma 5.8 imply that all PM-c rules and all PD-c rules are d-monotone-
robust for any swap-increasing distance d, which implies Theorem 4.7.

5.3. Did we generalize the distance functions enough?

How strong are the characterization results of this section? We saw that all PM-c and PD-c
rules are d-monotone-robust for any swap-increasing distance d. However, we remarked at
the beginning of this section that we need to widen our family of distances as two of the three
popular distances that we study are not swap-increasing. We went ahead and characterized
all distance functions for which all PM-c rules or all PD-c rules or both are monotone-
robust; respectively, these are all MC distances, all PC distances, and their intersection.
Are these families wide enough or do we need to search for better voting rules that work
for a bigger family of distance functions? Fortunately, we show that even the intersection
of the families of MC and PC distances is sufficiently general to include all three popular
distance functions.
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Theorem 5.9. The KT distance, the footrule distance, and the maximum displacement
distance are both MC and PC.

The proof of Theorem 5.9 appears in the full version of the paper. Together with Corol-
lary 5.7, it implies that all PM-c rules and all PD-c rules are monotone-robust with respect
to all three popular distance functions that we study. We have established that our new
families of distance functions are wide enough; this further justifies our focus on PM-c rules
and PD-c rules, as they are monotone-robust with respect to all MC and PC distances,
respectively.

6. DISCUSSION

While we study three popular distance functions over rankings, we exclude some other
distances such as the Cayley distance and the Hamming distance; even the most prominent
voting rules such as plurality are not accurate in the limit for any noise models that are
monotonic with respect to these distances (see the full version of the paper). On the one
hand, this motivates a study of distance functions over rankings that are more appropriate
in the social choice context. On the other hand, one may ask: Which voting rules are
monotone-robust even with respect to such distance functions?

Furthermore, we have seen that all PM-c rules and all PD-c rules are accurate in the limit
for Mallows’ model. We later argued that being accurate in the limit for Mallows’ model
is a very mild requirement, and there are numerous other voting rules that satisfy it. Is it
possible to define a much wider class (possibly within the framework of generalized scoring
rules [Xia and Conitzer 2008]) that is accurate in the limit for Mallows’ model?

On the conceptual level, we analyze the sample complexity of voting rules as the number
of alternatives grows, but our analysis assumes (as is traditionally the case in the literature)
that the input to the voting rule is total orders over alternatives. As argued in the intro-
duction, the issue of sample complexity of voting rules directly translates to the problem
of estimating the required budget in crowdsourcing tasks. When the number of alternatives
is large, obtaining total orders is unrealistic, and inputs with partial information such as
pairwise comparisons, partial orders or top-k-lists are employed in practice. Several noise
models have been proposed in the literature for the generation of such partial information
(see, e.g., [Xia and Conitzer 2011]). Going one step further, Procaccia et. al. [2012] proposed
a noise model that can incorporate multiple input formats simultaneously given a true un-
derlying ranking. It would be of great practical interest to extend our sample complexity
analysis to such noise models.

Finally, we mentioned several points of view on the comparison of voting rules: social
choice axioms, maximum likelihood estimators, and the distance rationalizability frame-
work. Elkind et. al. [2010] point out the weakness of the connection between the MLE
framework and the DR framework by showing that the Kemeny rule is the only rule that
is both MLE and distance rationalizable. We argued that asking for a voting rule to be
the maximum likelihood estimator is too restrictive, and proposed quantifying the sample
complexity instead. This begs the question: How does the relaxed framework of sample
complexity relate to the DR framework?
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